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ABSTRACT 

A Flexible Control System for Flexible Manufacturing Systems. (May 2004) 

Wesley Dane Scott, B.S., Oregon State University; 

M.S.E., Purdue University 

Co-Chairs of Advisory Committee:  Dr. Jeffrey S. Smith 
Dr. Cesar O. Malave 

A flexible workcell controller has been developed using a three level control hierarchy (workcell, 

workstation, equipment).  The cell controller is automatically generated from a model input by the 

user.  The model consists of three sets of graphs.  One set of graphs describes the process plans of the 

parts produced by the manufacturing system, one set describes movements into, out of and within 

workstations, and the third set describes movements of parts/transporters between workstations.   

The controller uses an event driven Petri net to maintain state information and to communicate with 

lower level controllers.  The control logic is contained in an artificial neural network.  The Petri net 

state information is used as the input to the neural net and messages that are Petri net events are output 

from the neural net.   

A genetic algorithm was used to search over alternative operation choices to find a “good” solution.  

The system was fully implemented and several test cases are described. 
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NOMENCLATURE 
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____________ 

This dissertation follows the style and format of Journal of Intelligent Manufacturing. 

1 INTRODUCTION 

Since the late twentieth century, American manufacturing has been facing two major problems: a 

shortage of skilled workers in the United States and competition from goods manufactured by workers 

receiving lower wages in developing nations.  A potential solution to these problems is to increase the 

level of automation in the American factory.  Increasing automation allows fewer workers to 

manufacture more goods and because the worker’s salary is spread over a larger number of goods, the 

labor cost per item is reduced, potentially eliminating the cost advantage of the lower wages in 

developing nations. 

The current efforts in automation are identified as flexible manufacturing systems (FMSs) if they are 

limited to the shop floor or computer integrated manufacturing (CIM) if they include front office 

functions including computer aided design (CAD) or computer aided process planning (CAPP).  

Development of these systems began in the 1970s when automatic material handling systems came 

into use (Lee, 1994). Flexible manufacturing has been identified as a “national imperative” by 

Rosenfeld (1992) who believes the average United States (US) manufacturing firm is falling behind its 

international competitors.  Chittipeddi and Wallet (1991) believe that the US trade deficit can not be 

eliminated without relying on flexible manufacturing.   

Flexible manufacturing systems combine the advantages of the traditional flow-line and job shop 

systems, i.e. they have the efficiency of a flow-line with the flexibility of a job-shop.  Products can be 

manufactured efficiently at low-to-medium varieties and volumes, allowing product mixes and output 

levels to be changed with minimal losses in productivity (Gupta and Cawthon, 1996, Li and She, 1994, 

Shinichi and Taketoshi, 1992, Haddock and O’Keefe, 1990, Shukla and Chen, 1996). 
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Unfortunately, CIM systems are “virtually out of reach of most of the small companies that could most 

benefit from CIM,” because no commercial software is available to perform integrated control over the 

individual shop floor components (Smith and Joshi, 1995).  Companies are required to create custom 

implementations for each manufacturing system requiring experts in manufacturing, manufacturing 

systems, computer programming and networking.  Significant costs and expertise are also required to 

perform system maintenance or system modifications.  This expertise is not readily available in most 

small companies.  Gupta and Cawthon (1996) were told by a product manager at a machine tool 

company that small companies “haven’t even begun employing NC or CNC.  Getting into cells would 

be too great a technological leap for them.” 

In 1987, Naylor and Volz stated software “is the integrated manufacturing problem. The machines, 

robots, material transports, and so forth exist, but the software needed to tie them together into 

orchestrated flexible robust systems does not.”  Gowan and Mathieu (1996) found the major problems 

with FMSes were associated with the information flow and control subsystem of the FMS.  Liu and 

Zhang (1998) observe that software to carry out integrated control over individual shopfloor 

components is not commercially available and “rapid generation of shopfloor control software for 

integrated control of shopfloors remains a challenge.” 

Liu and Zhang (1998) further observe that while various control architectures have been proposed in 

the literature, with some of them, most notably the NIST control hierarchy (Jones and McLean, 1986) 

and CIM-OSA, becoming “standard,” none of the architectures are adequate.  The architectures “are 

simply verbose, textual descriptions of the general structure of manufacturing systems.  In other words, 

these qualitative descriptions provide a conceptual view of system decomposition without providing 

the specific details required to formalize the control software requirements for a control system based 

on these architectures.” 

Simpson et al. (1982) believe, “If flexible manufacturing systems are to become widely adopted in the 

discrete parts industry where 87% of the firms employ less than 50 persons than they are today.  It 
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must be possible for a firm to start with an NC machine, add a robot, add another machine, and so on 

as capital is accumulated and as the firm's business grows.  Systems must also be capable of being 

tailored to various part mixes without extensive engineering effort.”  In other words, it must be 

possible to easily and inexpensively build a control system, and even more importantly, changes to the 

control system when a new machine or new product is added, must be easy and inexpensive.  The 

ability to add new components is described as “expansion flexibility” by Chryssolouris and Lee 

(1992).  Lawley et al. (1997) note that FMS controllers are usually custom developed, highly complex 

and understood by only a handful of skilled technicians, further “much of the knowledge needed to 

complete an FMS expansion or modification is not transferred from the vendor to facility personnel or 

is forgotten by the time an expansion or reconfiguration is required.”  These issues convert the 

software controller from the “potentially most capable and flexible system component” into a “major 

limiting factor in effective FMS deployment.” 

Senehi et al. (1991) have suggested that the goal of research and development in CIM should be to 

provide the technologies for the creation of automated or semi-automated factories that function 

efficiently and cost effectively.  Given that the machines, robots and material transports have been 

available for decades and control software is not currently available, research and development efforts 

need to be directed toward developing good control software construction tools.   

The function of a control system can be stated quite simply.  The system state is mapped onto a set of 

possible control actions to determine the control actions that should be executed.  The system state is 

defined by the values of a set of state variables.  State variables describe information about the 

manufacturing system, such as the number and type of parts in the system and the status of a machine.  

Control actions are actions that can be initiated by the controller and that cause the state of the system 

to change.  Equipment failures cause the system state to change, but are not control actions because 

they are not initiated by the control system.   
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The problems start with the implementation of this simple concept.  Three things need to be identified: 

the system state, the possible control actions, and the mapping between the system state and the control 

actions.  Identifying these three items begins with creating a model of the system.  One of the 

difficulties in developing a model is that the choice of modeling technique and the variables used to 

describe the state of the system are linked.  The modeling technique must be chosen so that all of the 

state information necessary for control is available.  Further, the modeling technique must include a 

method of describing the control actions that can be applied to the system.  An adequate system model 

will allow the control actions and the system state to identified.  Unfortunately, the model does not 

directly provide information about how to map the system state to control actions to achieve a desired 

result. 

The mapping of the system state to control action has typically been created on a human observation 

and experience basis.  The simplest way to record this mapping is to use a state table.  A state table is 

a complete enumeration of all of the possible states of a system based on the state variables.  To record 

the mapping, the state table is augmented with a set of control actions for each state listed in the table.  

There may be some states, combinations of state variables, that are impossible to physically achieve.  

These states may be left out of the state table to reduce the size, since no control actions need to be 

specified. 

Theoretically, any system can be controlled using a state table control system.  In practice, the size of 

the state table becomes prohibitive.  The number of possible system states is a function of the state 

variables that describe the system, ∏
=

=
k

j
jbN

1

 where N is the possible number of states, bj is the 

number of possible values of state variable j, and k is the number of state variables. 

To overcome the state space explosion problem, rule-based control can be used.  Rules are of the 

form: IF a set of conditions THEN perform these control actions.  Each rule combines the states that 

meet the conditions in the IF clause.  State table control is rule-based control where each rule applies to 
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only one possible state of the system.  The major problem with this rule-based control is the difficulty 

in developing good rules.  Heuristic scheduling rules were created as an attempt to deal with this 

problem.  Panwalkar and Iskander (1977) presented a summary of 113 dispatching rules.  Although 

dispatching rules can provide optimum schedules for small systems, they are generally inadequate.  

Drake (1996) reports that the effect of any single dispatching rule varies with system dependent factors 

and concludes that a generalized solution is not possible.  Combining or dynamically changing 

dispatching rules achieves better performance than using a single rule (Herrman et al., 1995, Storer et 

al., 1992,1995).  A major drawback with dispatching rule research is that it does not deal with the 

material handling and material transport aspects of a flexible manufacturing system. 

Control software can be cast into the dichotomy shown in Figure 1 (Smith, 1992).  Generic software is 

software that can be used for a large class of systems without modification.  Implementation specific is 

split into two categories: automatically generated and hand coded.  Automatically generated software 

is software tailored for each specific application, but that does not require a human programmer to do 

the coding.  The necessary source code is created via a computer program from a description entered 

by the manufacturing system designer.  Hand coded software is software written, debugged, and 

maintained by a human computer programmer and is the most expensive. 

Ideally, a generic control software could be used and no changes would be required to the control 

software when changes were made to the shopfloor.  Drake (1996) observes that a number of 

researchers have argued that due to the “flexible nature of FMS” and the “inherent differences between 

systems,” “generic, optimal seeking solutions may be too difficult to resolve in real-time” and 

alternative analysis mechanisms need to be explored.   
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If a generic control software can not be achieved then the best remaining option is automatically 

generated software.  When a change is made to the shopfloor (i.e. a new machine or new part type is to 

be manfactured), the user updates the description of the shop and then a generation program translates 

the revised description into a new controller.  The problem that must be overcome to make this feasible 

is the creation of an algorithm to generate a good mapping from system state to control actions. 

Figure 1  Control Software Dichotomy (from Smith, 1992) 

When developing the mapping from system state to control actions, two issues must be considered: 

safety and performance.  Safety consists of three concepts.  The first is the elimination of invalid (and 

potentially dangerous) actions, such as unloading a part when there is no transportation device ready to 

receive it, causing the part to fall to the floor and be damaged, or trying to load a part onto a machine 

that is processing another part, causing both parts and the machine to be damaged.  The second is to 

make sure the system is not placed into a state of endless cycling.  The third is ensuring that all of the 

parts to be produced will be produced without placing the manufacturing system into a stalled or 
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“deadlocked” condition.  Lawley et al. (1997) claim that “deadlock has emerged as the paramount 

FMS structural concern.” 

Cycling occurs when a sequence of control actions is performed and the system returns to a previous 

state, i.e. no progress is made.  Previous work has emphasized producing a completely acyclical 

system, guaranteeing that any part that enters the system will eventually exit it.  This ignores the fact 

that it may be advantageous for a limited cycle to occur.  An example of this case is when a low 

priority part is moved so a higher priority part can make use of the resources the lower priority part 

was holding.  After the higher priority part has completed processing, the lower priority part would be 

moved back and reclaim the resources it held before it moved.  The low priority part has cycled, but 

the cell as a whole has not because progress was made by the higher priority part. 

Deadlock occurs when system resources are allocated in a manner that will not allow parts to make 

progress.  Coffman et al. (1971) identified four conditions that are necessary for deadlock to occur 

among concurrent processes (each part in a FMS is a process, multiple parts flowing through the 

system equates to concurrent processes):  

1. Mutual exclusion: processes require the exclusive use of a resource 
2. Hold while waiting: processes hold onto resources while waiting for additional 

required resources to become available 
3. No preemption: processes holding resources determine when they are released 
4. Circular wait: closed chain of processes in which each process is waiting for a 

resource held by the next process in the chain 

Banaszak and Krogh (1990) note that in FMS applications the first three conditions always hold and 

therefore to avoid deadlocks it is necessary to focus on the fourth condition, a circular wait.  They used 

a simple Petri net model to create a deadlock avoidance algorithm that would guarantee that a circular 

wait condition would never exist. 

The objective of this research has been to demonstrate that flexible manufacturing control systems can 

be feasibly automatically created.  To accomplish this a user friendly manufacturing system model 

based on three types of graphs was developed.  Two of the graph types are used to represent the 
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workcell in terms of physical locations and the possible movements between physical locations.  The 

third type of graph is used to represent part process plans.  These graphs allow the workcell user to 

define all of the information required to generate the control system eliminating the need for a control 

engineer to model the system. 

The graphs are then algorithmically converted to a particular type of Petri net that is used to interface 

with other controllers and maintain state information.  An artificial neural net is constructed, where the 

input and output layers are specified by the structure of the Petri net.  The hidden layers of the artificial 

neural net are partially specified by the structure of the Petri net and partially generated as scheduling 

knowledge is constructed from the process plans and simulation of the workcell performance.  The 

weights of the neural net are constrained so that the structure of the neural net represents logical 

conditions.  Choices among operations are represented by specific weight or node threshold 

combinations.  A genetic algorithm was used to select specific choices.  These choices were then 

implemented by setting the appropriate neural network weight or threshold values. 

The dissertation is organized to give the reader a brief review of existing manufacturing system control 

structures and models and process plan models.  Background information on the tools used in this 

research  (Petri nets, artificial neural nets and genetic algorithms) and a discussion of deadlock are then 

presented in section 2.  The specifics of the manufacturing system and process plan models used with a 

description of the user input requirements are then presented in section 4.  The control system and its 

construction are then described in section 5 followed by the description of a simple system used as a 

test case in section 6.  The results of the work are then presented along with suggestions for future 

improvements and research possibilities in sections 7 and 8. 
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2 PREVIOUS RELATED RESEARCH 

Related research falls into the following categories: flexible manufacturing control systems, 

manufacturing system models, process plan models, Petri nets, and artificial neural nets.  This research 

is aimed at developing a manufacturing control system.  To develop that control system the 

manufacturing system and the parts to be manufactured must be modeled.  As stated by Adlemo et al. 

(1995), “To be able to control the production efficiently, the controller must have an appropriate model 

of the manufacturing system, as well as a model for all the products manufactured.”  To simplify 

implementation, it appears preferable to use a modeling technique that can be used to model both the 

manufacturing system and the products produced.  Petri nets are such a modeling technique.  The 

literature has examples of Petri nets being used to model manufacturing systems (see Moore and 

Gupta, 1996, for a review of such models) and process plans.  This research uses the Petri net and 

artificial neural net technologies, applying them in a new manner to the problem of flexible 

manufacturing system control.  

2.1 Flexible Manufacturing Control Systems 

Control systems have generally been organized according to one of four models: centralized control, 

hierarchical control, hybrid control, and heterarchical control.  Figure 2 (adapted from Duffie et al., 

1988) shows how the control is distributed for the four models.  A brief description and an example of 

each model will be presented. 
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Figure 2 Spectrum of Control Distribution (adapted from Duffie et al., 1988) 

2.1.1 Centralized control 

Centralized control was implemented in the early period of computer controlled automation.  All 

control decisions were made by one central computer.  The major disadvantage of centralized control 

is the limited size of the manufacturing system that can be controlled.  The significant increase in 

available computing power over the last several decades has reduced the severity of this disadvantage. 

2.1.2 Hierarchical control 

Hierarchical control was developed to overcome the manufacturing system size limitation of 

centralized control.  In the hierarchical control architecture commands are issued by a central authority 

figure (computer).  These commands are interpreted by the next lower level in the hierarchy where 

they are either carried out (executed) or detail is added and the commands are passed to the next lower 

level in the hierarchy, until they reach a level where execution can take place.  This architecture is very 

similar to the standard business organization. 

2.1.2.1 National Bureau of Standards (NBS) 

One of the first control models was developed at the National Bureau of Standards (NBS) (Jones and 

McLean, 1986) and applied to the NBS automated manufacturing research facility (AMRF).  Based on 
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an analysis of small batch manufacturing systems they proposed a five level control hierarchy.  The 

levels from the top down were: facility, shop, cell, workstation, and equipment.  The facility level 

deals with “front office” functions and is broken down into three major functional areas: 

manufacturing engineering, information management, and production management.  The shop level 

has two major components a task manager and a resource manager.  The task manager schedules job 

orders, equipment maintenance, and shop support activities, tracks equipment utilization and schedules 

preventive maintenance.  The resource manager allocates workstations, buffer storage areas, trays, 

tooling, and materials to cell level control systems for particular production jobs and monitors the 

levels of raw stock, work in progress, cutting tools, and replacement parts inventories.  The cell level is 

responsible for sequencing batch jobs of similar parts through workstations and supervising the 

material handling and calibration support services.  The workstation level coordinates the activities of 

small, integrated groupings of physical hardware.  The typical workstation in the AMRF consisted of a 

robot, a machine tool, a material storage buffer, and a control computer.  The cell-to-workstation 

control interface was designed to be independent of the type of workstation.  The equipment 

controllers were “front end” systems tied to a particular piece of equipment.  The equipment controller 

interfaced with the workstation controller and the vendor supplied controller that came with the piece 

of equipment.  The equipment controller translated the workstation commands into a sequence of 

simple commands the vendor controller can understand.  They suggest that it may be possible to 

partition equipment controllers into two parts: a high level controller that is hardware independent that 

performs task decomposition, and a low level controller that is hardware dependent that monitors task 

execution.  Controllers were implemented using state tables.  They note that a “uniform control 

architecture” is possible independent of the data required to make a particular part.  The process 

planning system was used to specify not only “all of the machining activities to produce a particular 

part, but also all robot handling sequences, feasible routings, fixturing, and raw materials.”   
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2.1.2.2 Wysk and Smith formal functional characterization 

Wysk and Smith (1995) describe a shop floor control system (SFCS) with production requirements 

and resources as the primary inputs.  The output is a set of individual equipment processing 

instructions that will allow the manufacture and transport of the parts specified in the production 

requirements.  The production requirements consist of administrative and technical requirements.  The 

administrative requirements consist of the number of parts that should be manufactured and are 

supplied by the shop-wide planning function.  The technical requirements include the processing 

requirements specified by the process plan and any special handling or environmental requirements.  

The process plans are represented as AND/OR digraphs.  Resources are non-permanent items such as 

tooling and fixturing.  The process plans for each part that needs to be manufactured are connected via 

an AND junction to create a composite graph that is used for control.  A task graph is an AND/OR 

graph that describes the requirements for individual features of a part.  In general, a task graph would 

correspond to a single node in a process plan. 

A factory model describes the equipment within the shop and the relationships between the equipment.  

Their factory model is based on the equipment classification scheme of Smith (1992). A key point is 

that the factory model is independent of the parts that are produced in the factory.   

They suggest that a controller’s functionality can be partitioned into planning, scheduling, and 

execution.  Where planning is defined as selecting the tasks the manufacturing system will perform, 

scheduling is identifying a “good” sequence for performing the tasks based on some performance 

criteria, and execution is performing the tasks by interfacing with the physical equipment (and possibly 

other external business systems).  They observe that no formal description of the distinction between 

planning and scheduling has been provided by the research community.  Using their formalism of a 

shop floor control system, planning becomes the “DeOring” of the process plan graph, this represents 

the selection of a specific set of operations to complete the parts.  Scheduling becomes “DeAnding” 

the process plan graph, this represents selecting the sequence of operations to complete the parts. 
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2.1.3 Heterarchical control 

In the heterarchical control architecture, decisions are distributed.  There is no central authority.  Each 

machine determines its next operation based on information available locally.  Global optimization can 

not be performed because no machine knows the complete state of the system.  The advantages offered 

are reduced controller complexity, increased modularity and fault tolerance.  These advantages are 

expected to lead to reduced software development costs and improved maintainability and 

modifiability.   

2.1.3.1 Duffie et al. heterarchical control 

Duffie et al. (1988) demonstrated a system consisting of a machining cell and an assembly cell.  The 

cells consisted of a combination of actual equipment (robots) and simulated equipment (machining 

stations).  They summarize the development process as: 

1. Construct initial system using simulated machinery 

2. Operate and debug system using simulated machinery 

3. Add machine interfaces to an entity 

4. Operate system with newly interfaced machine 

5. Repeat 3 and 4 until all machines have been interfaced 

6. Operate and debug system with actual rather than simulated 

machinery 

They note the ability to mix simulated and actual equipment allows proposed system additions to be 

studied prior to bringing in the new hardware.  

Six design rules were used to “produce a system of cooperating autonomous entities with a high level 

of intrinisic modifiability and fault tolerance.”   

1. Entities should possess the highest achievable level of local 

autonomy 



 14

2. Master/slave relationships should not exist between entities 

3. Entities should cooperate with other entities whenever possible 

4. Entities should assume that other entities will not cooperate with 

them 

5. Entities should delay establishing relationships for as long as 

possible 

6. Entities should terminate relationships as soon as possible 

These principles are based on the principle of minimizing “global information,” where global 

information is defined as any information that is not confined to a single entity.  Global information is 

considered undesirable because “global information and complex relationships between entities makes 

modification expensive, prone to introduction of logical errors, and often not achievable in the field.” 

Software for entities in the system was divided into two major components, a controller and a 

communicator.  The controller implemented the control logic and functioned as a state machine 

synchronized with the hardware associated with the entity.  The communicator allowed asynchronous 

message exchange between entities.  The communicator is event driven where events are messages 

from the network and signals from the entity controller.  To achieve fault tolerance, two principles 

were applied in developing the entities:  

1. The entity should not be required to respond to any message it 

receives; and 

2. the entity should assume that transmitted messages will not be 

responded to by other entities. 

The following categories of entities were used: parts, pallets, part processing, material handling robot, 

and human.  Pallets entities contained the part intelligence in the manufacturing system described.  

Each pallet was responsible for moving through the system according to the plan for manufacturing the 

parts fixtured to it.  Multiple types of pallet entities were required.  Part processing entities (machine 
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tools, assembly robots, inspection stations and input / output stations) are responsible for 

communicating with other entities, forming relationships with pallets, and translating process requests 

into detailed sequences of processing control actions for the hardware associated with the entity.  

Material handling robot entities respond to transportation requests from pallets and recognize the 

names of stations within their reach.  Robot entities are required to coordinate actions if movement is 

between cells.  Human entities were included as advice givers.  The human was used to resolve 

“complex faults,” such as, machine failures and “deadlocks caused by ‘circular’ relationships between 

part processing and pallet entities.”  Fault messages generated by other entities in the system were 

routed to the human entity.  After diagnosing the fault, the human would send advice to the entity (e.g. 

“Continue”, “Go to output station”) on how to correct the fault. 

2.1.4 Hybrid control 

Hybrid control is an attempt to obtain the advantages of hierarchical control (potential global 

optimization) and heterarchical control (redundancy, flexibility) in a single system. 

2.1.4.1 Liu and Zhang hybrid control architecture 

Liu and Zhang (1998) propose a three level control architecture: shopfloor, agent, and equipment.  The 

equipment level represents a direct mapping of permanent physical equipment, and is the same as that 

proposed by Smith and Joshi (1995), Jones and McLean (1986), Jones and Saleh (1990), and Cho and 

Wysk (1995).  A formal description of the equipment level is given.  “An agent is defined by the 

aggregated function classes of shopfloor equipment wherever these pieces of equipment are located in 

the shopfloor.” Five types of agents are identified: 1) machining processing (MP), 2) 

loading/unloading (LU), 3) workpiece-flow (WF), 4) tool-flow (TF), and 5) automated storage (AS).  

Agents are also categorized into client agents (MP, LU, AS) and server agents (WF, TF).  The agent 

level is defined as  

AL = {ALi | i = 1,…, nal} where  
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ALi = (APi, AUi, AWi, ATi, AAi), a quintuple, known as a multi-agent co-operative cluster. 

APi, AUi, AWi, ATi, AAi are couples of the form (ACi, AGi) where ACi is an agent controller and AGi 

is an agent (MP, LU, WF, TF, or AS).   

A shopfloor SF is defined as SF = {SC, AL} where SC is a shopfloor controller. 

Except for the equipment level controllers, the controllers are “independent of the physical structure of 

the actual shopfloor environment.”  The shopfloor controller controls the flow of physical material 

through the shop by assigning tasks to the client agents of a co-operative cluster.  The client agents 

“then request server agents within the same co-operative cluster to provide services and co-operation.  

Each agent autonomously makes its own decision with its local knowledge base about the shopfloor 

and controls its relevant equipment.”   The agent level acts at the same level as the more traditional 

workstation controller.  The differences between agents and workstation controllers are the agent does 

not control a fixed set of equipment like the workstation controller and agents can communicate with 

each other, where workstation controllers can only communicate with the controllers above and below 

them. 

2.2 Manufacturing System Models 

The Wysk et al. (1995) resource model defines resources (R) to consist of equipment (E), tools (T), 

fixtures (F), transporters (N) and instruction sets (I).  The equipment is subdivided into: material 

processors (MP) which include part transformation equipment and storage, material handlers (MH) 

which are part transfer devices, and material transporters (MT) devices which “move products from 

location to another location.”  Tools are the end-effectors that actually perform a task.  Fixtures are 

devices for “precisely locating and securing a part or set of parts.”  Transporters are devices for 

“locating and securing a part or set of parts.”  Instructions are a “set of commands that instruct a piece 

of equipment to perform some task.”  Not considered a resource but defined in the model are ports (P) 

and locations (L).  Ports are subdivided into mports and tports where mports are associated with MP 
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equipment and tports with MT equipment.  Locations are places inside a port where a part can be 

located.  Locations are said to have owners and clients, but a description of how this information is 

used is not provided.  The model includes a graph representation of part movement possibilities (the 

description of the graph is buried in the definition of the ports).  Facilitators are defined as, “A device 

(from MT or MH) that can move transporters between tports, move parts between tports, or move parts 

between tports and mports.”  This definition leaves out the possibility of being able to move parts from 

machine to machine directly (mport to mport). 

Ezpeleta and Colom (1997) partition a FMS into processors and handlers, where processors transform 

parts and handlers transport parts but do not affect them.  Storage systems are considered handlers.  

Liu and Zhang (1998) partition equipment (EL) into active (E) and passive (E’).  Active equipment 

requires an equipment controller (EC) and consists of machines with machine controllers (MC).  The 

set EC is partitioned into material processors (EP), material handlers (EH), loading/unloading devices 

(EM) and automated storage devices (EA).  Passive equipment does not require an equipment 

controller and consists of buffer units that are subdivided into buffers for parts (BP) and buffers for 

tools (BT).  A partial ontology is presented providing a description of the EP and EH classes of 

equipment.  The EP equipment class has two properties, structure (SP) and control (CP).  SP has two 

aspects local part storage capacity (PS) and tool storage (TS).  Two types of ports describe the 

interface to external equipment, part ports (PP) and tool ports (TP).  CP describes the exchange mode 

when interacting with external equipment.  Three modes exist: active, the EP equipment controls the 

exchange; passive, the exchange is controlled by external sources; and interactive, both the EP and the 

external equipment is involved in the control during an exchange.  

For EH equipment the ontology has three properties: the structure property (SH), representing the 

maximum number of units handled per transaction and the capacity of each unit; the control property, 

which has the same three modes as the EP class, and the reachability property, the set of locations 

reachable by the piece of EH equipment. 
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Activity cycle diagrams (ACD) are constructed to identify controllable activities and interaction 

processes for equipment controllers. The command sets vary with the structure of the equipment (how 

the buffers and part ports are arranged).   

Adlemo et al. (1995) describe a “resource capability model.” Resources can be grouped together to 

create a virtual resource for the next higher level in the hierarchically organized system.  Resources are 

divided into three groups: 

1. Producers – these devices make changes to the physical or logical properties of the product, e.g. 
CNC machines and measurement devices 

2. Locations – products are stored, no changes to the products properties are allowed 
3. Movers – products are transported between producers and locations e.g. AGVs, robots, conveyors 

Comparing the manufacturing system models we find the following commonalities.  All models have a 

category of equipment that produces changes to parts in the system.  All models have a category of 

equipment that moves parts.  Wysk et al. (1995) subdivide the movement category into material 

transporters (MT) and material handlers (MH).  Liu and Zhang (1998) also subdivide the category 

using the terms material handlers (EH) and loading/unloading devices (EM).  The MT and EH 

categories and the MH and EM categories appear to be the same.   

The point where significant differences occur between the models is the handling of storage equipment 

and buffers.  Wysk et al. (1995) include storage systems in the material processor category and do not 

include buffers (storage without an equipment controller) in the model.  Ezpeleta and Colom (1997) 

also neglect buffers, but place the storage system in the equipment that moves parts (handling) 

category, not the equipment that changes parts category.  Liu and Zhang (1998) include separate 

categories for automated storage systems (EA) and buffers, where buffers do not require an equipment 

controller and are subdivided into buffers for parts (BP) and buffers for tools (BT).  Adlemo et al. 

(1995) have a location category for part storage.   
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Additionally, the concept of ports, as places where interaction between categories of equipment occurs, 

is presented in Wysk et al. (1995) and Liu and Zhang (1998).   

2.3 Process Plan Models 

The function of a process plan is to describe the steps required to transform raw material into a finished 

product.  There is no standardized method of representing a process plan for use with a control system, 

methods that have been used in the literature include: operations lists, digraphs, AND/OR graphs, Petri 

nets.  

Smith (1992) uses a graph that shows precedent constraints and alternative routings adapted from 

Metalla (1989).  Each node in the graph represents a specific operation or set of operations performed 

by a machine.  Each arc represents movement of the part from the machine represented by the tail of 

the arc to the machine represented by the head of the arc.  Any path through the graph (from start node 

to finish node) represents a feasible processing route for the part.  Hierarchical construction of the 

graphs showing various levels of detail is proposed with the levels mapping to the hierarchical control 

structure used.  By assigning costs to the nodes and arcs in real-time based on current shop conditions, 

the shortest path can be used to find an optimum processing route.  Smith et al. (1992) describes an 

application of this approach.   

Kempenaers et al. (1996) discuss the use of non-linear process plans (NLPP) in a collaborative process 

planning and scheduling system.  The system was not intended for use in a fully automated system.  

The NLPPs provide the scheduler with a set of alternative process plans in an AND/OR graph.  An 

enhanced Petri net model was used to represent the AND/OR graph.  Citing others, they report that for 

constant WIP, productivity can be improved 7.5% and lead-time decreased by 7% by using NLPPs 

instead of the standard linear process plan.  For constant productivity, WIP can be reduced by 25%.  

Wysk et al. (1995) present a “formal process planning schema” which includes a manufacturing 

systems resource model.  Process plans are represented as AND-OR graphs (a form of NLPP).  Nodes 
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in the graph must be defined in terms of the resource model.  “Each node in the graph has an NC file 

and the associated tooling, fixturing, location, orientation, and processing instructions for creating the 

feature represented by the node.”  A description of how this is implemented is not available and the 

example process plan does not include the information.   

Ezpeleta and Colom (1997) model parts with process plans that contain only processors.  This contrasts 

with the working processes of Ezpeleta et al. (1995), which describe “the set of possible sequences of 

operations the system has to perform in order to manufacture a product” and include the material 

handling operations. 

Adlemo et al. (1995) describe products by operations lists.  The assignment of resources is done by 

synchronizing a state-machine representing a product operation list with a state-machine representing 

the resources.  The system state is maintained by “a set of concurrently executing state automatons.”  

They state the state information “should be separated from the information that tells the control system 

what to do when the system has reached a certain state.”  The “what to do” information is separated 

into routing and control information.  The routing information is created based on the product 

operation model and a resource capability model.  Control information (which is not discussed in the 

paper) consists of the detailed instructions for the resources, “e.g. which NC programs to run.”   

2.4 Petri Nets 

Petri nets were first described in a Ph.D. dissertation by Carl Petri (1962).  The standard references are 

Peterson (1981), the first book to cover them, and Murata (1989).  Many variations have been 

proposed to the original theory.  The most significant of these variations are the addition of 

deterministic time, Ramchandani (1974), stochastic time, Florin and Natkin (1982), Molloy (1982), 

color, Jensen and Rozenberg (1991), Jensen (1992), hierarchy and events.  Petri nets consist of 4 

primitive elements: tokens, places, transitions, and arcs, and the rules that govern their operation.   
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“A Petri net is a particular kind of directed graph, together with an initial state called the initial 

marking, M0”  Murata (1989).  The arcs in the graph have weights associated with them.  The weight 

indicates the number of tokens that must be in the place at the tail of the arc for the transition at the 

head of the arc to be enabled.   An arc with a weight w (w-weighted) arc is equivalent to a set of w 

parallel arcs with a weight of one.  A marking assigns a non-negative integer k to each place, where k 

represents the number of tokens contained in the place.  A marking is denoted by an m-vector, M, 

where m is the total number of places in the Petri net. M(p), the pth component of M, is the number of 

tokens in place p (M(p) = k).  A Petri net is said to be pure if it does not contain any self-loops.  A self-

loop occurs when a place is both an input and an output place for a transition t.  A Petri net is called 

ordinary if the weights of all of the arcs in the net are equal to one.  

Table 1 contains some typical interpretations of transitions and places.  In modeling FMSs, input 

places would represent either preconditions or resources needed.  Transitions would represent events or 

tasks and output places would represent postconditions or resources being released.  The 

interpretations are somewhat interchangeable.  Consider a robot that is to load a machine, one can say 

that for the load operation to take place one needs the resources of a robot, a machine and a part, or one 

can say that the following conditions must be true, a robot is available, the machine is available and a 

part is available.   

Table 1  Some Typical Interpretations of Transitions and Places (from Murata, 1989) 

Input Places Transition Output Places 
Preconditions Event Postconditions 
Input data Computation Step Output data 
Input signals Signal Processor Output Signals 
Resources needed Task or Job Resources released 
Conditions Clause in Logic Conclusions 
Buffers Processor Buffers 
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The dynamic behavior of a system is simulated by changing the marking of the Petri net using the 

following firing rule assuming each place can hold an infinite number of tokens, i.e., the net is an 

infinite capacity net (Murata, 1989): 

1) “A transition t is said to be enabled if each input place p of t is marked with at least w(p,t) tokens, 
where w(p,t) is the  weight of the arc from p to t. 

2) An enabled transition may or may not fire (depending on whether or not the event actually takes 
place). 

3) A firing of an enabled transition t removes w(p,t) tokens from each input place p of t, and adds 
w(t,p) tokens to each output place p of t, where w(t,p) is the weight of the arc from t to p.” 

 

Nets where the places are limited in capacity are called finite capacity nets.  Each place has an 

associated capacity K(p), the maximum number of tokens that p can hold at any time.  For finite 

capacity nets an additional condition must hold for the transition to be enabled: 

4) The number of tokens in each output place p of t cannot exceed its capacity K(p) after firing t. 

When all four conditions are included, the firing rule is called the strict transition rule.  Without 

constraint 4, the rule is called the (weak) transition rule.  It is possible to transform a finite capacity net 

by adding complementary places to allow the weak transition rule to be used instead of the strict 

transition rule. 

Petri nets can be used to represent finite-state machines.  Petri nets representing finite-state machines 

are distinguished by the fact that each transition has exactly one incoming arc and exactly one outgoing 

arc.  State machines allow representation of choice (also referred to as conflict or decision), but do not 

allow the synchronization of activities in parallel.  Systems with choice are non-deterministic. 

Petri nets that allow representation of concurrency, events occurring in parallel, but not choice are 

called marked graphs.  Marked graphs are distinguished by the fact that each place has exactly one 

incoming arc and exactly one outgoing arc.  Confusion exists when a situation involving both conflict 

and concurrency occurs.   
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Moore and Gupta (1996) surveyed the literature to determine what type of automated manufacturing 

systems had been modeled using Petri nets, what type of Petri nets had been used and what results 

were available.  They found 53 published models, 17 were flexible manufacturing systems.  No models 

incorporated variable process sequencing.  Five categories were used for the type of manufacturing 

system being modeled: Flow shop, automatic transfer line, job shop, flexible manufacturing system, 

and assembly operations.  The five categories were characterized by their scope (the diversity of job 

types handled) and their scale (total volume of jobs).  Six categories of manufacturing of 

manufacturing elements were identified: workstations (WSs), material handling systems (MHSs), jobs, 

storage, other resources, and other constraints.  Three categories of Petri nets were used: classical Petri 

nets, timed Petri nets (both deterministic and stochastic nets) and high level or colored Petri nets.  Two 

categories of analysis were identified: qualitative or structural analysis and quantitative analysis.  

Qualitative analysis deals with the behavioral properties of the untimed Petri net (reachability, 

boundedness, liveness, reveribility, and coverability), while quantitative analysis deals with 

performance over time (manufacturing lead time, work-in-progress, machine utilization, MHS vehicle 

utilization, throughtput and capacity). 

The FMS models described appear to have all of the control functions integrated into the Petri nets.  

No descriptions of the controllers are given.  When available performance measures were generated 

from simulating the Petri net with the exception of Chan and Wang (1993) who use a Markov chain.  

Chan and Wang were limited to a model of four stations and five parts because of state space 

explosion.   

Moore and Gupta (1996) identify four reasons that Petri nets have not been fully exploited in the 

domain of flexible and automated manufacturing: 1) using Petri nets to analyze structural properties of 

the manufacturing system requires use of a class of Petri nets that suffers from state-space explosion, 

2) most models represent specific systems, little attention has been given to developing generic 

models, 3) the theory for composing large models from components has only been developed for 



 24

limited classes of Petri nets, 4) classical Petri nets are extremely powerful as a modeling tool, but are 

difficult to apply to large-scale problems. 

Ang and Bundell (1996) used a timed Petri net to control a model FMS consisting of three robots and 

three pairs of conveyor belts with sensors.  Timing information was associated with the Petri net arcs.  

Transitions were associated with actions and places with events.  Each robot and pair of conveyor belts 

and two sensors were controlled using an AX5216 card inside a 386DX personal computer running 

Linux.  The Petri net controller ran on a SUN Sparc 5 running the Solaris operating system.  

Communication between the controllers was accomplished via the transmission control protocol 

(TCP).   

To accommodate the potentially very large size of Petri net required to model real world systems in 

detail the Petri net system used allowed a hierarchical model to be created.  Places in the Petri net 

could be decomposed into child Petri nets.  Firing a transition was associated with a sending a 

command via TCP to a remote controller.  Incoming event signals were compared to the set of places 

that expected token arrivals.  Places that expected token arrivals were places that held “virtual tokens.”  

A virtual token resided in a place but was not available to activate the transition following the place 

until the delay associated with the arc the token had crossed expired. 

The Petri net was manually designed so that all known deadlock states were eliminated.  They found 

that their hierarchical system where only places could be decomposed was not flexible enough, 

because subsystems with multiple inputs and outputs were very common.  Their Petri net developer 

was being redesigned to allow decomposed blocks to begin and end with multiple transitions and their 

simulator was being extended to allow colored tokens. 

2.5 Artificial Neural Nets 

The premise for developing artificial neural nets was the observation that humans can do some things 

that serial digital computers have a difficult time dealing with (e.g. pattern recognition).  This led to a 
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study of the structure of the human brain.  “The human brain is made up of a vast network of 

computing elements, called neurons, coupled with sensory receptors (affectors) and effectors” (Bose 

and Liang, 1996).  The brain contains approximately 10 billion neurons and 90 billion cells providing 

support for the neurons.  The neurons interact with each other via synapses with the average neuron 

receiving signals from thousands of synapses.  The neuron cell bodies tend to occur in layers with the 

outputs of one layer providing inputs to another layer. 

The following organizational and computational principles are employed by the brain (Bose and Liang, 

1996): 

1) Massive parallelism, 2) A high degree of connection complexity, 3) Trainability, 4) Binary states 

and continuous variables, 5) Numerous types of neurons and signals, 6) Intricate signal interaction, 7) 

Physical decomposition, 8) Functional decomposition.  A large number of simple slow units are used.  

The units are connected to a large number of other neurons in complex interaction patterns, yielding a 

huge number of variables.  The connection patterns and strengths of the connections are changeable as 

a result of accumulated experience.  The neurons have two states: resting and depolarization (an 

electrical pulse is traveling the neuron changing the polarization of the neuron).  However, the 

potentials, synaptic areas, ion and chemical density of the brain are continuous and vary continuously 

in time and space.  The brain uses different types of neurons with different signal types.  The 

interaction of impulses at a neuron is non-linear and depends on multiple factors.  The brain is 

organized as a collection of subnetworks.  The subnetworks are sets of densely connected neurons.  

Neurons in the subnetworks are assumed to be only sparsely connected to distant neurons.  Specific 

functions are assigned to specific areas (subnetworks) of the brain. 

There are many neuron connection patterns in the human central nervous system.  The three major 

connection patterns are: divergent connections, convergent connections, chains and loops.  Divergent 

connections involve the output of one neuron being transferred to the inputs of many neurons.  

Convergent connections involve the output of many neurons being connected to the input of a single 
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common neuron.  Chains involve a series of neurons with the output of a given neuron connected to 

the input of the next neuron in the series.  Loops involve a series of neurons arranged as a chain where 

at some point the output of a neuron is connected to the input of a neuron earlier in the chain.   

Modeling the exact performance of the neuron found in the human brain presents a problem that is 

analytically intractable.  To make artificial neural networks practical, simplified models have been 

used.  The first neuron model to obtain wide recognition was that of McCulloch and Pitts (1943).  The 

McCulloch Pitts neuron is a two-state machine.  Each neuron (or “cell”) has a single output called the 

output fiber of the cell.  The output is allowed to branch after the leaving the cell.  Each branch must 

ultimately terminate at the input connection of a cell.  The model allows the output of a cell to be 

directed back as an input to the same cell.  Output fibers are not allowed to merge or fuse together.  

The terminations of the output fibers are one of two types: excitatory and inhibitory.   

The cell is a finite state machine and operates in discrete time instants.  At each instant, the cell is 

either firing or quiet, the two possible states of the cell.  Each state has an associated output.  The 

outputs are conveniently labeled pulse for the firing state and no pulse for the quiet state.  Each cell has 

associated with it a threshold that determines the state transition properties of the cell.  At time instant 

k+1, the cell will fire if and only if, at time instant k, the number of active excitatory inputs equals or 

exceeds the threshold and no inhibitor input is active.  An alternative formulation is to have the cell 

fire if the difference between the excitation and inhibition exceeds the threshold. 

This work was further developed to create threshold logic units (TLUs) with adjustable weights.  The 

TLU has n inputs, x1,x2,…, xn, and an output y (see Figure 3).  There are n + 1 parameters, namely the 

weights (w1, w2, …, wn) and a threshold θ.  The TLU computes an output value at discrete time 

instants k = 1,2,…, according to Equation 1.  The inputs at the current time instant, xi(k), are used to 

compute the output value for the next time increment, y(k+1). 
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Figure 3 Threshold Logic Unit 
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where positive weights wi > 0 represent excitatory synapses and negative weights wi < 0  represent 

inhibitory ones.  A bipolar variant of Equation 1 where the zero is replaced by –1 is also commonly 

used.  Another common variation is to use a small positive number (e.g. 0.1) instead of zero as the 

non-firing output value.  This generally speeds up convergence of learning algorithms since it allows 

the weights connected to the output of the neuron to be updated when the neuron is not firing. 

Noting that a real neuron is better described by differential equations than by the discrete time 

transitions used by TLUs, a neuron model with a continuous transfer function is widely used.  This 

simple model ignores capacitance effects and leakage current in the neuron.  The instantaneous input xi 

to the ith neuron is defined as the mean effects of its excitatory and inhibitory synapses and threshold.   
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where wij are connection weights, yj is the output of neuron j, θi is the threshold of neuron i.  The 

output yj of a neuron represents the short-term average of the firing rate and is given by: 

Equation 1 
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yj = f(λxj),   where λ is a positive number. 

The transfer function can be defined for the unipolar case or the bipolar case, where 
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Both of these transfer functions approach the TLU function as λ approaches ∞.   

While the TLU is a very simplified model of a neuron that fails to capture the stochastic spatial and 

temporal complexities of neuronal information processing, (see McKenna et al., 1992, and MacGregor, 

1987, for a discussion of other neuron models) it can compute any logical (Boolean) function (Bose 

and Liang, 1996).  FMS control systems are only required to generate a control action when the system 

state changes.  Further, the selection of a control action can be written as a set of logical conditions.  

The worst-case scenario is one rule for every state the system can occupy, i.e. a state table.  Therefore, 

the TLU neuron model is appopriate for FMS control. 

A TLU can be used as either a multi-input “OR,” a multi-input “AND” gate or an inverter.  These 

gates are created by adjusting the threshold of the neuron and use input weights of one or negative one.  

These three types of gates can be combined to represent any Boolean equation.  To create an “OR” 

gate, all input weights are set to one and the threshold is set to 0.5.  Figure 4 shows a TLU configured 

as a two input “OR” gate.  If any single input is on (input value equals one), the sum of the inputs will 

be greater than the threshold and the neuron will produce an output of one.  To create an “AND” gate, 

Equation 3 

Equation 4 
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all input values are set to one and the threshold is set to n minus 0.5 where n is the number of inputs to 

the neuron.  The TLU in Figure 4 could be converted to a two input “AND” gate by changing the 

threshold value to 1.5.  If all inputs are on, the sum of the inputs will be greater than the threshold and 

the neuron will produce an output of one.  To create an inverter, a TLU with a single input is used.  

The weight is set to minus one and the threshold is set to minus 0.5.  When the input is zero, the sum of 

inputs will also be zero and exceed the threshold generating an output of one.  If the input is on, the 

sum of inputs will equal minus one and be below the threshold, so the output will be off. 

Figure 4 A Two Input OR Gate 

Any Boolean equation can be written in the following form:  O =  Σ (Π Ik )  where Ik can be either an 

input or the inverse of an input, the Σ represents an “ORing” and the Π represents an “ANDing.”  

Based on this representation a feed forward network with four layers can be used to represent any 

Boolean equation.  The four layers are an input layer, a hidden layer that is used to provide input 

inverses, a second hidden layer that performs “ANDing,” and an output layer that performs “ORing.”   

Training a neural net consists of systematically selecting a set of weights to achieve the desired outputs 

for a set of inputs.  Training techniques fall into three categories: unsupervised learning, reinforcement 

learning, and supervised learning.  In the unsupervised category, no feedback is given regarding the 

quality of the output for a given input.  In reinforcement learning, general feedback is given about the 

quality of the solution, e.g. the value of an objective function.  In supervised learning, information 

regarding the error in each output is supplied.  Supervised learning requires that a set of known desired 

outputs be available for each set of input values supplied to the neural network.   

Input x1 yw1=1

Input x2

Θ=0.5

w2=1
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Huang and Zhang (1994) examined the use of artificial neural nets in manufacturing.  They found 

neural nets had been applied to the following areas: design, process planning, scheduling, process 

modeling and control, monitoring and diagnosis, quality assurance, group technology and robotics.  

Examples include retrieving old product designs that met current requirements, Venugopal and 

Narendran (1992), Kamarthi et al. (1990), Kumara and Ham (1990), Kumara and Kamarthi (1991); 

predicting the most probable number of forming steps for cold forging Osakada et al. (1990), Osakada 

and Yang (1991a, 1991b); recognizing features Hwang and Henderson (1992); and generating 

machining operation sequences given a feature Knapp and Wang (1992a, 1992b).  An Integral Linear 

Programming Neural Network (ILPNN) was used to solve job shop scheduling problems formulated as 

a linear programming problem (Foo and Takefuji, 1988). 

Zhang et al. (1997) present a method for “automatic induction of parsimonious neural networks.”  

They state, “The search space for neural network induction consists of two levels.  One is the space of 

all possible network architectures (models).  The other is the space of all possible weight 

configurations for a given architecture (parameters).”  However, it is not possible to evaluate an 

architecture without assigning weights and a weight vector cannot be evaluated without knowing the 

architecture.  This makes it necessary to interleave the optimization of the weights and architecture.   

They use a tree structure, NT(d,b) which denotes the set of all possible trees with maximum depth d 

and maximum branches b for each node.  The root node is the output unit and the terminal nodes of the 

tree are the input units.  All other nodes are hidden units.  The layer of a node is defined as the longest 

path to a terminal node in its subtree.  Two types of neurons were used: sigma units which summed the 

weighted inputs and pi units multiplied the weighted inputs.  Any feedforward network can be 

represented by using a forest of neural trees.  Genetic programming was used to evolve the trees.  A 

crossover operator selected a subtree from Parent B to replace a subtree in Parent A.  Local search was 

used to tune the weights of the network after the structure had been changed.  They found that neural 

trees performed as well as or better than backpropagation networks and required fewer elements. 



 31

2.6 Genetic Algorithms 

Genetic algorithms were first presented by Holland (1975).  Solutions to a problem are represented by 

strings of alleles (values found at a location) called chromosomes or genomes.  A population of 

solutions is created and each solution evaluated by some fitness measure.  Some subset of solutions is 

then selected to generate a new population of solutions.  Solutions are generated using crossover where 

portions of the chromosome from a set of parents is combined to form the a chromosome or mutation 

where a single parent chromosome is randomly changed.  The selection of a good crossover operator 

may mean the difference between a genetic algorithm that works and one that doesn’t.  A problem with 

using genetic algorithms for scheduling is ensuring the feasibility of a schedule.  If the schedule is used 

as the chromosome, then a simple crossover operator will not generate a correct schedule.  Consider 

the following four job sequences: A, B, C, D and C, D, A, B.  If a simple crossover is performed taking 

the first half of the first sequence and the second half of the second sequence, the resulting sequence is 

A, B, A, B.  This is clearly not a valid sequence since two of the operations are performed twice and 

two are not performed at all. 

Three common variations of the genetic algorithm are simple (non-overlapping populations), steady-

state (overlapping populations) and struggle (overlapping populations) (Wall, 1996).  In the simple 

variation all of the members of the population are replaced with each generation.  To prevent the 

algorithm from forgetting the best solution that has been found, the best individual solution is typically 

carried forward to the next generation (referred to as elitism).  The steady state variation replaces only 

a portion of the population each generation.  The solutions that are replaced are those with the worst 

fitness factor.   This variation converges to a solution faster than the simple solution but is more likely 

to be trapped in a local minima than the simple variation.  The struggle variation is similar to the 

steady state version but instead of the new solutions replacing the solutions with the worst fitness 

factor, they replace those with which they have the most similarity.  Where a similarity measure (or 

distance function) represents how different two individuals are either in terms of their chromosome or 

of their characteristics in the actual solution space. 
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Storer et al. (1992,1995) discuss using meta-heuristics, which include genetic algorithms, based on 

problem and heuristic spaces.  Problem spaces are created by modifying the problem data, e.g. 

processing times.  Heuristic spaces are created by modifying the basic heuristic being used to solve the 

problem.  Two methods of parameterizing the heuristic are presented.  The first is based on a weighted 

combinations of dispatching rules (see Panwalkar and Iskander, 1977) and the second on using one 

dispatching rule for a fixed number of scheduling decisions and then changing the dispatching rule and 

using it for the next set of scheduling decisions.  They found that using 20 scheduling windows and six 

heuristics gave good results for problems involving 100 to 500 operations.  They used a population 

size of 50 with 20 percent asexual reproduction (direct transfer of an existing solution) and 80 percent 

sexual reproduction (crossover from two parents).  A mutation probability of 0.15 was used to 

maintain diversity.  For the problem space, the mutation operator added a Uniform(-50,50) deviate to 

the dummy processing time.  For their test problems, they found that a genetic algorithm operating in 

problem space generated the best solutions. 

Hemant Kumar, and Srinivasan (1996) applied a genetic algorithm to solve a static job shop problem 

using data from a real production shop.  The shop had 80 jobs and 59 machines.  The number of 

operations per job varied from 2 to 37.  They parameterized the problem using an adaptation of the 

second method proposed by Storer et al. (1992, 1995) as discussed above.  Seven dispatching rules 

were considered.  Each rule was used for one scheduling decision and a fixed length string of 10 rules 

was used.  When the number of scheduling decisions was larger than the length of the rule string, the 

string was restarted.  The rule that was used for the scheduling decision was the one occupying 

position s where s equals (scheduling decision number) modulo n.  They reported computer-processing 

times of less than four seconds for a simple dispatching rule and 998 seconds for their genetic 

algorithm to schedule a “single batch of 1000 items.”  They did not report the type of computer used.  

After evaluating the fitness function of the initial population of 50 chromosomes, they created a mating 

pool of 100 chromosomes by randomly selecting from the initial 50 and accepting the chromosome if 

its acceptance probability (1 – the cumulative distribution of the fitness value) exceeded a randomly 



 33

generated number between 0 and 1.  The next population was generated using single point crossover 

(30 percent), two point crossover (40 percent), inversion (28 percent) and mutation (2 percent).  The 

crossover operations are sexual where single point crossover was defined as the exchange of alleles 

between two chromosomes from a randomly chosen point to the end of the chromosome and two point 

crossover as the exchange of alleles starting at a randomly chosen point and ending at a randomly 

chosen point instead of the end of the chromosome.  Inversion and mutation are asexual where 

inversion is the reversal of the order of alleles between two randomly chosen points on a chromosome 

and mutation as the random interchange of values in two positions.  Offspring are created and 

evaluated for fitness.  The offspring are accepted into the next generation if their fitness value is better 

than the mean of the previous population.   

Herrman et al. (1995) describe a scheduling system called GAGS (Genetic Algorithm for Global 

Scheduling).  GAGS was applied to an actual semiconductor test facility where schedules are created 

at the beginning of each 8-hour shift.  The semiconductor test facility is a dynamic job shop 

environment with a rolling horizon that made dividing the decisions into a fixed number of decision 

windows impractical.  Scheduling heuristics were assigned to machines instead of time windows.  A 

policy consisted of a combination of heuristics one for each machine.  The fitness of the policy was 

evaluated using a deterministic simulation of the facility.  The frequency of the scheduling was limited 

by the data collection capability of the company’s computer integrated manufacturing system, which 

could only provide work in progress (WIP) extracts once per shift.  They found, “the ability to 

accurately model the test area and automatically compute a shift schedule was just as important to the 

test area as the ability to find better schedules.”  Use of GAGS improved on-time delivery from 75-85 

% to 90-96% and reduced the time required for creating shift schedules from 120 hours per week to 15 

hours per week.   

Wall (1996) presents a method of using genetic algorithms for resource constrained scheduling.  The 

genome has two pieces of data at each location: the time to delay after the completion of the last of the 



 34

predecessors of the task and the operation mode to use to complete the task.  The operation mode 

represents alternative sets of resources that can be used to complete the task.  The method performed 

best for multi-modal project plans and poorly for job shop problems.  The author believed the relative 

time representation did not work well for the parallel nature of the job shop.  The struggle genetic 

algorithm found better solutions but required more execution time than the steady-state genetic 

algorithm.  The struggle algorithm also always found a feasible solution while the steady-state 

algorithm did not. 

2.7 Deadlock 

Wysk et al. (1991) argue that deadlock is a significant problem in flexible manufacturing system 

(FMS) control that “has been ignored by most research in scheduling and control.”  They note that 

deadlocks can occur in any “direct-address” FMS, where a “direct-address” FMS employs a “direct-

address material handling system such as a robot or a shuttle cart (as opposed to a material-handling 

system like a recirculating conveyor).”  They propose a deadlock detection system based on a graph of 

“wait relations.”  They use a string multiplication algorithm to identify circuits in the graph.  The 

algorithm requires that machines be identified by a single character.  An M x M (where M is the 

number of machines) symbol matrix is created and then powers of the matrix are computed to identify 

circuits in the wait relationships.   

Kumaran et al. (1994) claim an FMS is a cell level entity in the NIST hierarchical model (Jones and 

McLean, 1986).  However, the model they analyze, four machines, one robot, and a load/unload station 

is better described as a workstation in the NIST model.  They state that “if the number of parts in a 

system is one less than the number of storage locations, deadlocks can be prevented.”  They classify 

deadlock resolution schemes into four categories: (1) conventional, (2) unidirectional batching, (3) 

deadlock detection and recovery, (4) deadlock avoidance.  The conventional scheme uses a large 

number of storage spaces to prevent deadlock and was not considered because they believed it would 

increase the work-in-process inventory and transportation costs.  The unidirectional batching was not 
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considered because it would decrease the flexibility of the system.  Detection and recovery is a one-

step look ahead procedure where the immediate next step is used to determine deadlocks.  After a 

deadlock is identified, one of the parts is moved to a storage location and the remaining parts are 

moved to their destinations with the part in the storage location then moved to its destination.  “A 

deadlock between any number of machines can be resolved by one buffer.”  Avoidance is similar to the 

detection and recovery method, but instead of using only the immediate next step, the entire routings of 

the parts are considered to avoid impending deadlocks.  An impending deadlock is defined as a 

situation where the immediate transition of parts is possible but the system (or a part of it) will 

deadlock eventually.  They note that while the Wysk et al. (1991) procedure works well for detection 

and recovery it will not avoid all impending system deadlocks because it does not look far enough into 

the future.  They propose an improved version of the procedure in Wysk et al. (1991) to be used for 

deadlock avoidance.  They suggest that conservative operation of the FMS may be avoided by 

allowing deadlock-causing transitions if there is buffer space available to recover from the deadlock. 

Leung and Sheen (1993) studied flexible manufacturing cells consisting of “a small number of 

computer-controlled machines and one or more material handling devices (MHDs).”  The cell was 

assumed to have a central buffer with a capacity of at least two.  The central buffer was the only place 

used for temporary storage of parts.  Idle machines did not hold parts unless they were blocked (i.e. the 

downstream machine for the part was occupied and the central buffer was full).  The MHD had a 

capacity of one.  The exit and entry areas were assumed to have infinite capacity and hold parts that are 

either waiting to enter the cell or have finished processing in the cell.  Two deadlock strategies were 

implemented and compared using simulation.  The deadlock avoidance algorithm was said to perform 

much better than the deadlock detection and recovery algorithm.   In the deadlock detection and 

recovery algorithm one of the buffer spaces in the central buffer was reserved for deadlock recovery.  

The deadlock detection method was simplistic, requiring all machines in the cell to be blocked 

simultaneously.  The system was then recovered by exchanging the part in the buffer with the part on 

the machine it was waiting for.  The exchanged part was then exchanged with the machine it required 
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until the entire circular had been resolved.  However, if multiple circular waits existed the second or 

third one would not necessarily be cleared until a part left the system.  They note that the buffer space 

reserved for deadlock resolution will be “fairly underutilized” and that the throughput time decreases 

as the number of central buffers increases.  To improve performance a deadlock avoidance algorithm 

where the buffer that was reserved for deadlock resolution is allowed to be used if “it is certain that a 

part from the central buffer (including the reserved space) is going to leave” is proposed.  In essence if 

there is a part waiting in the buffer for the machine that has just finished processing a part then the 

reserved space can be used for the part on the machine and the part in the buffer moved to the machine 

to yield a space in the buffer for deadlock resolution.  This use of the buffer guarantees that a total 

system deadlock will not occur.  However, it does not prevent “temporary” partial deadlocks.  The 

partial deadlocks will eventually be cleared when a part finally completes processing on one of the 

machines that is not deadlocked and leaves the cell freeing space in the buffer that can be used for 

unblocking a machine in the partial deadlock.  The policy of not allowing parts to wait idle on 

machines appears to create deadlocks that could be avoided.  If a part completes processing on 

machine A before parts on machines B and C and no other part currently wants machine A, then 

placing the part in the buffer creates a partial deadlock if the parts on machines B and C need to 

exchange places.  It also results in unnecessary blocking if the part from machine A needs to go to 

either machine B or C and the part on that machine needs to go to a machine (other than A) that is 

occupied.  Immediately placing parts in a central buffer when they complete on a machine appears to 

be a bad policy unless the buffer space is unlimited.  If there is infinite space in the central buffer then 

parts can always leave machines and there will never be a situation where one machine is waiting on 

another so there will never be a circular wait and the system will never deadlock. 

Wysk et al. (1994) performed a simulation study comparing two deadlock resolution approaches, 

avoidance and recovery, to conventional approaches to avoiding deadlock.  The study identified the 

conventional approach as best when the transportation time was low.  The authors appear to prefer the 

avoidance approach because of the potential for “zero in-process inventory and just-in-time 
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capability,” features that are not possessed by the conventional approaches.  They note that a system 

deadlock can be resolved “if there is storage provided to buffer at least one deadlocked part.”  

However, a deadlock situation can be created even with storage if the storage is not properly used.   

They categorize approaches to eliminating deadlock into two categories: elimination during system 

design and elimination through system control.  The system design alternatives include unidirectional 

flow and buffers.  Unidirectional flow limits the flexibility of the system but significantly simplifies 

the control problem.  They note that Co and Wysk (1986) have proved that if the number of buffers in 

the system is one less than the number of parts in the system then deadlocking cannot occur. 

System control alternatives include batching and active control, which is partitioned into avoidance 

and recovery.  Batching involves grouping parts and restricting part flow so that flow for each group is 

unidirectional.  In avoidance, the part mix is controlled so that deadlocks are avoided. The procedure 

of Wysk et al. (1991) is used to detect deadlocks.  When a new part attempts to enter the system, the 

routing information of the part and the unprocessed routes of parts in the system are processed.  If a 

potential deadlock is found the part is held at the load station “until it can enter the system without 

deadlocking all or part of the system.”   

In recovery, deadlocks are allowed to occur and are resolved by moving parts to buffer spaces reserved 

for deadlock recovery procedures.  The deadlock detection for recovery used only the next immediate 

destination not the entire routing used in the avoidance algorithm because “routing beyond the 

immediate destination cannot produce a system deadlock.”  They randomly chose one of the parts in 

the identified circular wait to move to a reserved storage and then sequentially moved the other parts 

based on the part routings.   

The conventional approach used for comparison purposes was the use of “large amounts of in-process 

storage” where the “maximum number of parts allowed in the system is one more than the number of 

in-process storages.”  The worst-case situation is then all parts but one are in in-process storage and the 



 38

final part can move to any machine it requires.  “Deadlock is completely eliminated in this approach,” 

but the authors believe that excessive part transfers and an inefficient manufacturing system will result.  

In the conventional approach if the next machine required by a part is not available the part is then sent 

to in-process storage that is always available.   

The simulation used included five machines with each part processing on four machines.  Statistics 

collected were makespan, machine utilization and mean flow time.  When a machine became available 

it selected the next part to process in following priority: 1) another machine, 2) in-process storage if it 

was present, and 3) the input station.  In each priority category parts were prioritized by shortest 

processing time first (SPT).  The conventional and recovery methods used the highest priority part.  

The avoidance approach selected the highest priority part that did not create a deadlock.   The 

avoidance and recovery approaches produced shorter makespans than the conventional approach when 

the transportation time is greater than twenty percent of the average processing time.  They found that 

the flowtime was always shorter for the avoidance and recovery approaches.  This is misleading in that 

the time spent waiting in in-process storage counts in the conventional approach while time spent in 

pre-process storage (the load station) does not count in the avoidance approach.   

Additional data was collected to study the effect to the number of machines a part was required to visit 

on the machine utilization.  The five-machine system was used with part visiting two, three, four or 

five machines.  They discovered that as the number of machines required to be visited increased, the 

advantage of the conventional method for low transportation times became larger.  When the 

transportation time became large, the advantage of the avoidance and recovery methods became larger 

with an increase in the number of machines that had to be visited.  

Viswanadham et al. (1990) propose a deadlock avoidance procedure using Petri nets.  They discuss a 

procedure for performing deadlock prevention using Petri nets and then determine that it is not feasible 

for real-world systems.  Deadlock prevention is defined as “static resource allocation policies for 

eliminating deadlock.”  Deadlock avoidance is defined as “dynamic resource allocation policies.”  
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They state that “deadlock prevention policies that are usually implemented in the design stage lead to 

inefficient resource utilization.  Deadlock avoidance policies that can be enforced during the operation 

of a system lead to better resource utilization and throughput.”  Generalized stochastic Petri nets, a 

special class of timed Petri nets, are used to model a real-world FMS owned by General Electric and a 

simple one machine, one automated guided vehicle system.  The reachability graph of the simple 

system is presented.  Given the reachability graph a set of resource allocation policies that will prevent 

deadlock can be determined.  The resource allocation policies correspond to selecting the transition 

that will not lead to deadlock when there is a choice of transitions to fire from a given marking of the 

Petri net.  They note that the reachability analysis can become infeasible if the state space is very large, 

the situation that prevails in “real-life FMS such as the GE FMS.”   

They present an on-line monitoring and control system that will “avoid most of the deadlocks” noting 

that for deadlocks not predicted “recovery mechanisms have to be used.”  They did not actually 

implement the deadlock avoidance system.  They define blocking as a partially enabled transition that 

has two or more input places.  They define a marking as “safe” (noting that safe is inspired by the 

Operating Systems literature and is not to be confused with “the safeness property” of classical Petri 

net literature) if it is not blocked or deadlocked.  Markings can be “safe,” “blocked,” or “deadlocked.”  

They define a look-ahead function that identifies the markings that are reachable from the current 

marking in exactly i steps.  The controller selects a transition to fire based on the results of the look-

ahead function.  They made the following observations: 

1. “greater look-ahead implies greater probability of avoiding deadlocks.  However, there 
can be systems where only infinite look-ahead will guarantee total deadlock avoidance.”  
Therefore, deadlock recovery is a necessary supplement to deadlock avoidance, 

2. the cost of deadlock recovery decreases with increasing look-ahead, 
3. “The PN framework is suitable for implementing deadlock avoidance.”   

Banaszak and Krogh (1990) use Petri net models  that include “only the aspects of the manufacturing 

system that are relevant to the deadlock avoidance problem.”  They believe their model could be easily 

extracted from a more comprehensive model of the system noting that other researchers have proposed 
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Petri net models “for the general specification, simulation, and programming of FMS’s.”  Their FMS 

consists of a set of “resources” R that are modeled with two Petri net places ar and br where tokens in 

ar represent available resources of type r and tokens in br represent busy resources of type r.  They 

model parts as a set of operation sequences which are broken up into steps that require only one 

resource.  The sequence of steps is referred to as a production sequence, only linear production 

sequences were allowed.  They model the production sequence as a series of places where the first 

place pq(0) represents orders waiting to be initiated and the last place pq(Lq+1) represents completed 

orders for part q.  Lq is the length of the production sequence for part q.  Resource usage is modeled by 

connecting the transitions in the production sequence to the resource places (ar, br).  The combined 

Petri net is referred to as a production Petri net (PPN).  Transitions are process enabled if a job is 

currently in the production step preceding the transition.  A transition is resource enabled if the place 

for the resource required for the next step has a token.  Deadlock exists when a process enabled 

transition can never become resource enabled.  The precise definition of deadlock used is: “Given sets 

of resources R, products Q, and a PPN for the production sequences, a set of transitions T’ ⊂  T is said 

to be in deadlock for a marking M ⊂ R(M0) if 1) all transitions in T’ are process enabled under 

marking M, and 2) no transition in T’ is resource enabled for any M ∈ R(M).”  They note that 

transitions in T’ are not live, in the Petri net sense, but that a transition not being live does not imply 

that it is involved in a deadlock.   

They create a deadlock avoidance algorithm that consists of a restriction policy, where the restriction 

policy defines a subset of the enabled transitions that allowed to be fired.  They note that guaranteeing 

that there are no transitions that will lead into a deadlock is necessary but not sufficient as the 

restriction policy ρ could prevent a transition that was both process enabled and resource enabled from 

firing resulting in ρ-restricted deadlock.  They leave the selection of the particular firing sequence for 

the system up to a resource allocation policy that is not covered in the paper.  In developing their 

deadlock avoidance algorithm the note that the production-sequence information for each job in the 
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system should be used.  There is a difference between the way jobs of for the same product and jobs 

for different products compete for resources.  Jobs of the same product with a “straight” pipe where 

each resource is used only once will not have any conflict for resources.  When a resource is used 

multiple times it is possible to partition the production sequence into subsequences or zones which can 

be treated as individual pipes.  Zones are decomposed into subzones using unshared resources and 

subzones using shared resources.  Their restriction policy then consists of two rules: 1) allow a token to 

enter a  new zone only if the capacity of the unshared subzone of the zone exceeds the number of 

tokens already in the zone, 2) If a shared resource is requested by a job then all of the shared resources 

in the zone must be available before the job can enter the zone.  Three example systems are presented.  

They suggest possible extensions to liberalize usage of resources, including defining the unshared 

resources in terms of currently active jobs instead of all possible production routes. 

Lawley et al. (1997) attempt to “define FMS structural analysis” and provide “guidelines for 

developing FMS Structural Control Policies, SCP’s.”  An FMS is structurally characterized by its state 

space (no representation of a state is provided).  The state space is represented as a state transition 

diagram which is a directed graph with states as vertices and state transitions as directed edges.  The 

objective of structural analysis is to “characterize regions of the state space that are structurally sound.”  

Structural control policies (SCP) are then constructed to ensure the FMS operates within a structurally 

sound region of its state space.  State space can not be analyzed enumeratively because it grows 

exponentially in system size.  The deadlock avoidance problem for the resource allocation systems 

presented (single resource, disjunctive, conjunctive, conjunctive/disjunctive, k of n) is known to be 

NP-complete.  A structural control policy determines the acceptability of a particular state transition 

based on the state space structural characteristics.  “The SCP should reject any transition leading to a 

state from which the empty state can not be reached.”  In general, the obvious solution of applying a 

search technique to identify a safe sequence (one that will bring the FMS to the empty state) before 

allowing a transition is not computationally tractable because of the exponential nature of the system 

state space.  Correctly categorizing every state as safe (the empty state can be reached) or unsafe is 
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generally computationally intractable because of the NP-completeness of the deadlock avoidance 

problem.  An SCP is considered scalable if the computational resource growth is bounded by a 

polynomial function of system size in terms of the number of jobs and machines.  SCPs are required to 

1) reject every unsafe state, 2) be scalable, 3) be correct.  A correct SCP is one the rejects all unsafe 

states and does not suffer from policy induced deadlock.  To eliminate policy induced deadlock, the 

authors require that for any state accepted by the SCP there must exist a sequence of states acceptable 

to the SCP that lead to the empty state.  An optimal SCP is one that is correct and accepts all safe 

states.  The authors state that optimality is unrealistic and must be “sacrificed for computational 

tractability.”  The suggest the ratio of admissible space to safe space as an appropriate measure of the 

“optimality” of the SCP but state that neither admissible space or safe space is known and must be 

estimated using simulation.   

Generation of a SCP consists of attempting to find a set of necessary but not sufficient conditions 

“which (1) are present in every deadlock state, (2) present in every unsafe state, and (3) guarantee that 

for any safe state not exhibiting the condition, there exists a sequence of states not exhibiting the 

condition which leads to the empty state.”  The steps for developing an SCP are: 1) Identify a 

necessary condition for deadlock using some “unique perspective of the FMS,” 2) Define the SCP as 

“An enabled state transition is admissible if and only if the resulting state does not exhibit the 

necessary condition,” 3) Prove scalability, 4) Prove the SCP does not induce deadlock, 5) If a special 

case FMS was used attempt to extend the SCP to the arbitrary case.  A SCP is constructed for “Single 

Resource Allocation Counter Flow Systems” assuming that machines have a capacity greater than one.  

The authors state “the most difficult aspect of developing SCP’s is identifying the candidate necessary 

conditions for deadlock states. Unique perspectives such as that of counterflow help provide a basis for 

deadlock analysis but do not guarantee either unique or suitable necessary conditions.  Indeed, it is 

unclear whether suitable necessary conditions, beyond those already discovered, even exist.”    
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2.8 Summary of Previous Research 

The major problem with the previous research can be summed up by applying the concepts in the 

parable of the Blind Men and the Elephant (see Appendix A).  The overall picture is missing, but the 

individual pieces are relatively well known.  The control system models which should give explicit 

instructions on how to draw an elephant are vague, equivalent to: to draw an elephant, draw a body, 

add four legs, a tail, and a head with two tusks and two ears.  Although, there is debate about how 

many legs and ears an elephant should have, i.e. should the control system be hierarchical, 

heterarchical or a mixture of the two.   

How should the manufacturing system and the parts that will process through it be modeled?  These 

questions are analogous to asking how an elephant’s habitat should be drawn.   There are multiple 

answers to these questions based on the individual researcher’s view of what elephants like, but it is 

important to remember that the researcher has not seen an elephant.   

Petri nets are like a paint brush that can be used to draw an elephant (if you have ever seen one) or any 

of a multitude of creatures and their habitat, but can only be used by a trained artist.  Once you have 

your elephant and its habitat drawn, you can analyze it with a variety of techniques to see what it will 

be capable of doing in your factory.  Unfortunately, if anything is added to the picture drawn with the 

Petri net brush the analysis techniques become unusable, so Petri net artists generally refuse to add 

anything to their picture even if it would be a more accurate depiction of an elephant. 

Artificial neural nets unlike Petri nets can only be used to describe an elephant (i.e. control system).  

They cannot be used to describe the habitat (i.e. the manufacturing equipment and parts).  The 

construction of a neural net that describes an elephant is less defined than the construction of a Petri 

net.  It requires an artist of greater skill and perhaps an appreciation of “modern art” on the part of the 

viewer.  Further, what you learn from observing one neural net elephant does not generally teach 

anything about other neural net elephants. 
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Genetic algorithms can be difficult to apply to scheduling and control problems because of precedence 

constraints.  The use of heuristic search spaces has made them useful for scheduling when 

accompanied by a model of the system that is to be scheduled. 

The research in deadlock suffers from a problem with the definition of exactly what is an FMS.  Is it a 

cell level construct or is it a workstation?  How should storage be handled?  The most typical 

description includes a load/unload station where once a part is placed at the unload station it can never 

come back.  Why?  One must seriously ask what is the source of the parts arriving at the load/unload 

station.  Were the parts (raw material) already in the factory or did the raw material arrive with the 

customers order?  If the raw material was in the factory then obviously there was room to store it, so 

why can’t this storage be used later?  Remember, if the number of parts is only one greater than the 

number of in-process storage locations deadlock free operation can be guaranteed (Co and Wysk, 

1986) if raw material storage can be used for in-process parts then the number of parts will be less than 

the available storage and deadlock becomes a non-issue.  Further, if a part is allowed to stay at the 

load/unload station indefinitely before processing has started, why can it not stay there after a subset of 

the required processes have been completed?  This would allow the load/unload station to be used as 

an in-process buffer, something that is not normally done, but it would allow recovery from deadlocks 

or at least improve the utilization of the equipment while avoiding deadlocks.   
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3 PROBLEM STATEMENT 

The function of a manufacturing system is to transform raw material into finished products.  In the 

ideal situation, humans are only required to add raw material, to remove finished product and to 

perform maintenance and repair activities.  What separates the flexible manufacturing system from 

other automated production lines is the ability to rapidly change the product being produced.  The 

unfortunate problem associated with flexible manufacturing systems is that while the product being 

produced can be changed, it can generally only be changed within a set of parts that were considered 

when the control system was being developed.  A method of including new parts in the set the flexible 

manufacturing system can produce is needed.  

As previously noted, Simpson et al. (1982) emphasized the need to be able to build an FMS piece by 

piece.  A likely scenario would be for a firm to purchase a CNC machine and use a human operator.  

The second step would be to purchase a material handling device (robot) to load the machine from a 

small local buffer.  This would allow the human operator to tend the machine less frequently, giving 

him more time to perform other tasks.  The third step would be to purchase a second material handler 

to feed parts into the small local buffer from a larger buffer that is beyond the range of the material 

handler tending the CNC machine.  Additional items such as an automated storage and retrieval unit or 

a material transport device (such as a conveyor system) would then be added as funding became 

available and experience was developed.  Each time a piece of equipment is added the control system 

becomes outdated and must be replaced or extensively modified. 

The method of rapidly generating control software for flexible manufacturing systems described here 

makes both adding parts to the set the flexible manufacturing system can produce and adding 

equipment to the FMS practical. 
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3.1 Verifiable Hypotheses 

3.1.1 Factory reference model 

A factory reference model can be defined in sufficient detail that its implementation is unambiguous.  

The existing factory models are limited to conceptual models that do not include enough information 

to allow implementation in a replicable manner.  Two researchers operating from the same factory 

reference model looking at the same physical system should develop databases that contain the same 

information.  A controller development program built by one researcher should be interoperable with a 

database developed by a second researcher if both are based on the same factory reference model, 

assuming a suitable translation program between database programs is available (e.g. from Microsoft 

Access to MySQL).   

3.1.2 Petri net generation 

A Petri net model conforming to the formalization in section 5.2 that describes the flexible 

manufacturing system (FMS) and the parts produced in the FMS can be created from a description of 

the FMS and parts that conforms to the factory reference model and this Petri net can be used to 

control the execution of activities in the actual FMS. 

3.1.3 Neural net generation and scheduling knowledge creation 

A neural net structure that will accept inputs from the Petri net and provide outputs back to the Petri 

net can be developed.  The weights of the neural net can be selected such that appropriate outputs will 

be generated to cause the Petri net to generate desirable control actions (i.e. control actions that move 

parts through the system and resolve any stall conditions that occur).   

The normal process of selecting the weights of a neural net (supervised learning) requires a set of data 

that has a set of known outputs paired with a set of known inputs.  The net is trained using this known 

data and then exposed to a set of unknown inputs.  In this application (FMS control), the desired 

outputs for a given set of inputs are unknown.  If the mapping of the inputs to the outputs required for 
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supervised learning was known then there would be no need for this research because a state table 

controller could be built.  

A partial mapping can be determined based on the actions required to move a single part through the 

system.  If a single part is in the system, the state of the part will be represented by a single input 

neuron that is on (there will be multiple input neurons on if the part is on a part carrier and there are 

transporters in the system) and a single desired control action can be determined.  The input neuron can 

be connected to the output neuron representing the desired control action through a sequence of links 

and nodes so that the output neuron will generate a positive output when the input is on.   

The neural net is being used to represent logical conditions and their combination using Boolean logic 

rules.  The weights of the neural net will not be changed.  Once an element is added to the network its 

properties are fixed.  Any changes required to the logic will be made by adding additional neural net 

elements (i.e. nodes or links).  

3.2 Objectives  

To verify the above hypotheses this research has emphasized the following objectives: 

1. Propose a standardized interface specification for equipment controllers.  Allowing 

the hand coded portion to be handled by the equipment supplier not the user of the 

FMS. (Hypothesis 3.1.1) 

2. Develop a specification for a user-input description of the manufacturing system 

and the parts that flow through it and build a database that implements this 

specification. (Hypothesis 3.1.1) 

3. Develop a model for the manufacturing system and the parts that flow through the 

system that can be used for control and a method of automatically generating these 

models from the description entered by the user. (Hypothesis 3.1.2) 



 48

4. Develop a method for generating control software based on the model of the 

manufacturing system developed in objective 3.  The control software must generate 

valid solutions, where valid is defined as deadlock and collision free. (Hypothesis 

3.1.3) 

5. Generating “good” performance without requiring extensive user input.  This 

requires a method of tuning the control software that does not require the FMS user 

to understand control methodologies. (Hypothesis 3.1.3) 

3.3 Test Cases 

The test cases selected will be based on the concept of starting small and adding either parts or 

equipment to the FMS .  Test case one consists of a single machine processing workstation and a 

storage workstation (possibly only a material handler and a set of buffers) with four part types.  The 

main purpose of test case one was to demonstrate the practicality of the Petri net neural net 

combination.  Test case two will add a material transport device to the system where one material 

transporter will move between two locations.  Test case three adds a second machine to the processing 

workstation and adds additional part routes.  Test case four adds a buffer to the processing workstation.   
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4 MANUFACTURING SYSTEM MODEL 

The model used in this research is a derivation of the work done by Smith et al. (1996), Smith and 

Joshi (1995), Smith (1992) and Wysk et al. (1995).  The major elements in the production system are 

divided into the following categories: material processors (MP), material transporters (MT), material 

handlers (MH), automated storage (AS) and buffers (BF).  Material processors make some change in 

either the physical condition (e.g., mills, drills and lathes) of the part or the status of the part (e.g., 

inspection stations).  Material handlers move parts from one position to another in a specified 

orientation.  They are generally used to load and unload material processors.  The most common 

material handlers are various types of robots.  Material transporters are used to transport parts to 

various locations in the factory.  Material transporters normally have a larger range of movement than 

material handlers, but can not be used for loading and unloading material processors.  Automated 

storage has a set of physical spaces for storage.  It has an additional set of physical spaces that are used 

for interfacing with the rest of the production system.  Buffers are physical space designated for 

(usually temporary) storage of parts. 

Elements of the manufacturing system are generally combined for purposes of control. This research 

uses the lower three levels (cell, workstation and equipment) of the set of five control levels defined by 

Jones and McLean (1986) (facility, shop, cell, workstation, equipment).  The functionality of the 

various levels has been modified.  Previous researchers have suggested that each level in a hierarchical 

system should contain planning, scheduling, and execution functions.  This research takes a different 

view.  The workstation and equipment levels are limited to execution functions and all decisions are 

made at the cell level.  This was done for two reasons: in order to achieve a global optimum, global 

information must be used (particularly where alternative process plan routings involve multiple 

workstations); and the transportation and storage systems can be used as a large capacity buffer for 

resolving deadlock. 
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Global information is particularly important when there are alternative processing routings that involve 

multiple workstations.  The decisions made at one workstation may significantly affect the 

performance of a second workstation.  For example, minimizing flow time in a workstation is achieved 

by scheduling parts using the shortest processing time for the work that is performed in that 

workstation.  This could easily starve other workstations of work resulting in poor performance or 

flood a downstream workstation with work it should not have to do.   Consider the case where a part 

has two processing alternatives, it can process on workstation one for 30 minutes or it can process on 

workstation one for 15 minutes and then be transferred to workstation two to process for 20 minutes.  

When the part is in workstation one, the decision regarding which process to run should be made at the 

cell level.  If there is a large backlog of parts at workstation one and workstation two is empty it makes 

sense to transfer the part, if that is not the case then you would want to do all of the processing in 

workstation one.  However, if the workstation was making the decision it would depend on the 

performance criteria applied to it.  For example, if workstation flowtime or makespan were the criteria 

considered then the workstation controller would select the 15 minute operation to quickly move the 

part out of the workstation.  If the workstation utilization was the criteria then it would select the 30 

minute process to maximize the usage of the workstation. 

The optimal schedule for minimizing makespan for two machines is achieved by separating the parts 

into two sets based on the ratio of the processing time on the first required machine to the processing 

time on the second required machine.  The parts in the first set have a ratio less than or equal to one 

and in the second set have a ratio greater than one.  Both sets are scheduled using shortest processing 

time first and the first set where the ratio is less than or equal to one is processed first.  This guarantees 

that the second machine will experience the minimum amount of schedule-induced delay.  The 

optimum schedule for each machine requires knowledge of the processing requirements on the other 

machine, i.e. global information.   
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The following limitations and assumptions have been made for the purposes of this study.  

Workstations are limited to one material-handling device. The transportation system allows any and all 

transporters to go to all locations the transportation system serves (the graph of the transportation 

system is a strongly connected digraph). Material processors have a capacity of only one part. Parts are 

neither created nor destroyed, i.e. parts must enter and exit process plans only at designated points.  

Machine setups are either not required or are automated and require zero time.  This assumption 

simplifies the performance evaluation by eliminating sequence dependent setup (or processing) times.  

The “Prepare to Load” command can be part type dependent.  Machine setups would be executed at 

the equipment controller level in response to the “Prepare to Load” command and are outside the scope 

of this research. 

Workstations are divided into two categories, storage and processing.  This research does not use 

transportation workstations as Smith (1992) did, all transportation control is handled by the cell 

controller.  The control software being developed will handle the movement of the parts inside a 

processing workstation, but not inside a storage workstation.  All of the locations inside a storage 

workstation will be lumped together and treated as a single location from which parts can be requested.  

Storage workstations will be treated as if they have a single fixed part location although in reality they 

will have multiple locations.  Storage workstation controllers are outside the scope of this research. 

4.1 Parts 

A part is defined as an individual item that is to be produced by the production system.  A part has 

associated with it a process plan.  A process plan is an OR graph where each node represents the 

performance of some operation on the part.  This is the same representation used by Smith (1992), 

Smith and Peters (1998), and Mettala (1989) with the following changes: the current research does not 

use hierarchical process plans and a node representing raw material is prepended to the graph and a 

node representing finished product is postpended to the graph.  Formally, a process plan PPi = <Vi, 

Ai>, where Vi is a finite set of nodes representing processing steps for the part and Ai is a finite set of 
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arcs representing precedence among the processing steps.  Figure 5 shows two simple process plans.  

Plan (a) is for a part with two processing alternatives.  Plan (b) is the smallest possible process plan.  

The minimum size of Vi is 3 (a start node, a finish node, and at least one process node).  The minimum 

size of Ai is 2 (an arc from the start node to the process node and an arc from the process node to the 

finish node).  Associated with each process node in Vi is a material processor and an instruction set.  

A material processor is the entity that will perform the operation on the part.  The instruction set is the 

material processor-specific directions on how to perform the operation, typically this will be an NC 

file. 

Figure 5  Simple Process Plans 

4.2 Manufacturing System 

A transporter is defined as the physical entity on which parts are moved through the system.  

Examples of transporters include pallets on a conveyor and automated guided vehicles (AGVs).  The 

set of all transporters will be designated T. A part carrier is defined as a physical entity that allows a 

part to ride on a transporter.  The physical characteristics of a part and a transporter will determine 

whether a part carrier is necessary.  A transportation device is defined as the physical entity that moves 

transporters (e.g., the conveyor used to move pallets).  A separate transportation device may not be 
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used by the manufacturing system.  Automated guided vehicles serve as both transporter and 

transportation device, i.e. they move themselves. 

A plocation is defined as a physical space that can be occupied by a part.  The set of all plocations in 

the factory will be designated PL. The set PL is partitioned into two disjoint sets: FPL and MPL.  

FPL is the set of fixed part locations and is associated with MP, AS and BF equipment.  MPL is the 

set of mobile part locations.  A mobile part location represents a place on a transporter where a part 

can be located.  Each mobile part location is associated with a specific transporter type. 

A tlocation is defined as a physical space in the factory where a transporter can stop.  The set of all 

tlocations in the factory will be designated TL. A load point (LP) is defined as a tlocation where parts 

can be removed from a transporter.  An unload point (UP) is defined as a tlocation where parts can be 

placed on a transporter.  Load and unload reference the workstation being serviced by the transporter 

not the transporter, e.g. a part is unloaded from a transporter and loaded into a workstation at a 

loadpoint.  A tlocation can be both a load point and an unload point for the same (e.g. a single tlocation 

is used for loading and unloading a workstation) or different workstations (an unload point for 

workstation one is the load point for workstation two). 

A transporter movement graph describes the possible movements between tlocations and is formally 

defined as TMG = <TL, A>, where TL is the set of tlocations and A is a set of directed arcs describing 

the possible movements between tlocations.  For this study, the TMG was assumed to be either a 

strongly connected digraph or empty.  The TMG can only be empty when all of the tlocations can be 

accessed by the workstations.    Test case one used an empty TMG.  All tlocations were occupied by a 

transporter and all tlocations were both load and unload points; therefore, there was no need for 

transporters to be moved.  A transporter movement (TM) occurs when a transporter traverses an arc 

and changes tlocations.  A transporter movement TMi is said to be incompatible with a second 

transporter movement TMj if the physical transport equipment can not perform the two movements 

simultaneously.  Examples of this would include: a narrow passage where AGVs can not pass each 
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other going in opposite directions and a conveyor where two movements require the same lift and 

transfer unit and are transferring in opposite directions. 

A processing workstation is defined as one or more pieces of MP equipment, one MH device, and zero 

or more buffers. A storage workstation is defined as one or more pieces of AS equipment and one MH 

device. Associated with a workstation of either type will be a set of load and unload points. 

Each workstation will have a workstation part movement graph, defined as WPMGi = <FPLi, 

MPL(LP)i, MPL(UP)i, Ai), where FPLi is the set of fixed plocations associated with the equipment in 

the workstation,  MPL(LP)i is the set of mobile plocations that can occupy the workstation's load 

points, MPL(UP)i is the set of mobile plocations that can occupy the workstation's unload points.  Ai is 

a set of directed arcs that describes the possible movements between the plocations.  Each arc has one 

of three types associated with it (Load, Unload and Transfer) and information regarding whether the 

movement is limited to a part or whether a part carrier also moves with the part.  Data describing the 

endpoints of the arcs are stored in a from--to format.  The meaning of a data item changes depending 

on the arc type. 

Figure 6 shows a workstation movement graph for a simple workstation (it could be a processing 

workstation or a storage workstation).  It is served by two tlocations, one for loading and one for 

unloading.  There is a single fixed part location.  The FPL would be a material processor in a 

processing workstation or the logical fixed part location of an automated storage machine in a storage 

workstation. 
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Figure 6 Simple Workstation Movement Graph 

4.3 Manufacturing System Activities 

An elemental activity is an activity that is performed by a single piece of equipment.  The part 

manufacturing process consists of combining elemental activities to achieve a desired result.  Table 2 

lists all of the elemental activities that are required assuming that each process command leaves the 

machine in a state suitable for unloading.  If that assumption is not valid, an additional elemental 

activity, “Prepare to Unload,” would have to be added.  Table 3 lists the workstation activities.  The 

workstation activities are composed of combinations of the equipment level activities and are 

described after Table 2 and Table 3.  

LP 

ULP

FPL
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Table 2 Equipment Level (Elemental) Activities 

Task Name Description 
Pick The material handler will grasp the part and remove it from 

its current location with no coordination with any other 
controller. 

Place The material handler will place the part in a location, 
release the part and move to a clear (safe) location with no 
coordination with any other controller 

Grasp The material handler will move to a part, grasp it and then 
wait for further instructions  

Take The material handler will move to a clear location with 
possession of a part 

Put The material handler will place the part in a specified 
location without releasing it and wait for further 
instructions 

Clear The material handler will release any part it is holding and 
move to a clear location 

Prepare to Load A material processing machine will execute what 
preparatory action is required to be able to accept a part.  
The prepatory action may be part type dependent. 

Clamp A material processing machine activates its part holding 
device 

UnClamp A material processing machine deactivates its part holding 
device 

Process A material processing machine will load a set of 
instructions and execute them 

Move A material transport device will move from one tlocation to 
another 

 

Table 3 Workstation Level Activities 

Task Name Description 
Load A part is loaded from the transportation system into a 

workstation 
Process Some activity is performed on a part by a material 

processor 
Unload A part is removed from a workstation and placed into the 

transportation system 
Transfer A part is moved from one location inside a workstation to 

another location inside the same workstation 
 

4.3.1 Load 

The first step in a load operation is to make sure the destination is ready to receive the part.  If the 

destination is a buffer, no preparation is required.  If the destination is a material processor, then a 
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“Prepare to Load” message must be sent to the material processor.  After the destination is ready, a 

“Pick” command will be sent to the material handler causing the material handler to retrieve the part 

from the transporter.  After the material handler has the part, the next step depends on the destination.  

If the destination is a buffer, then a “Place” command causes the material handler to place the part in 

the correct position and release it.  If the destination is a material processor, a “Put” command is sent 

to the material handler causing it to place the part in the correct final position without releasing it.  

After the part is in place, a “Clamp” command is sent to the material processor.  After the part is 

clamped by the material processor, a “Clear” command is sent to the material handler causing it to 

release the part and move to a safe position.  After the material handler is in a safe position, the load 

operation is complete. 

4.3.2 Process 

The process command assumes that a part has already been loaded onto the material processor.  The 

workstation sends a process command to the material processor. 

4.3.3 Unload 

The unload command assumes that a transporter is at the unload point ready to receive the part.  The 

sequence of commands varies depending on whether the part that is being unloaded is currently located 

in a buffer or in a material processor.  If the part is located in a buffer, a “Pick” command is sent to the 

material handler, causing it to retrieve the part from the buffer.  A “Place” command is then sent to the 

material handler causing the part to be placed on the transporter. 

If the part is located in a material processor, the first step is to send a “Grasp” command to the material 

handler.  The material handler then moves to the material processor and grasps the part, but does not 

try to remove it.  After the material handler has grasped the part, an “Unclamp” command is sent to the 

to the material processor so it will release the part.  A “Take” command is sent to the material handler 

causing it to remove the part from the material processor. A “Place” command is then sent to the 

material handler causing the part to be placed on the transporter. 
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4.3.4 Transfer 

The sequence of commands for a transfer command is determined by the type of equipment associated 

with the plocations involved. The plocation can be associated with either a buffer or a material 

processor. There are four possible transfers each with its own sequence: buffer to buffer, buffer to MP, 

MP to buffer, MP to MP.  The buffer to buffer sequence is the simplest consisting of a “Pick” 

command sent to the material handler followed by a “Place” command. 

The transfer from a buffer to a material processor is very similar to a load operation.  First, a “Prepare 

to Load” message must be sent to the material processor.  After the destination is ready, a “Pick” 

command will be sent to the material handler causing the material handler to retrieve the part from the 

buffer.  After the material handler has the part, a “Put” command is sent to the material handler causing 

it to place the part in the correct final position without releasing it.  After the part is in place, a 

“Clamp” command is sent to the material processor.  After the part is clamped by the material 

processor, a “Clear” command is sent to the material handler causing it to release the part and move to 

a safe position.  After the material handler is in a safe position the transfer operation is complete. 

The transfer from a material processor to a buffer is very similar to an unload operation. The first step 

is to send a “Grasp” command to the material handler.  The material handler then moves to the 

material processor and grasps the part but does not try to remove it.  After the material handler has 

grasped the part, an “Unclamp” command is sent to the to the material processor so it will release the 

part.  A “Take” command is sent to the material handler causing it to remove the part from the material 

processor. A “Place” command is then sent to the material handler causing the part to be placed in the 

buffer. 

The transfer from a material processor to another material processor is the longest of the transfer 

sequences. The first step is to send a “Prepare to Load” message to the receiving material processor.  

After the material processor is ready, a “Grasp” command is sent to the material handler.  The material 

handler then moves to the material processor with the part and grasps the part but does not try to 
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remove it.  After the material handler has grasped the part, an “Unclamp” command is sent to the to the 

material processor so it will release the part.  A “Take” command is sent to the material handler 

causing it to remove the part from the material processor.  A “Put” command is sent to the material 

handler causing it to place the part in the correct final position without releasing it.  After the part is in 

place, a “Clamp” command is sent to the receiving material processor.  After the part is clamped by the 

material processor, a “Clear” command is sent to the material handler causing it to release the part and 

move to a safe position.  After the material handler is in a safe position the transfer operation is 

complete. 

4.4 User Input Requirements 

The user must provide the information specific to the facility. Table 4 lists the various data tables that 

must be completed by the user.  The “Parts” table that describes the raw material was implemented as a 

separate database because of its volatility.  Appendix B contains tables that identify the fields 

contained in each table and the purpose of the field.  Tables describing test case one are contained in 6.  

This research implemented the tables using Microsoft Access.   

Because the storage and processing workstation controllers are handled separately, separate but 

identical tables were used.  The tables could have been combined if an extra field had been added to 

the workstation identification table to indicate the type of the workstation. 
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Table 4 List of User Input Data Tables 

Table Name Usage 
Equipment Identifies the pieces of equipment in the cell 
FixedpLocations Identifies the fixed places where parts can be 

located 
IncompatibleTransporterMovements Identifies transporter movements that can not 

be performed simultaneously 
MobilepLocations Identifies the movable places where parts can 

be relocated with the transporter type 
PartCarrierTypes Identifies the types of part carriers used in the 

system and what transporters they can use 
PartID Identifies the various parts the system can 

manufacture 
PPArcs Process plan arcs representing the 

manufacturing constraints 
PPNodes Process plan nodes representing the 

manufacturing steps 
ProcessingWorkstations Identifies the processing workstations in the 

factory 
ProcessingWSEquipAssn Identifies the equipment contained in each 

workstation 
ProcessingWSLPAssn Identifies the tlocations where parts can be 

loaded into the workstation 
ProcessingWSMGArcs Identifies all of the movements that are 

associated with the workstations 
ProcessingWSUPAssn Identifies the tlocations where parts can be 

unloaded from the workstation 
StorageWorkstations Identifies the storage workstations in the 

factory 
StorageWSEquipAssn Identifies the equipment contained in each 

workstation 
StorageWSLPAssn Identifies the tlocations where parts can be 

loaded into the workstation 
StorageWSMGArcs Identifies all of the movements that are 

associated with the workstations 
StorageWSUPAssn Identifies the tlocations where parts can be 

unloaded from the workstation 
TLocations Identifies the fixed places where transporters 

can be located 
TMGArcs Identifies possible movements between 

TLocations 
Transporters Identifies the transporters that are in the 

system 
TransporterTypes Identifies the types of transporters in the 

system 
Parts Lists Raw Material in the System 
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5 CONTROL SYSTEM MODEL 

5.1 Organization 

As previously stated, this research uses the lower three levels (cell, workstation and equipment) of the 

set of five control levels defined by Jones and McLean (1986) (facility, shop, cell, workstation, 

equipment).  The levels will now be formally defined starting from the bottom up and brief 

descriptions of the functions at each level will be provided. 

5.1.1 Equipment level 

The equipment level in the hierarchy represents a logical view of a machine and an equipment level 

controller.  An equipment level controller and its subordinate machine will be referred to as simply a 

piece of equipment. Individual pieces of equipment also have machine controllers that provide physical 

control for the devices.  These include CNC controllers, programmable controllers, and other motion 

controllers and are usually provided by the machine tool vendors.  Equipment controllers provide a 

standard interface (based on the equipment type) to the rest of the control system.  This interface hides 

the implementation-specific code required for machines from different vendors. The equipment 

controller takes information sent to it from a workstation controller and performs a look-up function to 

determine what machine specific set of instructions (specific NC file or robot program) must be 

supplied to the vendor supplied controller.  The controller waits for the task to be completed and then 

sends an appropriate response to the workstation controller.   

The equipment controllers are similar to the software/hardware components of Naylor and Volz 

(1987).  They provide a well defined interface (a specific set of formatted messages they will respond 

to), an internal implementation that is not available to the user, and the controllers are programs that 

communicate via a TCP/IP connection allowing them to be compiled separately from any workstation 

level controllers that interact with them.  They do require the user to develop machine specific sub-

routines that the controllers execute, i.e. NC programs, or robot language movement programs. 
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Formally, the equipment level is defined as follows (taken from Smith, 1992): 

 E = {e1, e2, ..., em}, is an indexed set of controllable equipment, where: 

 ej  ∈ E  

 ej = 〈ECj , Dj〉  where: 

  ECj is an equipment controller, and 

  Dj is a physical device (with device controller). 

 E is partitioned into {MP, MH, MT, AS} where: 

  MP = {ej ⏐ Dj is a material processor}, 

  MH = {ej ⏐ Dj is a material handler}, 

  MT = {ej ⏐ Dj is a material transporter}, and 

  AS = {ej ⏐ Dj is an automated storage device}. 

 

Unlike Smith (1992) material processing equipment is limited to a single task on a single part.   Each 

piece of equipment in the factory has a capacity, defined to be the number of parts it can hold at one 

time. The capacity of MP, MH and BF equipment is assumed to be one.  The capacity of the MT 

equipment is equal to the sum of the capacity of the transporters.  Smith (1992) also includes a set of 

equipment known as passive devices that do not use equipment controllers.  Passive devices are not 

considered in this research. 

Table 5 describes the formats of the messages the equipment level controllers respond to.  Automated 

storage equipment is only used in storage workstations, which are outside the scope of this research; 

therefore, a message format for automated storage units was not specified.  The messages are 

parameterized with two types of parameters: run time parameters (rtp) and creation time parameters 

(ctp).  Creation time parameters are known when the control system is being created, eg. transporter 

locations, part locations.  Run time parameters are dependent on the part that is being processed and 
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are filled in while the controller is running.  The parameters column lists the total number of 

parameters in the message and the number that are filled in at run time.  There are two forms of the 

“Pick” command depending on whether the part is being picked from a transporter in the transportation 

system or from a buffer in a workstation.  There are also two forms of the “Place” command depending 

on whether the part is being placed on a transporter or in a fixed part location (FPL). 

Table 5  Equipment Controller Message Formats 

Equipment 
Type 

Message Parameters Format String 

MT Move 2 / 0 "MOVE,ctp,ctp" 
    
MP Prepare to 

Load 
2 / 2 "PREP, TYPE= rtp, NODE= rtp" 

 Clamp 0 / 0 "CLAMP" 
 Process 3 / 2 "PROCESS, PLOC= ctp, TYPE= rtp, NODE= rtp" 
 Unclamp 0 / 0 "UNCLAMP" 
    
MH Pick from 

TLocation 
4 / 3 "PICK, TLOC= ctp, MPL= rtp, TYPE= rtp, 

NODE= rtp" 
 Pick from 

FPL 
3 / 2 "PICK, PLOC= ctp, TYPE= rtp, NODE= rtp" 

 Place in a 
FPL 

3 / 2 "PLACE, PLOC= ctp, TYPE= rtp, NODE= rtp" 

 Place on a 
transporter 

4 / 3 "PLACE, TLOC= ctp, MPL= rtp, TYPE= rtp, 
NODE= rtp" 

 Grasp 3 / 2 "GRASP, PLOC= ctp, TYPE= rtp, NODE= rtp" 
 Take 0 / 0 "TAKE" 
 Put 3 / 2 "PUT, PLOC= ctp, TYPE= rtp, NODE= rtp" 
 Clear 0 / 0 "CLEAR" 

 

5.1.2 Workstation level 

This research uses the workstation formalism of Smith (1992), but defines only two types of 

workstations not the three used by Smith.  The functions of the transportation workstation defined by 

Smith have been transferred to the cell level controller.  The two types of workstations defined are 

storage workstations and processing workstations.  A storage workstation generally consists of an 

automated storage (AS) device, a material handler, and an associated set of load and unload points.  

Storage workstation controllers are outside the scope of this research.  The number of locations in a 
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storage workstation with the corresponding number of movements would cause the size of the 

controller to increase dramatically for little purpose.  Specifying the exact location of a part in the 

storage workstation will not improve performance significantly and will result in a significant increase 

in controller size and a corresponding increase in the effort required to train the controller. 

An existing storage workstation controller that responds to the interface commands used in this 

research is assumed. The storage workstation controller responds to requests from the cell controller 

for parts.  It maintains a database of the parts in the storage workstation, selects which part to retrieve 

if multiple parts of the requested type are available, and sends commands to the material handling 

equipment and automated storage equipment to retrieve and store parts. 

A processing workstation consists of a material handler, a set of load and unload points, and one or 

more material processing (MP) devices.  It may also include one or more buffers (BF).  Processing 

workstation controllers are created as part of the generation of the control logic. The processing 

workstation controller expands load, unload and transfer commands received from the cell controller 

and sends the required commands to the material processing and material handling equipment to 

implement the command.  It forwards process initiation commands to the appropriate material 

processor. 

An indexed set of workstations W is created, and partitioned into two disjoint sets, a set of storage 

workstations WS  = {W1, W2, ..., Wm}and a set of processing workstations WP = {W1, W2, ..., Wr}.  

To accomplish this, the sets MP, MH, MT, AS, and BF, are each partitioned into subsets indexed by i 

= 1, 2, ..., m,m+1, m+2, …, m+r, n+1, where n = the number of workstations m+r, corresponding to 

the indexing of W plus a subset of equipment (n+1) which is not associated with any workstation.  For 

example, MP is partitioned into {MP1, MP2, ... MPn, MPn+1}. MPn+1, MHn+1, ASn+1, and BFn+1 will 

be empty sets in this research.  MTi will be empty unless i = n+1, because all transportation equipment 

is assigned to the cell controller.  MHn+1, and BFn+1, may not be empty if the transporter movement 

graph is not a strongly connected digraph.  If the graph is not strongly connected, then some method 
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must be provided to transship parts between transporters so there will have to be at least one material 

handler associated with the transportation system and there may also be one or more buffers.  A 

workstation, Wi, is then defined formally as: 

 Wi ∈ W  

 Wi = 〈WCi, Ei, BFi, LPi, UPi〉  where: 

  WCi is a workstation controller,  

  BFi is the set of internal workstation storage buffers, 

LPi is the set of workstation load points,  

UPi is the set of workstation unload points, and 

  Ei = {MPi ∪ MHi ∪ MTi ∪ ASi}. 

 
The workstation controller (WCi ) is created automatically for processing workstations.   

Table 6 describes the formats of the messages from the cell controller that the workstation level 

controllers respond to.  Table 7 contains the formats of the messages from equipment controllers that 

the processing workstation controllers must respond to.  The messages are parameterized with two 

types of parameters: run time parameters (rtp) and creation time parameters (ctp).  Creation time 

parameters are known when the control system is being created, eg. transporter locations, part 

locations.  Run time parameters depend on the part that is being processed and are filled in while the 

controller is running.  The parameters column lists the total number of parameters in the message and 

the number that are filled in at run time.   
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Table 6  Workstation Controller Message Formats for Messages from the Cell Controller 

WS Type Message Parameters Format String 
Processing / 
Storage 

Load 5 / 3 "LOAD,ctp,rtp,ctp, TYPE= rtp, NODE= rtp" 

Processing  Unload 3 / 1 "UNLOAD,ctp,ctp,rtp" 
Storage Unload 5 / 3 "UNLOAD,ctp,ctp,rtp, TYPE= rtp, NODE= rtp" 
Processing Process 1 / 0 "PROCESS, PLOC= ctp" 
Processing Transfer 2 / 0 "XFER,ctp,ctp" 
Processing Transform 4 / 0 "TRANSFORM, PLOC= ctp, TYPE= ctp, ONODE= 

ctp, NNODE= ctp" 
 

Table 7 Workstation Controller Message Formats for Messages from Equipment Controllers 

Message Conversions Format String 
MP prep 
finished 

2 / 2 "PREP, TYPE= rtp, NODE= rtp COMPLETE" 

MP clamp 
finished 

0 / 0 "CLAMP COMPLETE" 

MP process 
finished 

3 / 2 "PROCESS, PLOC= ctp, TYPE= rtp, NODE= rtp COMPLETE" 

MP Unclamp 
finished 

0 / 0 "UNCLAMP COMPLETE" 

MH Pick 
from 
Transporter 
finished 

4 / 3 "PICK, TLOC= ctp, MPL= rtp, TYPE= rtp, NODE= rtp 
COMPLETE" 

MH Pick 
from FPL 

3 / 2 "PICK, PLOC= ctp, TYPE= rtp, NODE= rtp COMPLETE" 

MH FPL 
Place 
finished 

3 / 2 "PLACE, PLOC= ctp, TYPE= rtp, NODE= rtp COMPLETE" 

MH 
TLocation 
Place 
finished 

4 / 3 "PLACE, TLOC= ctp, MPL= rtp, TYPE= rtp, NODE= rtp 
COMPLETE" 

MH grasp 
part in MP 
finished 

3 / 2 "GRASP, PLOC= ctp, TYPE= rtp, NODE= rtp COMPLETE" 

MH remove 
part from MP 
finished 

0 / 0 "TAKE COMPLETE" 

MH Put 
finished 

3 / 2 "PUT, PLOC= ctp, TYPE= rtp, NODE= rtp COMPLETE" 

MH clear 
finished 

0 / 0 "CLEAR COMPLETE" 
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5.1.3 Cell level 

The cell level controls the transportation of parts between workstations, the loading and unloading of 

parts to and from workstations, and the initiation of part processing.   

 

A cell (C) can be formally defined as: 

 C =  〈CC, W, En+1, BFn+1〉  where  

  CC is a cell controller, 

  W is the set of workstations previously defined, and 

  En+1 is the set of equipment belonging to the cell that is not assigned to a workstation  

  En+1 = MT 

 

In this research, the cell controller is formally defined as: 

CC = (PN,NN,SM,OV) where 

 PN is a Petri net as defined in section 5.2 

 NN is a neural net as defined in section 5.5 

 SM is a status matrix derived from and updated by the Petri net as defined in section 5.3 

OV is an order vector, a user supplied list of parts that should be manufactured as defined in 

section 5.4. 

The outputs of the neural net correspond to the decision events of the Petri net.  The input to the neural 

net is a combination of the status matrix and the order vector.  This structure conforms to the belief of 

Adlemo et al. (1995) that state information should be kept separate from “the information that tells the 

control system what to do when the system has reached a certain state.”  They also separate the “what 

to do information” into routing information and control information.  Routing information is used to 
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identify the next resource the part should be sent to.  Control information “describes in detail all the 

actions executed by the resources in each state, e.g. which NC programs to run.”   

The complete state information is stored in the Petri net.  This state information is then translated into a 

status matrix that is used as an input to the neural net.  The neural net stores the information that tells 

the control system what to do.  Routing information is shared between the Petri net, which contains the 

process plan with its associated precedence constraints, and the neural net, which holds the rules about 

what to do when a part is in a given state.  The “control information” of Adlemo et al. (1995) is not 

included in the cell controller.  This information is held at the equipment controller level where a look-

up function is performed to determine the set of commands to execute.  Minor changes to the product 

can be made without changing the controller by updating the NC file or replacing it if necessary.  

Changes to the equipment can also be accommodated, if equivalent programs are available for the new 

equipment, as long as the basic shape of the process plan does not change and the equipment is located 

in the same relative location (i.e. is served by a material handler from the same set of load and unload 

points as the original machine).  Referring to Figure 5, if the machine used to process node 4 was 

replaced (e.g. a three-axis milling machine was upgraded to a four-axis milling machine) no changes 

would need to be made to the cell controller if an NC program for the new machine existed to process 

node four and the new equipment had the same equipment controller name as the old equipment.  If the 

shape of the process plan changed, e.g. nodes 4 and 5 are combined into a single node, then the cell 

controller would have to be changed. 

Table 8 contains the message formats that the Petri net portion of the cell controller responds to.  The 

conversions listed are the total conversions and the conversions that are performed at runtime.  In 

general, for each message from the neural net indicating an activity should be started, there is a 

matching message from a workstation indicating the activity is complete.  The exception to this is the 

“START” command.  The “START” command tells the controller that a piece of raw material should 

be assigned a processing node and specifies the storage workstation where the raw material is located.  
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Instead of sending a “START” command to the storage workstation, the Petri net sends a 

“TRANSFORM” command.  A “TRANSFORM” complete message is therefore returned from the 

storage workstation instead of a “START” complete message.  The processing workstation unload 

command does not include information about the type of part to be unloaded.  The workstation 

controller already has information about the part it holds at a plocation; therefore, the neural net does 

not have to send the information. 

Table 8 Cell Controller Message Formats 

Message Source Conversions Format String 
Load Neural Net 2 / 0 "LOAD,ctp,ctp" 
Load 
Complete 

Workstation 
Controller 

3 / 1 "LOAD,ctp,ctp,rtp COMPLETE" 

Unload 
Processing WS 

Neural Net 2 / 0 "UNLOAD,ctp,ctp" 

Unload PWS 
Complete 

Workstation 
Controller 

3 / 1 "UNLOAD,ctp,ctp,rtp COMPLETE" 

Unload 
Storage WS 

Neural Net 4 / 2 "UNLOAD,ctp,ctp, TYPE= rtp, NODE= rtp" 

Unload SWS 
Complete 

Workstation 
Controller 

4 / 2 "UNLOAD,ctp,ctp, TYPE= rtp, NODE= rtp 
COMPLETE" 

Process Neural Net 1 / 0 "PROCESS, PLOC= ctp" 
Process 
Complete 

Workstation 
Controller 

3 / 2 "PROCESS, PLOC= ctp, TYPE= rtp, NODE= 
rtp COMPLETE" 

Transfer Neural Net 2 / 0 "XFER,ctp,ctp" 
Transfer 
Complete 

Workstation 
Controller 

2 / 0 "XFER,ctp,ctp COMPLETE" 

Move Neural Net 2 / 0 "MOVE,ctp,ctp" 
Move 
Complete 

MT 
Equipment 
Controller 

2 / 0 "MOVE,ctp,ctp COMPLETE" 

Transform Neural Net 3 / 0 "TRANSFORM, TYPE= ctp, ONODE= ctp, 
NNODE= ctp" 

Transform 
Complete 

Workstation 
Controller 

4 / 0 "TRANSFORM, PLOC= ctp, TYPE= ctp, 
ONODE= ctp, NNODE= ctp COMPLETE" 

Start Neural Net 4 / 0 "START, PLOC= ctp, TYPE= ctp, ONODE= 
ctp, NNODE= ctp" 

 

5.2 Petri Nets 

The Petri nets used in this research are defined by a 5-tuple: PN = (P,T,F,M,E), where P is a set of 

places, T is a set of transitions (some researchers combine P and T into a set of nodes that is later 
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partitioned), F is a set of directed arcs connecting transitions to places, M is a marking (a description of 

where tokens are located in the net) and E is a set of events.  All arcs have a weight function of one. 

The set of places is partitioned into 6 different subsets as described in Table 9.  All places except the 

high capacity place have a capacity limit of one.  In the implementation of the Petri net, transitions and 

places are both derived from class node and are distinguished by their type attribute.  The transitions 

are type one, which is why the partitioning of P begins with type two.  All nodes are assigned a time 

category (see Table 10).  Category one is the time between order arrival and starting the part and does 

not have a corresponding location in the factory.  Category zero is used for nodes that are not involved 

in performance evaluation.  All transitions, e-clock places and output places are time category zero.  

Time information is carried on the tokens (see Table 11, Table 12, and Table 13) and is updated when 

a token is removed from a place with the exception of time category nine (process plan finished 

product) places where the time information is updated when the token enters the place.  Tokens that 

enter time category nine places do not exit them.  The controller operates in a batch mode so once parts 

reach the process plan finished product node they remain there until the system is reset for the next 

batch.  

Table 9 Partitioning of P 

Symbol Type Name Description 
SP 2 Standard Place General multi-purpose place with capacity one 
IP 3 Input Place Indicates a message has been received from a lower 

level controller 
DI 4 Decision Input Place Indicates a message has been received from a 

higher level controller 
OP 5 Output Place Indicates a message should be sent 
EC 6 External Clock Place Indicates the net is waiting for an external event to 

occur 
HC 7 High Capacity Place A standard place with a capacity greater than one 
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Table 10 Petri Net Node Time Categories 

Time Category  Description 
2 Material Transport 
3 Material Processing 
4 On a Material processor waiting 
5 In a Buffer 
6 In Storage 
7 Material Handling 
8 Process plan raw material node 
9 Process plan finished product node 
0 Node does not apply to a time category 

 

Table 11 Petri Net Token Types 

Token Type Description 
0 Information only 
1 Transporter 
2 Part process plan indicator token 
3 A part carrier 
4 A part 

 

Table 12 Petri Net Token Data 

Token Data Item Usage 
Capacity The number of other tokens the token can hold 
CarrierType The part carrier type, only valid for token type 3 
ListAvailableMPL The list of available mobile part locations, only valid for 

token type 1 (tranporters) 
MobilePL The mobile part location occupied by the token 
PartType The type of part if token type is 4, the part type to be 

selected if the token type is 0 
ProcessComplete The token process status for type 4 tokens or the token 

process status desired if token type is 0 
ProcessNode The part process plan node if token type is 4, the part 

process plan node to be selected if token type is 0 
PtrListTokensOnBoard List of pointers to the tokens that are attached to the current 

token 
SMColID Status matrix column ID  
TimeData See Table 13 
TokenType The token type 
TransporterType The transporter type only valid for token type 2 
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Table 13 Petri Net Time Data 

Petri Net Time Data Item Usage 
AStime Cumulative time spent in storage after the part has been 

started and before it is completed 
BFtime Cumulative time spent in buffers after the part has been 

started and before it is completed 
LastEventTime The time the last event occured 
MHtime Cumulative time spent being moved by a material handler  
MPdelaytime Cumulative time spent on a material processor not 

processing 
MPtime Cumulative time spent processing 
MTtime Cumulative time spent on a material transporter 
OrderArrivaltime Currently always zero operating the system in batch mode 
PartStarttime The time when the part was started 
SimpleFlowEnd Time the part completes processing on its final machine, 

used by type 2 tokens 
SimpleFlowStart The time when the part was started, used by type 2 tokens 

 

The arcs contained in F connect transitions and places.  An arc originating at a transition must 

terminate at a place and one originating at a place must terminate at a transition.  Each arc has a type 

associated with it (see Table 14) that determines the type of token (see Table 11) that is allowed to 

flow along the arc. 

Table 14 Petri Net Arc Types 

Arc Type Description 
0 Allows all types of tokens to cross it 
1 Only allows transporters 
3 Only allows part carriers 
4 Only allows parts 

 

The preset of a transition (*t) is defined as the set of places where the arcs terminating at the transition 

originate.  The post-set of a transition (t*) is defined as the set of places where arcs originating at the 

transition terminate.  A transition is enabled if all of the places in its preset have the appropriate tokens 

and the places in its post set have the appropriate space.  Determining whether a transition is enabled is 

complicated by the use of tokens that can contain other tokens or space for other tokens.  See the Petri 
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net marking and token description discussion later in this section.  The type of the arcs associated with 

the transition determines the appropriate tokens and spaces.   

A transition will fire as soon as it is enabled if it does not have an event associated with it.  This 

behavior is different from other Petri net research where the firing of a transition may be delayed, the 

scheduling literature uses the selective firing of transitions to develop schedules (Lee and DiCesare, 

1994).  If a transition does have an event associated with it, it will be followed by an input or decision 

input place and will fire when the event occurs, if it is enabled.  If the event occurs while the transition 

is not enabled, the event will be ignored.  It is possible for multiple events to be associated with a 

single message.   

The set of events consists of a set of messages that will trigger the firing of an associated transition, 

assuming all other conditions necessary for it to fire are met.  Each event has associated with it, the 

node number of the transition it fires, the message that will be received, the name of the controller that 

will be sending the message and the number of data conversions that need to be processed.  Events can 

be divided into two categories based on the relationship of the controller generating the event to the 

controller receiving the event.  Events generated by a controller higher in the hierarchy than the 

controller receiving the event will be called decision events, while events from other controllers will be 

simply identified as events.  The only function of decision events is to place a token in a decision input 

place.  All transitions that react to decision events have an empty preset and a post set that consists of a 

single decision input place.  The preset of non-decision events may or may not be empty.  The events 

associated with process plans will have empty presets while those associated with activities will not.  

The Petri net marking describes the location of the tokens in the Petri net.  One of the differences 

between classical Petri nets and this research is that Petri net tokens carry information (see Table 12 

and Table 13) and can not be simply destroyed and recreated when a transition fires.  Type 1, 2, 3, and 

4 tokens represent physical entities in the factory and are conserved across a transition.  The tokens are 

removed from their respective places in the preset and added to the appropriate place in the post set.  
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Type 0 tokens represent information flow and are created and destroyed as information moves through 

the workcell.  Type 0 tokens are removed from the preset, and any information they carry is extracted 

and then the token is destroyed.  If any type 0 tokens are required in the post set, a new token is 

created, any necessary information is added and then the token is placed in the appropriate post set 

place.   

While the tokens have types, the nets are not the same as traditional colored Petri nets.  Colored Petri 

nets were developed to reduce the size of traditional Petri nets.  By adding color to the tokens and color 

functions to the arcs that map the token color at the tail of the arc into a token color at the head of the 

arc, it was possible to combine duplicate node arc structures of the Petri net.  The color of tokens in the 

output places of a transition are determined by the color of the tokens in the input places and the color 

functions of the arcs to and from the transition.  Colored Petri nets can be converted to traditional Petri 

nets by expanding the network so that each color has its own network structure.   In the Petri nets in 

this research, the token type never changes (equivalent to a constant color function) and it is not 

possible to eliminate the token types by adding additional network structures.   

A significant feature of the Petri nets in this research is that tokens are allowed to contain other tokens.  

Tokens represent things that travel through the manufacturing system, both physical entities and 

information.  In real world manufacturing systems, some physical entities are associated with other 

physical entities and travel through the system together.  Some method of representing this association 

must be included in the modeling system (in the simulation domain, the Arena modeling language 

includes a Group module to combine multiple entities into a single entity, Kelton et al., 1997).  The 

method chosen was to give tokens some characteristics of places and allow them to hold other tokens.  

This resulted in a more complex transition firing implementation because the firing process must check 

not only the places in the pre- and post-sets, but also the tokens in the places, for the appropriate type 

tokens and spaces required to enable the transition.  Part carriers (token type 3) can carry parts (token 

type 4).  Transporters (token type 1) can carry part carriers (token type 3) or parts (token type 4).  As 
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previously stated, some parts require part carriers to use transporters, others do not.  Information 

tokens (token type 0 and 2) are not allowed to contain tokens. 

Figure 7 shows a common Petri net structure found in this research.  It corresponds to an activity.  The 

bars represent transitions.  The triangle represents a output place, the square an input place, the large 

circle a standard place, and the circle with the wedge an external clock place.  When conditions are met 

(the transition’s preset is appropriately marked), the initial transition fires placing tokens in the 

standard place and the output place.  The standard place represents the activity in progress and has a 

row in the status matrix associated with it.  The status matrix row will be used for deadlock detection 

in the cell controller.  

Figure 7 Petri Net Activity Grouping 

When the transition following the output place fires, it removes the token from the output message 

place causing a message to be sent to the destination associated with the output place.  It also places a 

token in the external-clock place indicating that a response is expected from some device.  The 

transition following the external-clock place is an event-triggered transition.  (All transitions preceding 

input places are event-triggered.)  When the appropriate message arrives (the message will be from a 

lower level controller), the transition fires removing the token from the external-clock place and 

placing a token in the input place.  At this point, the final transition may fire depending on the post-set.   

At the workstation level, there can be multiple transitions associated with a message from a given 

controller.  For any material processing machine in a workstation, there will be a workstation level 
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load activity from each load point associated with the workstation and a workstation level transfer 

activity from the other machines and buffers in the workstation.   Figure 8 shows a partial workstation 

movement graph with two load activities and one transfer activity.  Each of these workstation level 

activities will include an equipment level clamp activity.  Each clamp activity will be represented by 

an activity grouping as shown in Figure 7.  The event triggered transition in each activity grouping will 

be expecting the same message from the same machine, since they all require the same machine to 

complete the same clamping activity. 

When the clamp activity is completed, the machine will send a “Clamp complete” message to the 

workstation.  This message will not indicate the workstation activity that initiated the clamp action.  

Because event-triggered transitions ignore events that occur when they are not enabled, the workstation 

controller does not need to specifically track the transition that should be fired when the “Clamp 

complete” message is received.  When the workstation receives the “Clamp complete” message from 

the machine, it attempts to fire all of the transitions that respond to the “Clamp complete” message.  

Only the workstation level activity that is being processed will have an enabled transition, i.e. only one 

of the activities will have a token in the appropriate e-clock place; therefore, the marking of the Petri 

net can be used to track the activity instead of a separate variable. 

 

Figure 8 Partial Workstation Graph 
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5.3 Status Matrix 

The status matrix is the method by which the Petri net transfers information to the neural net.  The 

status matrix is also used to determine if the system has developed a deadlock condition.  The rows 

represent locations and activities and the columns represent physical things (transporters, part carriers 

and parts) that are present at a location or engaged in an activity.  There is one row for each fixed part 

location and each transporter location in the FMS.  These rows are not used to detect deadlock.  There 

are two rows for each load or unload activity (these activities involve both a transporter and a part) and 

one row for each non-load/unload activity controlled by the Petri net.  These rows are used to detect 

deadlock.  There is one column for each transporter type, part carrier type and process plan node. 

Figure 9 shows a status matrix for a small workcell consisting of three transporter locations, a storage 

workstation, and a processing workstation with one material processor.  The workcell uses one type of 

transporter, one type of part carrier and makes one type of part, a candlestick with one processing step.  

The status matrix indicates there is one transporter with a part carrier at transporter location 1 with a 

finished candlestick, a second transporter is at transporter location 2 with a part carrier and a 

candlestick that needs to be processed on the material processor.  There is a candlestick currently 

loaded on the material processor ready to begin processing.   The storage workstation contains six part 

carriers, four pieces of raw material and two finished candlesticks. 

The rows that represent locations are not used for deadlock detection and are marked false in the 

deadlock detection column.  The rows that represent activities are used for deadlock detection and are 

marked true in the deadlock detection column.  By definition, the workcell cannot be deadlocked if an 

activity is taking place.  However, it is possible for a workstation to be deadlocked while an activity is 

ongoing outside the workstation.  To determine if the workcell is deadlocked, the values of the entries 

in the rows marked for deadlock detection are summed if the value is greater than zero, then an activity 

is taking place in the workcell and the workcell is not deadlocked.  If no activity is taking place, the 

number of completed parts is compared to the order vector.  If the number of completed parts is less 
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than the number ordered and no activity is taking place then the system is stalled or deadlocked and 

corrective action must be taken. 

Figure 9 Sample Status Matrix 

The status matrix is updated when a transition fires.  The status matrix rows associated with the Petri 

net places in the transition’s pre- and post-sets are updated to reflect the tokens contained in them as 

part of the transition firing process.  Each token stores the index of the status matrix column that 

represents its identity for use in this update process.  Not all transitions will affect the status matrix.  

The transitions preceding and following e-clock places do not have any Petri net places in either the 

pre- or post-sets that are associated with status matrix rows. 

5.4 Order Vector 

The order vector is an organized list of the parts that should be manufactured.  It is stored in two data 

tables.  The first table is used to associate the order vector position with a specific part type and is 

Transporter Part carrier

Candle 
Raw 
Material 
Node 1

Candle 
Node 3

Candle 
Finished 
Product 
Node 2

Deadlock 
Detection

Tlocation 1 1 1 0 0 1 FALSE
Moving 1-2 0 0 0 0 0 TRUE
Tlocation 2 1 1 0 1 0 FALSE
Moving 2-3 0 0 0 0 0 TRUE
Tlocation 3 0 0 0 0 0 FALSE
Moving 3-1 0 0 0 0 0 TRUE
MP Has Part 0 0 0 1 0 FALSE
Loading MP 0 0 0 0 0 TRUE
UnLoading MP 0 0 0 0 0 TRUE
Load-2 MP 0 0 0 0 0 TRUE
Unload-2 MP 0 0 0 0 0 TRUE
MP Processing 0 0 0 0 0 TRUE
Storage 0 6 4 0 2 FALSE
Loading S 0 0 0 0 0 TRUE
UnLoading S 0 0 0 0 0 TRUE
Load-2 S 0 0 0 0 0 TRUE
Unload-2 S 0 0 0 0 0 TRUE
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filled in during the controller creation process.  It has one record for each part type the FMS 

manufactures.  The second table is used to store the values representing the number of parts to be 

created.  The table is created during the controller creation process but no records are added to it.  The 

user must manually input the number of parts to be produced.  

The order vector is used as an input to the neural net and in the deadlock detection process.  When the 

system determines that no activity is taking place and no new instructions have been issued by the 

neural net, the number of completed parts in the system is compared to the number that have been 

ordered (the values stored in the order vector).  If the number of completed parts is less than the 

number that have been ordered then a deadlock or stalled condition is determined to exist. 

5.5 Neural Nets 

The neural nets used in this research are feed forward neural nets.  These nets are also known as back 

propagation nets because of the way errors are propagated when supervised training is used.  This 

research does not use the typical training methods associated with neural nets.  The weights were 

restricted to the set (-1, 0, 1, 2, 3, …, n), where n is an integer constant defined by the capacity of 

equipment in the workcell, prohibiting the normal training techniques which assume weights are real 

valued and continuously variable, normally in the set (-1,1).  In developing the deadlock recovery 

logic, an exception to the weight restriction was made so the network would not need to have an 

additional hidden layer added.  

The net consists of layers of nodes connected via links.  Links are directed arcs with associated types 

and weighting factors.  The neural net used in this research uses a single type of node and four types of 

arcs (see Table 15).  Inhibitory arcs have a fixed weight of one.  The transfer function used in the 

nodes is the TLU transfer function (see Equation 1) when the node output is not inhibited.  If the node 

is inhibited, the output is non-pulse (a value of 0.0 is used in this research) for all input values. The 

network structure is organized to represent a rule based control system.  A hidden layer is used to 

represent logical conditions such as a part of type t is in location l.  Additional layers are then used to 
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implement a Boolean logic structure, resulting in rules of the form: IF (one or more conditions are true) 

THEN (activate one or more control actions).   

Table 15 Neural Net Arc Types 

Arc type Arc characteristic 
0 Excitatory arc with changeable weight 
1 Inhibitory arc – inhibit on pulse (high) 
2 Inhibitory arc – inhibit on non-pulse (low) 
3 Excitatory arc with fixed weight 

 

Rogers (1997) formally describes a neural net as a 3-tuple:  NN = (S, P, T), where S is the pattern set, 

P is the set of network parameters and T is the network topology.  The pattern set S = {I,O}, where I is 

a set of input patterns and O is a set of desired output patterns. The input set I = {pk,j }, where k is the 

input pattern number and j is the input pattern component. The output set O = {ok,j }, where k is the 

output pattern number and j is the output pattern component.  

The parameter set P = {p1,p2,…,pn}, where pi is some parameter used in training, testing or operating 

the neural network.  The parameters are generally constants, but can be functions of time or some 

network characteristic.  Common parameters include: learning rate, momentum factor, maximum 

number of training iterations, and testing tolerance. 

The network topology (T) defines the framework (F) and the interconnecting links (L) between the 

network nodes.  T = (F,L). The framework defines the nodes of the network.  It is the set of layers (also 

called clusters) in the network.  F = {c1,c2,…,cn}  A cluster (or layer) is a set of nodes (n) identified by 

its layer (i) and position (j) within the layer.  ci = {ni,j}.  Nodes are primitive elements of the network. 

The interconnecting linkage, L = {wi,j  k,l}, defines how the nodes are connected together.  A link (w) 

is identified by the layer (i) and the node position (j) of the starting node and the layer (k) and node 

position (l) of the terminating node. 
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The topology of the neural network used in the cell controller is: T = (F,L).  F = {c0, c1, c2, c3, c4, c5}, 

where c0 represents the input layer, c1 is a hidden layer, c2 is a special purpose hidden layer, c3 a 

second general purpose hidden layer, c4 is an initial output layer, and c5 is an inhibited output layer.   

c0 = {n0,0, n0,1, …, n0,j} where j is the number of input nodes, and  
j = status matrix rows * status matrix columns + order vector elements.  
There is one input node for each cell of the status matrix and one for each element of the order vector 

(product produced in the cell). 
 
c1 = {n1,0, n1,1, …, n1,q}  where q is the number of conditions both positive and negative that are used in 

the Boolean logic. 
 
c2 = {n2,0, n2,1, …, n2,r} where r is variable, it includes conditions that can not be represented with a 
single node in c1  
 
c3 = {n2,0, n2,1, …, n2,s} where s is variable  

 

c4 = {n3,0, n3,1, …, n3,k} where k is the number of output nodes.  K is determined by counting the 
number of decision input nodes in the Petri net portion of the controller. 

 
c5 = {n4,0, n4,1, …, n4,k} where k is the number of output nodes.  Layers 4 and 5 use the same number of 

nodes. 
 
L = {w0,j 1,l, w0,r 5,s, w1,j 2,l, w1,j 3,l, w2,j 3,l, w3,j 4,l, w4,r 5,r, w4,r 5,s } 
The functions of the linkages are: 

(w0,j 1,l) generate logical conditions based on the input values 
(w0,r 5,s) inhibit incompatible transporter movements if one is already moving 
(w1,j 2,l) generate complex logical conditions 
(w1,j 3,l) generate “ANDed” logical conditions  
(w2,j 3,l) generate “ANDed” logical conditions or implement inhibit choice points 
(w3,j 4,l) transfer “ANDed” results to the output layer 
(w4,r 5,r) drive the final output layer 
(w4,r 5,s) prevent incompatible transporter movement from starting 

 
Not all nodes will be connected.  There is an input (layer 0) node for every cell in the status matrix.  

There are a number of cells that will always be zero and therefore provide no information.  The input 

nodes representing these cells may not be linked to any other nodes.  Example cells include all those 

cells in a row representing a transformation activity in progress that do not represent the part being 

transformed, i.e. the row represents Part type 2, node 3 being transformed to node 2, all columns that 

are not Part type 2, node 3 will always be zero. 
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5.5.1 Choice points 

The structure shown in Figure 10 is known as a choice point.  It describes the situation where a single 

condition being true would allow multiple conflicting outputs to be true.  When the layer 1 node is 

true, all of the outputs represented by the layer 4 nodes are valid.  However, choosing one of the 

outputs makes the others invalid.  Two examples of this are: a workstation with parts ready to unload 

on 3 machines all served by the same robot, unloading any of the three machines is possible, but it is 

impossible to simultaneously unload more than one machine and a part with multiple processing 

alternatives, choosing one processing path means the other can not be chosen.  To ensure that only one 

of the choices is selected the thresholds of the nodes inside the box are adjusted so that only one of the 

nodes will be active.   

Figure 10 Neural Net Choice Point 
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5.5.2 Inhibit choice points 

The structure shown in Figure 11 is known as an inhibit choice point.  The inhibit choice point is used 

where multiple conditions generate outputs that are incompatible with each other.  The layer 3 nodes 

that are driving the incompatible outputs (layer 4 nodes) are determined.  Although it is not shown in 

Figure 11, it is possible to have multiple layer 3 nodes connected to a layer 4 node.  When multiple 

layer 3 nodes are connected to the layer 4 node only those layer 3 nodes that are on are included.  The 

layer 1 conditions associated with all of the layer 3 nodes that are on are then determined and 

combined into a new layer 2 node.  The output of this new node is used to inhibit all but one of the 

layer 3 nodes that were on by connecting the layer 2 node to the layer 3 nodes with type 1 (inhibit 

high) arcs.  The arc to the uninhibited node is assigned a weight of zero. 

Figure 11 Neural Net Inhibit Choice Point 
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5.6 Control System Construction 

The control system consists of three levels: equipment, workstation, and cell.  The equipment level 

controller construction is out of the scope of this research.  Each equipment level controller must be 

developed individually to fit the piece of hardware.  The equipment controller must respond to the 

messages listed in Table 5. 

5.6.1 Construction of the processing workstation controllers 

The Petri nets for the processing workstation controllers are constructed using the processing 

workstation movement graphs. The workstation controller deals with the following activities: loading a 

part into the workstation, unloading a part from the workstation, moving a part within the workstation, 

and performing a processing step on a part.  The workstation controllers do not attempt to verify that a 

part is available to load or a transporter is available when a part is to be unloaded. The cell controller is 

responsible for ensuring that the part or transporter is in the appropriate place before sending a load or 

unload command to the workstation.  See section 5.6.2.3 for a discussion of how the cell controller 

logic to accomplish this is developed.  Figure 12 shows the process of creating the workstation 

controllers. 

Figure 12 Workstation Controller Construction Process 

For each processing workstation, the following seven steps are performed to create the Petri net: (1) an 

empty Access database with all of the appropriate tables is created, (2) the controller name information 

is added to the database, (3) a node is added to indicate the availability of the material handling device, 

(4) for each fixed part location, a node to indicate the FPL is available and a node to indicate a part is 
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occupying it is added, (5) a processing activity is added for each MP device in the workstation, (6) for 

each arc contained in the workstation movement graph the appropriate series of activities is added, (7) 

tokens are added to the places that indicate the material handler and material processors are available.  

Appendix E illustrates the growth of the Petri net for the simplest processing workstation that can be 

created (the load point and unload point can be the same physical transporter location). 

5.6.2 Construction of the cell controller 

Figure 13 shows the process of building the cell controller.  The process consists of creating a Petri net 

to represent the workcell, and the part process plans, extracting information generated during Petri net 

creation to form the status matrix and the order vector, creating an initial neural net, creating example 

data for the neural net, using the example data to modify the neural net.  The dashed lines represent the 

flow of information when adjusting for deadlock.  If the system does not deadlock (e.g. test case one) 

the processes represented by the dashed lines would not be used. 

5.6.2.1 Petri net 

Conversion of the human description into a Petri net is the first step in the cell controller creation 

process.  The Petri net used in the cell controller is different from the Petri net used in the workstation 

controller.  The activities in the cell controller are simplified compared to the activities in the 

workstation controller and the cell Petri net includes process plan information that is not included in 

the workstation controller.  The Petri net creation process consists of the following thirteen steps: 

1. an empty database with all of the appropriate tables is created 
2. the controller name information is added to the database 
3. add two nodes for each transporter location to represent the location is available and the 

location is occupied by a transporter 
4. a node is added for each material handling device to indicate availability 
5. for each fixed part location, add a node to indicate the FPL is available and a node to indicate 

a part is occupying it, if the equipment associated with the FPL is an automated storage 
system high capacity nodes are used instead of the standard nodes that are used for the other 
FPLs  

6. add a processing activity for each MP device in the cell 
7. add an activity for each transportation movement graph arc 
8. add an activity for each processing workstation movement graph arc, this is a single activity 

not the expanded list of activities that was added in the workstation controller 
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9. add an activity for each storage workstation movement graph arc 
10. tokens are added to the places that indicate the material handler and material processors are 

available 
11. for each transporter, add an entry to the appropriate tlocation has a transporter node, add a 

token to the tlocation available node for all tlocations that do not have a transporter 
12. for each process plan node, add a high capacity node to the Petri net 
13. for each process plan arc, add an activity, for each arc leaving a raw material node add a 

decision input place, for each non-raw material node with multiple arcs leaving it add a high 
capacity place, for each arc leaving a non-raw material node with multiple arcs, add a decision 
input place. 

 
 

Figure 13 Cell Controller Construction Process 

5.6.2.2 Status matrix and order vector extraction 

After the Petri net is complete, the status matrix can be created.  The information for the status matrix 

is stored as a table describing the rows and a table describing the columns.  During the Petri net 

creation process, the nodes are marked if they belong to a status matrix row or a status matrix column.  

The algorithm is presented in Appendix I. 

The status matrix column information is created in three steps.  The first step is to add an entry for 

each transporter type that is listed in the user model.  The second step is to add an entry for each part 

carrier type that is listed in the user model.  The third step is to add an entry for each of the Petri net 
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nodes in the PNNode table that are marked as being status matrix columns.  These nodes represent the 

parts in their various stages of manufacture.  Information for these entries is filled in using the 

PartIndex table. 

The status matrix row information is extracted from the PNNode table.  An entry is added for each 

node that is marked as being a status matrix row.   

The order vector is created by adding an entry for each part type that is listed in the user model. This 

entry consists of the order vector position and the part identification number, it does not include the 

number of parts to be produced.  For further discussion of the order vector refer to section 5.4. 

5.6.2.3 Neural net creation 

The initial neural net is created in three steps.  The first step is to add a node to the input layer for each 

entry in the order vector and each entry in the status matrix. The second step is to add nodes to the 

preliminary and final output layers for each of the various types of commands.  The output layers have 

a node for each valid message the neural net must send to the Petri net portion of the controller.  The 

nodes in the preliminary output layer are linked to corresponding nodes in the final output layer with a 

fixed weight excitatory link.  The third step is to add inhibitor links to prevent incompatible transporter 

movements from occurring at the same time.  Links are added from the input layer to the final output 

layer to prevent an activity from being initiated if an incompatible activity is already occurring and 

from the preliminary output layer to the final output layer to prevent two incompatible activities from 

being started. 

Neural net elements are then added to implement a set of rules based on the Petri net decision places.  

Each decision place in the Petri net has an associated transition that should fire when the decision is 

issued.  Conversely, if the transition cannot fire, (i.e. either the pre- or post- conditions are not met) the 

message that constitutes the decision should not be sent.  To prevent the message from being sent, one 

or more hidden layer nodes are created with a set of fixed weight excitatory arcs that correspond to the 
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logic necessary to determine if the transition can fire.  The appropriate hidden layer node is then 

connected to the output layer node with an inhibit on non-pulse arc.  The rules used are weak because 

only one node is used for each decision input place instead of one for each neural net output.  Figure 

14 shows a portion of the logic for a load decision input place (the robot and destination availability 

logic is not shown).  All of the messages on the right side of the figure will cause a token to be placed 

in the decision input place associated with the rule.  If any of the conditions on the left are true, then 

the layer one node will generate a positive output.  This means that a part of type one node six at 

Tlocation 1 will eliminate the inhibition on all of the load messages not just the message that loads the 

type one node six part.   If the neural net structure is generated randomly this could result in invalid 

outputs not being inhibited. 

Figure 14 An Example of a Weak Rule 

Additional nodes were added to identify conditions that would used frequently.  These conditions 

were: a transporter at tlocation x has type 3 capacity, a transporter at tlocation x has type 4 capacity, a 

transporter is at tlocation x, a part is at tlocation x, workstation j needs type 3 capacity, workstation j 

needs type 4 capacity, workstation j is blocked by empty transporters, buffer k is empty.   
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Elements were then added to cause the nearest transporter with capacity to move to a workstation when 

the workstation needs capacity node was active, transporters that were closer but did not have capacity 

to move, and transporters that were past the workstation to move farther away until the transporter with 

capacity could reach the workstation that needed the capacity.  If there was no transport capacity in the 

system and a processing workstation needed capacity then the transporter that was closest to a storage 

workstation load point was moved to the load point and a part removed from it.   

5.6.2.4 Neural net logic construction data creation 

Neural net logic construction data consists of a set of neural net inputs with a corresponding set of 

outputs.  An input output set pairing is called an exemplar.  The training data that is used in this 

research consists of single input-single output data.  A single neuron in the input layer is paired with a 

single neuron in the output layer.  When the input layer neuron is the only neuron that is on, it should 

cause the output layer neuron paired with it and no others to be on.  The data set is created in a multi-

step process.  The first step is to identify all of the possible paths through the process plans from raw 

material to finished product.  All paths begin at process plan node one (raw material) and end at node 

two (finished product).  The paths were implemented as lists.  All of the arcs leaving the start node 

were selected from the process plan arcs table.  For each arc, a list was created with two nodes, the 

start node (list head) and the node at the head of the arc leaving the start node (list tail).  Each list was 

then extended by adding nodes to the tail.  The current tail was used to select arcs from the process 

plan, if there was only one arc, then the node at the head of the arc was added to the list as the new tail.  

If there was more than one arc, then the list was duplicated (number of arcs minus one copies were 

made) and each list (original plus copies) received a new tail.  This process was repeated until each 

path terminated at the finished product node. 

After all of the process plan paths have been identified, they are then converted to one or more 

equipment-based paths.  The equipment-based path identifies the part type and part process node, the 

physical location of the part, the type of location, and the command that should be executed at that 
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physical location.  There are potentially multiple equipment-based paths for each process plan path.  

Multiple equipment paths are created when there are movement options.  Options are created when the 

workcell has multiple storage workstations, a storage workstation has multiple load or unload points, a 

processing workstation the part must visit has multiple load or unload points, or a processing 

workstation the part must visit contains a buffer.   

After the equipment-based paths are completed, the corresponding neural net nodes are identified.  To 

identify the input layer node, the status matrix row and column are first identified and then the input 

layer node that corresponds to that status matrix entry is identified.  The status matrix row is identified 

using the part location and location type.  The status matrix column is identified using the part type and 

process node. The output layer node is identified by finding the node that has a message matching the 

command that needs to be executed.  After all of the paths have been processed, duplicate entries 

(entries with the same input and output values) are removed.  Duplicate entries are created when there 

are multiple equipment paths for a single process plan path or when multiple process plan paths have a 

step or steps in common.  Any time there are multiple process plan paths, the loading of the finished 

product into storage will generate duplicate entries. 

The following example has been extracted from test case one.  For details of test case one, see section 

6.  The process plan can be seen in Figure 5a.  Table 16 shows the process plan paths for parts of type 

one.  There are two paths because there are two alternative process to create the part.  Table 17 shows 

the equipment path for process plan path number two from Table 16.  The “START” command assigns 

the raw material its first processing step, node 4 in the process plan.  The “UNLOAD” command 

initiates the removal of the part from storage (fixed part location one) to the unload point (transporter 

location two).  The “LOAD” command causes the part to be taken from transporter location two (the 

load point for the processing workstation) and placed in fixed part location two (the material 

processing machine).  The first process command causes the instructions for process node 4 to be 

executed and the second one causes the instructions for process node 5 to be executed.  The 
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“UNLOAD” command then causes the part to be removed from fixed part location two to transporter 

location one (the unload point).  It is not necessary for the neural net to specify the part type to be 

unloaded because the fixed part location can only have one part.  The finished product is then loaded 

into the storage workstation with the “LOAD” command.   

Table 16 Sample Process Plan Paths 

PartNumber PathNumber Path 
1 1 Part # 1, Path 1, 3, 2  
1 2 Part # 1, Path 1, 4, 5, 2  

 

Table 17 Sample Equipment Path 
Path 

Number 
Path 
Step 

Part 
Type 

Process 
Node 

Location 
Identifier 

Location Is 
FPL 

Command 

2 1 1 1 1 -1 START, PLOC= 1, TYPE= 1, ONODE= 1, NNODE= 4 

2 2 1 4 1 -1 UNLOAD,1,2, TYPE= 1, NODE= 4 

2 3 1 4 2 0 LOAD,2,2, TYPE= 1, NODE= 4 

2 4 1 4 2 -1 PROCESS, PLOC= 2 

2 5 1 5 2 -1 PROCESS, PLOC= 2 

2 6 1 2 2 -1 UNLOAD,2,1 

2 7 1 2 1 0 LOAD,1,1, TYPE= 1, NODE= 2 

 

Table 18, Table 19, and Table 20 show the neural net data for the sample equipment path.  Exemplar 

number 12 was deleted in the duplicate removal process because it was a duplicate of exemplar 5.   

Table 18 Exemplar Identification Sample Equipment Path 

Number InputSize OutputSize EpathNumber
7 1 1 2
8 1 1 2
9 1 1 2

10 1 1 2
11 1 1 2
12 1 1 2
13 1 1 2
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Table 19 Exemplar Input Values Sample Equipment Path 

Number NNNode SMRow SMCol Value
7 46 2 2 0.95
8 49 2 5 0.95
9 29 1 5 0.95

10 69 3 5 0.95
11 70 3 6 0.95
12 67 3 3 0.95
13 7 0 3 0.95

 

Table 20 Exemplar Output Values Sample Equipment Path 

Number NNNode Value  Message 
7 686 0.95 START, PLOC= 1, TYPE= 1, ONODE= 1, NNODE= 4 
8 660 0.95 UNLOAD,1,2, TYPE= 1, NODE= 4 
9 608 0.95 LOAD,2,2, TYPE= 1, NODE= 4 

10 604 0.95 PROCESS, PLOC= 2 
11 604 0.95 PROCESS, PLOC= 2 
12 626 0.95 UNLOAD,2,1 
13 628 0.95 LOAD,1,1, TYPE= 1, NODE= 2 

 

5.6.2.5 Neural net logic construction 

The exemplars are used as the basis for creating the initial neural net structure for generating positive 

outputs.  All previous neural net structure other than the initial node construction has been aimed at 

preventing an invalid output from being generated.  A key to generating a successful control structure 

is that a single input should produce a single output.  When there are alternatives (multiple paths 

through a process plan, or multiple load or unload points for a workstation) the exemplar creation 

process will generate multiple outputs for a single input.  The neural net creation process must take this 

into account and create a structure that will only activate one of the outputs.   

Initially, duplicate input values were located and the associated output nodes prioritized by the length 

of the path containing the output node.  Prioritization was established by using a choice point (see 

Figure 10) where the threshold values indicated the priority.  This priority scheme will generate an 

optimal flow time schedule for a single machine.  For workcells with multiple machines, the schedule 
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will normally not be optimal since this prioritization scheme will only accept one path.  Once a routing 

is selected, all parts will follow that route and the alternative routings will never be used.   

The current system still uses the shortest processing time for prioritizing the process plan path that 

should be selected when starting a part (this is an area for future improvement) but does not use the 

prioritization scheme for other conflicts.  Instead, the two choices are allowed to conflict so that an 

inhibit choice point is created when the controller is executed. 

The next step is to add elements to prevent multiple messages from being sent to the same decision 

input place.  Multiple messages are associated with storage workstations (there may be multiple parts 

ready to unload) and transporter capacities greater than one (multiple parts may want to load into a 

workstation or move the transporter).    

5.6.2.6 Adaptation to deadlock situations 

When a deadlocked or stalled condition occurs, a decision needs to be made by the control system 

regarding what new action should be taken.  The Petri net is examined to determine if there is a 

transition that is decision input fireable.  To be decision input fireable, a transition must have a 

decision input place in its pre-set and all of the places in its pre-set, except the decision input place, 

must be appropriately marked and all of the places in its post-set must have appropriate space.  Figure 

15 shows a decision input fireable transition taken from a Petri net sequence representing a transfer 

between material processors (from material processor two to material processor one).  The shaded 

places to the left of the transition are marked and the unshaded places to the right of the transition are 

empty.  If the decision input place was marked, the transition would fire.  There should always be at 

least one decision input fireable transition in the Petri net, because the number of transporters in the 

system is required to be at least one less than the number of transporter locations so there will always 

be a transporter that can be moved. 
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Figure 15 Decision Input Fireable Transition 

After determining that at least one decision input fireable transition exists, the highest priority 

deadlock or stall condition is identified.  Priorities are assigned based on part locations. From highest 

to lowest the priorities are: a part in a processing workstation, a part in the transportation system and 

an uncompleted part in a storage workstation.  A list of parts, part carriers and transporters is 

developed by finding all of the non-zero entries in the status matrix.  Multiple entries are added to the 

list for status matrix entries greater than one.  This list is then separated into four categories.  One 

category, parts in storage that should be in storage (i.e. raw material and finished product) is discarded 

and new separate lists are generated for the other three categories: parts in processing workstations, 

parts on transporters, uncompleted parts in storage.   

The highest priority deadlock or stall type was then classified based on these new lists.  The list of 

parts in processing workstations is processed first.  The first entry on the list is used to select the 

processing workstation to have corrective measures applied to it.  This gives priority to the workstation 

that contains the lowest numbered status matrix row because of the way the list is generated.  A new 

list containing only the parts located in the workstation being corrected is then created.  The 

workstation is then checked for deadlock.   

If there is only one part in the workstation, then it can not be deadlocked and the problem is the part is 

blocked from unloading by a lack of transporter capacity.  If there are two parts in the workstation, 
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then the current location of each part is compared with the desired location of the other part.  If both 

parts are occupying the desired location of the other part then a circular wait condition exists and the 

type of deadlock is classified based on whether a buffer is present in the workstation.  If a circular wait 

condition did not exist then the problem is that one of the parts wants to leave the workstation and can 

not because of lack of transporter capacity.   

If there are three or more parts in the workstation then a multi-terminal shortest chain problem is 

created.  An n ×  n matrix A = Aij is used where n is the number of parts in the workstation. The rows 

and columns represented locations occupied by a part.  Aij is assigned a value of one if the part at 

location i wants to move to location j and a value of infinity otherwise.  The distance from a node to 

itself, the Aii diagonal, is infinity instead of the zero normally found in shortest chain problems.  The 

problem was then solved using the procedure in Phillips and Garcia-Diaz (1981).  After the problem is 

solved the values of the diagonal are checked.  A value less than infinity indicates that the part at that 

location is involved in a circular wait.  When a circular wait exists, the diagonal value also indicates 

the number of parts involved in the circular wait.  Note that it is possible for large workstations (four or 

more machines) to have multiple circular wait conditions. The largest non-infinity value is selected as 

the circular wait condition to correct.  The path matrix is then used to find the locations of the parts 

involved in the circular wait.   

If a circular wait condition exists, then the deadlock is classified based on whether there is an available 

buffer in the workstation, whether there were buffers in the workstation that are occupied and if so 

whether all of the parts in the buffers want to remain in the workstation or whether at least one of the 

parts wants to leave the workstation.  If no circular wait condition exists, then the problem is that at 

least one of the parts is blocked from unloading by lack of transporter capacity.  

If there are no parts in a processing workstation, then the list of parts on transporters is checked.  If 

parts exist then either a part has been moved off of the normal paths contained in the neural net logic 
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construction data or the transporter it was on is blocked from reaching the load point the part wants by 

an empty transporter.   

If no parts are in processing workstations or on transporters then there must be uncompleted parts in a 

storage workstation either blocked because of lack of transport capacity or lack of controller logic.  

The neural net logic construction data assumes that once a part leaves the storage workstation it will be 

completed before reentering a storage workstation.  This occurs because the neural net logic 

construction data is generated for a single part moving through the system. 

After the type of the deadlock or stall is determined, elements are added to the neural net to initiate a 

recovery action.  This involves generating a level 1 node to identify the deadlock or stall condition.  

Where there were multiple options to overcome the deadlock, the indicator node is linked to a choice 

point.  For example, in a circular wait condition any of the two or more parts involved can be moved to 

an available buffer or, if there is no available buffer, unloaded.  For conditions involving lack of 

transport capacity, the indicator node is linked to a level 2 node that indicates the workstation requires 

transport capacity of a particular type. 

The introduction of inhibit choice points (ICPs) made it possible to create a control logic stall.  This 

occurred when multiple conflicts had occurred and the conflicts involved subsets of the original 

conflict condition.  Consider the case where three parts are available for unloading from storage.  Part 

A is chosen to be unloaded leaving parts B and C in storage.  Because the inhibit choice points are 

created based on pairs of incompatible outputs two ICPs were created where A was chosen over B and 

A was chosen over C.  After A is unloaded an additional ICP will be created to determine whether B or 

C should be unloaded.  Assume B is chosen over C.  During performance tuning it will be possible for 

B to be chosen over A, A over C, and C over B resulting in all of the unload operations being inhibited.  

While it would be possible to add additional logic to cause one of the parts to be unloaded because all 

inhibition occurs at level 3 not at the preliminary output layer (layer 4), it was decided to terminate the 

simulation and move to the next genome in the performance tuning process. 
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5.6.2.7 Deadlock avoidance and/or prevention versus deadlock recovery 

One of the basic assumptions of this research has been that a part can be unloaded from any machine in 

a processing workstation and removed from the workstation.  Further, after the part has been removed 

from the workstation it can be reloaded into the workstation for further processing.  Because of these 

assumptions and the hierarchical nature of the control system it is possible to “preempt” a part in a 

workstation, i.e. that is force it to give up the workstation resources it holds.  The part no longer has 

control of when the workstation resources are released removing the third condition of Coffman et al. 

(1971) for deadlock.  Preemption of some type is the basic deadlock recovery technique.  When a 

circular wait condition is detected, one of the parts is removed from its current location forcing a 

release of the resources it holds.  Generally special deadlock resolution resources must be available to 

allocate temporarily to the part that was forced to release resources, i.e. a deadlock recovery buffer.  In 

this research, the transportation system and the storage workstation(s) that originally held the raw 

material are used instead of a dedicated deadlock recovery buffer.  Further, it is assumed that the 

storage system has the capacity to store all raw material, in-process and finished parts.  The number of 

parts in the system will therefore always be less than the storage capacity plus the transporter capacity 

so based on Co and Wysk (1986) the system will never reach a point where it cannot be undeadlocked.   

Viswanadham et al. (1990) state, “Deadlocks usually arise as the final state of a complex sequence of 

operations on jobs flowing concurrently through the system and are thus generally difficult to predict.”  

Deadlock detection is relatively easy compared to deadlock prediction.  A general deadlock recovery 

mechanism can be developed where parts are transferred from the location they occupy when the 

deadlock is detected to a storage facility.  At some point, the system must become undeadlocked and 

progress restart. The worst case scenario is that all but one part will have to be transported to a storage 

facility.   

Allowing “deadlocks,” that is, the creation of circular wait conditions, to occur may improve 

performance or harm performance depending on the configuration of the FMS.  Consider an FMS 
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containing a processing workstation with two MP devices and a buffer.  If the time to move between 

the MP device and the buffer is small compared to the processing time on the MP device then 

operating the MP devices in parallel is desirable even when it creates a circular wait between the two 

machines.  If the transfer between machines and the processing time is small compared to the transfer 

time to the buffer then operating the machines in parallel may be undesirable when it causes a part to 

be transferred to the buffer. 

One kind of deadlock that is always harmful is the situation where a material transport device is 

required to unload a machine and that material transport device has been assigned to another part that 

wants to use the machine that needs to be unloaded.  Test case 2 has the potential for this type of 

deadlock.  If a part is on the machine and a second part is unloaded from the storage workstation, the 

second part must be reloaded into the storage workstation before the part on the machine can be 

unloaded.  To reduce this type of harmful delay, a deadlock reduction policy was implemented.  The 

number of parts that could be unloaded from storage workstations was limited to the number of non-

storage fixed part locations minus one plus the available transport capacity.  For the single machine 

case, this guarantees that this type of deadlock will be avoided.  For systems with more than one MP 

device, these deadlocks can still occur when the parts are released in an order that results in one of the 

MP devices being empty. 

5.7 Genetic Algorithm Performance Tuning 

The genome used for performance tuning is constructed with two strands of alleles.  The two strands 

correspond to the set of choice points and the set of inhibit choice points.  Each allele is the value of 

the choice that should be used for the choice point.  The location of the allele (locus) is the position of 

the allele on the genome and corresponds to the choice or inhibit choice identifier.  Three tables are 

used to store the genomes: GenomeID, GenomeChoicePointValues, and 

GenomeInhibitChoicePointValues.  The GenomeID table has fields for the genome identifier, the 

performance value, the number of choice points and the number of inhibit choice points.  As the 
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controller runs, the number of choice points and inhibit choice points may change.  Recovering from a 

deadlock with a circular wait will add a choice point for the selection of the part to be removed from its 

current set of resources.  Any set of choices that leads to resource contention will create an inhibit 

choice point.  The GenomeChoicePointValues and GenomeInhibitChoicePointValues tables have 

fields for the genome identifier, the choice or inhibit choice point identifier, and the choice to be 

selected for the point.   

To evaluate a genome the neural net is modified to match the choices specified by the genome.  For 

each choice point the neuron associated with the selected choice has its threshold value set to the 

minimum threshold value specified for the choice point.  The neurons associated with the non-selected 

choices have their thresholds set to the minimum threshold plus one.  This threshold guarantees that 

the neurons will not be active, since it is greater than the possible sum of all of the inputs to the neuron.  

For each inhibit choice point, the arc associated with the selected choice has its weight value set to 

zero.  The weights of the arcs associated with the non-selected choices are set to one.  The arc with the 

weight of zero will have no effect on the node it would normally inhibit because the input value will be 

less than that required to inhibit the node.  The controller is then operated in simulation mode and 

allowed to produce the batch of parts under consideration.  When the part batch has been completed or 

the controller determines it cannot complete the batch, the objective function is computed and assigned 

to the genome as its performance value. 

To achieve performance tuning a series of genomes are created and evaluated.  The system used a 

steady-state population approach.  After each genome was created, it was evaluated.  If the genome 

performed better than the worst genome in the population then it replaced the worst genome in the 

population.  Genomes were created and evaluated until the maximum number of simulations specified 

by the user was reached. 

To create the initial population, a single genome was created where all of the choices and inhibit 

choices were assigned choice one.  The genome was then evaluated.  If the number of genomes was 
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less than one third of the maximum number to be kept in the population, the next genome was created 

by mutating the current best performer.  Each locus was mutated with a probability of 0.35.  If the 

locus was chosen for mutation, each possible allele, including the current one, was given equal 

probability of replacing the current allele.  It was possible for an allele to replace itself.  This 

effectively reduced the mutation rate.  For a locus with two possible choices the probability that the 

locus changed was 0.175 (probability of selection 0.35 * probability of change if selected 0.5).  

If the population size was between one third and two thirds of the maximum population size the next 

genome was created from two randomly selected parents.  The alleles were selected from each parent 

with equal probability (i.e. probability of selecting the allele for locus j from parent A equals 0.5). 

When the population size was greater than two thirds of the maximum, the next genome was created 

from the best performer and a randomly selected member of the population.  The best performer was 

modified by a crossover operator.  The crossover operation could involve only the choice point strand, 

only the inhibit choice point strand, or both strands.  The strands involved were selected randomly with 

equal weight given to the three options.  The crossover operator functioned as both a two point 

crossover and a one point crossover.  A starting point and an ending point for the crossover for each 

strand were randomly selected.  If the value for the ending point was smaller than the value for the 

starting point, the operator acted as a one point operator, taking the strand from the starting point to the 

end of the strand.  If the value for the ending point was larger, the operator took the strand from the 

starting point to the ending point. 

5.8 Control System Operation  

The operation of the controllers will now be described starting with the equipment level and working 
upward. 

5.8.1 Equipment level 

The operation of any individual equipment level controller is in general outside the scope of this 

research.  The controller must respond to a set of standardized interface commands.  The response to 

these commands will be machine specific.  The controller will wait for a command to be received from 
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a higher level controller, convert that command to a machine specific command, perform the machine 

specific functions, monitor the process of the functions, and on completion of the functions send a 

message to the higher level controller indicating the command has been completed. 

5.8.2 Workstation level 

The processing workstation controllers are Petri nets that function as command expanders.  A single 

activity sequence in the cell controller is expanded to a sequence of activities.  Figure 16 shows the 

general operation of an event driven Petri net.  There is an implicit assumption that there will not be 

any transitions that can fire before the first event happens. The workstation starts in the empty and idle 

condition and requires a load message before any transition will be able to fire.  If the workstation 

controller is not starting from the empty and idle condition (i.e., it was stopped and then restarted) then 

the only transitions that will not have fired will be ones that are waiting for an event to occur.  The 

other transitions are zero time events.  While it is possible for the user to shut down the controller 

between zero time events, it is unlikely to happen. 
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Figure 16 Workstation Controller Operation 

Figure 17 shows a simple workstation controller in the empty and idle condition.  The workstation has 

one material handler and one material processor with no buffers.  The controller can perform three 

actions: load a part into the material processor, unload a part from the material processor, and perform 

a process on the processor.  For each action, there is a corresponding decision input place, indicated in 

the figure by the square boxes containing the letter “D.”  The workstation initially contains two tokens, 

one in the place indicating the material processor is available, the other in the place indicating the 

material handler is available.   

When a message is received from the cell controller, a token will be placed in the “Load Pending” 

decision input place (the associated event fired transition is not shown in Figure 17).  After the “Load 

Pending” place receives a token the transition following it becomes enabled and fires, removing the 
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tokens from the three places in its pre-set and placing a token in each of the two places in its post-set.  

The tokens contain information about the type of part that should be loaded, and the transporter 

location and the mobile part location from which the part should be loaded.  This information was 

contained in the message received from the cell controller.   

The post-set contains a standard place used to indicate that an operation is in progress and an output 

place.  The output place has a destination and a message format string associated with it that were 

assigned during the creation of the workstation controller.  When the transition following the output 

place fires (it was enabled when the output place received a token), removing the token from the output 

place, a message is sent to the destination associated with the place using information held by the token 

and the output place format string.  A token is also placed in the external clock place, indicating that a 

response is expected from another device.  The transition between the external clock place and the 

input place is an event triggered transition.  When the event occurs (the proper message is received 

from the controller associated with the event, in this case, a message indicating the Preparation has 

been completed), the transition fires placing a token in the input place.  The process repeats itself as the 

transition starting the next activity (Picking) becomes enabled when the input place receives the token.  

The process of firing transitions and moving tokens continues until no transitions are enabled.  This 

occurs after the transition following the “Load Complete” output place (not shown in Figure 17) fires.  

The Petri net will have tokens in the “material handler available” place and the “MP has a part” place.  

The system then waits until the next event occurs placing a token in one of the “decision input places.” 
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Figure 17 Simple Workstation Controller 

5.8.3 Cell level 

The cell controller initiates all actions in the workcell.  The cell controller is a combination of a Petri 

net and a neural net. The workcell is represented as a Petri net.  The Petri net performs the execution 

function while the neural net performs the decision making function. Figure 18 shows the general 

function of the controller.  The Petri net attempts to fire each transition.  If the transition fires, a flag is 

set to indicate the Petri net should be restarted after the neural net has been processed.  As part of the 

transition firing process, the rows in the status matrix associated with the places in the transition’s pre- 

and post-sets are updated. 

After attempting to fire all Petri net transitions, the neural net is processed using the updated status 

matrix.  To ensure that the neural net does not make decisions based on conditions that no longer exist, 

the Petri net is processed four times for each processing of the neural net.  Four was used because the 

number of transitions associated with an activity is four, i.e. an initial transition fires, a message 

sending transition fires, a message received transition fires and then a final activity complete transition 
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fires.  This is done to allow actions initiated by the previous neural net decisions to be reflected in the 

status matrix.   

The results of the neural net processing are a set of messages that are sent to the Petri net.  The set may 

be empty.  After the neural net is processed, the flag indicating whether a Petri net transition fired 

during the last processing of the Petri net is checked.  If a transition fired, then the Petri net is 

processed again.  If a transition did not fire, then the Petri net is not processed, because no transition 

will be capable of firing.  The system must wait until an event occurs.  When the message arrives that 

triggers the event, the transition associated with the event is fired, the transition fired flag is set, and 

the Petri net is processed, restarting the Petri net -- Neural net processing cycle.   

Figure 18 Cell Control Operation 

If no Petri net transitions fire in the current cycle and the neural net does not initiate any decisions then 

the status matrix is checked to determine if a stalled / deadlocked condition is present.  The rows that 

are marked for deadlock detection represent activities in progress.  If these rows do not have any non-

zero entries then there are no activities in progress so no future events will occur.  The system is stalled 

or deadlocked and will remain in its current state indefinitely unless the deadlock recovery and 

adaption procedure discussed in section 5.6.2.6 is executed.   
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5.9 Control System Summary 

To operate the cell controller, storage workstation and equipment level controllers that respond to the 

specified interface must be provided.  Simple processing workstation controllers that act as command 

expanders can be created automatically from the user input model of the workcell.  The interesting 

portion of the control system is the cell controller.  The cell controller uses a Petri net to model the 

workcell and an artificial neural net to model the control logic.  The control logic can be extracted into 

human understandable rules because the weights of the neural net have been restricted (with one 

exception) to integer values resulting in a Boolean logic.  The exception was used to implement an 

“OR” operation and the logic remains Boolean.  With an additional neural net layer the “OR” 

operation could be performed using integer value weights. 

A genetic algorithm is used to performance tune the controller.  The genome is used to select among 

choices of specific operations instead of the more common selection of a heuristic to make scheduling 

decisions.   

The inputs to the choice and inhibit choice points were created using data limited to the workstation 

involved in the choice, so the controller is not using all of the information available to it.  This means 

that a guaranteed global optimum will not be achieved.  The current usage of the choice points, where 

only a single choice is allowed, is less efficient than the original idea of allowing additional 

connections to the choice point where the thresholds of the nodes are used to indicate priority or 

preference.  This would allow the choice to change dynamically instead of being fixed.  A method for 

selecting the additional connections and allowing the connections to be changed to tune the controller 

needs to be developed. 
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6 EXAMPLE IMPLEMENTATION 

A description of the process of generating the control system for test case one will now be presented.   

Figure 19 shows the user input process, the facility side of the figure will be presented first.  Test case 

one is a very simple workcell consisting of a storage workstation, a processing workstation, and two 

transporter locations.  Both transporter locations are occupied by a transporter loaded with a part 

carrier.  Only parts are moved between workstations, not part carriers.  Parts are required to be on part 

carriers while stored in the storage workstation or while on a transporter.  They are not on a part carrier 

while in the processing workstation.  Four types of parts are processed in the workstation.  The 

scheduling objective is minimum average flow time.  For a single machine system, the shortest 

processing time first (SPT) heuristic is known to optimize average flow time.  

The first step is to identify the equipment and other resources (i. e. part carriers and transporters) used 

in the workcell.  Table 21 lists the equipment used by test case one, while Table 22 shows the 

transporter types that are used and Table 23 shows the part carrier types.  After the equipment and 

resources are identified, the various locations can be specified.  There is a fixed part location for each 

piece of storage equipment and each material processor.  Table 24 identifies the fixed part locations in 

test case one.  The other fixed locations (the transporter stopping locations) are then specified. Table 

25 shows the two transporter locations in test case one.  The mobile part locations with their associated 

transporter type are then specified.  Table 26 shows the single mobile part location associated with the 

single transporter type.   

Table 21 Test Case One Equipment 

EquipmentNumber EquipmentDescription EquipmentType ControllerName 
1 Automated Storage AS AS1 
2 Storage Robot MH StorageMH 
3 Material Processor MP MetalCutter 
4 Processing Robot MH CuttingRobot 
5 Transportation System MT BigMover 
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Figure 19 User Input Process 
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Table 22 Test Case One Transporter Types 

TransporterTypeNumber PlocationCount TransporterDescription
1 1 The only type 

 

Table 23 Test Case One Part Carrier Types 

PartCarrierTypeNumber PartCarrierDescription TransporterType
1 Holds a single part  1

 

Table 24 Test Case One Fixed Part Locations 

LocationNumber LocationDescription EquipmentNumber
1 Storage 1
2 Material Cutter 3

 

Table 25 Test Case One Transporter Locations 

LocationNumber LocationDescription EquipmentNumber LoadPoint UnLoadPoint
1 Storage Load 5 Yes Yes
2 Storage Unload 5 Yes Yes

 

Table 26 Test Case One Mobile Part Locations 

LocationNumber Location Description TransporterType
1 The one and only 1

 

After the physical system has been specified, the organization of the workcell is specified by 

identifying the processing (see Table 27) and storage (see Table 28) workstations with their associated 

load (see Table 29 and Table 31) and unload (see Table 30 and Table 32) points, then the equipment is 

assigned to the appropriate workstation (see Table 33 and Table 34).  The transportation system is not 

assigned to a workstation because the cell controller directly controls the movement between 

workstations. 
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Table 27 Test Case One Processing Workstations 

WorkstationNumber Description ControllerName
1 Processing Workstation PWS1 

 

Table 28 Test Case One Storage Workstations 

WorkstationNumber Description ControllerName
1 Storage Workstation SWS1 

 

Table 29 Test Case One Processing Workstation Load Points 

WorkstationNumber TlocationNumber
1 2

 

Table 30 Test Case One Processing Workstation Unload Points 

WorkstationNumber TlocationNumber
1 1

 

Table 31 Test Case One Storage Workstation Load Points 

WorkstationNumber TlocationNumber
1 1

 

Table 32 Test Case One Storage Workstation Unload Points 

WorkstationNumber TlocationNumber
1 2

 

Table 33 Test Case One Processing Workstation Equipment 

Workstation Number Equipment Number
1 3
1 4
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Table 34 Test Case One Storage Workstation Equipment 

Workstation Number Equipment Number
1 1
1 2

 

After the workstations have been defined and the equipment assigned, the movement possibilities must 

be defined.  Three sets of graphs are created by defining arcs between the locations previously defined.  

The first graph describes how transporters move through the transportation system.  Test case one does 

not allow transporters to move, so there are no arcs in this graph.  The other two sets of graphs define 

how parts move in relationship to the workstations (see Table 35 and Table 36).  As previously 

mentioned, workstation movement graphs use the three location data points (LocationData1, 

LocationData2, LocationData3) to store the end points of the arc in a from - to configuration.  The 

meaning of the location data changes depending on the type of arc.  Load arcs store their origin using 

LocationData1 to store the transporter location and LocationData2 to store the mobile part location.  

LocationData3 is used to store the fixed part location where the part should be placed after it is 

removed from the transporter.  Unload arcs store their origin (a fixed part location) in LocationData1 

and their destination in LocationData2 (transporter location) and LocationData3 (mobile part location).  

Transfer arcs store the origin fpl in LocationData1 and the destination fpl in LocationData2.  Transfer 

arcs do not use LocationData3. 

The final step in identifying the movement possibilities is to identify the transporter movements that 

are not compatible.  If two arcs are incompatible, there will be two entries in the table.  Test case one 

does not allow transporter movement, so it does not have any incompatible transporter movements. 

Table 35 Test Case One Processing Workstation Movement Graph Arcs 

Workstation 
Number 

Arc 
Number 

Equipment 
Number 

Estimated 
Time 

Type of 
Arc 

Part 
Only

Location
Data1 

Location 
Data2 

Location
Data3 

1 1 4 15 1 Yes 2 1 2
1 2 4 15 3 Yes 2 1 1
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Table 36 Test Case One Storage Workstation Movement Graph Arcs 

Workstation 
Number 

Arc 
Number 

Equipment 
Number 

Estimated 
Time 

Type of 
Arc 

Part 
Only

Location
Data1 

Location 
Data2 

Location
Data3 

1 1 2 30 1 Yes 1 1 1
1 2 2 30 3 Yes 1 2 1

 

At this point, the facility description has been completed.  The parts that are to be processed in the 

system must now be specified.  This specification begins with a list of the parts that are to be produced 

(see Table 37).  After the parts are listed, all of the raw material, finished product and processing nodes 

in the part process plans are specified (see Table 38).  Each processing node has associated with it a 

piece of equipment, an instruction set, and an estimated processing time.  The estimated processing 

time is used to simulate the performance of the workcell during training.  The process plan nodes are 

then connected together with process plan arcs to specify the manufacturing constraints (see Table 39).  

After the process plan arcs have been specified, the user input is complete. 

Table 37 Test Case One Part Identification 

PartNumber PartName PartDescription 
1 One Test case one has alternative route 
2 Two Single option one step 
3 Three Alternative Process allowed 
4 Four Alternative process shorter than single step 

 



 

 

113

Table 38 Test Case One Process Plan Nodes 

PartNumber NodeNumber Equipmentnumber Instructions EstimatedTime 
1 1 1 Raw Material 0 
1 2 1 Finished Product 0 
1 3 3 NC-1-1 600 
1 4 3 NC-1-2 500 
1 5 3 NC-1-3 120 
2 1 1 Raw Material 0 
2 2 1 Finished Product 0 
2 3 3 NC-2-1 400 
3 1 1 Raw Material 0 
3 2 1 Finished Product 0 
3 3 3 NC-3-1 800 
3 4 3 NC-3-2 450 
3 5 3 NC-3-3 450 
4 1 1 Raw Material 0 
4 2 1 Finished Product 0 
4 3 3 NC-4-1 750 
4 4 3 NC-4-2 200 
4 5 3 NC-4-3 475 

 

Table 39 Test Case One Process Plan Arcs 

ArcNumber PartNumber StartingNode EndingNode
1 1 1 3
2 1 3 2
3 1 1 4
4 1 4 5
5 1 5 2
1 2 1 3
2 2 3 2
1 3 1 3
2 3 3 2
3 3 1 4
4 3 4 5
5 3 5 2
1 4 1 3
2 4 3 2
3 4 1 4
4 4 4 5
5 4 5 2

 



 

 

114

Figure 20 Test Case One Partial Cell Controller Petri Net 
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The user can now build the controllers.  It does not matter whether the processing workstation 

controller or the cell controller is created first.  Separate controller construction programs are used for 

the processing workstation and the cell controller.  The processing workstation controller for test case 

one will look like the controller in Figure 17.   

The workcell controller consists of two parts, the Petri net that interacts with the other controllers and 

the neural net that makes the decisions.  The Petri net portion is partitioned into several distinct 

groupings.  There is one grouping that represents the facility and one grouping for each part process 

plan.  Figure 20 shows the unmarked Petri net grouping that represents the test case one facility.  

The neural net was constructed with the minimum number of nodes necessary to represent the inputs, 

outputs and the control rules derived from the Petri net.  The input layer consisted of 604 nodes.  Four 

nodes represent the orders for the four part types.  The other 600 nodes represent the status of the 

workcell organized as a thirty row, twenty column, status matrix.  The rows represent physical 

locations and activities, Table 40 defines the meanings of the rows.  The rows that are labeled as 

“Transforming” indicate that a new process plan node is being assigned to the part.  The old node label 

is the node currently assigned to the part and the new node label is the one that will be assigned to the 

part after the transformation.  The columns represent physical objects in the system (parts, part carriers 

and transporters), Table 41 defines the meanings of the columns.  The output layer consisted of 47 

nodes, each of these nodes has an associated message that represents a possible decision the neural net 

can reach.  These messages are listed in Table 42 along with the preliminary output layer node 

associated with the message.  The shortest path through each process plan was selected manually.  

Table 43 shows the shortest paths arranged in increasing length order.   
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Table 40 Test Case One Status Matrix Row Definitions 

Status Matrix 
Row 

Interpretation 

0 Tlocation 1 Has a Transporter 
1 Tlocation 2 Has a Transporter 
2 FPL1 Has a Part 
3 FPL2 Has a Part 
4 Processing Ploc2 
5 Loading Ploc2 from Tloc2 Transporter 
6 Loading Ploc2 from Tloc2 Part 
7 Unloading Ploc2 to Tloc1 Transporter 
8 Unloading Ploc2 to Tloc1 
9 Loading Ploc1 from Tloc1 Transporter 
10 Loading Ploc1 from Tloc1 Part 
11 Unloading Ploc1 to Tloc2 Transporter 
12 Unloading Ploc1 to Tloc2 
13 Transforming Ploc1, Type1, Old node 1, New node 3 
14 Transforming Ploc1, Type1, Old node 1, New node 4 
15 Transforming Ploc2, Type1, Old node 3, New node 2 
16 Transforming Ploc2, Type1, Old node 4, New node 5 
17 Transforming Ploc2, Type1, Old node 5, New node 2 
18 Transforming Ploc1, Type2, Old node 1, New node 3 
19 Transforming Ploc2, Type2, Old node 3, New node 2 
20 Transforming Ploc1, Type3, Old node 1, New node 3 
21 Transforming Ploc1, Type3, Old node 1, New node 4 
22 Transforming Ploc2, Type3, Old node 3, New node 2 
23 Transforming Ploc2, Type3, Old node 4, New node 5 
24 Transforming Ploc2, Type3, Old node 5, New node 2 
25 Transforming Ploc1, Type4, Old node 1, New node 3 
26 Transforming Ploc1, Type4, Old node 1, New node 4 
27 Transforming Ploc2, Type4, Old node 3, New node 2 
28 Transforming Ploc2, Type4, Old node 4, New node 5 
29 Transforming Ploc2, Type4, Old node 5, New node 2 

 



 

 

117

Table 41 Test Case One Status Matrix Columns Definitions 

Status Matrix 
Column 

Interpretation 

0 Transporter Type 1 
1 Part Carrier Type 1 
2 Part Type 1 Node 1  (Raw material) 
3 Part Type 1 Node 2  (Finished Product) 
4 Part Type 1 Node 3 
5 Part Type 1 Node 4 
6 Part Type 1 Node 5 
7 Part Type 2 Node 1  (Raw material) 
8 Part Type 2 Node 2  (Finished Product) 
9 Part Type 2 Node 3 
10 Part Type 3 Node 1  (Raw material) 
11 Part Type 3 Node 2  (Finished Product) 
12 Part Type 3 Node 3 
13 Part Type 3 Node 4 
14 Part Type 3 Node 5 
15 Part Type 4 Node 1  (Raw material) 
16 Part Type 4 Node 2  (Finished Product) 
17 Part Type 4 Node 3 
18 Part Type 4 Node 4 
19 Part Type 4 Node 5 
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Table 42 Test Case One Neural Net Output Messages 

IDNumber Message 
604 PROCESS, PLOC= 2 
606 LOAD,2,2, TYPE= 1, NODE= 3 
608 LOAD,2,2, TYPE= 1, NODE= 4 
610 LOAD,2,2, TYPE= 1, NODE= 5 
612 LOAD,2,2, TYPE= 2, NODE= 3 
614 LOAD,2,2, TYPE= 3, NODE= 3 
616 LOAD,2,2, TYPE= 3, NODE= 4 
618 LOAD,2,2, TYPE= 3, NODE= 5 
620 LOAD,2,2, TYPE= 4, NODE= 3 
622 LOAD,2,2, TYPE= 4, NODE= 4 
624 LOAD,2,2, TYPE= 4, NODE= 5 
626 UNLOAD,2,1 
628 LOAD,1,1, TYPE= 1, NODE= 2 
630 LOAD,1,1, TYPE= 1, NODE= 3 
632 LOAD,1,1, TYPE= 1, NODE= 4 
634 LOAD,1,1, TYPE= 1, NODE= 5 
636 LOAD,1,1, TYPE= 2, NODE= 2 
638 LOAD,1,1, TYPE= 2, NODE= 3 
640 LOAD,1,1, TYPE= 3, NODE= 2 
642 LOAD,1,1, TYPE= 3, NODE= 3 
644 LOAD,1,1, TYPE= 3, NODE= 4 
646 LOAD,1,1, TYPE= 3, NODE= 5 
648 LOAD,1,1, TYPE= 4, NODE= 2 
650 LOAD,1,1, TYPE= 4, NODE= 3 
652 LOAD,1,1, TYPE= 4, NODE= 4 
654 LOAD,1,1, TYPE= 4, NODE= 5 
656 UNLOAD,1,2, TYPE= 1, NODE= 2 
658 UNLOAD,1,2, TYPE= 1, NODE= 3 
660 UNLOAD,1,2, TYPE= 1, NODE= 4 
662 UNLOAD,1,2, TYPE= 1, NODE= 5 
664 UNLOAD,1,2, TYPE= 2, NODE= 2 
666 UNLOAD,1,2, TYPE= 2, NODE= 3 
668 UNLOAD,1,2, TYPE= 3, NODE= 2 
670 UNLOAD,1,2, TYPE= 3, NODE= 3 
672 UNLOAD,1,2, TYPE= 3, NODE= 4 
674 UNLOAD,1,2, TYPE= 3, NODE= 5 
676 UNLOAD,1,2, TYPE= 4, NODE= 2 
678 UNLOAD,1,2, TYPE= 4, NODE= 3 
680 UNLOAD,1,2, TYPE= 4, NODE= 4 
682 UNLOAD,1,2, TYPE= 4, NODE= 5 
684 START, PLOC= 1, TYPE= 1, ONODE= 1, NNODE= 3 
686 START, PLOC= 1, TYPE= 1, ONODE= 1, NNODE= 4 
688 START, PLOC= 1, TYPE= 2, ONODE= 1, NNODE= 3 
690 START, PLOC= 1, TYPE= 3, ONODE= 1, NNODE= 3 
692 START, PLOC= 1, TYPE= 3, ONODE= 1, NNODE= 4 
694 START, PLOC= 1, TYPE= 4, ONODE= 1, NNODE= 3 
696 START, PLOC= 1, TYPE= 4, ONODE= 1, NNODE= 4 
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Table 43 Test Case One Shortest Process Plan Paths 

Part Process Plan Path Processing Time 
2 1 3 2 400 
1 1 3 2 600 
4 1 4 5 2 200 + 475 = 675 
3 1 3 2 800 

 

The Petri net decision input places were used to create control rules (see Table 44, Table 45 and Table 

46).  If adding a token to a decision input place would not enable the transition following the decision 

input place then decisions that would place a token in the decision input place should not be made.  

The control rules used nodes 698 to 713 to represent conditions that need to be met to allow a decision 

to be valid.  The duplicate nodes in Table 44 are generated when the part process plan has alternative 

routes.  Each route has a decision input node associated with choosing that route.  The conditions for 

the feasibility of routes are identical, raw material must be available and the number of parts that have 

been started must be less than the number of parts that have been ordered. 

After the cell controller was built, the neural net was adjusted manually to implement the SPT 

heuristic.  This adjustment consisted of changing the arc type of the link from the conditions to the 

start output node from 2 (inhibit low) to 3 (excitatory fixed weight) see Table 46 and adding additional 

nodes (see Table 47) and arcs (see Table 48, Table 49, and Table 50).  Movement activities were 

prioritized from highest to lowest: Load PWS, Unload PWS, Unload SWS, Load SWS.  See Appendix 

F for a detailed description of the logic development. 
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Table 44 Test Case One Control Rule Conditions 

Node Layer Interpretation 
698 1 Fpl 2 has a part 
699 1 Tloc 2 has a transporter and a part, the material handler is not active, and 

there is no part processing or idle at FPL 1  
700 1 There is a part idle at FPL 1 
701 1 Tloc 1 has a transporter with space available to accept a part 
702 2 There is a part idle at FPL 1, Tloc 1 has space available to accept a part, 

and the material handler is not active 
703 1 Tloc 1 has transporter and part, material handler is not active 
704 1 FPL 1 has a part 
705 1 Tloc 2 has a transporter with space available to accept a part 
706 2 FPL 1 has a part, Tloc 2 has space for a part, and the material handler is not 

active 
707 1 Raw material for part 1 is available and the number of type ones that have 

been started is less than the number of type 1 parts ordered 
708 1 Duplicate of 707 
709 1 Raw material for part 2 is available, and the number of type 2 parts started 

is less than the number ordered 
710 1 Raw material for part 3 is available, and the number of type 3 parts started 

is less than the number ordered 
711 1 Duplicate of 710 
712 1 Raw material for part 4 is available, and the number of type 4 parts started 

is less than the number ordered 
713 1 Duplicate of 712 

 

Table 45 Test Case One Petri Net Control Rules 

Condition 
Node (s) 

Link Type Output Node (s) Interpretation 

698 2 604 A part can not be processed if it is not in the 
processing workstation 

699 2 606,608,610,612,614, 
616,618,620,622,624 

The processing workstation can not be loaded 
if it already has a part, there is not part 
available, or the material handler is busy 

702 2 626 The processing workstation can not be 
unloaded if it does not have a part, there is not 
space at the unload point, or the material 
handler is busy  

703 2 628,630,632,634,636, 
638,640,642,644,646, 
648,650,652,654 

A part can not be placed in the storage 
workstation unless there is a part at the load 
point and the material handler is not busy 

706 2 656,658,660,662,664, 
666,668,670,672,674, 
676,678,680,682 

A part can not be taken from the storage 
workstation unless there is a part in the 
workstation, the material handler is not busy, 
and there is space available at the unload point 
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Table 46 Test Case One Modified Petri Net Rules 

Condition 
Node (s) 

Link Type Output Node (s) Interpretation 

707 3 684 Conditions are correct to start part type 1 
707 1 690,696 Don’t start part type 3 or 4 if a type 1 part can 

be started 
708 2 686 Don’t start part 1 alternate path unless raw 

material is available and fewer parts are 
started than ordered 

709 3 688 Conditions are correct to start part type 2 
709 1 684,690,696 Don’t start part type1, 3 or 4 if a type 2 part 

can be started 
710 3 690 Conditions are correct to start part type 3 
711 2 692 Don’t start part 3 alternate path unless raw 

material is available and fewer parts are 
started than ordered 

712 2 694 Don’t start part 4 path unless raw material is 
available and fewer parts are started than 
ordered 

713 3 696 Conditions are correct to start part type 4 
713 1 690 Don’t start part type 3 if a type 4 part can be 

started 
 

Table 47 Test Case One Manually Added Nodes 

Node Layer Interpretation 
714 1 Part type 2 has been ordered 
715 1 Part type 1 has been ordered 
716 1 Part type 4 has been ordered 
717 1 Part type 3 has been ordered 
718 1 A part is ready to be processed (P1N3, P2N3, P3N3, P4N4, P4N5) 
719 1 A completed part is ready to be unloaded (P1N2, P2N2, P3N2, P4N2) 
720 1 P2N3 is in the storage workstation 
721 1 P1N3 is in the storage workstation 
722 1 P4N5 is in the storage workstation 
723 1 P4N4 is in the storage workstation 
724 1 P3N3 is in the storage workstation 
725 1 Tloc 2 has P2N3 (storage unload point, processing load point) 
726 1 Tloc 2 has P4N5 (storage unload point, processing load point) 
727 1 Tloc 2 has P1N3 (storage unload point, processing load point) 
728 1 Tloc 2 has P4N4 (storage unload point, processing load point) 
729 1 Tloc 2 has P3N3 (storage unload point, processing load point) 
730 1 Tloc 1 has P2N2 (storage load point, processing unload point) 
731 1 Tloc 1 has P1N2 (storage load point, processing unload point) 
732 1 Tloc 1 has P4N2 (storage load point, processing unload point) 
733 1 Tloc 1 has P3N2 (storage load point, processing unload point) 
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Table 48 Test Case One Manually Added Arcs from Manually Added Nodes 

Input 
NodeID

OutPut 
NodeID

Weight LinkType Interpretation 

718 604 1 3 A part is ready to be processed so process it 
719 626 1 3 A completed part is ready to unload so unload it
720 658 -1 3 P2N3 is in storage do not unload P1N3 
720 666 1 3 P2N3 is in storage unload it 
720 670 -1 3 P2N3 is in storage do not unload P3N3 
720 680 -1 3 P2N3 is in storage do not unload P4N4 
720 682 -1 3 P2N3 is in storage do not unload P4N5 
721 658 1 3 P1N3 is in storage unload it 
721 670 -1 3 P1N3 is in storage do not unload P3N3 
721 680 -1 3 P1N3 is in storage do not unload P4N4 
722 658 -1 3 P4N5 is in storage do not unload P1N3 
722 670 -1 3 P4N5 is in storage do not unload P3N3 
722 680 -1 3 P4N5 is in storage do not unload P4N4 
722 682 1 3 P4N5 is in storage unload it 
723 670 -1 3 P4N4 is in storage do not unload P3N3 
723 680 1 3 P4N4 is in storage unload it 
724 670 1 3 P3N3 is in storage unload it 
725 612 1 3 Tloc 2 has P2N3 load it into the PWS 
726 624 1 3 Tloc 2 has P4N5 load it into the PWS 
727 606 1 3 Tloc 2 has P1N3 load it into the PWS 
728 622 1 3 Tloc 2 has P4N4 load it into the PWS 
729 614 1 3 Tloc 2 has P3N3 load it into the PWS 
730 636 1 3 Tloc 1 has P2N2 load it into the SWS 
731 628 1 3 Tloc 1 has P1N2 load it into the SWS 
732 648 1 3 Tloc 1 has P4N2 load it into the SWS 
733 640 1 3 Tloc 1 has P3N2 load it into the SWS 
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Table 49 Test Case One Arcs Manually Added to Manually Added Nodes 

InputNodeID OutPutNodeID Weight LinkType Interpretation 
1 714 1 3 P2 ordered 
0 715 1 3 P1 ordered 
3 716 1 3 P4 ordered 
2 717 1 3 P3 ordered 

68 718 1 3 P1N3 in PWS 
73 718 1 3 P2N3 in PWS 
76 718 1 3 P3N3 in PWS 
82 718 1 3 P4N4 in PWS 
83 718 1 3 P5N5 in PWS 
67 719 1 3 P1N2 in PWS 
72 719 1 3 P2N2 in PWS 
75 719 1 3 P3N2 in PWS 
80 719 1 3 P4N2 in PWS 
53 720 1 3 P2N3 in SWS 
48 721 1 3 P1N3 in SWS 
63 722 1 3 P4N5 in SWS 
62 723 1 3 P4N4 in SWS 
56 724 1 3 P3N3 in SWS 
33 725 1 3 P2N3 in Tloc 2 
43 726 1 3 P4N5 in Tloc 2 
28 727 1 3 P1N3 in Tloc 2 
42 728 1 3 P4N4 in Tloc 2 
36 729 1 3 P3N3 in Tloc 2 
12 730 1 3 P2N2 in Tloc 1 

7 731 1 3 P1N2 in Tloc 1 
20 732 1 3 P4N2 in Tloc 1 
15 733 1 3 P3N2 in Tloc 1 
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Table 50 Test Case One Manually Added Arcs to Generated Nodes 

InputNodeID OutPutNodeID Weight LinkType Interpretation 
709 684 1 1 P2 can start so don’t start P1 (N3) 
707 690 1 1 P1 can start so don’t start P3 (N3) 
709 690 1 1 P2 can start so don’t start P3 (N3) 
713 690 1 1 P4 can start so don’t start P3 (N3) 
707 696 1 1 P1 can start so don’t start P4 (N4) 
709 696 1 1 P2 can start so don’t start P4 (N4) 

86 699 1 1 P1N1 is processing  
87 699 1 1 P1N2 is processing 
88 699 1 1 P1N3 is processing 
89 699 1 1 P1N4 is processing 
90 699 1 1 P1N5 is processing 
91 699 1 1 P2N1 is processing 
92 699 1 1 P2N2 is processing 
93 699 1 1 P2N3 is processing 
94 699 1 1 P3N1 is processing 
95 699 1 1 P3N2 is processing 
96 699 1 1 P3N3 is processing 
97 699 1 1 P3N4 is processing 
98 699 1 1 P3N5 is processing 
99 699 1 1 P4N1 is processing 

100 699 1 1 P4N2 is processing 
101 699 1 1 P4N3 is processing 
102 699 1 1 P4N4 is processing 
103 699 1 1 P4N5 is processing 

So Tloc 2 has a 
transporter and a part, 
the material handler is 
not active, and there is 
no part processing or 
idle at FPL 1 is false 
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7 TESTING PROCEDURE AND RESULTS 

The control system was tested using four cases.  Test case one was used primarily for debugging the 

program code and as a simple demonstration of the controller concept.  Test case two was used to test 

stall recovery and cycle avoidance.  Test case 3 expanded the transportation system and added a 

second machine to the processing workstation creating the possibility of a circular wait within the 

processing workstation.  Test case 4 added a buffer to the processing workstation.  All possible 

deadlock types were available using the four test cases.  

A weighted flowtime with all time categories weighted equally was used as the objective function.  

This is functionally equivalent to the sum of the completion times for the parts where completion is 

defined as a completed part being placed in storage.  All load, unload, transfer and transporter 

movement times were assumed to be independent of the part or transporter type.  Load and unload 

operations to storage workstations were assigned a duration of 30.  Load and unload operations to 

processing workstations were assigned a duration of 15.  Transfer operations within processing 

workstations were assigned a duration of 20. 

The original neural network design called for a fully-connected three-layer network with real weights.  

The quantity of data required to determine appropriate weights was intractable.  The network was then 

changed to a three-layer network with integral weights where the links could be constructed to 

represent Boolean logic.  Test case one demonstrated that a three layer network did not have enough 

depth.  A layer was added to allow generation of conditions of the form: IF cond1 and cond2 and not 

cond3 and not cond4 THEN output x is ON.  Conditions of this type were required when generating the 

neural net rules associated with Petri net decision input places (see section 5.6.2.3).  Test case two and 

the work done to implement deadlock and stall recovery showed that the four layer network that 

worked for test case one was inadequate and an additional layer was added.  Further deadlock recovery 

development required an “ORing” of conditions that required an additional layer be added to the 



 

 

126

network to maintain integral weights.  An exception to the integral weight rule was made and the five 

layer network was found to be sufficient to construct all of the required logic. 

7.1 Test Case One 

Tokens representing raw material for two parts of each part type with associated part carriers were 

added to the empty and idle Petri net marking generated by the controller creation program.  An order 

for one part of each part type was placed in the order vector.  The cell controller was then operated in 

simulation mode to generate performance data.   

The control logic for test case one was developed three times.  The first set of control logic was 

developed manually and implemented the shortest processing time first heuristic, which is known to be 

optimal for the single-machine scheduling problem.  This logic was discussed in section 6.  The second 

set of control logic was developed automatically with an early version of the building programs using 

the neural net example data.  This version used fixed priority paths.  The paths were prioritized with 

the shortest path having highest priority.  The size of the controllers generated by these two methods is 

shown in Table 51.  The third version was developed with the final building program that used choice 

and inhibit choice points enabling the paths priority to be changed. 

Test case one demonstrated that the controller concept was viable.  The Petri net did maintain the state 

information describing the workcell.  The neural net with appropriately designed weights functioned as 

a set of logic rules that implemented the shortest processing time first algorithm.  Because of the 

construction of the workcell, it was impossible to generate a deadlock situation, so the deadlock 

detection mechanism of the controller was not tested. 

Test case one is single machine scheduling problem where shortest processing time first is known to be 

optimal for minimizing mean flow time.  To achieve this the parts should be processed in the order: 2, 

1, 4, 3, following the routing shown in Table 52.  The activities that minimize flowtime are shown in 
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Table 53.  The sum of the completion times is 6090 with the parts completing at the times listed in 

Table 54. 

Table 51 Test Case One Logic Comparison 

Element Manual Logic Automated Logic 
Layer 0 nodes 604 604 
Layer 1 nodes 34 50 
Layer 2 nodes 2 41 
Layer 3 nodes 47 47 
Layer 4 nodes 47 47 
Links 1277 1376 

 

Table 52 Flowtime Minimizing Part Processing Sequence 

Part Identifier Processing Steps 
2 3 (400) 
1 3 (600) 
4 4 (200), 5 (475) 
3 3 (800) 

 

Table 53 Flowtime Minimizing Activities 

Activity Start Time Finish Time 
Unload part 2 from storage 0 30 
Load part 2 to machine 30 45 
Unload part 1 from storage 30 60 
Process part 2 node 3 45 445 
Unload part 2 from machine 445 460 
Load part 1 to machine 460 475 
Load part 2 to storage 460 490 
Process part 1 node 3 475 1075 
Unload part 4 from storage 490 520 
Unload part 1 from machine 1075 1090 
Load part 4 to machine 1090 1105 
Load part 1 to storage 1090 1120 
Process part 4 node 4 1105 1305 
Unload part 3 from storage 1120 1150 
Process part 4 node 5 1305 1780 
Unload part 4 from machine 1780 1795 
Load part 3 to machine 1795 1810 
Load part 4 to storage 1795 1825 
Process part 3 1810 2610 
Unload part 3 from machine 2610 2625 
Load part 3 to storage 2625 2655 
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Table 54 Optimal Part Completion Times 

Part Identifier Finish time 
2 490 
1 1120 
4 1825 
3 2655 

 

An initial test of twenty schedules was run with the mutation rate at 0.35.  The best result found from 

20 schedules was 6390 achieved by 4 different schedules (genomes 2, 4, 6, 7).  All four schedules 

selected the part routes found in Table 55.  Table 56 shows the activity sequence generated and Table 

57 shows the part completion times.  The degradation of 300 is caused by two things: part 1 was 

processed before part 2 (200) and the longer processing path was selected for part 3 (100).  The 

genomes were compared and found to be almost identical.  The choice strand was identical for all four 

genomes.  The inhibit point strands were different lengths; however, the addition of loci past the 

minimum length strand will have no effect if the first portion of the strand is identical to the shortest 

length strand.  The choices represented by those loci after the minimum length strand represent choices 

that will not be required.  Two of the extended strands were identical to the shortest length strand.  The 

third differed at only one locus.  This uniformity indicates the mutation rate was two low in the 

genome creation process.  The mutation rate was increased to 0.85.  The best result found from 20 

genomes (maximum population 30) was 6470.  The best result found from 500 genomes (maximum 

population 50) was 6240.  Two hundred and forty-one of the genomes reached the 6240 result.   

 

Table 55 Genome Part Processing Path Selection 

Part Process Step 
1 3 
2 3 
3 4, 5 
4 4, 5 
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Table 56  Generated Activity Sequence with Best Flowtime 

Activity Start Time Finish Time 
Unload part 1 node 3 from storage 0 30 
Load part 1 to machine 30 45 
Process part 1 45 645 
Unload part 2 node 3 from storage 45 75 
Unload part 1 from machine 645 660 
Load part 2 to machine 660 675 
Load part 1 to storage 660 690 
Process part 2 675 1075 
Unload part 4 node 4 from storage 690 720 
Unload part 2 from machine 1075 1090 
Load part 4 to machine 1090 1105 
Load part 2 to storage 1090 1120 
Process part 4 1105 1305 
Unload part 3 from storage 1120 1150 
Process part 4 second step 1305 1780 
Unload part 4 from machine 1780 1795 
Load part 3 to machine 1795 1810 
Load part 4 to storage 1795 1825 
Process part 3 1810 2260 
Process part 3 second step 2260 2710 
Unload part 3 2710 2725 
Load part 3 to storage 2725 2755 

 

Table 57 Generated Part Completion Times 

Part Identifier Finish time 
1 690 
2 1120 
4 1825 
3 2755 

7.2 Test Case Two 

Test case two was a modified version of test case one.  One of the transporters was removed and two 

arcs were added to the transporter movement graph.  In test case one, it is optimal to place a part from 

the storage workstation on the transporter occupying the processing workstation load point as soon as 

the transporter is empty (the part has been loaded into the processing workstation).  In test case two, 

the same action will generate a deadlocked condition because the transporter must be moved to the 

processing workstation unload point to allow the part to be removed from the processing workstation.  

Test case two is very similar to the simple manufacturing system analyzed by Viswanadham et al. 

(1990) with the transporter serving the function of the AGV. 
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To clear the deadlock, the transporter will be moved to the storage workstation load point and the part 

on the transporter placed in the storage workstation.  The result is that an extra unload operation 

(causing the deadlock) and an extra load operation (to clear the deadlock) are executed whenever there 

is more than one part in the storage workstation ready to be processed.  The extra unload operation will 

not delay the processing of any parts because it occurs simultaneously with the processing of the part 

ahead of it.  It will result in extra movement of the material handler possibly resulting in additional 

maintenance requirements.  The extra load operation does delay the processing of parts because the 

material processor is blocked for the length of time required to reload the part into the storage 

workstation.  The material processor cannot be unloaded until the storage workstation load is 

completed. 

A simple deadlock prevention policy can be implemented for this system.  The deadlock is created 

when the storage workstation is unloaded filling the space that is required to unload the processing 

workstation.  By inhibiting storage workstation unload operations when there is a part in the processing 

workstation, it would always be possible to unload the processing workstation and deadlocks would 

not occur.  More generally if the number of parts in the transport system plus the number of parts in 

non-storage fixed part locations is one less than the capacity of the transport system plus the capacity 

of the fixed part locations then deadlock will not occur for a system organized like test case 2.  This 

rule can be applied to any system but will not prevent deadlocks in all systems.  Consider a system 

with the same transportation system as test case two and where the processing workstation has two 

unique machines A and B that are not interchangeable.  If parts requiring the same machine are 

released sequentially then the system will deadlock.  The part on the machine will not be able to 

unload because the transporter is occupied and the part on the transporter cannot be loaded into the 

processing workstation because the machine is occupied.  The number of parts in the system will be 

less than the capacity because of the empty space on the unused machine so the storage workstation 

unload will not be prevented.  For test case two the rule is a deadlock prevention policy, but in the 
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more general case it is a deadlock reduction policy.  It reduces the number of deadlock states that can 

be reached but does not eliminate them. 

This is the same single-machine scheduling problem with delays introduced by the unavailability of 

transportation capacity.  The flow time minimizing part sequence is still that of test case one: 2, 1, 4, 3.  

The storage workstation unload operation can no longer overlap the processing operations because the 

transporter that would be filled by the storage unload is required to unload the processing workstation.  

Also, due to the implementation of the control system, the processing workstation will not request that 

the transporter move to the unload point until the part has completed processing, this causes an extra 

delay in the unload operation that could be eliminated.  Table 58 shows the activities, which now 

include transporter movements.  The part finish times for the non-concurrent moves show cumulative 

delays.  The first part is delayed 20, the second 40, the third 60 and the fourth 80.  Table 59 shows the 

optimal part completion times.  The sum of completion times is 6570 for the concurrent move case and 

6770 for the non-concurrent move case. 

Three hundred control choice sets were generated; one hundred forty-three of them found the non-

concurrent move optimum performance value of 6770.  The result was first found with control set 45.  

Table 60 shows the messages generated by the neural net.  Transformation messages generated by the 

Petri net portion of the controller were included in Table 60 to show the completion of part processing.   



 

 

132

Table 58 Optimal Flow Time Activities 

 With concurrent moves Without concurrent moves 
Activity Start Time Finish Time Start Time Finish Time 
Unload part 2 from storage 0 30 0 30 
Load part 2 to machine 30 45 30 45 
Process part 2 node 3 45 445 45 445 
Move transporter 45 65 445 465 
Unload part 2 from machine 445 460 465 480 
Load part 2 to storage 460 490 480 510 
Move Transporter 490 510 510 530 
Unload part 1 from storage 510 540 530 560 
Load part 1 to machine 540 555 560 575 
Process part 1 node 3 555 1155 575 1175 
Move Transporter 555 575 1175 1195 
Unload part 1 1155 1170 1195 1210 
Load part 1 to storage 1170 1200 1210 1240 
Move transporter 1200 1220 1240 1260 
Unload part 4 from storage 1220 1250 1260 1290 
Load part 4 to machine 1250 1265 1290 1305 
Process part 4 node 4 1265 1465 1305 1505 
Move transporter 1265 1285   
Process part 4 node 5 1465 1940 1505 1980 
Move transporter   1980 2000 
Unload part 4 from machine 1940 1955 2000 2015 
Load part 4 to storage 1955 1985 2015 2045 
Move transporter 1985 2005 2045 2065 
Unload part 3 from storage 2005 2035 2065 2095 
Load part 3 to machine 2035 2050 2095 2110 
Process part 3 node 3 2050 2850 2110 2910 
Move transporter 2050 2070 2910 2930 
Unload part 3 2850 2865 2930 2945 
Load part 3 to storage 2865 2895 2945 2975 

 

Table 59 Optimal Part Completion Times with Transporter Movements 

 Finish times 
Part Identifier Concurrent moves Without concurrent moves 
2 490 510 
1 1200 1240 
4 1985 2045 
3 2895 2975 
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Table 60 Test Case 2 Neural Net Messages 

Source Time Message 
Neural 0 START, PLOC= 1, TYPE= 1, ONODE= 1, NNODE= 3  

START, PLOC= 1, TYPE= 2, ONODE= 1, NNODE= 3  
START, PLOC= 1, TYPE= 3, ONODE= 1, NNODE= 3  
START, PLOC= 1, TYPE= 4, ONODE= 1, NNODE= 4  

 0 UNLOAD,1,2, TYPE= 2, NODE= 3 
 30 LOAD,2,2, TYPE= 2, NODE= 3 
 45 PROCESS, PLOC= 2 
Petri 445 BigExec:PWS1:TRANSFORM, PLOC= 2, TYPE= 2, ONODE= 3, NNODE= 2 
Neural 445 MOVE,2,1  
 465 UNLOAD,2,1 
 480 LOAD,1,1, TYPE= 2, NODE= 2  
 510 MOVE,1,2  
 530 UNLOAD,1,2, TYPE= 1, NODE= 3  
 560 LOAD,2,2, TYPE= 1, NODE= 3  
 575 PROCESS, PLOC= 2  
Petri 1175 BigExec:PWS1:TRANSFORM, PLOC= 2, TYPE= 1, ONODE= 3, NNODE= 2 
Neural 1175 MOVE,2,1  
 1195 UNLOAD,2,1  
 1210 LOAD,1,1, TYPE= 1, NODE= 2  
 1240 MOVE,1,2  
 1260 UNLOAD,1,2, TYPE= 4, NODE= 4  
 1290 LOAD,2,2, TYPE= 4, NODE= 4  
 1305 PROCESS, PLOC= 2 
Petri 1505 BigExec:PWS1:TRANSFORM, PLOC= 2, TYPE= 4, ONODE= 4, NNODE= 5 
Neural 1505 PROCESS, PLOC= 2  
Petri 1980 BigExec:PWS1:TRANSFORM, PLOC= 2, TYPE= 4, ONODE= 5, NNODE= 2 
Neural 1980 MOVE,2,1  
 2000 UNLOAD,2,1  
 2015 LOAD,1,1, TYPE= 4, NODE= 2  
 2045 MOVE,1,2  
 2065 UNLOAD,1,2, TYPE= 3, NODE= 3  
 2095 LOAD,2,2, TYPE= 3, NODE= 3  
 2110 PROCESS, PLOC= 2  
Petri 2910 BigExec:PWS1:TRANSFORM, PLOC= 2, TYPE= 3, ONODE= 3, NNODE= 2 
Neural 2910 MOVE,2,1  
 2930 UNLOAD,2,1  
 2945 LOAD,1,1, TYPE= 3, NODE= 2  
Finish 2975 Genome 167 is among the 50 best with a score of 6770 

 

7.3 Test Cases Three and Four 

Test case three was an expansion of test case two.  A second machine was added to the processing 

workstation and a third transporter location was added. Test case four was created by adding a buffer 

to test case three.  The configuration of test case three is shown in Figure 21.  The four parts used in 
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test cases one and two were used and a fifth part added that needed to be processed on the new 

machine. The fifth part had two processing alternatives: 1) process for 800 time units on the new 

machine, 2) process for 450 time units on the new machine followed by 450 time units on the old 

machine.  These test cases provided for the possibility of concurrent processing on the two machines.  

There was also the possibility of a circular wait condition where the part on the transporter wanted a 

machine and a part on the machine wanted to unload requiring the transporter.  Because there are two 

machines the deadlock reduction policy is not a deadlock prevention policy as discussed in section 7.2.   

The system created one of these circular wait conditions and began to correct it.  The transporter was 

moved away from the processing load point to the storage workstation load point.  The system then 

created an inhibit choice point between removing the part from the transporter and moving the 

transporter to location 2.  The choice to move the transporter was selected and the system entered a 

state of continuous cycling around the transportation system.   

Figure 21 Test Case 3 Configuration 
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8 CONTRIBUTIONS, SUGGESTED FUTURE RESEARCH, AND 

CONCLUSIONS 

Flexible manufacturing research has been subject to the “Blind men and the Elephant” problem where 

individual researchers have been developing control system pieces in isolation with only a limited 

shared vision of what the control system should look like when complete.  Further, researchers tend to 

publish only general concepts and not specific implementation details.  The lack of implementation 

details means replicating a specific piece of work, if possible, requires significant effort that goes 

unrewarded.   

One result of this lack of detail is that there is no agreement on the details and function of an 

equipment level controller.  If there is one thing that is generally agreed upon, it is that an equipment 

level controller is required.  Naylor and Volz (1987) even discussed the structure of such a controller, 

partitioning it into two parts: one to deal with hardware specific issues related to the equipment it was 

controlling, the other to provide a standard interface to the rest of the control system.  Yet, no standard 

equipment controller exists.  One of the advantages of a standardized equipment controller would be 

the ability to easily share the flexible manufacturing systems held at various research facilities.  Some 

of this advantage could be achieved without standardization, by publishing the details of the control 

interfaces of the various systems.  This would be a significant boon to small research groups that 

cannot afford the cost of maintaining their own FMS or to groups that are just entering the research 

field.   

8.1 Contributions 

This research was designed to develop a cell level controller that could be rapidly generated for a 

hierarchical control system.  Three basic hypotheses were to be verified: 1) a factory reference model 

could be developed to a level where implementation was unambiguous, 2) a Petri net model could be 

generated from the factory reference model (objective three had been partially accomplished in that 
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Petri nets had been selected as the modeling system when this hypothesis was generated), and 3) an 

artificial neural net could be generated given the factory reference model and the Petri net that would 

generate valid control actions that would result in factory performance with some degree of 

“goodness.”  Five objectives were defined as steps to demonstrate the hypotheses above (see section 

3.2).   

The first two objectives were used to demonstrate that hypothesis one was true.  There was actually no 

doubt that it was true, given that other researchers have previously developed control systems.  Any 

control system that is developed has an implied reference model.  What was needed was to document a 

reference model to the point where it could be easily replicated.  Objective one was to create a 

specification for equipment controller interfaces.  To complete this objective, a set of equipment level 

activities was defined (see Table 2).  A set of standard messages was then developed to signal the 

initiation and completion of these activities (see Table 5 and Table 7).  Objective two was to create a 

specification allowing an FMS user to input a description of the FMS and a database to hold the 

information.  A model consisting of a set of process plan graphs and two sets of movement graphs was 

designed.  A set of database tables was specified (see Table 4 and Appendix B) and implemented using 

Microsoft Access.  A small FMS example was used to describe the data required (see section 6). 

Objective three was to develop a model for the workcell and parts and to be able to automatically 

generate this model from the data entered by the user.  Modified Petri nets were selected to model the 

workcell and the part process plans.  Petri nets have been previously used to model process plans and 

workcells individually.  Because Petri nets are a form of graph, constructing Petri nets from the graphs 

used to model the FMS was relatively straight-forward.  The graphs used to in the FMS representation 

used directed arcs to model activities and nodes to represent locations or part conditions.  A Petri net 

structure that corresponded to an activity was created.  Preconditions and post-conditions were 

developed based on the activity represented by the model arc and the nodes it connected.  The 
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translation algorithm is contained in Appendix H.  See Appendix C for a description of the output 

database that holds the resulting Petri net. 

Hypothesis three was originally stated as two hypotheses: 1) a neural net could be generated and 2) 

scheduling knowledge could be induced in the neural net.  Objectives four and five are based on the 

original hypotheses.  Objective four was the creation of a basic neural net structure.  Objective five 

was adjusting the basic structure to generate “good” results.  The neural net structure was developed 

using the Petri net model to specify the size of the input and output layers.  The input layer consisted of 

a node for each element of the status matrix and order vector.  The status matrix was a construct 

developed to convert information contained in the marking of the Petri net into a usable form.  The 

order vector was a user input indicating how many parts were to be manufactured.  The output layer 

consisted of a node for each decision (control action) the controller was required to express (initiate).  

A partial control logic was created based on the Petri net decision input places.  The manual 

development of a logic for test case one (see Appendix F) demonstrated that the neural net structure 

could be used as a controller. 

Objective five, automatically creating scheduling knowledge was a more difficult task to meet than 

demonstrating that the neural net controller concept was usable.  The only system states where known 

correct (optimal) control actions could be found were those states entered when processing a single 

part in the workcell.  The positive elements were extracted from these states (i.e. all state variables that 

were zero were ignored) and used to create a control logic.  Because the control logic was created 

ignoring state variables that were zero, it allowed conflicting actions to be generated.  A method of 

identifying these conflicts and selecting among the conflicting actions (inhibit choice points) was 

developed.  A genetic algorithm was then used to process the sets of choices that developed as the 

system evolved. 
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8.2 Suggested Future Research 

Additional activities could be added to the ones proposed.  The most significant of these would be a 

refixturing activity where a part is removed from a material-processing device by a material handler 

and then replaced in the same material processor in a different orientation.  This will be a relatively 

common requirement when multiple reference surfaces must be created on a part.  Another activity that 

would be useful is a transporter transfer operation where a part is removed from one transporter and 

placed on another transporter.  This would allow modeling systems with multiple transportation 

systems (such as a conveyor and an AGV system) something that is not currently allowed (the 

transporter movement graph was assumed to be a strongly connected digraph).   

The transporter movement rules could be revised.  The exemplar-based neural net generation originally 

created exemplars to move transporters from workstation load points to unload points.  This was 

deactivated because it moved any transporter (including ones containing parts that needed to load into 

the workstation) not just empty transporters.  The model translation program was then later modified 

(during development devoted to deadlock recovery) to add neural net nodes that indicated if a 

transportation location was occupied (had a transporter) and whether a part was located at the 

transportation location.  With these nodes available, it should be possible to add logic to move only 

empty transporters from load points to unload points.  As was shown in Table 58, making the 

movement of the transporters concurrent with the part processing results in a better schedule.   

While controller size is not likely to be a significant limitation for the workcells considered, the 

number of neural net inputs could be reduced by changing the way transformation tracking is handled.  

There is currently a status matrix row for each part transformation that occurs (i.e. each process plan 

arc).  All entries in this row must be zero except the one column that represents the part entering the 

transformation, so only one neural net input is needed per row.  Because transformations are zero time 

events and the controller processes the Petri net four times for each time the neural net is processed, it 

would be possible to completely eliminate the transformation indicator rows when operating in 
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simulation mode.  The rows will always be zero when the neural net is processed.  In operational 

mode, the rows are not guaranteed to be zero because events can occur on any part of the Petri net 

processing cycle. 

A logic translation program that converted the neural net structure to human understandable Boolean 

logic rules and back would be a useful tool.  Having the rules in Boolean logic form would allow the 

users to develop insight into the operation of the workcell and allow for tuning or pruning of the logic 

rules by a control expert.  Also, additional rules could be added to the controller building logic.  

Potential rules include:  

1. a CONWIP style limit on the number of parts in the workcell 
2. limiting the number of parts in the system that have been assigned to a workstation 
3. limiting the number of parts in the system assigned to any machine 

Even more rules could be added if time based inputs were added. The e-clock places in the Petri net 

have the potential to indicate the time remaining before their associated processes are completed.  A 

system clock would have to be added to the controller and some method of providing the information 

to the neural net.  Perhaps by augmenting the status matrix with an additional column, since all e-clock 

places have an associated activity that has a specific row in the status matrix. 

While the system was developed as a controller not a scheduler, job shop scheduling may be possible 

using the model shown in Figure 22.  By setting all material handling times to zero and placing a 

transporter in the tlocation with a capacity equal to or greater than the number of jobs to be scheduled, 

the system represents the normal assumptions made when doing job shop scheduling. 
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Figure 22 Job Shop  Representation Model 

8.3 Conclusions 

The proposed control system structure is viable although additional development is necessary.  The 

separation of the control logic (the artificial neural net) from the model of the manufacturing cell (the 

Petri net) makes automatic generation of the controller possible.  It will also make alternative 

approaches to building control logic (such as a fuzzy neural net) easy to implement.  The equipment 

controller interface specification and the detailed user input model will allow other researchers to 

easily apply the controller to their manufacturing systems.   

Because the controller is automatically generated from an easy to construct / modify model of the 

workcell, it has a very high degree of “expansion flexibility.”  This expansion flexibility makes the 

controller appropriate for small manufacturers that are implementing their first FMS. 
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APPENDIX A  

THE PARABLE OF THE BLIND MEN AND THE ELEPHANT 

American poet John Godfrey Saxe (1816-1887) based the following poem on a fable, which was told 
in India many years ago. 
 
 
It was six men of Indostan  
To learning much inclined,  
Who went to see the Elephant  
(Though all of them were blind),  
That each by observation  
Might satisfy his mind  
 
The First approached the Elephant,  
And happening to fall  
Against his broad and sturdy side,  
At once began to bawl:  
“God bless me! but the Elephant  
Is very like a wall!”  
 
The Second, feeling of the tusk,  
Cried, “Ho! what have we here  
So very round and smooth and sharp?  
To me ’tis mighty clear  
This wonder of an Elephant  
Is very like a spear!”  
 
The Third approached the animal,  
And happening to take  
The squirming trunk within his hands,  
Thus boldly up and spake:  
“I see,” quoth he, “the Elephant  
Is very like a snake!”  
 
The Fourth reached out an eager hand,  
And felt about the knee.  
“What most this wondrous beast is like  
Is mighty plain,” quoth he;  
“ ‘Tis clear enough the Elephant  
Is very like a tree!”  

 
The Fifth, who chanced to touch the ear,  
Said: “E’en the blindest man  
Can tell what this resembles most;  
Deny the fact who can  
This marvel of an Elephant  
Is very like a fan!”  
 
The Sixth no sooner had begun  
About the beast to grope,  
Than, seizing on the swinging tail  
That fell within his scope,  
“I see,” quoth he, “the Elephant  
Is very like a rope!”  
 
And so these men of Indostan  
Disputed loud and long,  
Each in his own opinion  
Exceeding stiff and strong,  
Though each was partly in the right,  
And all were in the wrong!  
 
Moral:  
So oft in theologic wars,  
The disputants, I ween,  
Rail on in utter ignorance  
Of what each other mean,  
And prate about an Elephant  
Not one of them has seen!  
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APPENDIX B  

USER INPUT DATABASE TABLE FIELDS 

 

Table 61 Equipment 

Field Name Data Type Usage 
EquipmentNumber Integer Identifies the piece of equipment 
EquipmentDescription Text Easy human identifier 
EquipmentType Text Classification: MP, MT, MH, BF, AS 
ControllerName Text Where command messages should be sent 

 

Table 62 FixedpLocations 

Field Name Data Type Usage 
LocationNumber Integer Identifies the location 
LocationDescription Text Easy human identifier 
EquipmentNumber Integer Identifies the equipment associated with 

the location 
 

Table 63 IncompatibleTransporterMovements 

Field Name Data Type Usage 
PrimaryArc Integer The key field 
IncompatibleArc Integer Arcs incompatible with the primary arc 

 

Table 64 MobilepLocations 

Field Name Data Type Usage 
LocationNumber Integer Identifies the location 
Location Description Text Easy human identifier 
TransporterType Integer The transporter type associated with the 

location 
 

Table 65 PartCarrierTypes 

Field Name Data Type Usage 
PartCarrierTypeNumber Integer Identifies the part carrier type 
PartCarrierDescription Text Easy human identifier 
TransporterType Integer Transporter Type the carrier can be used 

with 
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Table 66 PartID 

Field Name Data Type Usage 
PartNumber Integer Part Identification Number 
PartName Text Short human recognizable name 
PartDescription Text Longer human recognizable description 

 

Table 67 PPArcs 

Field Name Data Type Usage 
ArcNumber Integer Identifies the arc 
PartNumber Integer Identifies the part this arc applies to 
StartingNode Integer Identifies the tail of the arc 
EndingNode Integer Identifies the head of the arc 

 

Table 68 PPNodes 

Field Name Data Type Usage 
PartNumber Integer Identifies the part type 
NodeNumber Integer Identifies the Node of a given process 

plan 
Equipmentnumber Integer Identifies what piece of equipment this 

node uses 
Instructions Text Identifies the instruction file to be 

processed 
EstimatedTime Integer Time required for the process in seconds 

 

Table 69 ProcessingWorkstations 

Field Name Data Type Usage 
WorkstationNumber Integer Identifies the workstation 
Description Text Easy human identifier 
ControllerName Text Where command messages should be sent 

 

Table 70 ProcessingWSEquipAssn 

Field Name Data Type Usage 
Workstation Number Integer Identify the workstation 
Equipment Number Integer Identify the equipment 
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Table 71 ProcessingWSLPAssn 

Field Name Data Type Usage 
WorkstationNumber Integer Identify the workstation 
TlocationNumber Integer Identify the Tlocation (Load Point) 

 

Table 72 ProcessingWSMGArcs 

Field Name Data Type Usage 
WorkstationNumber Integer Identifies the workstation the arc belongs to 
ArcNumber Integer Identifies the Arc in the workstation 
EquipmentNumber Integer Identifies the MH equipment that makes the 

move 
EstimatedTime Integer How long the move will take in seconds 
TypeofArc Integer What the arc is doing: 3=Unload, 2=Xfer, or 

1=Load 
PartOnly Boolean Boolean: True, only the part moves; False, 

means the part carrier moves with the part 
LocationData1 Integer Data entered in From To format content 

varies depending on the type of arc 
LocationData2 Integer May contain a fixed plocation, tlocation or 

mobile plocation 
LocationData3 Integer  

 

Table 73 ProcessingWSUPAssn 

Field Name Data Type Usage 
WorkstationNumber Integer Identify the workstation 
TlocationNumber Integer Identify the Tlocation (Unload Point) 

 

Table 74 StorageWorkstations 

Field Name Data Type Usage 
WorkstationNumber Integer Identifies the workstation 
Description Text Easy human identifier 
ControllerName Text Where command messages should be sent 

 

Table 75 StorageWSEquipAssn 

Field Name Data Type Usage 
Workstation Number Integer Identify the workstation 
Equipment Number Integer Identify the equipment 
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Table 76 StorageWSLPAssn 

Field Name Data Type Usage 
WorkstationNumber Integer Identify the workstation 
TlocationNumber Integer Identify the Tlocation (Load Point) 

 

Table 77 StorageWSMGArcs 

Field Name Data Type Usage 
WorkstationNumber Integer Identifies the workstation the arc belongs to 
ArcNumber Integer Identifies the Arc in the workstation 
EquipmentNumber Integer Identifies the MH equipment that makes the 

move 
EstimatedTime Integer How long the move will take in seconds 
TypeofArc Integer What the arc is doing: 3=Unload, 2=Xfer, or 

1=Load 
PartOnly Boolean Boolean: True, only the part moves; False, 

means the part carrier moves with the part 
LocationData1 Integer Data entered in From To format content 

varies depending on the type of arc 
LocationData2 Integer May contain a fixed plocation, tlocation or 

mobile plocation 
LocationData3 Integer  

 

Table 78 StorageWSUPAssn 

Field Name Data Type Usage 
WorkstationNumber Integer Identify the workstation 
TlocationNumber Integer Identify the Tlocation (Unload Point) 

 

Table 79 TLocations 

Field Name Data Type Usage 
LocationNumber Integer Identifies the location 
LocationDescription Text Easy human identifier 
EquipmentNumber Integer Identifies the equipment associated with the 

location 
LoadPoint Boolean True/False is this a load point 
UnLoadPoint Boolean True/False is this an unload point 
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Table 80 TMGArcs 

Field Name Data Type Usage 
ArcNumber Integer Identifies the arc 
EquipmentNumber Integer Identifies the equipment that moves the 

transporter 
EstimatedTime Integer Time for the move to complete (in seconds) 
Startingtlocation Integer Identifies the tail of the arc 
Endingtlocation Integer Identifies the head of the arc 

 

Table 81 Transporters 

Field Name Data Type Usage 
TransporterNumber Integer Identifies the transporter 
Type Integer Identifies the type of transporter 
HomeLocation Integer the Tlocation number where the transporter 

starts in Empty and Idle conditions 
 

Table 82 TransporterTypes 

Field Name Data Type Usage 
TransporterTypeNumber Integer Identifies the transporter type 
PlocationCount Integer The number of plocations associated with 

this type 
TransporterDescription Text Easy human identifier 

 

Table 83 Parts 

Field Name Data Type Usage 
PartType Long Integer The part type identifer 
ProcessNode Long Integer The part process plan node associated with 

this part 
ProcessComplete Boolean Has the part completed processing at this 

node 
PartCarrierType Long Integer The type of part carrier the part is attached 

to, zero indicates no carrier 
StorageLocation Long Integer The FPL for the storage system 
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APPENDIX C  

PRIMARY OUTPUT DATABASE TABLES AND FIELDS 

The primary output database holds the Petri net and neural net information. 

Table 84 List of Primary Output Data Tables 

Table Name Usage 
BufferEmptyIndicatorIndex Index of neural net node that indicate a buffer is 

empty 
ControlData Holds identification information 
CurrentTokens The tokens in the system 
EmptyTokens The tokens in the system if it is empty and idle 
FPLIndex Index to match the fixed part locations to the Petri 

net nodes representing availability and occupation 
MHIndex Index to match the material handlers to the Petri net 

node representing availability 
NeuralNetLinks The neural net links with properties 
NeuralNetNodes The neural net nodes with properties 
OrderVector The link between part numbers and order vector 

position 
OVValues The number of parts ordered  
PartIndex Links the part process plan nodes to Petri net 

processing nodes and fixed part locations 
PNArc The Petri net arcs 
PNEvents The Petri net events 
PNMsg The Petri net output message formats 
PNNode The Petri net nodes 
SMColumnInfo Status matrix column information 
SMRowInfo Status matrix row information 
SMValues Status matrix values (not used, originally meant to 

store the status matrix values) 
TlocationIndex The link between transporter locations and the Petri 

net nodes representing availability and occupation  
TMGArcIndex Transporter movement graph arc index matches arcs 

to Petri net nodes representing movement in progress 
and the decision input node that authorizes the 
movement 

TokenCapacity The capacity of the tokens 
WSNeedsTransCapIndex Index of nodes that indicate a workstation needs 

transportation capacity 
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Table 85 BufferEmptyIndicatorIndex Fields 

Field Name Data Type Usage 
BufferFPL Integer The fixed part location allocated to the buffer 
BufferEmptyNNNode Integer The identifier of the neural net node that indicates 

the buffer is empty 
 

Table 86 ControlData Fields 

Field Name Data Type Usage 
MyName Text The name the Petri net portion of the controller 

uses 
MyBoss Text The controller authorized to send decision inputs 
MySubordinate Text The name the neural net sends commands to 
RouterName Text The name of the router 
RouterHost Text The host the router is running on 
RouterIP Text The IP address of the host the router is running on 
RouterPort Integer The port the router is listening on 
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Table 87 CurrentTokens and EmptyTokens Fields 

Field Name Data Type Usage 
PNNode Integer The location of the token 
TokenType Integer The token type 
TransporterType Integer The transporter type only valid for type 1 tokens 
CarrierType Integer The part carrier type only valid for type 3 tokens 
PartType Integer The part type only valid for type 4 tokens 
ProcessComplete Integer The current part node process is complete 
ProcessNode Integer The current process plan node only valid for type 4 

tokens 
MobilePL Integer The mobile part location occupied 
LastEventTime Integer The time the last event involving this token 

occurred  
MTTime Integer Cumulative time spent in transport 
MPTime Integer The cumulative time spent processing 
MHTime Integer The cumulative time spent in material handling 
BFTime Integer The cumulative time spent in buffers 
ASTime Integer The cumulative time spent in storage excludes raw 

material and finished products 
MPdelayTime Integer The cumulative time spent occupying a material 

processor not involved in processing 
PartStartTime Integer The time the start command was issued 
OrderArrivalTime Integer The time the order for the part arrived 
SimpleFlowStartTime Integer The time the part was started used by type two 

tokens 
SimpleFlowEndTime Integer The time the part becomes finished product used 

by type 2 tokens 
 

Table 88 FPLIndex Fields 

Field Name Data Type Usage 
FPL Integer The fixed part location identifier 
PNAvailable Integer The Petri net node indicating the fpl is available 
PNHasPart Integer The Petri net node indicating a part is in the fpl 
PNProcessing Integer The Petri net node indicating a part is processing 

at the fpl 
 

Table 89 MHIndex Fields 

Field Name Data Type Usage 
MH Integer Material Handler Identifier 
PNNode Integer Petri net node indicating the handler is available 
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Table 90 NeuralNetLinks Fields 

Field Name Data Type Usage 
IDNumber Integer Identification number for the link 
InputNodeID Integer The node at the tail of the arc that provides an 

input value 
OutPutNodeID Integer The node at the head of the arc that receives the 

output of the link 
Weight Double The link multiplier value 
LinkType Integer Indicates the function of the link 

 

Table 91 NeuralNetNodes Fields 

Field Name Data Type Usage 
IDNumber Integer Node Identifier 
Layer Integer The neural net layer the node lies in 
SMRow Integer The status matrix row associated with the node 

only valid for layer 0 nodes 
SMColumn Integer The status matrix column associated with the node 

only valid for layer 0 nodes 
Threshold Double The minimum input value the node must have to 

generate a positive output 
PNNodeAuthorized Integer The Decision Input Petri net node that precedes the 

activity associated with this node 
PNProcessingNode Integer The standard place Petri net node that represents 

the ongoing activity associated with this node 
IsOrderVector Boolean Is this node part of the order vector only valid for 

layer 0 nodes 
OrderVectorPosition Integer The order vector index position associated with 

this node only valid for layer 0 nodes 
Message Text The message that will be sent to the Petri net if this 

node is activated, only valid for output layer nodes 
Usage Integer Indicates what the neural net node does, used for 

optimization purposes 
 

Table 92 OrderVector Fields 

Field Name Data Type Usage 
OrderVectorIndex Integer The index into the order vector 
PartIDNumber Integer The part represented by this element of the order 

vector 
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Table 93 OVValues Fields 

Field Name Data Type Usage 
VectorPosition Integer The index into the order vector 
Value Integer The number of parts to be created 

 

Table 94 PartIndex Fields 

Field Name Data Type Usage 
PartType Integer Part type identifier 
ProcessNode Integer Process process plan node identifier 
ProcessComplete Boolean Indicates whether the part is complete 
PetriNetNode Integer The Petri net node associated with the process plan 

node and completion status 
ProcessingFPL Integer The fixed part location where processing takes 

place 
 

Table 95 PNArc Fields 

Field Name Data Type Usage 
Number Integer Petri net arc identifier 
Tail Integer The tail / origin of the arc 
Head Integer The head / destination of the arc 
Color Integer The arc type 

 

Table 96 PNEvents Fields 

Field Name Data Type Usage 
TransitionNumber Integer The identifier of the transition that will fire when 

the event occurs 
Message Text The format for the message that will be received 
Controller Text The source of the message that will be received 
Conversions Integer The number of parameters that must be retrieved 

from the incoming message 
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Table 97 PNMsg Fields 

Field Name Data Type Usage 
Number Integer The Petri net output node identifier 
Controller Text The destination of the message 
Msg Text The format of the message that must be sent 

 

Table 98 PNNode Fields 

Field Name Data Type Usage 
Number Integer Identifier of the Petri net node 
Type Integer The Petri net node type 
SMCol Boolean Is this node associated with a status matrix column 
SMRow Boolean Is this node associated with a status matrix row 
Deadlock Boolean Is this node used for deadlock detection 
TimeCategory Integer Indicates the where the time spent in this node 

should be assigned 
 

Table 99 SMColumnInfo Fields 

Field Name Data Type Usage 
StatusMatrixColumn Integer The status matrix column index 
TokenType Integer The type (or color) of the token 
TransporterType Integer The type of transporter if token type = 1 
CarrierType Integer The type of part carrier if token type = 3 
PartType Integer The part type if token type = 4 
ProcessComplete Boolean Has the part completed the processing at the node 
ProcessNode Integer The part process plan node if token type = 4 

 

Table 100 SMRowInfo Fields 

Field Name Data Type Usage 
StatusMatrixRow Integer The status matrix row index 
PNNode Integer The Petri net node associated with the status 

matrix row 
DeadlockFlag Boolean Is this row used for deadlock detection 
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Table 101 SMValues Fields 

Field Name Data Type Usage 
SMRow Integer The status matrix row index 
SMCol Integer The status matrix column index 
Value Integer The value of the status matrix element 

 

Table 102 TlocationIndex Fields 

Field Name Data Type Usage 
Tlocation Integer The transporter location identifier 
TlocAvailable Integer The Petri net node that indicates the transporter 

location is available 
TLocHasT Integer The Petri net node that indicates the transporter 

location is occupied by a transporter 
TLocNNT3CapAvail Integer The identifier of the neural net node that indicates 

the transporter location is occupied by a 
transporter with type 3 capacity available 

TLocNNT4CapAvail Integer The identifier of the neural net node that indicates 
the transporter location is occupied by a 
transporter with type 4 capacity available 

TLocNNOccupied Integer The identifier of the neural net node that indicates 
the transporter location is occupied by a 
transporter  

TLocHasPart Integer The identifier of the neural net node that indicates 
the transporter location is occupied by a 
transporter that contains a part  

 

Table 103 TMGArcIndex Fields 

Field Name Data Type Usage 
TMGArc Integer The transporter movement graph arc 
ProcessingNode Integer The Petri net node that indicates a transporter is 

moving along the arc 
AuthorizedNode Integer The Petri net decision input node that authorizes 

movement along the arc 
 

Table 104 TokenCapacity Fields 

Field Name Data Type Usage 
TokenType Integer The token type 
ItemType Integer The transporter or part carrier type 
Capacity Integer The number of items that can be placed on the 

transporter or part carrier 
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Table 105 WSNeedsTransCapIndex Fields 

Field Name Data Type Usage 
WSNumber Integer The workstation identifier 
WSIsStorage Boolean True if the workstation is a storage workstation 
Type3NodeNumber Integer Identifier of the neural net node that indicates the 

workstation needs type 3 transport capacity 
Type4NodeNumber Integer Identifier of the neural net node that indicates the 

workstation needs type 4 transport capacity 
BlockedEmptyNodeNum
ber 

Integer Identifier of the neural net node that indicates a 
part trying to reach the workstation is blocked by 
empty transporters 
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APPENDIX D  

EXEMPLAR DATABASE TABLES AND FIELDS 

The Exemplar database holds the training data. 

Table 106 List of Exemplar Data Tables 

Table Name Usage 
ChoicePointsChoices Identifies the possible choices at a choice point 
ChoicePointsID Identifies the choice points 
DeadlockBeginEndLocations Outdated.  Stored data used in the first deadlock 

recovery method 
DeadlockIdentification Outdated.  Same as Identification, but used for data 

generated during deadlock recovery 
DeadlockInputValues Outdated. Same as InputValues, but used for data 

generated during deadlock recovery 
DeadlockOutputValues Outdated. Same as OutputValues, but used for data 

generated during deadlock recovery 
DeadlockPathSteps Outdated. Same as EquipmentPaths, but used for 

data generated during deadlock recovery 
EquipmentPaths Paths through the workcell, there are one or more 

equipment based paths for each process plan path 
EquipPathPerformance The time required to complete the equipment path 
GenomeChoicePointValues Holds the values assigned to a choice point by a 

genome 
GenomeID Holds the genome identification and performance 

data 
GenomeInhibitChoicePointValues Holds the values assigned to an inhibit choice point 

by a genome 
Identification Identification data for each exemplar data point 
InhibitChoicePointsChoices Identifies the possible choices at an inhibit choice 

point 
InhibitChoicePointsID Identifies the inhibit choice points 
InputValues The input portion of the exemplar data 
L3Incompatibility Lists incompatibility between preliminary output 

nodes 
L3toL4map Matches the preliminary output node to the 

corresponding final output node 
MovementPaths Equipment paths for empty transporters 
MovementPathPerformance The time required to complete the movement path 
NeuralNetResults Outdated.  Held data used in the original neural net 

training scheme 
OutputValues The output portion of the exemplar 
ProcessPlanPath Paths through the process plan from the raw material 

to the finished product node 
TrainingParameters Outdated.  Held data used to define the neural net 

training procedure 
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Table 107 ChoicePointsChoices Fields 

Field Name Data Type Usage 
IDNum Integer The identification of the choice point 
NNNode Integer The neural net node to set to the minimum threshold 
ChoiceIDNum Integer The identification of the choice for this choice point 
OutputNNNode Integer The preliminary output node activated by this choice 

 

Table 108 ChoicePointsID Fields 

Field Name Data Type Usage 
IDNum Integer The identification number of the choice point 
NumberOfChoices Integer The number of possible choices 
MinimumThreshold Double The minimum threshold to assign to the nodes 

associated with the choice point 
Description Text A description of the choice point 

 

Table 109 DeadlockBeginEndLocations Fields 

Field Name Data Type Usage 
DeadlockPathNumber Integer Path identification number 
OriginLocation Integer Path start location 
OriginIsFPL Boolean True if path starts at a fixed part location 
DestinationLocation Integer Path end location 
DestinationIsFPL Boolean True if path ends at a fixed part location 
PreferredUnloadTLocatio
n 

Integer Preferred unload point if the path starts at a fixed 
part location 

 

Table 110 EquipmentPaths and DeadlockPathSteps Fields 

Field Name Data Type Usage 
PathNumber Integer Equipment path identifier 
PathStep Integer Path step identifier 
PartType Integer The type of part being processed 
ProcessNode Integer The process plan node 
LocationIdentifier Integer The location where the part is located 
LocationIsFPL Boolean Is the location a fixed part location 
Command Text The command that needs to be sent 

 



 

 

163

Table 111 EquipPathPerformance Fields 

Field Name Data Type Usage 
EquipmentPath Integer Equipment path identifier 
Operations Integer The number of operations in the path 
Length Integer The length of time the path requires 

 

Table 112 GenomeChoicePointValues and GenomeInhibitChoicePointValues Fields 

Field Name Data Type Usage 
IDNum Integer The genome identification number 
Choicepoint Integer The choice point identification number 
TheChoice Integer The choice to be selected for this choice point 

 

Table 113 GenomeID Fields 

Field Name Data Type Usage 
IDNum Integer The genome identification number 
PerformanceValue Integer The objective value function for this genome 
NumofChoicePts Integer The number of choice points used with this genome 
NumofInhibitChoicePts Integer The number of inhibit choice points used with this 

genome 
 

Table 114 Identification and DeadlockIdentification Fields 

Field Name Data Type Usage 
Number Integer Identification number for the exemplar 
InputSize Integer The number of inputs used 
OutputSize Integer The number of outputs generated 
EpathNumber Integer The equipment path associated with the exemplar 

 

Table 115 InhibitChoicePointsChoices Fields 

Field Name Data Type Usage 
IDNum Integer The choice point identification number 
ArcNumber Integer The arc that should have its weight set to zero 
ChoiceIDNum Integer The identification number for this choice 
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Table 116 InhibitChoicePointsID Fields 

Field Name Data Type Usage 
IDNum Integer Identification number for the inhibit choice point 
NumberOfChoices Integer The number of choices possible 
Description Text A description of the inhibit choice point generally 

includes the messages that were conflicting 
 

Table 117 InputValues and DeadlockInputValues Fields 

Field Name Data Type Usage 
Number Integer The exemplar this input value belongs to 
NNNode Integer The neural net node that is used as the input 
SMRow Integer The status matrix row associated with the neural net 

node 
SMCol Integer The status matrix column associated with the neural 

net node 
Value Double The value of the neural net node input 

 

Table 118 L3Incompatibility Fields 

Field Name Data Type Usage 
PrimaryL3Node Integer The node being considered 
IncompatibleL3Node Integer A node that conflicts because of common resource 

usage 
 

Table 119 L3toL4mapFields 

Field Name Data Type Usage 
L3Node Integer Preliminary output node 
L4Node Integer Matching final output node 

 

Table 120 MovementPaths Fields 

Field Name Data Type Usage 
PathNumber Integer The movement path identifier 
PathStep Integer The step in the movement path 
LocationIdentifier Integer The location identifier (will always be a Tlocation) 
Command Text The command that needs to be sent 
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Table 121 MovementPathPerformance Fields 

Field Name Data Type Usage 
MovementPath Integer The movement path identifier 
Operations Integer The number of operations in the path 
Length Integer The length of time the path requires 

 

Table 122 NeuralNetResults Fields 

Field Name Data Type Usage 
PatternNumber Integer The pattern (exemplar) being trained 
OutputNumber Integer The output node number 
Cycle Integer The training cycle 
Repetition Integer The repetition in the training cycle 
Value Double The value the output node was outputting 

 

Table 123 OutputValues and DeadlockOutputValues Fields 

Field Name Data Type Usage 
Number Integer The exemplar this output is attached to 
NNNode Integer The neural net output layer node  
Value Double The desired value of the output node 

 

Table 124 ProcessPlanPath Fields 

Field Name Data Type Usage 
PartNumber Integer The part number the path applies to 
PathNumber Integer The path number (not part specific) 
Path Text The path as a comma delimited node list 

 

Table 125 TrainingParameters Fields 

Field Name Data Type Usage 
LearningRate Double Back propagation training parameter 
Momentum Double Back propagation training parameter 
MaxCycles Integer Maximum number of cycles to train 
PatternToRepeat Integer The identification number of a single patter 
RepsPerCycle Integer Number of replications per training cycle 
RepeatSinglePattern Boolean True use only one pattern from the set 
PrelimaryOutputLayer Integer The neural net preliminary output layer 
SaveResults Integer How often results should be saved to the database 
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APPENDIX E  

PROCESSING WORKSTATION PETRI NET GROWTH 

 

Figure 23 Simple Processing Workstation 

Figure 24 Step 3 Add a Node for the MH 
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Figure 25 Step 4 Add Nodes for FPL 
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Figure 26 Step 5 Add Processing Activity 
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Figure 27 Step 6 Add Activities for WSMG Arcs 

 

MH FPL 
Avail 

FPL 
Has 

D

Processing

Unload Arc

Load Arc

D

D



 

 

170

 

Figure 28 Step 7 Add Tokens 
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APPENDIX F  

MANUAL LOGIC DEVELOPMENT TEST CASE ONE  

Because test case one involved a single machine it is known that scheduling parts using the shortest 

processing time first heuristic will generate a schedule with the minimum mean flowtime.  The neural 

net structure required to implement a shortest processing time first logic was constructed starting with 

a neural net that had the decision input control logic rules already in it (i.e. the output of the cell 

controller building program prior to any exemplar based construction).   

The process plans were analyzed to find the number of paths possible for each part type and the path 

with the shortest processing time (see Table 126).  Based on these results the parts need to be given 

priority in the following order: 2, 1, 4, 3.  The following movement priority was used (from highest to 

lowest): load the processing workstation, unload the processing workstation, unload the storage 

workstation, load the storage workstation.  The movement priority was used in developing the logic for 

the controller but the availability of the parts as they flowed through the system meant that there was 

never a time when the movement priority had to be enforced. 

When referring to parts in the text below a 2-tuple of part type and process plan node will be used: 

(type, node). 

 

Table 126 Process Plan Path Analysis Results 

Part Type Number of Paths Minimum processing time Minimum time path 
1 2 600 seconds 1, 3, 2 
2 1 400 seconds 1, 3, 2 
3 2 800 seconds 1, 3, 2 
4 2 675 seconds 1, 4, 5, 2 

 

Start Logic 
An initial part start logic was developed. A neural net node was added for each part type to indicate 

whether the part had been ordered or not (see Table 127).  These nodes were supposed to turn the start 
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output on.  The decision input rules built by the controller building program would prevent the output 

from being on if the number of parts previously started was equal to or greater than the number ordered 

or the raw material was not available. 

Table 127 Initial Start Logic Nodes 

Node Number Usage 
714 Part type 2 has been ordered 
715 Part type 1 has been ordered 
716 Part type 4 has been ordered 
717 Part type 3 has been ordered 

 

These start logic nodes (see Table 127) were connected to the order vector input nodes and the output 

nodes associated with part starting events as shown in Table 128.  This logic was flawed.  A part could 

not be started if a higher priority part had been ordered, even if the higher priority part was already 

completed.  The links between the intermediate nodes and final nodes were removed (the intermediate 

nodes and the links to them could also have been removed but were not).   

Table 128 Initial Start Logic 

Input Node Link weight, 
type 

Intermediate node Link weight, 
type 

Final node 

1 -- Part 2 
Order Vector 

1, 3 714 1, 3 688 Start P2, N3 

  714 -1, 3 684 Start P1, N3 
  714 -1, 3 696 Start P4, N4 
  714 -1,3 690 Start P3, N3 
0 -- Part 1 
Order Vector 

1, 3 715 1, 3 684 Start P1, N3 

  715 -1, 3 696 Start P4, N4 
  715 -1, 3 690 Start P3, N3 
3 -- Part 4 
Order Vector 

1, 3 716 1, 3 696 Start P4, N4 

  716 -1, 3 690 Start P3, N3 
2 -- Part 3 
Order Vector 

1, 3 717 1, 3 690 Start P3, N3 

 
 
The controller building program created nodes that were designed to be true (high) when it was 

appropriate to start a part.  These nodes were then connected to the output nodes with an inhibit if low 
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arc.  A new start logic was developed using these nodes (Table 129).  The inhibit low link was 

converted to a fixed weight excitatory link so the output would be triggered when the node was high.  

Priority was then enforced with a series of inhibit high links.  Nodes 708, 711, and 712 were logic for 

alternate process plan paths that were not used so their logic was not altered and is not shown in Table 

129.  This logic corresponds to the following rule:  IF the number of parts of type N that have been 

ordered is greater than the number of parts of type N that have been started AND there is no higher 

priority part type ready to be started THEN start the part of type N. 

 

Table 129 Revised Start Logic 

Generated Node Link weight, type Output Node Function 
707  1, 3 684 Start Type 1 Node 3 Okay 
 1, 1 690 Inhibit starting type 3 
 1, 1 696 Inhibit starting type 4 
709 1, 3 688 Start Type 2 Node 3 Okay 
 1, 1 684 Inhibit starting type 1 
 1, 1 690 Inhibit starting type 3 
 1, 1 696 Inhibit starting type 4 
710 1, 3 690 Start Type 3, Node 3 Okay 
713 1, 3 696 Start Type 4, Node 4 Okay 
 1, 1 690 Inhibit starting type 3 

 

Processing Logic 
The processing logic rule used was: IF there is a part in the processing workstation ready to process 

THEN process it.  The processing workstation was fixed part location 2 and was represented by status 

matrix row 3.  The only parts that would be ready for processing were: (1,3), (2,3), (3,3), (4,4), (4,5), 

corresponding to status matrix columns 4, 9, 12, 18 and 19. The neural net nodes corresponding to this 

status matrix row and these columns were connected to a new neural node (718) with an excitatory 

link.  This new node was then connected to the neural net output node that started the material 

processor.  Because the Petri net stores the information about the part that is located at the material 

processor and there can be only one the neural net does not need to provide this information and uses 

only one process start message per material processor. 
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Table 130 Processing Logic 

Input Node Link weight, 
type 

Intermediate node Link weight, 
type 

Final node 

68 1, 3 718 1, 3 604 
73 1, 3 718   
76 1, 3 718   
82 1, 3 718   
83 1, 3 718   

 

Processing Workstation Unload Logic 
Because the Petri net stores the information about the part that is located at the material processor and 

there can be only one the neural net does not need to provide this information for unload commands 

and uses only one message per unload arc. The processing workstation unload logic rule used was: IF 

there is a part in the processing workstation ready to unload THEN unload it.  No priority is required 

because the workstation has a capacity of one.  The parts that would be ready to unload were: (1,2), 

(2,2), (3,2), (4,2) corresponding to status matrix columns 3, 8, 11, and 16.  The neural net nodes 

corresponding to the workstation status matrix row (3) and these columns were connected to a new 

neural node (719) with an excitatory link.  This new node was then connected to the neural net output 

node that started the unload.   

Table 131 Processing Workstation Unload Logic 

Input Node Link weight, 
type 

Intermediate node Link weight, 
type 

Final node 

67 1, 3 719 1, 3 626 
72 1, 3 719   
75 1, 3 719   
80 1, 3 719   

 

Storage Workstation Unload Logic 
The storage workstation unload logic rule used was: IF there is a part in the storage workstation ready 

to unload AND it is the highest priority part THEN unload it.  This logic is in addition to the decision 

input place base logic that will not allow an unload to occur if the unload destination is occupied.  This 

translated into the following set of rules. 
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1. IF there is a (2,3) THEN unload it. 
2. IF there is a (1,3) AND there is not a (2,3) THEN unload it. 
3. IF there is a (4,5) AND there is not a (2,3) or (1,3) THEN unload it. 
4. IF there is a (4,4) AND there is not a (2,3), (1,3) or (4,5) THEN unload it. 
5. IF there is a (3,3) AND there is not a (2,3), (1,3), (4,5) or (4,4) THEN unload it. 

 
The controller was not designed to create any (4,5) parts, type 4 parts that had only one processing step 

completed.  However, by including the (4,5) part in the unload priority any existing parts of this type 

would be completed. 

A new node was created for each part type node combination to be unloaded (see Table 132).  The 

storage workstation was fixed part location one and was represented by status matrix row 2.  The status 

matrix columns of interest were 9, 4, 19, 18, and 12 corresponding to (2,3), (1,3), (4,5), (4,4) and (3,3) 

respectively.  A fixed weight excitatory arc was connected from the input layer node representing each 

part type to the new node for that part type and a second fixed weight excitatory node connected the 

new node to the output node that started the unload operation for that part type.  Priorities were then 

enforced by connecting the intermediate node of each part to the output nodes of the lower priority 

parts with inhibit when high links (see Table 133). 

Table 132 Storage Workstation Unload Logic Nodes 

Node number Part type and node 
720 (2,3) 
721 (1,3) 
722 (4,5) 
723 (4,4) 
724 (3,3) 
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Table 133 Storage Workstation Unload Logic 

Input Node Link weight, 
type 

Intermediate node Link weight, 
type 

Final node 

53 1,3 720 1,3 666 
  720 1,1 658 
  720 1,1 682 
  720 1,1 680 
  720 1,1 670 
48 1,3 721 1,3 658 
  721 1,1 682 
  721 1,1 680 
  721 1,1 670 
63 1,3 722 1,3 682 
  722 1,1 680 
  722 1,1 670 
62 1,3 723 1,3 680 
  723 1,1 670 
56 1,3 724 1,3 670 

 

Processing Workstation Load Logic 
The processing workstation load logic rule used was: IF there is a part at the load point ready to load 

THEN load it.  No priority is required because the transporters have a capacity of one.  The parts that 

would be ready for to load were: (1,3), (2,3), (3,3), (4,4), (4,5), corresponding to status matrix columns 

4, 9, 12, 18 and 19.  The load point was transporter location two represented by row one of the status 

matrix.  The corresponding neural net input layer nodes were: 28, 33, 36, 42, 43. The input layer node 

for each part was connected to a new intermediate node (one per part type) by a fixed weight excitatory 

link.  The intermediate node was then connected to the output node that sent the appropriate load 

command. 

 



 

 

177

Table 134 Processing Workstation Load Logic 

Input Node Link weight, 
type 

Intermediate node Link weight, 
type 

Final node 

33 1,3 725 1,3 612 
43 1,3 726 1,3 624 
28 1,3 727 1,3 606 
42 1,3 728 1,3 622 
36 1,3 729 1,3 614 

 

Storage Workstation Load Logic 
The processing workstation load logic rule used was: IF there is a part at the load point ready to load 

THEN load it.  No priority is required because the transporters have a capacity of one.  The parts that 

would be ready for to load were: (1,2), (2,2), (3,2), (4,2), corresponding to status matrix columns 3, 8, 

11, and 16.  The load point was transporter location one represented by row zero of the status matrix.  

The corresponding neural net input layer nodes were: 7, 12, 15, 20. The input layer node for each part 

was connected to a new intermediate node (one per part type) by a fixed weight excitatory link.  The 

intermediate node was then connected to the output node that sent the appropriate load command. 

Table 135 Processing Workstation Load Logic 

Input Node Link weight, 
type 

Intermediate node Link weight, 
type 

Final node 

12 1,3 730 1,3 636 
7 1,3 731 1,3 628 
20 1,3 732 1,3 648 
15 1,3 733 1,3 640 
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APPENDIX G   

ALGORITHM FOR GENERATING NEURAL NET LOGIC FROM PETRI 

NET DECISION INPUT PLACES 

• Select all of the Decision Input Places (Petri net nodes with type = 4) 
• For each decision input place find the event that triggers the transition preceding the place. 
• Call the appropriate function based on the type of message that triggers the transition 

Move 
4. Add a node to the first hidden layer (threshold = 0.9) 
5. Determine the status matrix row that represents the location of the move origin 
6. Determine the status matrix columns that represent transporters 
7. Add a fixed weight excitatory (weight = 1, type = 3) link from the input layer nodes that 

correspond to the status matrix row and columns found to the hidden layer node that was 
added 

8. Identify those status matrix rows that represent incompatibilities with the move, these 
include other moves with the same destination in progress, the destination location has a 
transporter, a transporter at the destination location is involved in a load or unload 
operation  

9. Add an inhibit high link to the node added in step one from the input layer nodes that 
represent the rows found in step five and the columns found in step three 

10. Add an inhibitory (weight = 1, type = 1) link from the node added in step one to the 
output layer nodes that send messages that trigger the transition 

Load 
1. Add a node to the first hidden layer (threshold = 1.8) 
2. Determine the status matrix row that represents the transporter location of the load 

operation 
3. Add a fixed weight excitatory (weight = 1, type = 3) link from the input layer nodes that 

correspond to the status matrix row and the columns representing transporters to the 
hidden layer node that was added in step 1 

4. Add a fixed weight excitatory (weight = 1, type = 3) link from the input layer nodes that 
correspond to the status matrix row and the columns representing part carriers to the 
hidden layer node that was added in step 1 

5. Add a fixed weight excitatory (weight = 1, type = 3) link from the input layer nodes that 
correspond to the status matrix row and the columns representing parts to the hidden 
layer node that was added in step 1 

6. Determine the status matrix row that represents the fixed part location that is the 
destination of the load operation 

7. Add an inhibitory (weight = 1, type = 1) link from the input layer nodes that correspond 
to the status matrix row and the columns representing parts to the hidden layer node that 
was added in step 1 

8. Determine if the destination is a material processor, if it is, find the status matrix row that 
represents the processing activity and add an inhibitory (weight = 1, type = 1) link from 
the input layer nodes that correspond to the status matrix row and the columns 
representing parts to the hidden layer node that was added in step 1 
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9. Determine the status matrix rows of the other activities that use the same material handler 
as the load operation and add an inhibitory (weight = 1, type = 1) link from the input 
layer nodes that correspond to the status matrix row and the columns representing either 
parts or part carriers depending on the Petri net arc associated with the activity to the 
hidden layer node that was added in step 1 

10. Add an inhibit if low (weight = 1, type = 2) link to the neural net output nodes that trigger 
the load operation from the hidden layer node that was added in step 1 

Unload 
1. Add a node to the first hidden layer (threshold = 0.9) to represent a part ready to unload 
2. Add a node to the first hidden layer (threshold = 0.9) to represent a transporter ready to 

receive a part 
3. Add a node to the second hidden layer (threshold =1.8) to combine the outputs of the 

nodes added in steps 1 and 2 
4. Add a fixed weight excitatory (weight = 1, type = 3) link from the nodes added in steps 1 

and 2 to the node added in step 3 
5. Determine the status matrix rows of the other activities that use the same material handler 

as the load operation and add an inhibitory (weight = 1, type = 1) link from the input 
layer nodes that correspond to the status matrix row and the columns representing either 
parts or part carriers depending on the Petri net arc associated with the activity to the 
hidden layer node that was added in step 3 

6. Determine the status matrix row that represents the transporter location where the unload 
operation will terminate 

7. Determine the columns that represent transporters and add a fixed weight excitatory (type 
= 3) link to the node added in step 2, where the weight equals the transporter capacity, 
from the input neural nodes that correspond to the row found in step 6 and the columns 
found in this step 

8. Determine the columns that represent part carriers and add a fixed weight excitatory (type 
= 3) link to the node added in step 2, where the weight equals the part carrier capacity 
minus one, from the input neural nodes that correspond to the row found in step 6 and the 
columns found in this step 

9. Determine the columns that represent parts and add a fixed weight excitatory (type = 3) 
link to the node added in step 2, where the weight equals minus one, from the input 
neural nodes that correspond to the row found in step 6 and the columns found in this 
step 

10. Determine the status matrix row that represents the fixed part location where the unload 
originates 

11. Determine whether part carriers are involved in this unload operation.  If part carriers are 
involved add a set of links from the input neural nodes that correspond to the row found 
in step 10 and the columns representing part carriers, if part carriers are not involved then 
use the columns representing parts. 

12. Add an inhibit if low (weight = 1, type = 2) link to the neural net output nodes that trigger 
the unload operation from the hidden layer node that was added in step 3 

Transfer 
1. Add a node to the first hidden layer (threshold = 0.9) 
2. Determine the status matrix row that represents the destination fixed part location. 
3. Determine the status matrix columns that represent parts or part carriers 
4. Add inhibit arcs (weight = 1, type = 1) from the input layer neural net nodes representing 

the status matrix row found in step 2 and the columns found in step 3 to the node added 
in step 1 
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5. Determine if the destination fixed part location is a material processor, if so find the 
status matrix row that represents a part being processed. 

6. Add inhibit arcs (weight = 1, type = 1) from the input layer neural net nodes representing 
the status matrix row found in step 5 and the columns representing parts to the node 
added in step 1 

7. Determine the status matrix rows of all other activities that involve the material handler 
8. Determine the whether to use part or part carrier columns (based on Petri net arc type) 
9. Add inhibit arcs (weight = 1, type = 1) from the input layer neural net nodes representing 

the status matrix row found in step 7 and the columns found in step 8 to the node added 
in step 1 

10. Determine the status matrix row that represents the origin FPL 
11. Determine the status matrix columns that represent parts or part carriers (based on Petri 

net arc type)  
12. Add a fixed weight excitatory (weight = 1, type = 3) link from the input layer neural net 

nodes representing the status matrix row found in step 10 and the columns found in step 
11 to the node added in step 1 

13. Add an inhibit if low (weight = 1, type = 2) link to the neural net output nodes that trigger 
the transfer operation from the hidden layer node that was added in step 1 

Transform 
1. Add a node to the first hidden layer (threshold = 0.9) 
2. Determine the status matrix column associated with the transform being processed 
3. Determine the fixed part location associated with the part / node combination to be 

transformed and use it to find the status matrix row associated with the transform 
4. Add a fixed weight excitatory (weight = 1, type = 3) link from the input layer neural net 

node representing the status matrix row found in step 4 and the columnsfound in step 2 to 
the node added in step 1 

5. Add an inhibit if low (weight = 1, type = 2) link to the neural net output nodes that trigger 
the transform operation from the hidden layer node that was added in step 1 

Start 
1. Add a node to the first hidden layer (threshold = 0.9) 
2. Determine the status matrix row associated with the fixed part location associated with 

the start message (there will be one for each storage location) 
3. Determine the status matrix column that represents the raw material 
4. Add an inhibit low (weight = 1, type = 2) link to the neural net node added in step 1 from 

the input neural node that represents the status matrix row found in step 2 and the status 
matrix column found in step 3 

5. Add a fixed weight excitatory (weight = 1, type = 3) link from the input layer neural net 
node representing the order vector for this part type 

6. Determine the status matrix columns for all stages of the part excluding raw material 
7. Add a fixed weight excitatory (weight = -1, type = 3) link from the input layer neural net 

nodes representing all status matrix rows and the columns found in step 6. 
8. Add an inhibit if low (weight = 1, type = 2) link to the neural net output nodes that trigger 

the start operation from the hidden layer node that was added in step 1 

Process 
1. Add a node to the first hidden layer (threshold = 0.9) 
2. Determine the status matrix row associated with the fixed part location where the part 

will be processed 
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3. Add a fixed weight excitatory (weight = 1, type = 3) link from the input layer neural net 
nodes representing the status matrix row and the columns representing parts to the node 
added in step 1 

4. Add an inhibit if low (weight = 1, type = 2) link to the neural net output nodes that trigger 
the start operation from the hidden layer node that was added in step 1 
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APPENDIX H   

WORKCELL USER INPUT TRANSLATION ALGORITHM  

Algorithm 
Steps one through ten represent the creation of the equipment-based portion of the workcell controller.  
See Process Plan Conversion Algorithm for the creation of the rest of the workcell controller. 
 
1. For each TLocation add two standard places (type = 2). The first one signals the location is 

available for a transporter to move into it.  The second one signals when a transporter in the 
location can move.  Update the TLocationIndex table. 

 
2. Add the material handler available nodes.  “Select Equipment Number from Equipment where 

Equipment Type = MH”  For each MH add one standard place (type = 2) and update the 
MHIndex. 

 
3. Add the fixed part locations.  Need to add a standard place (type = 2) for all plocations that are 

associated with MP and BF equipment.  Add a high capacity place for plocations (type = 7) 
associated with automated storage equipment.  Create recordset rs1 using “Select * from Fixed 
Plocations”  to get all fixed part locations.  Then create recordset rs2 using “Select [Equipment 
Type] from Equipment where [Equipment Number] = rs1.[Equipment Number]”  if 
rs2.[Equipment Type] = AS then add type 7 else add type 2.  Update the FPLIndex. 

 
4. Process transporter movement graph arcs.  For each arc 

Add a transition (type = 1) 
Setup pre-conditions 

Add a Decision input place (type = 4)  
Add an arc from the decision input place to the transition 
Add an event transition, message = MOVE,starting tlocation, ending tlocation 
Add an arc from the event transition to the decision input place 
Add an arc from the ending tlocation available place to the transition 
Add an arc from the starting tlocation hasT place to the transition 

Add Activity(equip_to_Controller, “MOVE,start tloc, end tloc”) 
Setup post-conditions 

Add arc from Activity complete transition to starting tlocation available place 
Add arc from Activity complete transition to ending tlocation hasT place 

 
5. Setup MP processing loops. 

Add a transition (type = 1) 
Setup pre-conditions 

Add a Decision input place (type = 4)  
Add an arc from the decision input place to the transition 
Add an event transition, message = PROCESS, fpl 
Add an arc from the event transition to the decision input place 
Add an arc from the fpl has part place to the transition 

Add Activity (fpl_to_WS, PROCESS,fpl, Type= %i,Node= %i) 
Setup post-condtions 
 Add an arc from the Activity complete transition to the fpl has part place 

 
6. Process processing workstation movement graph arcs 

Load 
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 Add a transition (type = 1) 
Setup pre-conditions 

Add a Decision input place (type = 4)  
Add an arc from the decision input place to the transition 
Add an event transition, message = LOAD,starting tlocation, ending fpl 
Add an arc from the event transition to the decision input place 
Add an arc from the ending fpl available place to the transition 
Add an arc from the starting tlocation hasT place to the transition 
Add an arc from the MH available place to the transition 

Add Activity (fpl_to_WS, LOAD,tloc,%I, fpl, Type= %i,Node= %i) 
Setup post conditions 
 Add an arc from the Activity complete transition to the fpl has part place 
 Add an arc from the Activity complete transition to the MH available place 
 Add an arc from the Activity complete transition to the starting tlocation hasT place 
 
Unload 
 Add a transition (type = 1) 
Setup pre-conditions 

Add a Decision input place (type = 4)  
Add an arc from the decision input place to the transition 
Add an event transition, message = UNLOAD,starting fpl, ending tlocation 
Add an arc from the event transition to the decision input place 
Add an arc from the starting fpl has part place to the transition 
Add an arc from the ending tlocation hasT place to the transition 
Add an arc from the MH available place to the transition 

Add Activity (fpl_to_WS, UNLOAD, fpl, tloc,%I, Type= %i,Node= %i) 
Setup post conditions 
 Add an arc from the Activity complete transition to the fpl available place 
 Add an arc from the Activity complete transition to the MH available place 
 Add an arc from the Activity complete transition to the ending tlocation hasT place 
 
Transfer 
 Add a transition (type = 1) 
Setup pre-conditions 

Add a Decision input place (type = 4)  
Add an arc from the decision input place to the transition 
Add an event transition, message = XFER,starting fpl, ending fpl 
Add an arc from the event transition to the decision input place 
Add an arc from the starting fpl has part place to the transition 
Add an arc from the ending fpl available place to the transition 
Add an arc from the MH available place to the transition 

Add Activity (fpl_to_WS, XFER, starting fpl, ending fpl, Type= %i,Node= %i) 
Setup post conditions 
 Add an arc from the Activity complete transition to the starting fpl available place 
 Add an arc from the Activity complete transition to the MH available place 
 Add an arc from the Activity complete transition to the ending fpl has part place 
 

7. Process storage workstation movement graph arcs 
Load 
 Add a transition (type = 1) 
Setup pre-conditions 

Add a Decision input place (type = 4)  
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Add an arc from the decision input place to the transition 
Add an event transition, message = LOAD,starting tlocation, ending fpl 
Add an arc from the event transition to the decision input place 
Add an arc from the ending fpl available place to the transition 
Add an arc from the starting tlocation hasT place to the transition 
Add an arc from the MH available place to the transition 

Add Activity (fpl_to_WS, LOAD,tloc,%I, fpl, Type= %i,Node= %i) 
Setup post conditions 
 Add an arc from the Activity complete transition to the fpl has part place 
 Add an arc from the Activity complete transition to the MH available place 
 Add an arc from the Activity complete transition to the starting tlocation hasT place 
 
Unload 
 Add a transition (type = 1) 
Setup pre-conditions 

Add a Decision input place (type = 4)  
Add an arc from the decision input place to the transition 
Add an event transition, message = UNLOAD,starting fpl, ending tlocation 
Add an arc from the event transition to the decision input place 
Add an arc from the starting fpl has part place to the transition 
Add an arc from the ending tlocation hasT place to the transition 
Add an arc from the MH available place to the transition 

Add Activity (fpl_to_WS, UNLOAD, fpl, tloc,%I, Type= %i,Node= %i) 
Setup post conditions 
 Add an arc from the Activity complete transition to the fpl available place 
 Add an arc from the Activity complete transition to the MH available place 
 Add an arc from the Activity complete transition to the ending tlocation hasT place 
 

8. Add Tokens for transporters 
 
9. Add Tokens for equipment availability 
 
10. Add Tokens for Parts and Part carriers 
 

Process Plan Conversion Algorithm 
 
All arcs in this section are type 0.  All tokens are type 0 (information).  No tokens are entered during 
the Petri net creation process.  The tokens must be taken from the users parts inventory. 
 
1.  For each node in the process plan add a standard place to the Petri net.  Add an entry to the 
PartIndex table. 
 
2.  If a node is NOT a default start node for a process plan then: 

A.  If a process node has only one arc leaving it then 
Add a transition 
Add an arc from the process node to the transition 
Add an input place with its associated event triggered transition.  The event is a 
"PROCESS COMPLETED" message from the appropriate workstation controller. 
Add an arc from the input place to the transition. 
Add an activity.  Message is "TRANSFORM" 
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Add an arc from the output transition to the process node at the head of the process 
plan arc 

 
B.  If a process node has more than one arc leaving it then 

Add a transition 
Add an arc from the process node to the transition 
Add an input place with its associated event triggered transition.  The event is a 
"PROCESS COMPLETED" message from the appropriate workstation controller. 
Add an arc from the input place to the transition. 
Add a standard place that represents "waiting for a decision" 
Add an arc from the transition to the "waiting for a decision" place 
For each arc leaving the process node 

Add a transition 
Add an arc from the "waiting for a decision" node to the transition 
Add a decision input place with its associated event triggered transition.  The 
event is a "TRANSFORM" message from the neural net. 
Add an arc from the input place to the transition. 
Add an activity.  Message is "TRANSFORM" 
Add an arc from the output transition to the process node at the head of the 
process plan arc 
 

3.  If a node is a default start node for a process plan then: 
For each arc leaving the process node: 

For each storage location in the model: 
Add a transition 
Add an arc from the process node to the transition 
Add a decision input place with its associated event triggered transition.  The 
event is a "START" message from the neural net. 
Add an arc from the input place to the transition. 
Add an activity.  Message is "TRANSFORM" 
Add an arc from the output transition to the process node at the head of the 
process plan arc 
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APPENDIX I  

PETRI NET MARKING ALGORITHM FOR STATUS MATRIX 

CONSTRUCTION 

The status matrix row information table is created by adding an entry for each entry in the Petri net 
node table that is marked as a status matrix row. 
 
The status matrix column information table is created by adding one entry for each transporter type, 
adding an entry for each part carrier type, and adding one column for each entry in the Petri net node 
table that is marked as a status matrix column. 
 
Marking the entries in the Petri net node table 
1. For every TLocation, there is a node representing a transporter occupying the TLocation, mark this 

node as an SMRow that does not get checked for deadlock. 
2. For every storage workstation there is a node that represents the parts in the location, mark this 

node as an SMRow that does not get checked for deadlock. 
3. For every fixed part location that is not part of a storage work station there is a node that 

represents the location is occupied by a part, mark this node as an SMRow that does not get 
checked for deadlock. 

4. For every fixed part location that is associated with a material processor, there is a node that 
represents the material processor performing an operation on a part, mark this node as an SMRow 
that does get checked for deadlock. 

5. For each transporter graph movement arc there is a node that represents the transporter moving 
across the arc, mark this node as an SMRow that does get checked for deadlock. 

6. Process workstation arcs are combined such that mobile part locations are not kept distinct at the 
cell controller level.  For each load point associated with a processing workstation there exists a 
set of combined arcs representing movement from the load point to the various fixed part locations 
in the processing workstation.  For each combined arc, there is a node representing the fact the 
transporter is involved in a load operation, mark this node as an SMRow that gets checked for 
deadlock.  Further, for each combined arc there is also a node representing that a part is involved 
in a load operation, mark this node as an SMRow that gets checked for deadlock. 

7. For each unload point associated with a processing workstation there exists a set of combined arcs 
representing movement from the various fixed part locations in the processing workstation to the 
load point.  For each combined arc, there is a node representing the fact the transporter is involved 
in an unload operation, mark this node as an SMRow that gets checked for deadlock.  Further, for 
each combined arc there is also a node representing that a part is involved in an unload operation, 
mark this node as an SMRow that gets checked for deadlock.  

8. For each possible transfer within a workstation, there will be a node representing that a part is 
transferring, mark this node as an SMRow that gets checked for deadlock. 

9. Storage workstation arcs are also combined at the cell level and transfers within the storage 
workstation are not considered. .  For each load point associated with a storage workstation there 
exists a set of combined arcs representing movement from the load point to the fixed part location 
representing the storage workstation.  For each combined arc, there is a node representing the fact 
the transporter is involved in a load operation, mark this node as an SMRow that gets checked for 
deadlock.  Further, for each combined arc there is also a node representing that a part is involved 
in a load operation, mark this node as an SMRow that gets checked for deadlock. 

10. For each unload point associated with a storage workstation there exists a set of combined arcs 
representing movement from the fixed part location representing the storage workstation to the 
unload point.  For each combined arc, there is a node representing the fact the transporter is 
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involved in an unload operation, mark this node as an SMRow that gets checked for deadlock.  
Further, for each combined arc there is also a node representing that a part is involved in an unload 
operation, mark this node as an SMRow that gets checked for deadlock. 

11. For each process plan node there is a corresponding Petri net node, mark this node as an 
SMColumn. 

12. For each process plan node that has multiple arcs leaving the node there is a Petri net node that 
represents the process being complete and a decision regarding which arc in the process plan to 
take, mark this node as an SMColumn. 
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APPENDIX J  

DEADLOCK AND STALL RECOVERY 

Deadlocks and stalls were divided into four major categories: 1) a processing workstation circular wait, 

2) a part blocked from exiting a processing workstation, 3) a part blocked from exiting a storage 

workstation, and 4) a part in the transportation system.  These categories were then subdivided giving 

the eighteen categories listed in Table 136.  The “ID No.” is the value returned from the deadlock 

classification function. 

Table 136 Deadlock and Stall Categories 

Id No. Category Description 
1 1A Processing WS circular wait, no buffers in the WS 
2 1B Processing WS circular wait, an empty buffer in the WS 
3 1C1 Processing WS circular wait, all buffers full at least one part in the WS 

wants to exit the WS 
4 1C2 Processing WS circular wait, all buffers full all parts want to remain in 

the WS 
5 2A Processing WS, no transporters at the WS unload points 
6 2B Processing WS, no transporter capacity at primary unload point, 

available capacity at a secondary unload point 
7 2C Processing WS, type 4 unload arc, type 3 space available no type 4 

space available 
8 2D Processing WS, type 4 unload arc, no type 3 space and no type 4 space 

available 
9 2E Processing WS, type 3 unload arc, no type 3 space available 
10 3 Storage WS, no unload logic implemented for a partially processed 

part 
11 4 Part located on a transporter that is not located at the proper WS load 

point 
12 3A Storage WS, no transporters at the WS unload points 
13 3B Storage WS, no transporter capacity at primary unload point, available 

capacity at a secondary unload point 
14 3C Storage WS, type 4 unload arc, type 3 space available no type 4 space 

available 
15 3D Storage WS, type 4 unload arc, no type 3 space and no type 4 space 

available 
16 3E Storage WS, type 3 unload arc, no type 3 space available 
17 2F Processing WS, no transporter at primary unload point, transporter 

without available capacity at secondary unload point 
18 3F Storage WS, no transporter at primary unload point, transporter 

without available capacity at secondary unload point 
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Recovery Procedures 

The initial exemplar creation process generated a set of alternative movement paths for transfers 

between machines.  These paths involved a direct transfer between machines, if possible, transfer from 

the machine to a buffer and from the buffer to the second machine, if the workstation contains buffers, 

and an unload operation followed by movement from the unload point to a load point and then a load 

operation to the second machine.  These paths were then prioritized and the threshold levels set on the 

layer 2 neural net node associated with the path such that only the highest priority path could be 

activated. 

A large number of the recovery actions will require unloading a part from a workstation.  Transporter 

capacity must be available at a workstation unload point to allow a part to be unloaded.  In fact, the 

lack of available transport capacity is the cause of all type 2 and most type 3 stalls.  Most recovery 

actions will consist of finding a transporter with available capacity and moving it to the workstation 

unload point.  This may require moving other transporters to clear a path for the transporter with 

capacity to reach the unload point.  If there are no transporters with available capacity, it will be 

necessary to move a transporter with unfinished parts to a storage workstation load point and place a 

part into storage to create available transport capacity that can then be moved to the workstation that 

must be unloaded.   

In recovering from deadlocks and stalls, processing workstations were assigned the highest priority, 

parts in the transportation system the second highest priority and parts in storage workstations the 

lowest priority. 

1A 

To recover from a circular wait in a workstation with no buffers, a part must be unloaded to make 

space to move other parts that are in the workstation.  The first step is to check for the availability of 

transporter capacity located at an unload point for the workstation.  If transporter capacity is present 

then the neural net logic must be modified to cause the appropriate unload command to be activated.  If 
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transporter capacity is not present then a transporter with available capacity must be found and moved 

to one of the workstations unload points.   

1B 

To recover from a circular wait in a workstation with an empty buffer, a part is moved from one of the 

machines involved in the circular wait to the buffer allowing the other parts to move as they desire and 

then the part in the buffer will move to the machine it desires from the buffer when it becomes 

available.   

1C1 

In this case, the circular wait is secondary to the problem of a part wanting to exit the workstation.  The 

failure of the part to leave the workstation makes this problem equivalent to a type 2 stall.  Removing 

the part may transform the situation into a type 1B deadlock where a buffer in the workstation may be 

used to solve the circular wait.  If the part that wants to exit the workstation is not located in a buffer, 

then after the part is removed the workstation the situation may remain a 1C1, if there were multiple 

parts that wanted to leave the workstation or it may be transformed into a type 1C2.  It is also possible 

that removal of a part from a machine will allow a part in a buffer to be transferred to the machine 

resulting in a indirect conversion to a type 1B stall.  The stall will not be corrected until the parts that 

have begun moving or processing have completed all available processing. 

1C2 

When all of the parts in the workstation wish to remain in the workstation, one of the parts involved in 

the circular wait must be removed to allow the other parts to progress.  This part will be a part located 

on one of the machines.  It is important to note that parts in a buffer can not be involved in a circular 

wait because none of the parts on the machines desire a buffer as their next destination.  They either 

wish to move to another machine in the workstation or to leave the workstation.  Parts wanting to leave 

the workstation wish to move directly to an unload point not to a buffer.  When resolving a circular 

wait, it is preferable to give parts on other machines priority over parts in buffers after removing a part 
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from a machine.  This will allow the maximum number of parts to progress forward.  A part will not 

necessarily move to a buffer from a machine to allow other parts requiring the machine to progress. 

2A 

Find a transporter with available capacity and move it to a workstation unload point. 

2B 

Add neural net logic to select an unload for the secondary unload point that has the available transport 

capacity. 

2C 

Find a transporter with available capacity and move it to a workstation unload point.  Move the 

transporter currently at the unload point away.  In this case the transporter currently at the unload point 

has the wrong type of capacity.  This will happen when the workstation being unloaded requires that a 

part carrier be on the transporter and no part carrier is there. 

2D 

Find a transporter with available capacity and move it to a workstation unload point.  Move the 

transporter currently at the unload point away.   

2E 

Find a transporter with available capacity and move it to a workstation unload point.  Move the 

transporter currently at the unload point away.  This will occur either if the transporter is filled to 

capacity or it has a part carrier that is able to accept a part, but the workstation that needs to be 

unloaded unloads a part carrier with the part. 
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2F 

Find a transporter with available capacity and move it to a workstation unload point.  The transporter 

currently at the unload point may or may not need to be moved depending on the configuration of the 

transportation system.   

3 

Add neural net logic to allow the unload command to be activated. 

3A 

Find a transporter with available capacity and move it to a workstation primary unload point for the 

part type and node combination to be unloaded.  There may not be any unload logic present to unload 

the part to a non-primary unload point. 

3B 

Add neural net logic to select an unload for the secondary unload point that has the available transport 

capacity. 

3C 

Find a transporter with available capacity and move it to a workstation unload point.  Move the 

transporter currently at the unload point away.  In this case the transporter currently at the unload point 

has the wrong type of capacity.  This will happen when the workstation being unloaded requires that a 

part carrier be on the transporter and no part carrier is there. 

3D 

Find a transporter with available capacity and move it to a workstation unload point.  Move the 

transporter currently at the unload point away.   
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3E 

Find a transporter with available capacity and move it to a workstation unload point.  Move the 

transporter currently at the unload point away.  This will occur either if the transporter is filled to 

capacity or it has a part carrier that is able to accept a part, but the workstation that needs to be 

unloaded unloads a part carrier with the part. 

3F 

Find a transporter with available capacity and move it to a workstation unload point.  The transporter 

currently at the unload point may or may not need to be moved depending on the configuration of the 

transportation system.   

4 

Add neural net logic to move the transporter toward the required workstation.  It may be necessary to 

add neural net logic to move transporters that are blocking the transporter with the part. 
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APPENDIX K  

ZIP FILE CONTENTS 

Two zip files are included with this dissertation: releasecandidate9.zip and finaltestcasemodels.zip.  

The releasecandidate9.zip file contains Visual C++ source code for the cell controller organized into 

three subdirectories: 1) timedCellController, 2) fixedrules, and 3) exemplars.  The timedCellController 

directory contains the code for the actual controller.  The fixedrules directory contains the code to 

create the initial input for timedCellController from the user model.  The exemplars directory contains 

the code used to generate the control logic.  It modifies the files created by the code in the fixed rules 

directory and creates additional files used by timedCellController. 

The finaltestcasemodels.zip file contains the user input models for the test cases used in this 

dissertation.   
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