

A FLEXIBLE CONTROL SYSTEM

 FOR

FLEXIBLE MANUFACTURING SYSTEMS

A Dissertation

by

WESLEY DANE SCOTT

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

May 2004

Major Subject: Industrial Engineering

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Texas A&M Repository

https://core.ac.uk/display/4268047?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A FLEXIBLE CONTROL SYSTEM

 FOR

FLEXIBLE MANUFACTURING SYSTEMS

A Dissertation

by

WESLEY DANE SCOTT

Submitted to Texas A&M University
in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

Approved as to style and content by:

May 2004

Major Subject: Industrial Engineering

Donald A. Maxwell
(Member)

Jeffrey S. Smith
(Co-Chair of Committee)

Cesar O. Malave
(Co-Chair of Committee)

Sheng-Jen (Tony) Hsieh
(Member)

Brett A. Peters
(Head of Department)

 iii

ABSTRACT

A Flexible Control System for Flexible Manufacturing Systems. (May 2004)

Wesley Dane Scott, B.S., Oregon State University;

M.S.E., Purdue University

Co-Chairs of Advisory Committee: Dr. Jeffrey S. Smith
Dr. Cesar O. Malave

A flexible workcell controller has been developed using a three level control hierarchy (workcell,

workstation, equipment). The cell controller is automatically generated from a model input by the

user. The model consists of three sets of graphs. One set of graphs describes the process plans of the

parts produced by the manufacturing system, one set describes movements into, out of and within

workstations, and the third set describes movements of parts/transporters between workstations.

The controller uses an event driven Petri net to maintain state information and to communicate with

lower level controllers. The control logic is contained in an artificial neural network. The Petri net

state information is used as the input to the neural net and messages that are Petri net events are output

from the neural net.

A genetic algorithm was used to search over alternative operation choices to find a “good” solution.

The system was fully implemented and several test cases are described.

 iv

Page

TABLE OF CONTENTS

ABSTRACT... iii

TABLE OF CONTENTS ... iv

LIST OF TABLES .. vii

LIST OF FIGURES.. xiii

NOMENCLATURE.. xv

1 INTRODUCTION ... 1

2 PREVIOUS RELATED RESEARCH... 9

2.1 Flexible Manufacturing Control Systems... 9
2.1.1 Centralized control .. 10
2.1.2 Hierarchical control ... 10

2.1.2.1 National Bureau of Standards (NBS)... 10
2.1.2.2 Wysk and Smith formal functional characterization.. 12

2.1.3 Heterarchical control ... 13
2.1.3.1 Duffie et al. heterarchical control .. 13

2.1.4 Hybrid control ... 15
2.1.4.1 Liu and Zhang hybrid control architecture... 15

2.2 Manufacturing System Models .. 16
2.3 Process Plan Models... 19
2.4 Petri Nets.. 20
2.5 Artificial Neural Nets ... 24
2.6 Genetic Algorithms .. 31
2.7 Deadlock .. 34
2.8 Summary of Previous Research ... 43

3 PROBLEM STATEMENT.. 45

3.1 Verifiable Hypotheses .. 46
3.1.1 Factory reference model .. 46
3.1.2 Petri net generation.. 46
3.1.3 Neural net generation and scheduling knowledge creation ... 46

3.2 Objectives... 47
3.3 Test Cases... 48

4 MANUFACTURING SYSTEM MODEL... 49

4.1 Parts.. 51
4.2 Manufacturing System ... 52
4.3 Manufacturing System Activities ... 55

4.3.1 Load... 56
4.3.2 Process... 57
4.3.3 Unload ... 57
4.3.4 Transfer ... 58

4.4 User Input Requirements.. 59

5 CONTROL SYSTEM MODEL... 61

 v

Page
5.1 Organization... 61

5.1.1 Equipment level... 61
5.1.2 Workstation level... 63
5.1.3 Cell level.. 67

5.2 Petri Nets.. 69
5.3 Status Matrix .. 77
5.4 Order Vector... 78
5.5 Neural Nets... 79

5.5.1 Choice points ... 82
5.5.2 Inhibit choice points .. 83

5.6 Control System Construction ... 84
5.6.1 Construction of the processing workstation controllers... 84
5.6.2 Construction of the cell controller ... 85

5.6.2.1 Petri net .. 85
5.6.2.2 Status matrix and order vector extraction .. 86
5.6.2.3 Neural net creation... 87
5.6.2.4 Neural net logic construction data creation.. 89
5.6.2.5 Neural net logic construction ... 92
5.6.2.6 Adaptation to deadlock situations .. 93
5.6.2.7 Deadlock avoidance and/or prevention versus deadlock recovery....................... 97

5.7 Genetic Algorithm Performance Tuning .. 98
5.8 Control System Operation.. 100

5.8.1 Equipment level... 100
5.8.2 Workstation level... 101
5.8.3 Cell level.. 104

5.9 Control System Summary .. 106

6 EXAMPLE IMPLEMENTATION.. 107

7 TESTING PROCEDURE AND RESULTS .. 125

7.1 Test Case One .. 126
7.2 Test Case Two.. 129
7.3 Test Cases Three and Four ... 133

8 CONTRIBUTIONS, SUGGESTED FUTURE RESEARCH, AND CONCLUSIONS............. 135

8.1 Contributions.. 135
8.2 Suggested Future Research .. 138
8.3 Conclusions .. 140

REFERENCES.. 141

APPENDICES... 146

APPENDIX A ... 147

APPENDIX B ... 148

APPENDIX C ... 153

APPENDIX D ... 161

APPENDIX E.. 166

 vi

Page
APPENDIX F.. 171

APPENDIX G ... 178

APPENDIX H ... 182

APPENDIX I... 186

APPENDIX J .. 188

APPENDIX K ... 194

VITA ... 195

 vii

Page

LIST OF TABLES

Table 1 Some Typical Interpretations of Transitions and Places (from Murata, 1989)........................ 21

Table 2 Equipment Level (Elemental) Activities .. 56

Table 3 Workstation Level Activities.. 56

Table 4 List of User Input Data Tables ... 60

Table 5 Equipment Controller Message Formats ... 63

Table 6 Workstation Controller Message Formats for Messages from the Cell Controller 66

Table 7 Workstation Controller Message Formats for Messages from Equipment Controllers............ 66

Table 8 Cell Controller Message Formats... 69

Table 9 Partitioning of P ... 70

Table 10 Petri Net Node Time Categories... 71

Table 11 Petri Net Token Types.. 71

Table 12 Petri Net Token Data.. 71

Table 13 Petri Net Time Data.. 72

Table 14 Petri Net Arc Types.. 72

Table 15 Neural Net Arc Types... 80

Table 16 Sample Process Plan Paths ... 91

Table 17 Sample Equipment Path ... 91

Table 18 Exemplar Identification Sample Equipment Path... 91

Table 19 Exemplar Input Values Sample Equipment Path.. 92

Table 20 Exemplar Output Values Sample Equipment Path... 92

Table 21 Test Case One Equipment .. 107

Table 22 Test Case One Transporter Types .. 109

Table 23 Test Case One Part Carrier Types .. 109

Table 24 Test Case One Fixed Part Locations .. 109

 viii

Page
Table 25 Test Case One Transporter Locations .. 109

Table 26 Test Case One Mobile Part Locations .. 109

Table 27 Test Case One Processing Workstations .. 110

Table 28 Test Case One Storage Workstations ... 110

Table 29 Test Case One Processing Workstation Load Points.. 110

Table 30 Test Case One Processing Workstation Unload Points .. 110

Table 31 Test Case One Storage Workstation Load Points... 110

Table 32 Test Case One Storage Workstation Unload Points ... 110

Table 33 Test Case One Processing Workstation Equipment ... 110

Table 34 Test Case One Storage Workstation Equipment .. 111

Table 35 Test Case One Processing Workstation Movement Graph Arcs .. 111

Table 36 Test Case One Storage Workstation Movement Graph Arcs ... 112

Table 37 Test Case One Part Identification... 112

Table 38 Test Case One Process Plan Nodes .. 113

Table 39 Test Case One Process Plan Arcs... 113

Table 40 Test Case One Status Matrix Row Definitions... 116

Table 41 Test Case One Status Matrix Columns Definitions.. 117

Table 42 Test Case One Neural Net Output Messages.. 118

Table 43 Test Case One Shortest Process Plan Paths.. 119

Table 44 Test Case One Control Rule Conditions... 120

Table 45 Test Case One Petri Net Control Rules .. 120

Table 46 Test Case One Modified Petri Net Rules.. 121

Table 47 Test Case One Manually Added Nodes.. 121

Table 48 Test Case One Manually Added Arcs from Manually Added Nodes................................... 122

Table 49 Test Case One Arcs Manually Added to Manually Added Nodes 123

Table 50 Test Case One Manually Added Arcs to Generated Nodes.. 124

 ix

Page
Table 51 Test Case One Logic Comparison.. 127

Table 52 Flowtime Minimizing Part Processing Sequence ... 127

Table 53 Flowtime Minimizing Activities .. 127

Table 54 Optimal Part Completion Times... 128

Table 55 Genome Part Processing Path Selection... 128

Table 56 Generated Activity Sequence with Best Flowtime.. 129

Table 57 Generated Part Completion Times ... 129

Table 58 Optimal Flow Time Activities.. 132

Table 59 Optimal Part Completion Times with Transporter Movements ... 132

Table 60 Test Case 2 Neural Net Messages .. 133

Table 61 Equipment .. 148

Table 62 FixedpLocations ... 148

Table 63 IncompatibleTransporterMovements ... 148

Table 64 MobilepLocations... 148

Table 65 PartCarrierTypes .. 148

Table 66 PartID ... 149

Table 67 PPArcs.. 149

Table 68 PPNodes ... 149

Table 69 ProcessingWorkstations ... 149

Table 70 ProcessingWSEquipAssn ... 149

Table 71 ProcessingWSLPAssn .. 150

Table 72 ProcessingWSMGArcs... 150

Table 73 ProcessingWSUPAssn.. 150

Table 74 StorageWorkstations .. 150

Table 75 StorageWSEquipAssn .. 150

Table 76 StorageWSLPAssn ... 151

 x

Page
Table 77 StorageWSMGArcs.. 151

Table 78 StorageWSUPAssn... 151

Table 79 TLocations.. 151

Table 80 TMGArcs ... 152

Table 81 Transporters.. 152

Table 82 TransporterTypes ... 152

Table 83 Parts.. 152

Table 84 List of Primary Output Data Tables ... 153

Table 85 BufferEmptyIndicatorIndex Fields... 154

Table 86 ControlData Fields ... 154

Table 87 CurrentTokens and EmptyTokens Fields ... 155

Table 88 FPLIndex Fields ... 155

Table 89 MHIndex Fields.. 155

Table 90 NeuralNetLinks Fields ... 156

Table 91 NeuralNetNodes Fields .. 156

Table 92 OrderVector Fields... 156

Table 93 OVValues Fields .. 157

Table 94 PartIndex Fields.. 157

Table 95 PNArc Fields .. 157

Table 96 PNEvents Fields ... 157

Table 97 PNMsg Fields... 158

Table 98 PNNode Fields ... 158

Table 99 SMColumnInfo Fields.. 158

Table 100 SMRowInfo Fields ... 158

Table 101 SMValues Fields .. 159

Table 102 TlocationIndex Fields... 159

 xi

Page
Table 103 TMGArcIndex Fields ... 159

Table 104 TokenCapacity Fields... 159

Table 105 WSNeedsTransCapIndex Fields... 160

Table 106 List of Exemplar Data Tables... 161

Table 107 ChoicePointsChoices Fields ... 162

Table 108 ChoicePointsID Fields.. 162

Table 109 DeadlockBeginEndLocations Fields .. 162

Table 110 EquipmentPaths and DeadlockPathSteps Fields .. 162

Table 111 EquipPathPerformance Fields .. 163

Table 112 GenomeChoicePointValues and GenomeInhibitChoicePointValues Fields....................... 163

Table 113 GenomeID Fields ... 163

Table 114 Identification and DeadlockIdentification Fields ... 163

Table 115 InhibitChoicePointsChoices Fields .. 163

Table 116 InhibitChoicePointsID Fields ... 164

Table 117 InputValues and DeadlockInputValues Fields ... 164

Table 118 L3Incompatibility Fields .. 164

Table 119 L3toL4mapFields ... 164

Table 120 MovementPaths Fields ... 164

Table 121 MovementPathPerformance Fields .. 165

Table 122 NeuralNetResults Fields... 165

Table 123 OutputValues and DeadlockOutputValues Fields .. 165

Table 124 ProcessPlanPath Fields... 165

Table 125 TrainingParameters Fields.. 165

Table 126 Process Plan Path Analysis Results .. 171

Table 127 Initial Start Logic Nodes .. 172

Table 128 Initial Start Logic ... 172

 xii

Page
Table 129 Revised Start Logic .. 173

Table 130 Processing Logic .. 174

Table 131 Processing Workstation Unload Logic ... 174

Table 132 Storage Workstation Unload Logic Nodes... 175

Table 133 Storage Workstation Unload Logic .. 176

Table 134 Processing Workstation Load Logic .. 177

Table 135 Processing Workstation Load Logic .. 177

Table 136 Deadlock and Stall Categories.. 188

 xiii

Page

LIST OF FIGURES

Figure 1 Control Software Dichotomy (from Smith, 1992) ... 6

Figure 2 Spectrum of Control Distribution (adapted from Duffie et al., 1988)..................................... 10

Figure 3 Threshold Logic Unit .. 27

Figure 4 A Two Input OR Gate... 29

Figure 5 Simple Process Plans ... 52

Figure 6 Simple Workstation Movement Graph ... 55

Figure 7 Petri Net Activity Grouping.. 75

Figure 8 Partial Workstation Graph .. 76

Figure 9 Sample Status Matrix .. 78

Figure 10 Neural Net Choice Point ... 82

Figure 11 Neural Net Inhibit Choice Point.. 83

Figure 12 Workstation Controller Construction Process... 84

Figure 13 Cell Controller Construction Process.. 86

Figure 14 An Example of a Weak Rule... 88

Figure 15 Decision Input Fireable Transition.. 94

Figure 16 Workstation Controller Operation... 102

Figure 17 Simple Workstation Controller ... 104

Figure 18 Cell Control Operation.. 105

Figure 19 User Input Process .. 108

Figure 20 Test Case One Partial Cell Controller Petri Net.. 114

Figure 21 Test Case 3 Configuration... 134

Figure 22 Job Shop Representation Model... 140

Figure 23 Simple Processing Workstation .. 166

Figure 24 Step 3 Add a Node for the MH ... 166

 xiv

Page
Figure 25 Step 4 Add Nodes for FPL.. 167

Figure 26 Step 5 Add Processing Activity .. 168

Figure 27 Step 6 Add Activities for WSMG Arcs... 169

Figure 28 Step 7 Add Tokens.. 170

 xv

NOMENCLATURE

parts Items that flow through the factory and will eventually be sold

process plan An OR graph that describes the production of the part. Processes

occur at nodes and have times associated with them. Arcs represent
processing constraints

instruction set Details on how a process should be completed in a format the

processor can understand.

material processors (MP) A piece of equipment that makes changes to the state of a part

material transporters (MT) Moves parts between physical locations in the factory but can not be

used to load a part into a material processor

material handlers (MH) Can be used to load a part into a material processor

automated storage (AS) Physical space for long term storage that has a small subset of

spaces that are used for interfacing with the rest of the system

buffers (BF) Physical space for temporary storage

tlocation A physical space where a transporter can stop

TL The set of all tlocations

plocation A physical space where a part can be located

PL The set of all plocations

transporter The physical entity on which parts move through the system.

Pallets for a conveyor system, AGVs for an AGV system

T The set of all transporters

part carrier The physical entity which allows a part to be placed on a transporter

FPL The set of plocations which do not move. Each element of FPL is

associated with either a material processor, buffer or automated
storage device

MPL The set of plocations which move. Elements of MPL are associated

with transporters

transportation device The physical entity that moves transporters

load points (LP) The set of tlocations where parts are removed from material

transporters and placed in workstations. LP is a subset of TL

 xvi

unload points (UP) The set of tlocations where parts are placed on transporters and
removed from workstations. UP is a subset of TL

transporter movement graph
(TMG)

A directed graph that describes the transportation system. Nodes
represent physical locations where transporters can stop. Arcs
represent possible movements.

transporter movement (TM) Movement of a transporter from a physical location represented by a

node in the TMG to a second physical location represented by a
second node. An arc in the TMG has been traversed.

workstation part movement
graph

A directed graph that describes how parts enter, leave, and move
within a workstation

MPL(LP) The set of movable plocations currently associated with a given load

point. This will change based on the transporter occupying the load
point.

MPL(UP) The set of movable plocations currently associated with a given

unload point. This will change based on the transporter occupying
the unload point.

incompatible transporter
movements

Transporter movements the system can not perform simultaneously.

 1

This dissertation follows the style and format of Journal of Intelligent Manufacturing.

1 INTRODUCTION

Since the late twentieth century, American manufacturing has been facing two major problems: a

shortage of skilled workers in the United States and competition from goods manufactured by workers

receiving lower wages in developing nations. A potential solution to these problems is to increase the

level of automation in the American factory. Increasing automation allows fewer workers to

manufacture more goods and because the worker’s salary is spread over a larger number of goods, the

labor cost per item is reduced, potentially eliminating the cost advantage of the lower wages in

developing nations.

The current efforts in automation are identified as flexible manufacturing systems (FMSs) if they are

limited to the shop floor or computer integrated manufacturing (CIM) if they include front office

functions including computer aided design (CAD) or computer aided process planning (CAPP).

Development of these systems began in the 1970s when automatic material handling systems came

into use (Lee, 1994). Flexible manufacturing has been identified as a “national imperative” by

Rosenfeld (1992) who believes the average United States (US) manufacturing firm is falling behind its

international competitors. Chittipeddi and Wallet (1991) believe that the US trade deficit can not be

eliminated without relying on flexible manufacturing.

Flexible manufacturing systems combine the advantages of the traditional flow-line and job shop

systems, i.e. they have the efficiency of a flow-line with the flexibility of a job-shop. Products can be

manufactured efficiently at low-to-medium varieties and volumes, allowing product mixes and output

levels to be changed with minimal losses in productivity (Gupta and Cawthon, 1996, Li and She, 1994,

Shinichi and Taketoshi, 1992, Haddock and O’Keefe, 1990, Shukla and Chen, 1996).

 2

Unfortunately, CIM systems are “virtually out of reach of most of the small companies that could most

benefit from CIM,” because no commercial software is available to perform integrated control over the

individual shop floor components (Smith and Joshi, 1995). Companies are required to create custom

implementations for each manufacturing system requiring experts in manufacturing, manufacturing

systems, computer programming and networking. Significant costs and expertise are also required to

perform system maintenance or system modifications. This expertise is not readily available in most

small companies. Gupta and Cawthon (1996) were told by a product manager at a machine tool

company that small companies “haven’t even begun employing NC or CNC. Getting into cells would

be too great a technological leap for them.”

In 1987, Naylor and Volz stated software “is the integrated manufacturing problem. The machines,

robots, material transports, and so forth exist, but the software needed to tie them together into

orchestrated flexible robust systems does not.” Gowan and Mathieu (1996) found the major problems

with FMSes were associated with the information flow and control subsystem of the FMS. Liu and

Zhang (1998) observe that software to carry out integrated control over individual shopfloor

components is not commercially available and “rapid generation of shopfloor control software for

integrated control of shopfloors remains a challenge.”

Liu and Zhang (1998) further observe that while various control architectures have been proposed in

the literature, with some of them, most notably the NIST control hierarchy (Jones and McLean, 1986)

and CIM-OSA, becoming “standard,” none of the architectures are adequate. The architectures “are

simply verbose, textual descriptions of the general structure of manufacturing systems. In other words,

these qualitative descriptions provide a conceptual view of system decomposition without providing

the specific details required to formalize the control software requirements for a control system based

on these architectures.”

Simpson et al. (1982) believe, “If flexible manufacturing systems are to become widely adopted in the

discrete parts industry where 87% of the firms employ less than 50 persons than they are today. It

 3

must be possible for a firm to start with an NC machine, add a robot, add another machine, and so on

as capital is accumulated and as the firm's business grows. Systems must also be capable of being

tailored to various part mixes without extensive engineering effort.” In other words, it must be

possible to easily and inexpensively build a control system, and even more importantly, changes to the

control system when a new machine or new product is added, must be easy and inexpensive. The

ability to add new components is described as “expansion flexibility” by Chryssolouris and Lee

(1992). Lawley et al. (1997) note that FMS controllers are usually custom developed, highly complex

and understood by only a handful of skilled technicians, further “much of the knowledge needed to

complete an FMS expansion or modification is not transferred from the vendor to facility personnel or

is forgotten by the time an expansion or reconfiguration is required.” These issues convert the

software controller from the “potentially most capable and flexible system component” into a “major

limiting factor in effective FMS deployment.”

Senehi et al. (1991) have suggested that the goal of research and development in CIM should be to

provide the technologies for the creation of automated or semi-automated factories that function

efficiently and cost effectively. Given that the machines, robots and material transports have been

available for decades and control software is not currently available, research and development efforts

need to be directed toward developing good control software construction tools.

The function of a control system can be stated quite simply. The system state is mapped onto a set of

possible control actions to determine the control actions that should be executed. The system state is

defined by the values of a set of state variables. State variables describe information about the

manufacturing system, such as the number and type of parts in the system and the status of a machine.

Control actions are actions that can be initiated by the controller and that cause the state of the system

to change. Equipment failures cause the system state to change, but are not control actions because

they are not initiated by the control system.

 4

The problems start with the implementation of this simple concept. Three things need to be identified:

the system state, the possible control actions, and the mapping between the system state and the control

actions. Identifying these three items begins with creating a model of the system. One of the

difficulties in developing a model is that the choice of modeling technique and the variables used to

describe the state of the system are linked. The modeling technique must be chosen so that all of the

state information necessary for control is available. Further, the modeling technique must include a

method of describing the control actions that can be applied to the system. An adequate system model

will allow the control actions and the system state to identified. Unfortunately, the model does not

directly provide information about how to map the system state to control actions to achieve a desired

result.

The mapping of the system state to control action has typically been created on a human observation

and experience basis. The simplest way to record this mapping is to use a state table. A state table is

a complete enumeration of all of the possible states of a system based on the state variables. To record

the mapping, the state table is augmented with a set of control actions for each state listed in the table.

There may be some states, combinations of state variables, that are impossible to physically achieve.

These states may be left out of the state table to reduce the size, since no control actions need to be

specified.

Theoretically, any system can be controlled using a state table control system. In practice, the size of

the state table becomes prohibitive. The number of possible system states is a function of the state

variables that describe the system, ∏
=

=
k

j
jbN

1

 where N is the possible number of states, bj is the

number of possible values of state variable j, and k is the number of state variables.

To overcome the state space explosion problem, rule-based control can be used. Rules are of the

form: IF a set of conditions THEN perform these control actions. Each rule combines the states that

meet the conditions in the IF clause. State table control is rule-based control where each rule applies to

 5

only one possible state of the system. The major problem with this rule-based control is the difficulty

in developing good rules. Heuristic scheduling rules were created as an attempt to deal with this

problem. Panwalkar and Iskander (1977) presented a summary of 113 dispatching rules. Although

dispatching rules can provide optimum schedules for small systems, they are generally inadequate.

Drake (1996) reports that the effect of any single dispatching rule varies with system dependent factors

and concludes that a generalized solution is not possible. Combining or dynamically changing

dispatching rules achieves better performance than using a single rule (Herrman et al., 1995, Storer et

al., 1992,1995). A major drawback with dispatching rule research is that it does not deal with the

material handling and material transport aspects of a flexible manufacturing system.

Control software can be cast into the dichotomy shown in Figure 1 (Smith, 1992). Generic software is

software that can be used for a large class of systems without modification. Implementation specific is

split into two categories: automatically generated and hand coded. Automatically generated software

is software tailored for each specific application, but that does not require a human programmer to do

the coding. The necessary source code is created via a computer program from a description entered

by the manufacturing system designer. Hand coded software is software written, debugged, and

maintained by a human computer programmer and is the most expensive.

Ideally, a generic control software could be used and no changes would be required to the control

software when changes were made to the shopfloor. Drake (1996) observes that a number of

researchers have argued that due to the “flexible nature of FMS” and the “inherent differences between

systems,” “generic, optimal seeking solutions may be too difficult to resolve in real-time” and

alternative analysis mechanisms need to be explored.

 6

If a generic control software can not be achieved then the best remaining option is automatically

generated software. When a change is made to the shopfloor (i.e. a new machine or new part type is to

be manfactured), the user updates the description of the shop and then a generation program translates

the revised description into a new controller. The problem that must be overcome to make this feasible

is the creation of an algorithm to generate a good mapping from system state to control actions.

Figure 1 Control Software Dichotomy (from Smith, 1992)

When developing the mapping from system state to control actions, two issues must be considered:

safety and performance. Safety consists of three concepts. The first is the elimination of invalid (and

potentially dangerous) actions, such as unloading a part when there is no transportation device ready to

receive it, causing the part to fall to the floor and be damaged, or trying to load a part onto a machine

that is processing another part, causing both parts and the machine to be damaged. The second is to

make sure the system is not placed into a state of endless cycling. The third is ensuring that all of the

parts to be produced will be produced without placing the manufacturing system into a stalled or

Shop Floor Control Software

Generic Implementation Specific

Automatically Generated Hand Coded

 7

“deadlocked” condition. Lawley et al. (1997) claim that “deadlock has emerged as the paramount

FMS structural concern.”

Cycling occurs when a sequence of control actions is performed and the system returns to a previous

state, i.e. no progress is made. Previous work has emphasized producing a completely acyclical

system, guaranteeing that any part that enters the system will eventually exit it. This ignores the fact

that it may be advantageous for a limited cycle to occur. An example of this case is when a low

priority part is moved so a higher priority part can make use of the resources the lower priority part

was holding. After the higher priority part has completed processing, the lower priority part would be

moved back and reclaim the resources it held before it moved. The low priority part has cycled, but

the cell as a whole has not because progress was made by the higher priority part.

Deadlock occurs when system resources are allocated in a manner that will not allow parts to make

progress. Coffman et al. (1971) identified four conditions that are necessary for deadlock to occur

among concurrent processes (each part in a FMS is a process, multiple parts flowing through the

system equates to concurrent processes):

1. Mutual exclusion: processes require the exclusive use of a resource
2. Hold while waiting: processes hold onto resources while waiting for additional

required resources to become available
3. No preemption: processes holding resources determine when they are released
4. Circular wait: closed chain of processes in which each process is waiting for a

resource held by the next process in the chain

Banaszak and Krogh (1990) note that in FMS applications the first three conditions always hold and

therefore to avoid deadlocks it is necessary to focus on the fourth condition, a circular wait. They used

a simple Petri net model to create a deadlock avoidance algorithm that would guarantee that a circular

wait condition would never exist.

The objective of this research has been to demonstrate that flexible manufacturing control systems can

be feasibly automatically created. To accomplish this a user friendly manufacturing system model

based on three types of graphs was developed. Two of the graph types are used to represent the

 8

workcell in terms of physical locations and the possible movements between physical locations. The

third type of graph is used to represent part process plans. These graphs allow the workcell user to

define all of the information required to generate the control system eliminating the need for a control

engineer to model the system.

The graphs are then algorithmically converted to a particular type of Petri net that is used to interface

with other controllers and maintain state information. An artificial neural net is constructed, where the

input and output layers are specified by the structure of the Petri net. The hidden layers of the artificial

neural net are partially specified by the structure of the Petri net and partially generated as scheduling

knowledge is constructed from the process plans and simulation of the workcell performance. The

weights of the neural net are constrained so that the structure of the neural net represents logical

conditions. Choices among operations are represented by specific weight or node threshold

combinations. A genetic algorithm was used to select specific choices. These choices were then

implemented by setting the appropriate neural network weight or threshold values.

The dissertation is organized to give the reader a brief review of existing manufacturing system control

structures and models and process plan models. Background information on the tools used in this

research (Petri nets, artificial neural nets and genetic algorithms) and a discussion of deadlock are then

presented in section 2. The specifics of the manufacturing system and process plan models used with a

description of the user input requirements are then presented in section 4. The control system and its

construction are then described in section 5 followed by the description of a simple system used as a

test case in section 6. The results of the work are then presented along with suggestions for future

improvements and research possibilities in sections 7 and 8.

 9

2 PREVIOUS RELATED RESEARCH

Related research falls into the following categories: flexible manufacturing control systems,

manufacturing system models, process plan models, Petri nets, and artificial neural nets. This research

is aimed at developing a manufacturing control system. To develop that control system the

manufacturing system and the parts to be manufactured must be modeled. As stated by Adlemo et al.

(1995), “To be able to control the production efficiently, the controller must have an appropriate model

of the manufacturing system, as well as a model for all the products manufactured.” To simplify

implementation, it appears preferable to use a modeling technique that can be used to model both the

manufacturing system and the products produced. Petri nets are such a modeling technique. The

literature has examples of Petri nets being used to model manufacturing systems (see Moore and

Gupta, 1996, for a review of such models) and process plans. This research uses the Petri net and

artificial neural net technologies, applying them in a new manner to the problem of flexible

manufacturing system control.

2.1 Flexible Manufacturing Control Systems

Control systems have generally been organized according to one of four models: centralized control,

hierarchical control, hybrid control, and heterarchical control. Figure 2 (adapted from Duffie et al.,

1988) shows how the control is distributed for the four models. A brief description and an example of

each model will be presented.

 10

Figure 2 Spectrum of Control Distribution (adapted from Duffie et al., 1988)

2.1.1 Centralized control

Centralized control was implemented in the early period of computer controlled automation. All

control decisions were made by one central computer. The major disadvantage of centralized control

is the limited size of the manufacturing system that can be controlled. The significant increase in

available computing power over the last several decades has reduced the severity of this disadvantage.

2.1.2 Hierarchical control

Hierarchical control was developed to overcome the manufacturing system size limitation of

centralized control. In the hierarchical control architecture commands are issued by a central authority

figure (computer). These commands are interpreted by the next lower level in the hierarchy where

they are either carried out (executed) or detail is added and the commands are passed to the next lower

level in the hierarchy, until they reach a level where execution can take place. This architecture is very

similar to the standard business organization.

2.1.2.1 National Bureau of Standards (NBS)

One of the first control models was developed at the National Bureau of Standards (NBS) (Jones and

McLean, 1986) and applied to the NBS automated manufacturing research facility (AMRF). Based on

Localized
Control

Centralized
Control

Heterarchical Hybrid Hierarchical Centralized

 11

an analysis of small batch manufacturing systems they proposed a five level control hierarchy. The

levels from the top down were: facility, shop, cell, workstation, and equipment. The facility level

deals with “front office” functions and is broken down into three major functional areas:

manufacturing engineering, information management, and production management. The shop level

has two major components a task manager and a resource manager. The task manager schedules job

orders, equipment maintenance, and shop support activities, tracks equipment utilization and schedules

preventive maintenance. The resource manager allocates workstations, buffer storage areas, trays,

tooling, and materials to cell level control systems for particular production jobs and monitors the

levels of raw stock, work in progress, cutting tools, and replacement parts inventories. The cell level is

responsible for sequencing batch jobs of similar parts through workstations and supervising the

material handling and calibration support services. The workstation level coordinates the activities of

small, integrated groupings of physical hardware. The typical workstation in the AMRF consisted of a

robot, a machine tool, a material storage buffer, and a control computer. The cell-to-workstation

control interface was designed to be independent of the type of workstation. The equipment

controllers were “front end” systems tied to a particular piece of equipment. The equipment controller

interfaced with the workstation controller and the vendor supplied controller that came with the piece

of equipment. The equipment controller translated the workstation commands into a sequence of

simple commands the vendor controller can understand. They suggest that it may be possible to

partition equipment controllers into two parts: a high level controller that is hardware independent that

performs task decomposition, and a low level controller that is hardware dependent that monitors task

execution. Controllers were implemented using state tables. They note that a “uniform control

architecture” is possible independent of the data required to make a particular part. The process

planning system was used to specify not only “all of the machining activities to produce a particular

part, but also all robot handling sequences, feasible routings, fixturing, and raw materials.”

 12

2.1.2.2 Wysk and Smith formal functional characterization

Wysk and Smith (1995) describe a shop floor control system (SFCS) with production requirements

and resources as the primary inputs. The output is a set of individual equipment processing

instructions that will allow the manufacture and transport of the parts specified in the production

requirements. The production requirements consist of administrative and technical requirements. The

administrative requirements consist of the number of parts that should be manufactured and are

supplied by the shop-wide planning function. The technical requirements include the processing

requirements specified by the process plan and any special handling or environmental requirements.

The process plans are represented as AND/OR digraphs. Resources are non-permanent items such as

tooling and fixturing. The process plans for each part that needs to be manufactured are connected via

an AND junction to create a composite graph that is used for control. A task graph is an AND/OR

graph that describes the requirements for individual features of a part. In general, a task graph would

correspond to a single node in a process plan.

A factory model describes the equipment within the shop and the relationships between the equipment.

Their factory model is based on the equipment classification scheme of Smith (1992). A key point is

that the factory model is independent of the parts that are produced in the factory.

They suggest that a controller’s functionality can be partitioned into planning, scheduling, and

execution. Where planning is defined as selecting the tasks the manufacturing system will perform,

scheduling is identifying a “good” sequence for performing the tasks based on some performance

criteria, and execution is performing the tasks by interfacing with the physical equipment (and possibly

other external business systems). They observe that no formal description of the distinction between

planning and scheduling has been provided by the research community. Using their formalism of a

shop floor control system, planning becomes the “DeOring” of the process plan graph, this represents

the selection of a specific set of operations to complete the parts. Scheduling becomes “DeAnding”

the process plan graph, this represents selecting the sequence of operations to complete the parts.

 13

2.1.3 Heterarchical control

In the heterarchical control architecture, decisions are distributed. There is no central authority. Each

machine determines its next operation based on information available locally. Global optimization can

not be performed because no machine knows the complete state of the system. The advantages offered

are reduced controller complexity, increased modularity and fault tolerance. These advantages are

expected to lead to reduced software development costs and improved maintainability and

modifiability.

2.1.3.1 Duffie et al. heterarchical control

Duffie et al. (1988) demonstrated a system consisting of a machining cell and an assembly cell. The

cells consisted of a combination of actual equipment (robots) and simulated equipment (machining

stations). They summarize the development process as:

1. Construct initial system using simulated machinery

2. Operate and debug system using simulated machinery

3. Add machine interfaces to an entity

4. Operate system with newly interfaced machine

5. Repeat 3 and 4 until all machines have been interfaced

6. Operate and debug system with actual rather than simulated

machinery

They note the ability to mix simulated and actual equipment allows proposed system additions to be

studied prior to bringing in the new hardware.

Six design rules were used to “produce a system of cooperating autonomous entities with a high level

of intrinisic modifiability and fault tolerance.”

1. Entities should possess the highest achievable level of local

autonomy

 14

2. Master/slave relationships should not exist between entities

3. Entities should cooperate with other entities whenever possible

4. Entities should assume that other entities will not cooperate with

them

5. Entities should delay establishing relationships for as long as

possible

6. Entities should terminate relationships as soon as possible

These principles are based on the principle of minimizing “global information,” where global

information is defined as any information that is not confined to a single entity. Global information is

considered undesirable because “global information and complex relationships between entities makes

modification expensive, prone to introduction of logical errors, and often not achievable in the field.”

Software for entities in the system was divided into two major components, a controller and a

communicator. The controller implemented the control logic and functioned as a state machine

synchronized with the hardware associated with the entity. The communicator allowed asynchronous

message exchange between entities. The communicator is event driven where events are messages

from the network and signals from the entity controller. To achieve fault tolerance, two principles

were applied in developing the entities:

1. The entity should not be required to respond to any message it

receives; and

2. the entity should assume that transmitted messages will not be

responded to by other entities.

The following categories of entities were used: parts, pallets, part processing, material handling robot,

and human. Pallets entities contained the part intelligence in the manufacturing system described.

Each pallet was responsible for moving through the system according to the plan for manufacturing the

parts fixtured to it. Multiple types of pallet entities were required. Part processing entities (machine

 15

tools, assembly robots, inspection stations and input / output stations) are responsible for

communicating with other entities, forming relationships with pallets, and translating process requests

into detailed sequences of processing control actions for the hardware associated with the entity.

Material handling robot entities respond to transportation requests from pallets and recognize the

names of stations within their reach. Robot entities are required to coordinate actions if movement is

between cells. Human entities were included as advice givers. The human was used to resolve

“complex faults,” such as, machine failures and “deadlocks caused by ‘circular’ relationships between

part processing and pallet entities.” Fault messages generated by other entities in the system were

routed to the human entity. After diagnosing the fault, the human would send advice to the entity (e.g.

“Continue”, “Go to output station”) on how to correct the fault.

2.1.4 Hybrid control

Hybrid control is an attempt to obtain the advantages of hierarchical control (potential global

optimization) and heterarchical control (redundancy, flexibility) in a single system.

2.1.4.1 Liu and Zhang hybrid control architecture

Liu and Zhang (1998) propose a three level control architecture: shopfloor, agent, and equipment. The

equipment level represents a direct mapping of permanent physical equipment, and is the same as that

proposed by Smith and Joshi (1995), Jones and McLean (1986), Jones and Saleh (1990), and Cho and

Wysk (1995). A formal description of the equipment level is given. “An agent is defined by the

aggregated function classes of shopfloor equipment wherever these pieces of equipment are located in

the shopfloor.” Five types of agents are identified: 1) machining processing (MP), 2)

loading/unloading (LU), 3) workpiece-flow (WF), 4) tool-flow (TF), and 5) automated storage (AS).

Agents are also categorized into client agents (MP, LU, AS) and server agents (WF, TF). The agent

level is defined as

AL = {ALi | i = 1,…, nal} where

 16

ALi = (APi, AUi, AWi, ATi, AAi), a quintuple, known as a multi-agent co-operative cluster.

APi, AUi, AWi, ATi, AAi are couples of the form (ACi, AGi) where ACi is an agent controller and AGi

is an agent (MP, LU, WF, TF, or AS).

A shopfloor SF is defined as SF = {SC, AL} where SC is a shopfloor controller.

Except for the equipment level controllers, the controllers are “independent of the physical structure of

the actual shopfloor environment.” The shopfloor controller controls the flow of physical material

through the shop by assigning tasks to the client agents of a co-operative cluster. The client agents

“then request server agents within the same co-operative cluster to provide services and co-operation.

Each agent autonomously makes its own decision with its local knowledge base about the shopfloor

and controls its relevant equipment.” The agent level acts at the same level as the more traditional

workstation controller. The differences between agents and workstation controllers are the agent does

not control a fixed set of equipment like the workstation controller and agents can communicate with

each other, where workstation controllers can only communicate with the controllers above and below

them.

2.2 Manufacturing System Models

The Wysk et al. (1995) resource model defines resources (R) to consist of equipment (E), tools (T),

fixtures (F), transporters (N) and instruction sets (I). The equipment is subdivided into: material

processors (MP) which include part transformation equipment and storage, material handlers (MH)

which are part transfer devices, and material transporters (MT) devices which “move products from

location to another location.” Tools are the end-effectors that actually perform a task. Fixtures are

devices for “precisely locating and securing a part or set of parts.” Transporters are devices for

“locating and securing a part or set of parts.” Instructions are a “set of commands that instruct a piece

of equipment to perform some task.” Not considered a resource but defined in the model are ports (P)

and locations (L). Ports are subdivided into mports and tports where mports are associated with MP

 17

equipment and tports with MT equipment. Locations are places inside a port where a part can be

located. Locations are said to have owners and clients, but a description of how this information is

used is not provided. The model includes a graph representation of part movement possibilities (the

description of the graph is buried in the definition of the ports). Facilitators are defined as, “A device

(from MT or MH) that can move transporters between tports, move parts between tports, or move parts

between tports and mports.” This definition leaves out the possibility of being able to move parts from

machine to machine directly (mport to mport).

Ezpeleta and Colom (1997) partition a FMS into processors and handlers, where processors transform

parts and handlers transport parts but do not affect them. Storage systems are considered handlers.

Liu and Zhang (1998) partition equipment (EL) into active (E) and passive (E’). Active equipment

requires an equipment controller (EC) and consists of machines with machine controllers (MC). The

set EC is partitioned into material processors (EP), material handlers (EH), loading/unloading devices

(EM) and automated storage devices (EA). Passive equipment does not require an equipment

controller and consists of buffer units that are subdivided into buffers for parts (BP) and buffers for

tools (BT). A partial ontology is presented providing a description of the EP and EH classes of

equipment. The EP equipment class has two properties, structure (SP) and control (CP). SP has two

aspects local part storage capacity (PS) and tool storage (TS). Two types of ports describe the

interface to external equipment, part ports (PP) and tool ports (TP). CP describes the exchange mode

when interacting with external equipment. Three modes exist: active, the EP equipment controls the

exchange; passive, the exchange is controlled by external sources; and interactive, both the EP and the

external equipment is involved in the control during an exchange.

For EH equipment the ontology has three properties: the structure property (SH), representing the

maximum number of units handled per transaction and the capacity of each unit; the control property,

which has the same three modes as the EP class, and the reachability property, the set of locations

reachable by the piece of EH equipment.

 18

Activity cycle diagrams (ACD) are constructed to identify controllable activities and interaction

processes for equipment controllers. The command sets vary with the structure of the equipment (how

the buffers and part ports are arranged).

Adlemo et al. (1995) describe a “resource capability model.” Resources can be grouped together to

create a virtual resource for the next higher level in the hierarchically organized system. Resources are

divided into three groups:

1. Producers – these devices make changes to the physical or logical properties of the product, e.g.
CNC machines and measurement devices

2. Locations – products are stored, no changes to the products properties are allowed
3. Movers – products are transported between producers and locations e.g. AGVs, robots, conveyors

Comparing the manufacturing system models we find the following commonalities. All models have a

category of equipment that produces changes to parts in the system. All models have a category of

equipment that moves parts. Wysk et al. (1995) subdivide the movement category into material

transporters (MT) and material handlers (MH). Liu and Zhang (1998) also subdivide the category

using the terms material handlers (EH) and loading/unloading devices (EM). The MT and EH

categories and the MH and EM categories appear to be the same.

The point where significant differences occur between the models is the handling of storage equipment

and buffers. Wysk et al. (1995) include storage systems in the material processor category and do not

include buffers (storage without an equipment controller) in the model. Ezpeleta and Colom (1997)

also neglect buffers, but place the storage system in the equipment that moves parts (handling)

category, not the equipment that changes parts category. Liu and Zhang (1998) include separate

categories for automated storage systems (EA) and buffers, where buffers do not require an equipment

controller and are subdivided into buffers for parts (BP) and buffers for tools (BT). Adlemo et al.

(1995) have a location category for part storage.

 19

Additionally, the concept of ports, as places where interaction between categories of equipment occurs,

is presented in Wysk et al. (1995) and Liu and Zhang (1998).

2.3 Process Plan Models

The function of a process plan is to describe the steps required to transform raw material into a finished

product. There is no standardized method of representing a process plan for use with a control system,

methods that have been used in the literature include: operations lists, digraphs, AND/OR graphs, Petri

nets.

Smith (1992) uses a graph that shows precedent constraints and alternative routings adapted from

Metalla (1989). Each node in the graph represents a specific operation or set of operations performed

by a machine. Each arc represents movement of the part from the machine represented by the tail of

the arc to the machine represented by the head of the arc. Any path through the graph (from start node

to finish node) represents a feasible processing route for the part. Hierarchical construction of the

graphs showing various levels of detail is proposed with the levels mapping to the hierarchical control

structure used. By assigning costs to the nodes and arcs in real-time based on current shop conditions,

the shortest path can be used to find an optimum processing route. Smith et al. (1992) describes an

application of this approach.

Kempenaers et al. (1996) discuss the use of non-linear process plans (NLPP) in a collaborative process

planning and scheduling system. The system was not intended for use in a fully automated system.

The NLPPs provide the scheduler with a set of alternative process plans in an AND/OR graph. An

enhanced Petri net model was used to represent the AND/OR graph. Citing others, they report that for

constant WIP, productivity can be improved 7.5% and lead-time decreased by 7% by using NLPPs

instead of the standard linear process plan. For constant productivity, WIP can be reduced by 25%.

Wysk et al. (1995) present a “formal process planning schema” which includes a manufacturing

systems resource model. Process plans are represented as AND-OR graphs (a form of NLPP). Nodes

 20

in the graph must be defined in terms of the resource model. “Each node in the graph has an NC file

and the associated tooling, fixturing, location, orientation, and processing instructions for creating the

feature represented by the node.” A description of how this is implemented is not available and the

example process plan does not include the information.

Ezpeleta and Colom (1997) model parts with process plans that contain only processors. This contrasts

with the working processes of Ezpeleta et al. (1995), which describe “the set of possible sequences of

operations the system has to perform in order to manufacture a product” and include the material

handling operations.

Adlemo et al. (1995) describe products by operations lists. The assignment of resources is done by

synchronizing a state-machine representing a product operation list with a state-machine representing

the resources. The system state is maintained by “a set of concurrently executing state automatons.”

They state the state information “should be separated from the information that tells the control system

what to do when the system has reached a certain state.” The “what to do” information is separated

into routing and control information. The routing information is created based on the product

operation model and a resource capability model. Control information (which is not discussed in the

paper) consists of the detailed instructions for the resources, “e.g. which NC programs to run.”

2.4 Petri Nets

Petri nets were first described in a Ph.D. dissertation by Carl Petri (1962). The standard references are

Peterson (1981), the first book to cover them, and Murata (1989). Many variations have been

proposed to the original theory. The most significant of these variations are the addition of

deterministic time, Ramchandani (1974), stochastic time, Florin and Natkin (1982), Molloy (1982),

color, Jensen and Rozenberg (1991), Jensen (1992), hierarchy and events. Petri nets consist of 4

primitive elements: tokens, places, transitions, and arcs, and the rules that govern their operation.

 21

“A Petri net is a particular kind of directed graph, together with an initial state called the initial

marking, M0” Murata (1989). The arcs in the graph have weights associated with them. The weight

indicates the number of tokens that must be in the place at the tail of the arc for the transition at the

head of the arc to be enabled. An arc with a weight w (w-weighted) arc is equivalent to a set of w

parallel arcs with a weight of one. A marking assigns a non-negative integer k to each place, where k

represents the number of tokens contained in the place. A marking is denoted by an m-vector, M,

where m is the total number of places in the Petri net. M(p), the pth component of M, is the number of

tokens in place p (M(p) = k). A Petri net is said to be pure if it does not contain any self-loops. A self-

loop occurs when a place is both an input and an output place for a transition t. A Petri net is called

ordinary if the weights of all of the arcs in the net are equal to one.

Table 1 contains some typical interpretations of transitions and places. In modeling FMSs, input

places would represent either preconditions or resources needed. Transitions would represent events or

tasks and output places would represent postconditions or resources being released. The

interpretations are somewhat interchangeable. Consider a robot that is to load a machine, one can say

that for the load operation to take place one needs the resources of a robot, a machine and a part, or one

can say that the following conditions must be true, a robot is available, the machine is available and a

part is available.

Table 1 Some Typical Interpretations of Transitions and Places (from Murata, 1989)

Input Places Transition Output Places
Preconditions Event Postconditions
Input data Computation Step Output data
Input signals Signal Processor Output Signals
Resources needed Task or Job Resources released
Conditions Clause in Logic Conclusions
Buffers Processor Buffers

 22

The dynamic behavior of a system is simulated by changing the marking of the Petri net using the

following firing rule assuming each place can hold an infinite number of tokens, i.e., the net is an

infinite capacity net (Murata, 1989):

1) “A transition t is said to be enabled if each input place p of t is marked with at least w(p,t) tokens,
where w(p,t) is the weight of the arc from p to t.

2) An enabled transition may or may not fire (depending on whether or not the event actually takes
place).

3) A firing of an enabled transition t removes w(p,t) tokens from each input place p of t, and adds
w(t,p) tokens to each output place p of t, where w(t,p) is the weight of the arc from t to p.”

Nets where the places are limited in capacity are called finite capacity nets. Each place has an

associated capacity K(p), the maximum number of tokens that p can hold at any time. For finite

capacity nets an additional condition must hold for the transition to be enabled:

4) The number of tokens in each output place p of t cannot exceed its capacity K(p) after firing t.

When all four conditions are included, the firing rule is called the strict transition rule. Without

constraint 4, the rule is called the (weak) transition rule. It is possible to transform a finite capacity net

by adding complementary places to allow the weak transition rule to be used instead of the strict

transition rule.

Petri nets can be used to represent finite-state machines. Petri nets representing finite-state machines

are distinguished by the fact that each transition has exactly one incoming arc and exactly one outgoing

arc. State machines allow representation of choice (also referred to as conflict or decision), but do not

allow the synchronization of activities in parallel. Systems with choice are non-deterministic.

Petri nets that allow representation of concurrency, events occurring in parallel, but not choice are

called marked graphs. Marked graphs are distinguished by the fact that each place has exactly one

incoming arc and exactly one outgoing arc. Confusion exists when a situation involving both conflict

and concurrency occurs.

 23

Moore and Gupta (1996) surveyed the literature to determine what type of automated manufacturing

systems had been modeled using Petri nets, what type of Petri nets had been used and what results

were available. They found 53 published models, 17 were flexible manufacturing systems. No models

incorporated variable process sequencing. Five categories were used for the type of manufacturing

system being modeled: Flow shop, automatic transfer line, job shop, flexible manufacturing system,

and assembly operations. The five categories were characterized by their scope (the diversity of job

types handled) and their scale (total volume of jobs). Six categories of manufacturing of

manufacturing elements were identified: workstations (WSs), material handling systems (MHSs), jobs,

storage, other resources, and other constraints. Three categories of Petri nets were used: classical Petri

nets, timed Petri nets (both deterministic and stochastic nets) and high level or colored Petri nets. Two

categories of analysis were identified: qualitative or structural analysis and quantitative analysis.

Qualitative analysis deals with the behavioral properties of the untimed Petri net (reachability,

boundedness, liveness, reveribility, and coverability), while quantitative analysis deals with

performance over time (manufacturing lead time, work-in-progress, machine utilization, MHS vehicle

utilization, throughtput and capacity).

The FMS models described appear to have all of the control functions integrated into the Petri nets.

No descriptions of the controllers are given. When available performance measures were generated

from simulating the Petri net with the exception of Chan and Wang (1993) who use a Markov chain.

Chan and Wang were limited to a model of four stations and five parts because of state space

explosion.

Moore and Gupta (1996) identify four reasons that Petri nets have not been fully exploited in the

domain of flexible and automated manufacturing: 1) using Petri nets to analyze structural properties of

the manufacturing system requires use of a class of Petri nets that suffers from state-space explosion,

2) most models represent specific systems, little attention has been given to developing generic

models, 3) the theory for composing large models from components has only been developed for

 24

limited classes of Petri nets, 4) classical Petri nets are extremely powerful as a modeling tool, but are

difficult to apply to large-scale problems.

Ang and Bundell (1996) used a timed Petri net to control a model FMS consisting of three robots and

three pairs of conveyor belts with sensors. Timing information was associated with the Petri net arcs.

Transitions were associated with actions and places with events. Each robot and pair of conveyor belts

and two sensors were controlled using an AX5216 card inside a 386DX personal computer running

Linux. The Petri net controller ran on a SUN Sparc 5 running the Solaris operating system.

Communication between the controllers was accomplished via the transmission control protocol

(TCP).

To accommodate the potentially very large size of Petri net required to model real world systems in

detail the Petri net system used allowed a hierarchical model to be created. Places in the Petri net

could be decomposed into child Petri nets. Firing a transition was associated with a sending a

command via TCP to a remote controller. Incoming event signals were compared to the set of places

that expected token arrivals. Places that expected token arrivals were places that held “virtual tokens.”

A virtual token resided in a place but was not available to activate the transition following the place

until the delay associated with the arc the token had crossed expired.

The Petri net was manually designed so that all known deadlock states were eliminated. They found

that their hierarchical system where only places could be decomposed was not flexible enough,

because subsystems with multiple inputs and outputs were very common. Their Petri net developer

was being redesigned to allow decomposed blocks to begin and end with multiple transitions and their

simulator was being extended to allow colored tokens.

2.5 Artificial Neural Nets

The premise for developing artificial neural nets was the observation that humans can do some things

that serial digital computers have a difficult time dealing with (e.g. pattern recognition). This led to a

 25

study of the structure of the human brain. “The human brain is made up of a vast network of

computing elements, called neurons, coupled with sensory receptors (affectors) and effectors” (Bose

and Liang, 1996). The brain contains approximately 10 billion neurons and 90 billion cells providing

support for the neurons. The neurons interact with each other via synapses with the average neuron

receiving signals from thousands of synapses. The neuron cell bodies tend to occur in layers with the

outputs of one layer providing inputs to another layer.

The following organizational and computational principles are employed by the brain (Bose and Liang,

1996):

1) Massive parallelism, 2) A high degree of connection complexity, 3) Trainability, 4) Binary states

and continuous variables, 5) Numerous types of neurons and signals, 6) Intricate signal interaction, 7)

Physical decomposition, 8) Functional decomposition. A large number of simple slow units are used.

The units are connected to a large number of other neurons in complex interaction patterns, yielding a

huge number of variables. The connection patterns and strengths of the connections are changeable as

a result of accumulated experience. The neurons have two states: resting and depolarization (an

electrical pulse is traveling the neuron changing the polarization of the neuron). However, the

potentials, synaptic areas, ion and chemical density of the brain are continuous and vary continuously

in time and space. The brain uses different types of neurons with different signal types. The

interaction of impulses at a neuron is non-linear and depends on multiple factors. The brain is

organized as a collection of subnetworks. The subnetworks are sets of densely connected neurons.

Neurons in the subnetworks are assumed to be only sparsely connected to distant neurons. Specific

functions are assigned to specific areas (subnetworks) of the brain.

There are many neuron connection patterns in the human central nervous system. The three major

connection patterns are: divergent connections, convergent connections, chains and loops. Divergent

connections involve the output of one neuron being transferred to the inputs of many neurons.

Convergent connections involve the output of many neurons being connected to the input of a single

 26

common neuron. Chains involve a series of neurons with the output of a given neuron connected to

the input of the next neuron in the series. Loops involve a series of neurons arranged as a chain where

at some point the output of a neuron is connected to the input of a neuron earlier in the chain.

Modeling the exact performance of the neuron found in the human brain presents a problem that is

analytically intractable. To make artificial neural networks practical, simplified models have been

used. The first neuron model to obtain wide recognition was that of McCulloch and Pitts (1943). The

McCulloch Pitts neuron is a two-state machine. Each neuron (or “cell”) has a single output called the

output fiber of the cell. The output is allowed to branch after the leaving the cell. Each branch must

ultimately terminate at the input connection of a cell. The model allows the output of a cell to be

directed back as an input to the same cell. Output fibers are not allowed to merge or fuse together.

The terminations of the output fibers are one of two types: excitatory and inhibitory.

The cell is a finite state machine and operates in discrete time instants. At each instant, the cell is

either firing or quiet, the two possible states of the cell. Each state has an associated output. The

outputs are conveniently labeled pulse for the firing state and no pulse for the quiet state. Each cell has

associated with it a threshold that determines the state transition properties of the cell. At time instant

k+1, the cell will fire if and only if, at time instant k, the number of active excitatory inputs equals or

exceeds the threshold and no inhibitor input is active. An alternative formulation is to have the cell

fire if the difference between the excitation and inhibition exceeds the threshold.

This work was further developed to create threshold logic units (TLUs) with adjustable weights. The

TLU has n inputs, x1,x2,…, xn, and an output y (see Figure 3). There are n + 1 parameters, namely the

weights (w1, w2, …, wn) and a threshold θ. The TLU computes an output value at discrete time

instants k = 1,2,…, according to Equation 1. The inputs at the current time instant, xi(k), are used to

compute the output value for the next time increment, y(k+1).

 27

Figure 3 Threshold Logic Unit

⎪⎩

⎪
⎨
⎧

≥=+ ∑
=

otherwise

kxwifky
n

i
ii

0

)(1)1(1
θ

where positive weights wi > 0 represent excitatory synapses and negative weights wi < 0 represent

inhibitory ones. A bipolar variant of Equation 1 where the zero is replaced by –1 is also commonly

used. Another common variation is to use a small positive number (e.g. 0.1) instead of zero as the

non-firing output value. This generally speeds up convergence of learning algorithms since it allows

the weights connected to the output of the neuron to be updated when the neuron is not firing.

Noting that a real neuron is better described by differential equations than by the discrete time

transitions used by TLUs, a neuron model with a continuous transfer function is widely used. This

simple model ignores capacitance effects and leakage current in the neuron. The instantaneous input xi

to the ith neuron is defined as the mean effects of its excitatory and inhibitory synapses and threshold.

∑
=

−=
n

j
ijiji ywx

1
θ ,

where wij are connection weights, yj is the output of neuron j, θi is the threshold of neuron i. The

output yj of a neuron represents the short-term average of the firing rate and is given by:

Equation 1

Equation 2

Input x1

y

w1

Input x2

Input x3

Input xn

w2

w3

wn

θ

 28

yj = f(λxj), where λ is a positive number.

The transfer function can be defined for the unipolar case or the bipolar case, where

)exp(1
1

i
i x

y
λ−+

= is the unipolar, or logsigmoid form and

1
)exp(1

2
−

−+
=

i
i x

y
λ

 is the bipolar or tansigmoid form.

Both of these transfer functions approach the TLU function as λ approaches ∞.

While the TLU is a very simplified model of a neuron that fails to capture the stochastic spatial and

temporal complexities of neuronal information processing, (see McKenna et al., 1992, and MacGregor,

1987, for a discussion of other neuron models) it can compute any logical (Boolean) function (Bose

and Liang, 1996). FMS control systems are only required to generate a control action when the system

state changes. Further, the selection of a control action can be written as a set of logical conditions.

The worst-case scenario is one rule for every state the system can occupy, i.e. a state table. Therefore,

the TLU neuron model is appopriate for FMS control.

A TLU can be used as either a multi-input “OR,” a multi-input “AND” gate or an inverter. These

gates are created by adjusting the threshold of the neuron and use input weights of one or negative one.

These three types of gates can be combined to represent any Boolean equation. To create an “OR”

gate, all input weights are set to one and the threshold is set to 0.5. Figure 4 shows a TLU configured

as a two input “OR” gate. If any single input is on (input value equals one), the sum of the inputs will

be greater than the threshold and the neuron will produce an output of one. To create an “AND” gate,

Equation 3

Equation 4

 29

all input values are set to one and the threshold is set to n minus 0.5 where n is the number of inputs to

the neuron. The TLU in Figure 4 could be converted to a two input “AND” gate by changing the

threshold value to 1.5. If all inputs are on, the sum of the inputs will be greater than the threshold and

the neuron will produce an output of one. To create an inverter, a TLU with a single input is used.

The weight is set to minus one and the threshold is set to minus 0.5. When the input is zero, the sum of

inputs will also be zero and exceed the threshold generating an output of one. If the input is on, the

sum of inputs will equal minus one and be below the threshold, so the output will be off.

Figure 4 A Two Input OR Gate

Any Boolean equation can be written in the following form: O = Σ (Π Ik) where Ik can be either an

input or the inverse of an input, the Σ represents an “ORing” and the Π represents an “ANDing.”

Based on this representation a feed forward network with four layers can be used to represent any

Boolean equation. The four layers are an input layer, a hidden layer that is used to provide input

inverses, a second hidden layer that performs “ANDing,” and an output layer that performs “ORing.”

Training a neural net consists of systematically selecting a set of weights to achieve the desired outputs

for a set of inputs. Training techniques fall into three categories: unsupervised learning, reinforcement

learning, and supervised learning. In the unsupervised category, no feedback is given regarding the

quality of the output for a given input. In reinforcement learning, general feedback is given about the

quality of the solution, e.g. the value of an objective function. In supervised learning, information

regarding the error in each output is supplied. Supervised learning requires that a set of known desired

outputs be available for each set of input values supplied to the neural network.

Input x1 yw1=1

Input x2

Θ=0.5

w2=1

 30

Huang and Zhang (1994) examined the use of artificial neural nets in manufacturing. They found

neural nets had been applied to the following areas: design, process planning, scheduling, process

modeling and control, monitoring and diagnosis, quality assurance, group technology and robotics.

Examples include retrieving old product designs that met current requirements, Venugopal and

Narendran (1992), Kamarthi et al. (1990), Kumara and Ham (1990), Kumara and Kamarthi (1991);

predicting the most probable number of forming steps for cold forging Osakada et al. (1990), Osakada

and Yang (1991a, 1991b); recognizing features Hwang and Henderson (1992); and generating

machining operation sequences given a feature Knapp and Wang (1992a, 1992b). An Integral Linear

Programming Neural Network (ILPNN) was used to solve job shop scheduling problems formulated as

a linear programming problem (Foo and Takefuji, 1988).

Zhang et al. (1997) present a method for “automatic induction of parsimonious neural networks.”

They state, “The search space for neural network induction consists of two levels. One is the space of

all possible network architectures (models). The other is the space of all possible weight

configurations for a given architecture (parameters).” However, it is not possible to evaluate an

architecture without assigning weights and a weight vector cannot be evaluated without knowing the

architecture. This makes it necessary to interleave the optimization of the weights and architecture.

They use a tree structure, NT(d,b) which denotes the set of all possible trees with maximum depth d

and maximum branches b for each node. The root node is the output unit and the terminal nodes of the

tree are the input units. All other nodes are hidden units. The layer of a node is defined as the longest

path to a terminal node in its subtree. Two types of neurons were used: sigma units which summed the

weighted inputs and pi units multiplied the weighted inputs. Any feedforward network can be

represented by using a forest of neural trees. Genetic programming was used to evolve the trees. A

crossover operator selected a subtree from Parent B to replace a subtree in Parent A. Local search was

used to tune the weights of the network after the structure had been changed. They found that neural

trees performed as well as or better than backpropagation networks and required fewer elements.

 31

2.6 Genetic Algorithms

Genetic algorithms were first presented by Holland (1975). Solutions to a problem are represented by

strings of alleles (values found at a location) called chromosomes or genomes. A population of

solutions is created and each solution evaluated by some fitness measure. Some subset of solutions is

then selected to generate a new population of solutions. Solutions are generated using crossover where

portions of the chromosome from a set of parents is combined to form the a chromosome or mutation

where a single parent chromosome is randomly changed. The selection of a good crossover operator

may mean the difference between a genetic algorithm that works and one that doesn’t. A problem with

using genetic algorithms for scheduling is ensuring the feasibility of a schedule. If the schedule is used

as the chromosome, then a simple crossover operator will not generate a correct schedule. Consider

the following four job sequences: A, B, C, D and C, D, A, B. If a simple crossover is performed taking

the first half of the first sequence and the second half of the second sequence, the resulting sequence is

A, B, A, B. This is clearly not a valid sequence since two of the operations are performed twice and

two are not performed at all.

Three common variations of the genetic algorithm are simple (non-overlapping populations), steady-

state (overlapping populations) and struggle (overlapping populations) (Wall, 1996). In the simple

variation all of the members of the population are replaced with each generation. To prevent the

algorithm from forgetting the best solution that has been found, the best individual solution is typically

carried forward to the next generation (referred to as elitism). The steady state variation replaces only

a portion of the population each generation. The solutions that are replaced are those with the worst

fitness factor. This variation converges to a solution faster than the simple solution but is more likely

to be trapped in a local minima than the simple variation. The struggle variation is similar to the

steady state version but instead of the new solutions replacing the solutions with the worst fitness

factor, they replace those with which they have the most similarity. Where a similarity measure (or

distance function) represents how different two individuals are either in terms of their chromosome or

of their characteristics in the actual solution space.

 32

Storer et al. (1992,1995) discuss using meta-heuristics, which include genetic algorithms, based on

problem and heuristic spaces. Problem spaces are created by modifying the problem data, e.g.

processing times. Heuristic spaces are created by modifying the basic heuristic being used to solve the

problem. Two methods of parameterizing the heuristic are presented. The first is based on a weighted

combinations of dispatching rules (see Panwalkar and Iskander, 1977) and the second on using one

dispatching rule for a fixed number of scheduling decisions and then changing the dispatching rule and

using it for the next set of scheduling decisions. They found that using 20 scheduling windows and six

heuristics gave good results for problems involving 100 to 500 operations. They used a population

size of 50 with 20 percent asexual reproduction (direct transfer of an existing solution) and 80 percent

sexual reproduction (crossover from two parents). A mutation probability of 0.15 was used to

maintain diversity. For the problem space, the mutation operator added a Uniform(-50,50) deviate to

the dummy processing time. For their test problems, they found that a genetic algorithm operating in

problem space generated the best solutions.

Hemant Kumar, and Srinivasan (1996) applied a genetic algorithm to solve a static job shop problem

using data from a real production shop. The shop had 80 jobs and 59 machines. The number of

operations per job varied from 2 to 37. They parameterized the problem using an adaptation of the

second method proposed by Storer et al. (1992, 1995) as discussed above. Seven dispatching rules

were considered. Each rule was used for one scheduling decision and a fixed length string of 10 rules

was used. When the number of scheduling decisions was larger than the length of the rule string, the

string was restarted. The rule that was used for the scheduling decision was the one occupying

position s where s equals (scheduling decision number) modulo n. They reported computer-processing

times of less than four seconds for a simple dispatching rule and 998 seconds for their genetic

algorithm to schedule a “single batch of 1000 items.” They did not report the type of computer used.

After evaluating the fitness function of the initial population of 50 chromosomes, they created a mating

pool of 100 chromosomes by randomly selecting from the initial 50 and accepting the chromosome if

its acceptance probability (1 – the cumulative distribution of the fitness value) exceeded a randomly

 33

generated number between 0 and 1. The next population was generated using single point crossover

(30 percent), two point crossover (40 percent), inversion (28 percent) and mutation (2 percent). The

crossover operations are sexual where single point crossover was defined as the exchange of alleles

between two chromosomes from a randomly chosen point to the end of the chromosome and two point

crossover as the exchange of alleles starting at a randomly chosen point and ending at a randomly

chosen point instead of the end of the chromosome. Inversion and mutation are asexual where

inversion is the reversal of the order of alleles between two randomly chosen points on a chromosome

and mutation as the random interchange of values in two positions. Offspring are created and

evaluated for fitness. The offspring are accepted into the next generation if their fitness value is better

than the mean of the previous population.

Herrman et al. (1995) describe a scheduling system called GAGS (Genetic Algorithm for Global

Scheduling). GAGS was applied to an actual semiconductor test facility where schedules are created

at the beginning of each 8-hour shift. The semiconductor test facility is a dynamic job shop

environment with a rolling horizon that made dividing the decisions into a fixed number of decision

windows impractical. Scheduling heuristics were assigned to machines instead of time windows. A

policy consisted of a combination of heuristics one for each machine. The fitness of the policy was

evaluated using a deterministic simulation of the facility. The frequency of the scheduling was limited

by the data collection capability of the company’s computer integrated manufacturing system, which

could only provide work in progress (WIP) extracts once per shift. They found, “the ability to

accurately model the test area and automatically compute a shift schedule was just as important to the

test area as the ability to find better schedules.” Use of GAGS improved on-time delivery from 75-85

% to 90-96% and reduced the time required for creating shift schedules from 120 hours per week to 15

hours per week.

Wall (1996) presents a method of using genetic algorithms for resource constrained scheduling. The

genome has two pieces of data at each location: the time to delay after the completion of the last of the

 34

predecessors of the task and the operation mode to use to complete the task. The operation mode

represents alternative sets of resources that can be used to complete the task. The method performed

best for multi-modal project plans and poorly for job shop problems. The author believed the relative

time representation did not work well for the parallel nature of the job shop. The struggle genetic

algorithm found better solutions but required more execution time than the steady-state genetic

algorithm. The struggle algorithm also always found a feasible solution while the steady-state

algorithm did not.

2.7 Deadlock

Wysk et al. (1991) argue that deadlock is a significant problem in flexible manufacturing system

(FMS) control that “has been ignored by most research in scheduling and control.” They note that

deadlocks can occur in any “direct-address” FMS, where a “direct-address” FMS employs a “direct-

address material handling system such as a robot or a shuttle cart (as opposed to a material-handling

system like a recirculating conveyor).” They propose a deadlock detection system based on a graph of

“wait relations.” They use a string multiplication algorithm to identify circuits in the graph. The

algorithm requires that machines be identified by a single character. An M x M (where M is the

number of machines) symbol matrix is created and then powers of the matrix are computed to identify

circuits in the wait relationships.

Kumaran et al. (1994) claim an FMS is a cell level entity in the NIST hierarchical model (Jones and

McLean, 1986). However, the model they analyze, four machines, one robot, and a load/unload station

is better described as a workstation in the NIST model. They state that “if the number of parts in a

system is one less than the number of storage locations, deadlocks can be prevented.” They classify

deadlock resolution schemes into four categories: (1) conventional, (2) unidirectional batching, (3)

deadlock detection and recovery, (4) deadlock avoidance. The conventional scheme uses a large

number of storage spaces to prevent deadlock and was not considered because they believed it would

increase the work-in-process inventory and transportation costs. The unidirectional batching was not

 35

considered because it would decrease the flexibility of the system. Detection and recovery is a one-

step look ahead procedure where the immediate next step is used to determine deadlocks. After a

deadlock is identified, one of the parts is moved to a storage location and the remaining parts are

moved to their destinations with the part in the storage location then moved to its destination. “A

deadlock between any number of machines can be resolved by one buffer.” Avoidance is similar to the

detection and recovery method, but instead of using only the immediate next step, the entire routings of

the parts are considered to avoid impending deadlocks. An impending deadlock is defined as a

situation where the immediate transition of parts is possible but the system (or a part of it) will

deadlock eventually. They note that while the Wysk et al. (1991) procedure works well for detection

and recovery it will not avoid all impending system deadlocks because it does not look far enough into

the future. They propose an improved version of the procedure in Wysk et al. (1991) to be used for

deadlock avoidance. They suggest that conservative operation of the FMS may be avoided by

allowing deadlock-causing transitions if there is buffer space available to recover from the deadlock.

Leung and Sheen (1993) studied flexible manufacturing cells consisting of “a small number of

computer-controlled machines and one or more material handling devices (MHDs).” The cell was

assumed to have a central buffer with a capacity of at least two. The central buffer was the only place

used for temporary storage of parts. Idle machines did not hold parts unless they were blocked (i.e. the

downstream machine for the part was occupied and the central buffer was full). The MHD had a

capacity of one. The exit and entry areas were assumed to have infinite capacity and hold parts that are

either waiting to enter the cell or have finished processing in the cell. Two deadlock strategies were

implemented and compared using simulation. The deadlock avoidance algorithm was said to perform

much better than the deadlock detection and recovery algorithm. In the deadlock detection and

recovery algorithm one of the buffer spaces in the central buffer was reserved for deadlock recovery.

The deadlock detection method was simplistic, requiring all machines in the cell to be blocked

simultaneously. The system was then recovered by exchanging the part in the buffer with the part on

the machine it was waiting for. The exchanged part was then exchanged with the machine it required

 36

until the entire circular had been resolved. However, if multiple circular waits existed the second or

third one would not necessarily be cleared until a part left the system. They note that the buffer space

reserved for deadlock resolution will be “fairly underutilized” and that the throughput time decreases

as the number of central buffers increases. To improve performance a deadlock avoidance algorithm

where the buffer that was reserved for deadlock resolution is allowed to be used if “it is certain that a

part from the central buffer (including the reserved space) is going to leave” is proposed. In essence if

there is a part waiting in the buffer for the machine that has just finished processing a part then the

reserved space can be used for the part on the machine and the part in the buffer moved to the machine

to yield a space in the buffer for deadlock resolution. This use of the buffer guarantees that a total

system deadlock will not occur. However, it does not prevent “temporary” partial deadlocks. The

partial deadlocks will eventually be cleared when a part finally completes processing on one of the

machines that is not deadlocked and leaves the cell freeing space in the buffer that can be used for

unblocking a machine in the partial deadlock. The policy of not allowing parts to wait idle on

machines appears to create deadlocks that could be avoided. If a part completes processing on

machine A before parts on machines B and C and no other part currently wants machine A, then

placing the part in the buffer creates a partial deadlock if the parts on machines B and C need to

exchange places. It also results in unnecessary blocking if the part from machine A needs to go to

either machine B or C and the part on that machine needs to go to a machine (other than A) that is

occupied. Immediately placing parts in a central buffer when they complete on a machine appears to

be a bad policy unless the buffer space is unlimited. If there is infinite space in the central buffer then

parts can always leave machines and there will never be a situation where one machine is waiting on

another so there will never be a circular wait and the system will never deadlock.

Wysk et al. (1994) performed a simulation study comparing two deadlock resolution approaches,

avoidance and recovery, to conventional approaches to avoiding deadlock. The study identified the

conventional approach as best when the transportation time was low. The authors appear to prefer the

avoidance approach because of the potential for “zero in-process inventory and just-in-time

 37

capability,” features that are not possessed by the conventional approaches. They note that a system

deadlock can be resolved “if there is storage provided to buffer at least one deadlocked part.”

However, a deadlock situation can be created even with storage if the storage is not properly used.

They categorize approaches to eliminating deadlock into two categories: elimination during system

design and elimination through system control. The system design alternatives include unidirectional

flow and buffers. Unidirectional flow limits the flexibility of the system but significantly simplifies

the control problem. They note that Co and Wysk (1986) have proved that if the number of buffers in

the system is one less than the number of parts in the system then deadlocking cannot occur.

System control alternatives include batching and active control, which is partitioned into avoidance

and recovery. Batching involves grouping parts and restricting part flow so that flow for each group is

unidirectional. In avoidance, the part mix is controlled so that deadlocks are avoided. The procedure

of Wysk et al. (1991) is used to detect deadlocks. When a new part attempts to enter the system, the

routing information of the part and the unprocessed routes of parts in the system are processed. If a

potential deadlock is found the part is held at the load station “until it can enter the system without

deadlocking all or part of the system.”

In recovery, deadlocks are allowed to occur and are resolved by moving parts to buffer spaces reserved

for deadlock recovery procedures. The deadlock detection for recovery used only the next immediate

destination not the entire routing used in the avoidance algorithm because “routing beyond the

immediate destination cannot produce a system deadlock.” They randomly chose one of the parts in

the identified circular wait to move to a reserved storage and then sequentially moved the other parts

based on the part routings.

The conventional approach used for comparison purposes was the use of “large amounts of in-process

storage” where the “maximum number of parts allowed in the system is one more than the number of

in-process storages.” The worst-case situation is then all parts but one are in in-process storage and the

 38

final part can move to any machine it requires. “Deadlock is completely eliminated in this approach,”

but the authors believe that excessive part transfers and an inefficient manufacturing system will result.

In the conventional approach if the next machine required by a part is not available the part is then sent

to in-process storage that is always available.

The simulation used included five machines with each part processing on four machines. Statistics

collected were makespan, machine utilization and mean flow time. When a machine became available

it selected the next part to process in following priority: 1) another machine, 2) in-process storage if it

was present, and 3) the input station. In each priority category parts were prioritized by shortest

processing time first (SPT). The conventional and recovery methods used the highest priority part.

The avoidance approach selected the highest priority part that did not create a deadlock. The

avoidance and recovery approaches produced shorter makespans than the conventional approach when

the transportation time is greater than twenty percent of the average processing time. They found that

the flowtime was always shorter for the avoidance and recovery approaches. This is misleading in that

the time spent waiting in in-process storage counts in the conventional approach while time spent in

pre-process storage (the load station) does not count in the avoidance approach.

Additional data was collected to study the effect to the number of machines a part was required to visit

on the machine utilization. The five-machine system was used with part visiting two, three, four or

five machines. They discovered that as the number of machines required to be visited increased, the

advantage of the conventional method for low transportation times became larger. When the

transportation time became large, the advantage of the avoidance and recovery methods became larger

with an increase in the number of machines that had to be visited.

Viswanadham et al. (1990) propose a deadlock avoidance procedure using Petri nets. They discuss a

procedure for performing deadlock prevention using Petri nets and then determine that it is not feasible

for real-world systems. Deadlock prevention is defined as “static resource allocation policies for

eliminating deadlock.” Deadlock avoidance is defined as “dynamic resource allocation policies.”

 39

They state that “deadlock prevention policies that are usually implemented in the design stage lead to

inefficient resource utilization. Deadlock avoidance policies that can be enforced during the operation

of a system lead to better resource utilization and throughput.” Generalized stochastic Petri nets, a

special class of timed Petri nets, are used to model a real-world FMS owned by General Electric and a

simple one machine, one automated guided vehicle system. The reachability graph of the simple

system is presented. Given the reachability graph a set of resource allocation policies that will prevent

deadlock can be determined. The resource allocation policies correspond to selecting the transition

that will not lead to deadlock when there is a choice of transitions to fire from a given marking of the

Petri net. They note that the reachability analysis can become infeasible if the state space is very large,

the situation that prevails in “real-life FMS such as the GE FMS.”

They present an on-line monitoring and control system that will “avoid most of the deadlocks” noting

that for deadlocks not predicted “recovery mechanisms have to be used.” They did not actually

implement the deadlock avoidance system. They define blocking as a partially enabled transition that

has two or more input places. They define a marking as “safe” (noting that safe is inspired by the

Operating Systems literature and is not to be confused with “the safeness property” of classical Petri

net literature) if it is not blocked or deadlocked. Markings can be “safe,” “blocked,” or “deadlocked.”

They define a look-ahead function that identifies the markings that are reachable from the current

marking in exactly i steps. The controller selects a transition to fire based on the results of the look-

ahead function. They made the following observations:

1. “greater look-ahead implies greater probability of avoiding deadlocks. However, there
can be systems where only infinite look-ahead will guarantee total deadlock avoidance.”
Therefore, deadlock recovery is a necessary supplement to deadlock avoidance,

2. the cost of deadlock recovery decreases with increasing look-ahead,
3. “The PN framework is suitable for implementing deadlock avoidance.”

Banaszak and Krogh (1990) use Petri net models that include “only the aspects of the manufacturing

system that are relevant to the deadlock avoidance problem.” They believe their model could be easily

extracted from a more comprehensive model of the system noting that other researchers have proposed

 40

Petri net models “for the general specification, simulation, and programming of FMS’s.” Their FMS

consists of a set of “resources” R that are modeled with two Petri net places ar and br where tokens in

ar represent available resources of type r and tokens in br represent busy resources of type r. They

model parts as a set of operation sequences which are broken up into steps that require only one

resource. The sequence of steps is referred to as a production sequence, only linear production

sequences were allowed. They model the production sequence as a series of places where the first

place pq(0) represents orders waiting to be initiated and the last place pq(Lq+1) represents completed

orders for part q. Lq is the length of the production sequence for part q. Resource usage is modeled by

connecting the transitions in the production sequence to the resource places (ar, br). The combined

Petri net is referred to as a production Petri net (PPN). Transitions are process enabled if a job is

currently in the production step preceding the transition. A transition is resource enabled if the place

for the resource required for the next step has a token. Deadlock exists when a process enabled

transition can never become resource enabled. The precise definition of deadlock used is: “Given sets

of resources R, products Q, and a PPN for the production sequences, a set of transitions T’ ⊂ T is said

to be in deadlock for a marking M ⊂ R(M0) if 1) all transitions in T’ are process enabled under

marking M, and 2) no transition in T’ is resource enabled for any M ∈ R(M).” They note that

transitions in T’ are not live, in the Petri net sense, but that a transition not being live does not imply

that it is involved in a deadlock.

They create a deadlock avoidance algorithm that consists of a restriction policy, where the restriction

policy defines a subset of the enabled transitions that allowed to be fired. They note that guaranteeing

that there are no transitions that will lead into a deadlock is necessary but not sufficient as the

restriction policy ρ could prevent a transition that was both process enabled and resource enabled from

firing resulting in ρ-restricted deadlock. They leave the selection of the particular firing sequence for

the system up to a resource allocation policy that is not covered in the paper. In developing their

deadlock avoidance algorithm the note that the production-sequence information for each job in the

 41

system should be used. There is a difference between the way jobs of for the same product and jobs

for different products compete for resources. Jobs of the same product with a “straight” pipe where

each resource is used only once will not have any conflict for resources. When a resource is used

multiple times it is possible to partition the production sequence into subsequences or zones which can

be treated as individual pipes. Zones are decomposed into subzones using unshared resources and

subzones using shared resources. Their restriction policy then consists of two rules: 1) allow a token to

enter a new zone only if the capacity of the unshared subzone of the zone exceeds the number of

tokens already in the zone, 2) If a shared resource is requested by a job then all of the shared resources

in the zone must be available before the job can enter the zone. Three example systems are presented.

They suggest possible extensions to liberalize usage of resources, including defining the unshared

resources in terms of currently active jobs instead of all possible production routes.

Lawley et al. (1997) attempt to “define FMS structural analysis” and provide “guidelines for

developing FMS Structural Control Policies, SCP’s.” An FMS is structurally characterized by its state

space (no representation of a state is provided). The state space is represented as a state transition

diagram which is a directed graph with states as vertices and state transitions as directed edges. The

objective of structural analysis is to “characterize regions of the state space that are structurally sound.”

Structural control policies (SCP) are then constructed to ensure the FMS operates within a structurally

sound region of its state space. State space can not be analyzed enumeratively because it grows

exponentially in system size. The deadlock avoidance problem for the resource allocation systems

presented (single resource, disjunctive, conjunctive, conjunctive/disjunctive, k of n) is known to be

NP-complete. A structural control policy determines the acceptability of a particular state transition

based on the state space structural characteristics. “The SCP should reject any transition leading to a

state from which the empty state can not be reached.” In general, the obvious solution of applying a

search technique to identify a safe sequence (one that will bring the FMS to the empty state) before

allowing a transition is not computationally tractable because of the exponential nature of the system

state space. Correctly categorizing every state as safe (the empty state can be reached) or unsafe is

 42

generally computationally intractable because of the NP-completeness of the deadlock avoidance

problem. An SCP is considered scalable if the computational resource growth is bounded by a

polynomial function of system size in terms of the number of jobs and machines. SCPs are required to

1) reject every unsafe state, 2) be scalable, 3) be correct. A correct SCP is one the rejects all unsafe

states and does not suffer from policy induced deadlock. To eliminate policy induced deadlock, the

authors require that for any state accepted by the SCP there must exist a sequence of states acceptable

to the SCP that lead to the empty state. An optimal SCP is one that is correct and accepts all safe

states. The authors state that optimality is unrealistic and must be “sacrificed for computational

tractability.” The suggest the ratio of admissible space to safe space as an appropriate measure of the

“optimality” of the SCP but state that neither admissible space or safe space is known and must be

estimated using simulation.

Generation of a SCP consists of attempting to find a set of necessary but not sufficient conditions

“which (1) are present in every deadlock state, (2) present in every unsafe state, and (3) guarantee that

for any safe state not exhibiting the condition, there exists a sequence of states not exhibiting the

condition which leads to the empty state.” The steps for developing an SCP are: 1) Identify a

necessary condition for deadlock using some “unique perspective of the FMS,” 2) Define the SCP as

“An enabled state transition is admissible if and only if the resulting state does not exhibit the

necessary condition,” 3) Prove scalability, 4) Prove the SCP does not induce deadlock, 5) If a special

case FMS was used attempt to extend the SCP to the arbitrary case. A SCP is constructed for “Single

Resource Allocation Counter Flow Systems” assuming that machines have a capacity greater than one.

The authors state “the most difficult aspect of developing SCP’s is identifying the candidate necessary

conditions for deadlock states. Unique perspectives such as that of counterflow help provide a basis for

deadlock analysis but do not guarantee either unique or suitable necessary conditions. Indeed, it is

unclear whether suitable necessary conditions, beyond those already discovered, even exist.”

 43

2.8 Summary of Previous Research

The major problem with the previous research can be summed up by applying the concepts in the

parable of the Blind Men and the Elephant (see Appendix A). The overall picture is missing, but the

individual pieces are relatively well known. The control system models which should give explicit

instructions on how to draw an elephant are vague, equivalent to: to draw an elephant, draw a body,

add four legs, a tail, and a head with two tusks and two ears. Although, there is debate about how

many legs and ears an elephant should have, i.e. should the control system be hierarchical,

heterarchical or a mixture of the two.

How should the manufacturing system and the parts that will process through it be modeled? These

questions are analogous to asking how an elephant’s habitat should be drawn. There are multiple

answers to these questions based on the individual researcher’s view of what elephants like, but it is

important to remember that the researcher has not seen an elephant.

Petri nets are like a paint brush that can be used to draw an elephant (if you have ever seen one) or any

of a multitude of creatures and their habitat, but can only be used by a trained artist. Once you have

your elephant and its habitat drawn, you can analyze it with a variety of techniques to see what it will

be capable of doing in your factory. Unfortunately, if anything is added to the picture drawn with the

Petri net brush the analysis techniques become unusable, so Petri net artists generally refuse to add

anything to their picture even if it would be a more accurate depiction of an elephant.

Artificial neural nets unlike Petri nets can only be used to describe an elephant (i.e. control system).

They cannot be used to describe the habitat (i.e. the manufacturing equipment and parts). The

construction of a neural net that describes an elephant is less defined than the construction of a Petri

net. It requires an artist of greater skill and perhaps an appreciation of “modern art” on the part of the

viewer. Further, what you learn from observing one neural net elephant does not generally teach

anything about other neural net elephants.

 44

Genetic algorithms can be difficult to apply to scheduling and control problems because of precedence

constraints. The use of heuristic search spaces has made them useful for scheduling when

accompanied by a model of the system that is to be scheduled.

The research in deadlock suffers from a problem with the definition of exactly what is an FMS. Is it a

cell level construct or is it a workstation? How should storage be handled? The most typical

description includes a load/unload station where once a part is placed at the unload station it can never

come back. Why? One must seriously ask what is the source of the parts arriving at the load/unload

station. Were the parts (raw material) already in the factory or did the raw material arrive with the

customers order? If the raw material was in the factory then obviously there was room to store it, so

why can’t this storage be used later? Remember, if the number of parts is only one greater than the

number of in-process storage locations deadlock free operation can be guaranteed (Co and Wysk,

1986) if raw material storage can be used for in-process parts then the number of parts will be less than

the available storage and deadlock becomes a non-issue. Further, if a part is allowed to stay at the

load/unload station indefinitely before processing has started, why can it not stay there after a subset of

the required processes have been completed? This would allow the load/unload station to be used as

an in-process buffer, something that is not normally done, but it would allow recovery from deadlocks

or at least improve the utilization of the equipment while avoiding deadlocks.

 45

3 PROBLEM STATEMENT

The function of a manufacturing system is to transform raw material into finished products. In the

ideal situation, humans are only required to add raw material, to remove finished product and to

perform maintenance and repair activities. What separates the flexible manufacturing system from

other automated production lines is the ability to rapidly change the product being produced. The

unfortunate problem associated with flexible manufacturing systems is that while the product being

produced can be changed, it can generally only be changed within a set of parts that were considered

when the control system was being developed. A method of including new parts in the set the flexible

manufacturing system can produce is needed.

As previously noted, Simpson et al. (1982) emphasized the need to be able to build an FMS piece by

piece. A likely scenario would be for a firm to purchase a CNC machine and use a human operator.

The second step would be to purchase a material handling device (robot) to load the machine from a

small local buffer. This would allow the human operator to tend the machine less frequently, giving

him more time to perform other tasks. The third step would be to purchase a second material handler

to feed parts into the small local buffer from a larger buffer that is beyond the range of the material

handler tending the CNC machine. Additional items such as an automated storage and retrieval unit or

a material transport device (such as a conveyor system) would then be added as funding became

available and experience was developed. Each time a piece of equipment is added the control system

becomes outdated and must be replaced or extensively modified.

The method of rapidly generating control software for flexible manufacturing systems described here

makes both adding parts to the set the flexible manufacturing system can produce and adding

equipment to the FMS practical.

 46

3.1 Verifiable Hypotheses

3.1.1 Factory reference model

A factory reference model can be defined in sufficient detail that its implementation is unambiguous.

The existing factory models are limited to conceptual models that do not include enough information

to allow implementation in a replicable manner. Two researchers operating from the same factory

reference model looking at the same physical system should develop databases that contain the same

information. A controller development program built by one researcher should be interoperable with a

database developed by a second researcher if both are based on the same factory reference model,

assuming a suitable translation program between database programs is available (e.g. from Microsoft

Access to MySQL).

3.1.2 Petri net generation

A Petri net model conforming to the formalization in section 5.2 that describes the flexible

manufacturing system (FMS) and the parts produced in the FMS can be created from a description of

the FMS and parts that conforms to the factory reference model and this Petri net can be used to

control the execution of activities in the actual FMS.

3.1.3 Neural net generation and scheduling knowledge creation

A neural net structure that will accept inputs from the Petri net and provide outputs back to the Petri

net can be developed. The weights of the neural net can be selected such that appropriate outputs will

be generated to cause the Petri net to generate desirable control actions (i.e. control actions that move

parts through the system and resolve any stall conditions that occur).

The normal process of selecting the weights of a neural net (supervised learning) requires a set of data

that has a set of known outputs paired with a set of known inputs. The net is trained using this known

data and then exposed to a set of unknown inputs. In this application (FMS control), the desired

outputs for a given set of inputs are unknown. If the mapping of the inputs to the outputs required for

 47

supervised learning was known then there would be no need for this research because a state table

controller could be built.

A partial mapping can be determined based on the actions required to move a single part through the

system. If a single part is in the system, the state of the part will be represented by a single input

neuron that is on (there will be multiple input neurons on if the part is on a part carrier and there are

transporters in the system) and a single desired control action can be determined. The input neuron can

be connected to the output neuron representing the desired control action through a sequence of links

and nodes so that the output neuron will generate a positive output when the input is on.

The neural net is being used to represent logical conditions and their combination using Boolean logic

rules. The weights of the neural net will not be changed. Once an element is added to the network its

properties are fixed. Any changes required to the logic will be made by adding additional neural net

elements (i.e. nodes or links).

3.2 Objectives

To verify the above hypotheses this research has emphasized the following objectives:

1. Propose a standardized interface specification for equipment controllers. Allowing

the hand coded portion to be handled by the equipment supplier not the user of the

FMS. (Hypothesis 3.1.1)

2. Develop a specification for a user-input description of the manufacturing system

and the parts that flow through it and build a database that implements this

specification. (Hypothesis 3.1.1)

3. Develop a model for the manufacturing system and the parts that flow through the

system that can be used for control and a method of automatically generating these

models from the description entered by the user. (Hypothesis 3.1.2)

 48

4. Develop a method for generating control software based on the model of the

manufacturing system developed in objective 3. The control software must generate

valid solutions, where valid is defined as deadlock and collision free. (Hypothesis

3.1.3)

5. Generating “good” performance without requiring extensive user input. This

requires a method of tuning the control software that does not require the FMS user

to understand control methodologies. (Hypothesis 3.1.3)

3.3 Test Cases

The test cases selected will be based on the concept of starting small and adding either parts or

equipment to the FMS . Test case one consists of a single machine processing workstation and a

storage workstation (possibly only a material handler and a set of buffers) with four part types. The

main purpose of test case one was to demonstrate the practicality of the Petri net neural net

combination. Test case two will add a material transport device to the system where one material

transporter will move between two locations. Test case three adds a second machine to the processing

workstation and adds additional part routes. Test case four adds a buffer to the processing workstation.

 49

4 MANUFACTURING SYSTEM MODEL

The model used in this research is a derivation of the work done by Smith et al. (1996), Smith and

Joshi (1995), Smith (1992) and Wysk et al. (1995). The major elements in the production system are

divided into the following categories: material processors (MP), material transporters (MT), material

handlers (MH), automated storage (AS) and buffers (BF). Material processors make some change in

either the physical condition (e.g., mills, drills and lathes) of the part or the status of the part (e.g.,

inspection stations). Material handlers move parts from one position to another in a specified

orientation. They are generally used to load and unload material processors. The most common

material handlers are various types of robots. Material transporters are used to transport parts to

various locations in the factory. Material transporters normally have a larger range of movement than

material handlers, but can not be used for loading and unloading material processors. Automated

storage has a set of physical spaces for storage. It has an additional set of physical spaces that are used

for interfacing with the rest of the production system. Buffers are physical space designated for

(usually temporary) storage of parts.

Elements of the manufacturing system are generally combined for purposes of control. This research

uses the lower three levels (cell, workstation and equipment) of the set of five control levels defined by

Jones and McLean (1986) (facility, shop, cell, workstation, equipment). The functionality of the

various levels has been modified. Previous researchers have suggested that each level in a hierarchical

system should contain planning, scheduling, and execution functions. This research takes a different

view. The workstation and equipment levels are limited to execution functions and all decisions are

made at the cell level. This was done for two reasons: in order to achieve a global optimum, global

information must be used (particularly where alternative process plan routings involve multiple

workstations); and the transportation and storage systems can be used as a large capacity buffer for

resolving deadlock.

 50

Global information is particularly important when there are alternative processing routings that involve

multiple workstations. The decisions made at one workstation may significantly affect the

performance of a second workstation. For example, minimizing flow time in a workstation is achieved

by scheduling parts using the shortest processing time for the work that is performed in that

workstation. This could easily starve other workstations of work resulting in poor performance or

flood a downstream workstation with work it should not have to do. Consider the case where a part

has two processing alternatives, it can process on workstation one for 30 minutes or it can process on

workstation one for 15 minutes and then be transferred to workstation two to process for 20 minutes.

When the part is in workstation one, the decision regarding which process to run should be made at the

cell level. If there is a large backlog of parts at workstation one and workstation two is empty it makes

sense to transfer the part, if that is not the case then you would want to do all of the processing in

workstation one. However, if the workstation was making the decision it would depend on the

performance criteria applied to it. For example, if workstation flowtime or makespan were the criteria

considered then the workstation controller would select the 15 minute operation to quickly move the

part out of the workstation. If the workstation utilization was the criteria then it would select the 30

minute process to maximize the usage of the workstation.

The optimal schedule for minimizing makespan for two machines is achieved by separating the parts

into two sets based on the ratio of the processing time on the first required machine to the processing

time on the second required machine. The parts in the first set have a ratio less than or equal to one

and in the second set have a ratio greater than one. Both sets are scheduled using shortest processing

time first and the first set where the ratio is less than or equal to one is processed first. This guarantees

that the second machine will experience the minimum amount of schedule-induced delay. The

optimum schedule for each machine requires knowledge of the processing requirements on the other

machine, i.e. global information.

 51

The following limitations and assumptions have been made for the purposes of this study.

Workstations are limited to one material-handling device. The transportation system allows any and all

transporters to go to all locations the transportation system serves (the graph of the transportation

system is a strongly connected digraph). Material processors have a capacity of only one part. Parts are

neither created nor destroyed, i.e. parts must enter and exit process plans only at designated points.

Machine setups are either not required or are automated and require zero time. This assumption

simplifies the performance evaluation by eliminating sequence dependent setup (or processing) times.

The “Prepare to Load” command can be part type dependent. Machine setups would be executed at

the equipment controller level in response to the “Prepare to Load” command and are outside the scope

of this research.

Workstations are divided into two categories, storage and processing. This research does not use

transportation workstations as Smith (1992) did, all transportation control is handled by the cell

controller. The control software being developed will handle the movement of the parts inside a

processing workstation, but not inside a storage workstation. All of the locations inside a storage

workstation will be lumped together and treated as a single location from which parts can be requested.

Storage workstations will be treated as if they have a single fixed part location although in reality they

will have multiple locations. Storage workstation controllers are outside the scope of this research.

4.1 Parts

A part is defined as an individual item that is to be produced by the production system. A part has

associated with it a process plan. A process plan is an OR graph where each node represents the

performance of some operation on the part. This is the same representation used by Smith (1992),

Smith and Peters (1998), and Mettala (1989) with the following changes: the current research does not

use hierarchical process plans and a node representing raw material is prepended to the graph and a

node representing finished product is postpended to the graph. Formally, a process plan PPi = <Vi,

Ai>, where Vi is a finite set of nodes representing processing steps for the part and Ai is a finite set of

 52

arcs representing precedence among the processing steps. Figure 5 shows two simple process plans.

Plan (a) is for a part with two processing alternatives. Plan (b) is the smallest possible process plan.

The minimum size of Vi is 3 (a start node, a finish node, and at least one process node). The minimum

size of Ai is 2 (an arc from the start node to the process node and an arc from the process node to the

finish node). Associated with each process node in Vi is a material processor and an instruction set.

A material processor is the entity that will perform the operation on the part. The instruction set is the

material processor-specific directions on how to perform the operation, typically this will be an NC

file.

Figure 5 Simple Process Plans

4.2 Manufacturing System

A transporter is defined as the physical entity on which parts are moved through the system.

Examples of transporters include pallets on a conveyor and automated guided vehicles (AGVs). The

set of all transporters will be designated T. A part carrier is defined as a physical entity that allows a

part to ride on a transporter. The physical characteristics of a part and a transporter will determine

whether a part carrier is necessary. A transportation device is defined as the physical entity that moves

transporters (e.g., the conveyor used to move pallets). A separate transportation device may not be

1

4 5

3

2

1 3 2

(a)

(b)

 53

used by the manufacturing system. Automated guided vehicles serve as both transporter and

transportation device, i.e. they move themselves.

A plocation is defined as a physical space that can be occupied by a part. The set of all plocations in

the factory will be designated PL. The set PL is partitioned into two disjoint sets: FPL and MPL.

FPL is the set of fixed part locations and is associated with MP, AS and BF equipment. MPL is the

set of mobile part locations. A mobile part location represents a place on a transporter where a part

can be located. Each mobile part location is associated with a specific transporter type.

A tlocation is defined as a physical space in the factory where a transporter can stop. The set of all

tlocations in the factory will be designated TL. A load point (LP) is defined as a tlocation where parts

can be removed from a transporter. An unload point (UP) is defined as a tlocation where parts can be

placed on a transporter. Load and unload reference the workstation being serviced by the transporter

not the transporter, e.g. a part is unloaded from a transporter and loaded into a workstation at a

loadpoint. A tlocation can be both a load point and an unload point for the same (e.g. a single tlocation

is used for loading and unloading a workstation) or different workstations (an unload point for

workstation one is the load point for workstation two).

A transporter movement graph describes the possible movements between tlocations and is formally

defined as TMG = <TL, A>, where TL is the set of tlocations and A is a set of directed arcs describing

the possible movements between tlocations. For this study, the TMG was assumed to be either a

strongly connected digraph or empty. The TMG can only be empty when all of the tlocations can be

accessed by the workstations. Test case one used an empty TMG. All tlocations were occupied by a

transporter and all tlocations were both load and unload points; therefore, there was no need for

transporters to be moved. A transporter movement (TM) occurs when a transporter traverses an arc

and changes tlocations. A transporter movement TMi is said to be incompatible with a second

transporter movement TMj if the physical transport equipment can not perform the two movements

simultaneously. Examples of this would include: a narrow passage where AGVs can not pass each

 54

other going in opposite directions and a conveyor where two movements require the same lift and

transfer unit and are transferring in opposite directions.

A processing workstation is defined as one or more pieces of MP equipment, one MH device, and zero

or more buffers. A storage workstation is defined as one or more pieces of AS equipment and one MH

device. Associated with a workstation of either type will be a set of load and unload points.

Each workstation will have a workstation part movement graph, defined as WPMGi = <FPLi,

MPL(LP)i, MPL(UP)i, Ai), where FPLi is the set of fixed plocations associated with the equipment in

the workstation, MPL(LP)i is the set of mobile plocations that can occupy the workstation's load

points, MPL(UP)i is the set of mobile plocations that can occupy the workstation's unload points. Ai is

a set of directed arcs that describes the possible movements between the plocations. Each arc has one

of three types associated with it (Load, Unload and Transfer) and information regarding whether the

movement is limited to a part or whether a part carrier also moves with the part. Data describing the

endpoints of the arcs are stored in a from--to format. The meaning of a data item changes depending

on the arc type.

Figure 6 shows a workstation movement graph for a simple workstation (it could be a processing

workstation or a storage workstation). It is served by two tlocations, one for loading and one for

unloading. There is a single fixed part location. The FPL would be a material processor in a

processing workstation or the logical fixed part location of an automated storage machine in a storage

workstation.

 55

Figure 6 Simple Workstation Movement Graph

4.3 Manufacturing System Activities

An elemental activity is an activity that is performed by a single piece of equipment. The part

manufacturing process consists of combining elemental activities to achieve a desired result. Table 2

lists all of the elemental activities that are required assuming that each process command leaves the

machine in a state suitable for unloading. If that assumption is not valid, an additional elemental

activity, “Prepare to Unload,” would have to be added. Table 3 lists the workstation activities. The

workstation activities are composed of combinations of the equipment level activities and are

described after Table 2 and Table 3.

LP

ULP

FPL

 56

Table 2 Equipment Level (Elemental) Activities

Task Name Description
Pick The material handler will grasp the part and remove it from

its current location with no coordination with any other
controller.

Place The material handler will place the part in a location,
release the part and move to a clear (safe) location with no
coordination with any other controller

Grasp The material handler will move to a part, grasp it and then
wait for further instructions

Take The material handler will move to a clear location with
possession of a part

Put The material handler will place the part in a specified
location without releasing it and wait for further
instructions

Clear The material handler will release any part it is holding and
move to a clear location

Prepare to Load A material processing machine will execute what
preparatory action is required to be able to accept a part.
The prepatory action may be part type dependent.

Clamp A material processing machine activates its part holding
device

UnClamp A material processing machine deactivates its part holding
device

Process A material processing machine will load a set of
instructions and execute them

Move A material transport device will move from one tlocation to
another

Table 3 Workstation Level Activities

Task Name Description
Load A part is loaded from the transportation system into a

workstation
Process Some activity is performed on a part by a material

processor
Unload A part is removed from a workstation and placed into the

transportation system
Transfer A part is moved from one location inside a workstation to

another location inside the same workstation

4.3.1 Load

The first step in a load operation is to make sure the destination is ready to receive the part. If the

destination is a buffer, no preparation is required. If the destination is a material processor, then a

 57

“Prepare to Load” message must be sent to the material processor. After the destination is ready, a

“Pick” command will be sent to the material handler causing the material handler to retrieve the part

from the transporter. After the material handler has the part, the next step depends on the destination.

If the destination is a buffer, then a “Place” command causes the material handler to place the part in

the correct position and release it. If the destination is a material processor, a “Put” command is sent

to the material handler causing it to place the part in the correct final position without releasing it.

After the part is in place, a “Clamp” command is sent to the material processor. After the part is

clamped by the material processor, a “Clear” command is sent to the material handler causing it to

release the part and move to a safe position. After the material handler is in a safe position, the load

operation is complete.

4.3.2 Process

The process command assumes that a part has already been loaded onto the material processor. The

workstation sends a process command to the material processor.

4.3.3 Unload

The unload command assumes that a transporter is at the unload point ready to receive the part. The

sequence of commands varies depending on whether the part that is being unloaded is currently located

in a buffer or in a material processor. If the part is located in a buffer, a “Pick” command is sent to the

material handler, causing it to retrieve the part from the buffer. A “Place” command is then sent to the

material handler causing the part to be placed on the transporter.

If the part is located in a material processor, the first step is to send a “Grasp” command to the material

handler. The material handler then moves to the material processor and grasps the part, but does not

try to remove it. After the material handler has grasped the part, an “Unclamp” command is sent to the

to the material processor so it will release the part. A “Take” command is sent to the material handler

causing it to remove the part from the material processor. A “Place” command is then sent to the

material handler causing the part to be placed on the transporter.

 58

4.3.4 Transfer

The sequence of commands for a transfer command is determined by the type of equipment associated

with the plocations involved. The plocation can be associated with either a buffer or a material

processor. There are four possible transfers each with its own sequence: buffer to buffer, buffer to MP,

MP to buffer, MP to MP. The buffer to buffer sequence is the simplest consisting of a “Pick”

command sent to the material handler followed by a “Place” command.

The transfer from a buffer to a material processor is very similar to a load operation. First, a “Prepare

to Load” message must be sent to the material processor. After the destination is ready, a “Pick”

command will be sent to the material handler causing the material handler to retrieve the part from the

buffer. After the material handler has the part, a “Put” command is sent to the material handler causing

it to place the part in the correct final position without releasing it. After the part is in place, a

“Clamp” command is sent to the material processor. After the part is clamped by the material

processor, a “Clear” command is sent to the material handler causing it to release the part and move to

a safe position. After the material handler is in a safe position the transfer operation is complete.

The transfer from a material processor to a buffer is very similar to an unload operation. The first step

is to send a “Grasp” command to the material handler. The material handler then moves to the

material processor and grasps the part but does not try to remove it. After the material handler has

grasped the part, an “Unclamp” command is sent to the to the material processor so it will release the

part. A “Take” command is sent to the material handler causing it to remove the part from the material

processor. A “Place” command is then sent to the material handler causing the part to be placed in the

buffer.

The transfer from a material processor to another material processor is the longest of the transfer

sequences. The first step is to send a “Prepare to Load” message to the receiving material processor.

After the material processor is ready, a “Grasp” command is sent to the material handler. The material

handler then moves to the material processor with the part and grasps the part but does not try to

 59

remove it. After the material handler has grasped the part, an “Unclamp” command is sent to the to the

material processor so it will release the part. A “Take” command is sent to the material handler

causing it to remove the part from the material processor. A “Put” command is sent to the material

handler causing it to place the part in the correct final position without releasing it. After the part is in

place, a “Clamp” command is sent to the receiving material processor. After the part is clamped by the

material processor, a “Clear” command is sent to the material handler causing it to release the part and

move to a safe position. After the material handler is in a safe position the transfer operation is

complete.

4.4 User Input Requirements

The user must provide the information specific to the facility. Table 4 lists the various data tables that

must be completed by the user. The “Parts” table that describes the raw material was implemented as a

separate database because of its volatility. Appendix B contains tables that identify the fields

contained in each table and the purpose of the field. Tables describing test case one are contained in 6.

This research implemented the tables using Microsoft Access.

Because the storage and processing workstation controllers are handled separately, separate but

identical tables were used. The tables could have been combined if an extra field had been added to

the workstation identification table to indicate the type of the workstation.

 60

Table 4 List of User Input Data Tables

Table Name Usage
Equipment Identifies the pieces of equipment in the cell
FixedpLocations Identifies the fixed places where parts can be

located
IncompatibleTransporterMovements Identifies transporter movements that can not

be performed simultaneously
MobilepLocations Identifies the movable places where parts can

be relocated with the transporter type
PartCarrierTypes Identifies the types of part carriers used in the

system and what transporters they can use
PartID Identifies the various parts the system can

manufacture
PPArcs Process plan arcs representing the

manufacturing constraints
PPNodes Process plan nodes representing the

manufacturing steps
ProcessingWorkstations Identifies the processing workstations in the

factory
ProcessingWSEquipAssn Identifies the equipment contained in each

workstation
ProcessingWSLPAssn Identifies the tlocations where parts can be

loaded into the workstation
ProcessingWSMGArcs Identifies all of the movements that are

associated with the workstations
ProcessingWSUPAssn Identifies the tlocations where parts can be

unloaded from the workstation
StorageWorkstations Identifies the storage workstations in the

factory
StorageWSEquipAssn Identifies the equipment contained in each

workstation
StorageWSLPAssn Identifies the tlocations where parts can be

loaded into the workstation
StorageWSMGArcs Identifies all of the movements that are

associated with the workstations
StorageWSUPAssn Identifies the tlocations where parts can be

unloaded from the workstation
TLocations Identifies the fixed places where transporters

can be located
TMGArcs Identifies possible movements between

TLocations
Transporters Identifies the transporters that are in the

system
TransporterTypes Identifies the types of transporters in the

system
Parts Lists Raw Material in the System

 61

5 CONTROL SYSTEM MODEL

5.1 Organization

As previously stated, this research uses the lower three levels (cell, workstation and equipment) of the

set of five control levels defined by Jones and McLean (1986) (facility, shop, cell, workstation,

equipment). The levels will now be formally defined starting from the bottom up and brief

descriptions of the functions at each level will be provided.

5.1.1 Equipment level

The equipment level in the hierarchy represents a logical view of a machine and an equipment level

controller. An equipment level controller and its subordinate machine will be referred to as simply a

piece of equipment. Individual pieces of equipment also have machine controllers that provide physical

control for the devices. These include CNC controllers, programmable controllers, and other motion

controllers and are usually provided by the machine tool vendors. Equipment controllers provide a

standard interface (based on the equipment type) to the rest of the control system. This interface hides

the implementation-specific code required for machines from different vendors. The equipment

controller takes information sent to it from a workstation controller and performs a look-up function to

determine what machine specific set of instructions (specific NC file or robot program) must be

supplied to the vendor supplied controller. The controller waits for the task to be completed and then

sends an appropriate response to the workstation controller.

The equipment controllers are similar to the software/hardware components of Naylor and Volz

(1987). They provide a well defined interface (a specific set of formatted messages they will respond

to), an internal implementation that is not available to the user, and the controllers are programs that

communicate via a TCP/IP connection allowing them to be compiled separately from any workstation

level controllers that interact with them. They do require the user to develop machine specific sub-

routines that the controllers execute, i.e. NC programs, or robot language movement programs.

 62

Formally, the equipment level is defined as follows (taken from Smith, 1992):

 E = {e1, e2, ..., em}, is an indexed set of controllable equipment, where:

 ej ∈ E

 ej = 〈ECj , Dj〉 where:

 ECj is an equipment controller, and

 Dj is a physical device (with device controller).

 E is partitioned into {MP, MH, MT, AS} where:

 MP = {ej ⏐ Dj is a material processor},

 MH = {ej ⏐ Dj is a material handler},

 MT = {ej ⏐ Dj is a material transporter}, and

 AS = {ej ⏐ Dj is an automated storage device}.

Unlike Smith (1992) material processing equipment is limited to a single task on a single part. Each

piece of equipment in the factory has a capacity, defined to be the number of parts it can hold at one

time. The capacity of MP, MH and BF equipment is assumed to be one. The capacity of the MT

equipment is equal to the sum of the capacity of the transporters. Smith (1992) also includes a set of

equipment known as passive devices that do not use equipment controllers. Passive devices are not

considered in this research.

Table 5 describes the formats of the messages the equipment level controllers respond to. Automated

storage equipment is only used in storage workstations, which are outside the scope of this research;

therefore, a message format for automated storage units was not specified. The messages are

parameterized with two types of parameters: run time parameters (rtp) and creation time parameters

(ctp). Creation time parameters are known when the control system is being created, eg. transporter

locations, part locations. Run time parameters are dependent on the part that is being processed and

 63

are filled in while the controller is running. The parameters column lists the total number of

parameters in the message and the number that are filled in at run time. There are two forms of the

“Pick” command depending on whether the part is being picked from a transporter in the transportation

system or from a buffer in a workstation. There are also two forms of the “Place” command depending

on whether the part is being placed on a transporter or in a fixed part location (FPL).

Table 5 Equipment Controller Message Formats

Equipment
Type

Message Parameters Format String

MT Move 2 / 0 "MOVE,ctp,ctp"

MP Prepare to

Load
2 / 2 "PREP, TYPE= rtp, NODE= rtp"

 Clamp 0 / 0 "CLAMP"
 Process 3 / 2 "PROCESS, PLOC= ctp, TYPE= rtp, NODE= rtp"
 Unclamp 0 / 0 "UNCLAMP"

MH Pick from

TLocation
4 / 3 "PICK, TLOC= ctp, MPL= rtp, TYPE= rtp,

NODE= rtp"
 Pick from

FPL
3 / 2 "PICK, PLOC= ctp, TYPE= rtp, NODE= rtp"

 Place in a
FPL

3 / 2 "PLACE, PLOC= ctp, TYPE= rtp, NODE= rtp"

 Place on a
transporter

4 / 3 "PLACE, TLOC= ctp, MPL= rtp, TYPE= rtp,
NODE= rtp"

 Grasp 3 / 2 "GRASP, PLOC= ctp, TYPE= rtp, NODE= rtp"
 Take 0 / 0 "TAKE"
 Put 3 / 2 "PUT, PLOC= ctp, TYPE= rtp, NODE= rtp"
 Clear 0 / 0 "CLEAR"

5.1.2 Workstation level

This research uses the workstation formalism of Smith (1992), but defines only two types of

workstations not the three used by Smith. The functions of the transportation workstation defined by

Smith have been transferred to the cell level controller. The two types of workstations defined are

storage workstations and processing workstations. A storage workstation generally consists of an

automated storage (AS) device, a material handler, and an associated set of load and unload points.

Storage workstation controllers are outside the scope of this research. The number of locations in a

 64

storage workstation with the corresponding number of movements would cause the size of the

controller to increase dramatically for little purpose. Specifying the exact location of a part in the

storage workstation will not improve performance significantly and will result in a significant increase

in controller size and a corresponding increase in the effort required to train the controller.

An existing storage workstation controller that responds to the interface commands used in this

research is assumed. The storage workstation controller responds to requests from the cell controller

for parts. It maintains a database of the parts in the storage workstation, selects which part to retrieve

if multiple parts of the requested type are available, and sends commands to the material handling

equipment and automated storage equipment to retrieve and store parts.

A processing workstation consists of a material handler, a set of load and unload points, and one or

more material processing (MP) devices. It may also include one or more buffers (BF). Processing

workstation controllers are created as part of the generation of the control logic. The processing

workstation controller expands load, unload and transfer commands received from the cell controller

and sends the required commands to the material processing and material handling equipment to

implement the command. It forwards process initiation commands to the appropriate material

processor.

An indexed set of workstations W is created, and partitioned into two disjoint sets, a set of storage

workstations WS = {W1, W2, ..., Wm}and a set of processing workstations WP = {W1, W2, ..., Wr}.

To accomplish this, the sets MP, MH, MT, AS, and BF, are each partitioned into subsets indexed by i

= 1, 2, ..., m,m+1, m+2, …, m+r, n+1, where n = the number of workstations m+r, corresponding to

the indexing of W plus a subset of equipment (n+1) which is not associated with any workstation. For

example, MP is partitioned into {MP1, MP2, ... MPn, MPn+1}. MPn+1, MHn+1, ASn+1, and BFn+1 will

be empty sets in this research. MTi will be empty unless i = n+1, because all transportation equipment

is assigned to the cell controller. MHn+1, and BFn+1, may not be empty if the transporter movement

graph is not a strongly connected digraph. If the graph is not strongly connected, then some method

 65

must be provided to transship parts between transporters so there will have to be at least one material

handler associated with the transportation system and there may also be one or more buffers. A

workstation, Wi, is then defined formally as:

 Wi ∈ W

 Wi = 〈WCi, Ei, BFi, LPi, UPi〉 where:

 WCi is a workstation controller,

 BFi is the set of internal workstation storage buffers,

LPi is the set of workstation load points,

UPi is the set of workstation unload points, and

 Ei = {MPi ∪ MHi ∪ MTi ∪ ASi}.

The workstation controller (WCi) is created automatically for processing workstations.

Table 6 describes the formats of the messages from the cell controller that the workstation level

controllers respond to. Table 7 contains the formats of the messages from equipment controllers that

the processing workstation controllers must respond to. The messages are parameterized with two

types of parameters: run time parameters (rtp) and creation time parameters (ctp). Creation time

parameters are known when the control system is being created, eg. transporter locations, part

locations. Run time parameters depend on the part that is being processed and are filled in while the

controller is running. The parameters column lists the total number of parameters in the message and

the number that are filled in at run time.

 66

Table 6 Workstation Controller Message Formats for Messages from the Cell Controller

WS Type Message Parameters Format String
Processing /
Storage

Load 5 / 3 "LOAD,ctp,rtp,ctp, TYPE= rtp, NODE= rtp"

Processing Unload 3 / 1 "UNLOAD,ctp,ctp,rtp"
Storage Unload 5 / 3 "UNLOAD,ctp,ctp,rtp, TYPE= rtp, NODE= rtp"
Processing Process 1 / 0 "PROCESS, PLOC= ctp"
Processing Transfer 2 / 0 "XFER,ctp,ctp"
Processing Transform 4 / 0 "TRANSFORM, PLOC= ctp, TYPE= ctp, ONODE=

ctp, NNODE= ctp"

Table 7 Workstation Controller Message Formats for Messages from Equipment Controllers

Message Conversions Format String
MP prep
finished

2 / 2 "PREP, TYPE= rtp, NODE= rtp COMPLETE"

MP clamp
finished

0 / 0 "CLAMP COMPLETE"

MP process
finished

3 / 2 "PROCESS, PLOC= ctp, TYPE= rtp, NODE= rtp COMPLETE"

MP Unclamp
finished

0 / 0 "UNCLAMP COMPLETE"

MH Pick
from
Transporter
finished

4 / 3 "PICK, TLOC= ctp, MPL= rtp, TYPE= rtp, NODE= rtp
COMPLETE"

MH Pick
from FPL

3 / 2 "PICK, PLOC= ctp, TYPE= rtp, NODE= rtp COMPLETE"

MH FPL
Place
finished

3 / 2 "PLACE, PLOC= ctp, TYPE= rtp, NODE= rtp COMPLETE"

MH
TLocation
Place
finished

4 / 3 "PLACE, TLOC= ctp, MPL= rtp, TYPE= rtp, NODE= rtp
COMPLETE"

MH grasp
part in MP
finished

3 / 2 "GRASP, PLOC= ctp, TYPE= rtp, NODE= rtp COMPLETE"

MH remove
part from MP
finished

0 / 0 "TAKE COMPLETE"

MH Put
finished

3 / 2 "PUT, PLOC= ctp, TYPE= rtp, NODE= rtp COMPLETE"

MH clear
finished

0 / 0 "CLEAR COMPLETE"

 67

5.1.3 Cell level

The cell level controls the transportation of parts between workstations, the loading and unloading of

parts to and from workstations, and the initiation of part processing.

A cell (C) can be formally defined as:

 C = 〈CC, W, En+1, BFn+1〉 where

 CC is a cell controller,

 W is the set of workstations previously defined, and

 En+1 is the set of equipment belonging to the cell that is not assigned to a workstation

 En+1 = MT

In this research, the cell controller is formally defined as:

CC = (PN,NN,SM,OV) where

 PN is a Petri net as defined in section 5.2

 NN is a neural net as defined in section 5.5

 SM is a status matrix derived from and updated by the Petri net as defined in section 5.3

OV is an order vector, a user supplied list of parts that should be manufactured as defined in

section 5.4.

The outputs of the neural net correspond to the decision events of the Petri net. The input to the neural

net is a combination of the status matrix and the order vector. This structure conforms to the belief of

Adlemo et al. (1995) that state information should be kept separate from “the information that tells the

control system what to do when the system has reached a certain state.” They also separate the “what

to do information” into routing information and control information. Routing information is used to

 68

identify the next resource the part should be sent to. Control information “describes in detail all the

actions executed by the resources in each state, e.g. which NC programs to run.”

The complete state information is stored in the Petri net. This state information is then translated into a

status matrix that is used as an input to the neural net. The neural net stores the information that tells

the control system what to do. Routing information is shared between the Petri net, which contains the

process plan with its associated precedence constraints, and the neural net, which holds the rules about

what to do when a part is in a given state. The “control information” of Adlemo et al. (1995) is not

included in the cell controller. This information is held at the equipment controller level where a look-

up function is performed to determine the set of commands to execute. Minor changes to the product

can be made without changing the controller by updating the NC file or replacing it if necessary.

Changes to the equipment can also be accommodated, if equivalent programs are available for the new

equipment, as long as the basic shape of the process plan does not change and the equipment is located

in the same relative location (i.e. is served by a material handler from the same set of load and unload

points as the original machine). Referring to Figure 5, if the machine used to process node 4 was

replaced (e.g. a three-axis milling machine was upgraded to a four-axis milling machine) no changes

would need to be made to the cell controller if an NC program for the new machine existed to process

node four and the new equipment had the same equipment controller name as the old equipment. If the

shape of the process plan changed, e.g. nodes 4 and 5 are combined into a single node, then the cell

controller would have to be changed.

Table 8 contains the message formats that the Petri net portion of the cell controller responds to. The

conversions listed are the total conversions and the conversions that are performed at runtime. In

general, for each message from the neural net indicating an activity should be started, there is a

matching message from a workstation indicating the activity is complete. The exception to this is the

“START” command. The “START” command tells the controller that a piece of raw material should

be assigned a processing node and specifies the storage workstation where the raw material is located.

 69

Instead of sending a “START” command to the storage workstation, the Petri net sends a

“TRANSFORM” command. A “TRANSFORM” complete message is therefore returned from the

storage workstation instead of a “START” complete message. The processing workstation unload

command does not include information about the type of part to be unloaded. The workstation

controller already has information about the part it holds at a plocation; therefore, the neural net does

not have to send the information.

Table 8 Cell Controller Message Formats

Message Source Conversions Format String
Load Neural Net 2 / 0 "LOAD,ctp,ctp"
Load
Complete

Workstation
Controller

3 / 1 "LOAD,ctp,ctp,rtp COMPLETE"

Unload
Processing WS

Neural Net 2 / 0 "UNLOAD,ctp,ctp"

Unload PWS
Complete

Workstation
Controller

3 / 1 "UNLOAD,ctp,ctp,rtp COMPLETE"

Unload
Storage WS

Neural Net 4 / 2 "UNLOAD,ctp,ctp, TYPE= rtp, NODE= rtp"

Unload SWS
Complete

Workstation
Controller

4 / 2 "UNLOAD,ctp,ctp, TYPE= rtp, NODE= rtp
COMPLETE"

Process Neural Net 1 / 0 "PROCESS, PLOC= ctp"
Process
Complete

Workstation
Controller

3 / 2 "PROCESS, PLOC= ctp, TYPE= rtp, NODE=
rtp COMPLETE"

Transfer Neural Net 2 / 0 "XFER,ctp,ctp"
Transfer
Complete

Workstation
Controller

2 / 0 "XFER,ctp,ctp COMPLETE"

Move Neural Net 2 / 0 "MOVE,ctp,ctp"
Move
Complete

MT
Equipment
Controller

2 / 0 "MOVE,ctp,ctp COMPLETE"

Transform Neural Net 3 / 0 "TRANSFORM, TYPE= ctp, ONODE= ctp,
NNODE= ctp"

Transform
Complete

Workstation
Controller

4 / 0 "TRANSFORM, PLOC= ctp, TYPE= ctp,
ONODE= ctp, NNODE= ctp COMPLETE"

Start Neural Net 4 / 0 "START, PLOC= ctp, TYPE= ctp, ONODE=
ctp, NNODE= ctp"

5.2 Petri Nets

The Petri nets used in this research are defined by a 5-tuple: PN = (P,T,F,M,E), where P is a set of

places, T is a set of transitions (some researchers combine P and T into a set of nodes that is later

 70

partitioned), F is a set of directed arcs connecting transitions to places, M is a marking (a description of

where tokens are located in the net) and E is a set of events. All arcs have a weight function of one.

The set of places is partitioned into 6 different subsets as described in Table 9. All places except the

high capacity place have a capacity limit of one. In the implementation of the Petri net, transitions and

places are both derived from class node and are distinguished by their type attribute. The transitions

are type one, which is why the partitioning of P begins with type two. All nodes are assigned a time

category (see Table 10). Category one is the time between order arrival and starting the part and does

not have a corresponding location in the factory. Category zero is used for nodes that are not involved

in performance evaluation. All transitions, e-clock places and output places are time category zero.

Time information is carried on the tokens (see Table 11, Table 12, and Table 13) and is updated when

a token is removed from a place with the exception of time category nine (process plan finished

product) places where the time information is updated when the token enters the place. Tokens that

enter time category nine places do not exit them. The controller operates in a batch mode so once parts

reach the process plan finished product node they remain there until the system is reset for the next

batch.

Table 9 Partitioning of P

Symbol Type Name Description
SP 2 Standard Place General multi-purpose place with capacity one
IP 3 Input Place Indicates a message has been received from a lower

level controller
DI 4 Decision Input Place Indicates a message has been received from a

higher level controller
OP 5 Output Place Indicates a message should be sent
EC 6 External Clock Place Indicates the net is waiting for an external event to

occur
HC 7 High Capacity Place A standard place with a capacity greater than one

 71

Table 10 Petri Net Node Time Categories

Time Category Description
2 Material Transport
3 Material Processing
4 On a Material processor waiting
5 In a Buffer
6 In Storage
7 Material Handling
8 Process plan raw material node
9 Process plan finished product node
0 Node does not apply to a time category

Table 11 Petri Net Token Types

Token Type Description
0 Information only
1 Transporter
2 Part process plan indicator token
3 A part carrier
4 A part

Table 12 Petri Net Token Data

Token Data Item Usage
Capacity The number of other tokens the token can hold
CarrierType The part carrier type, only valid for token type 3
ListAvailableMPL The list of available mobile part locations, only valid for

token type 1 (tranporters)
MobilePL The mobile part location occupied by the token
PartType The type of part if token type is 4, the part type to be

selected if the token type is 0
ProcessComplete The token process status for type 4 tokens or the token

process status desired if token type is 0
ProcessNode The part process plan node if token type is 4, the part

process plan node to be selected if token type is 0
PtrListTokensOnBoard List of pointers to the tokens that are attached to the current

token
SMColID Status matrix column ID
TimeData See Table 13
TokenType The token type
TransporterType The transporter type only valid for token type 2

 72

Table 13 Petri Net Time Data

Petri Net Time Data Item Usage
AStime Cumulative time spent in storage after the part has been

started and before it is completed
BFtime Cumulative time spent in buffers after the part has been

started and before it is completed
LastEventTime The time the last event occured
MHtime Cumulative time spent being moved by a material handler
MPdelaytime Cumulative time spent on a material processor not

processing
MPtime Cumulative time spent processing
MTtime Cumulative time spent on a material transporter
OrderArrivaltime Currently always zero operating the system in batch mode
PartStarttime The time when the part was started
SimpleFlowEnd Time the part completes processing on its final machine,

used by type 2 tokens
SimpleFlowStart The time when the part was started, used by type 2 tokens

The arcs contained in F connect transitions and places. An arc originating at a transition must

terminate at a place and one originating at a place must terminate at a transition. Each arc has a type

associated with it (see Table 14) that determines the type of token (see Table 11) that is allowed to

flow along the arc.

Table 14 Petri Net Arc Types

Arc Type Description
0 Allows all types of tokens to cross it
1 Only allows transporters
3 Only allows part carriers
4 Only allows parts

The preset of a transition (*t) is defined as the set of places where the arcs terminating at the transition

originate. The post-set of a transition (t*) is defined as the set of places where arcs originating at the

transition terminate. A transition is enabled if all of the places in its preset have the appropriate tokens

and the places in its post set have the appropriate space. Determining whether a transition is enabled is

complicated by the use of tokens that can contain other tokens or space for other tokens. See the Petri

 73

net marking and token description discussion later in this section. The type of the arcs associated with

the transition determines the appropriate tokens and spaces.

A transition will fire as soon as it is enabled if it does not have an event associated with it. This

behavior is different from other Petri net research where the firing of a transition may be delayed, the

scheduling literature uses the selective firing of transitions to develop schedules (Lee and DiCesare,

1994). If a transition does have an event associated with it, it will be followed by an input or decision

input place and will fire when the event occurs, if it is enabled. If the event occurs while the transition

is not enabled, the event will be ignored. It is possible for multiple events to be associated with a

single message.

The set of events consists of a set of messages that will trigger the firing of an associated transition,

assuming all other conditions necessary for it to fire are met. Each event has associated with it, the

node number of the transition it fires, the message that will be received, the name of the controller that

will be sending the message and the number of data conversions that need to be processed. Events can

be divided into two categories based on the relationship of the controller generating the event to the

controller receiving the event. Events generated by a controller higher in the hierarchy than the

controller receiving the event will be called decision events, while events from other controllers will be

simply identified as events. The only function of decision events is to place a token in a decision input

place. All transitions that react to decision events have an empty preset and a post set that consists of a

single decision input place. The preset of non-decision events may or may not be empty. The events

associated with process plans will have empty presets while those associated with activities will not.

The Petri net marking describes the location of the tokens in the Petri net. One of the differences

between classical Petri nets and this research is that Petri net tokens carry information (see Table 12

and Table 13) and can not be simply destroyed and recreated when a transition fires. Type 1, 2, 3, and

4 tokens represent physical entities in the factory and are conserved across a transition. The tokens are

removed from their respective places in the preset and added to the appropriate place in the post set.

 74

Type 0 tokens represent information flow and are created and destroyed as information moves through

the workcell. Type 0 tokens are removed from the preset, and any information they carry is extracted

and then the token is destroyed. If any type 0 tokens are required in the post set, a new token is

created, any necessary information is added and then the token is placed in the appropriate post set

place.

While the tokens have types, the nets are not the same as traditional colored Petri nets. Colored Petri

nets were developed to reduce the size of traditional Petri nets. By adding color to the tokens and color

functions to the arcs that map the token color at the tail of the arc into a token color at the head of the

arc, it was possible to combine duplicate node arc structures of the Petri net. The color of tokens in the

output places of a transition are determined by the color of the tokens in the input places and the color

functions of the arcs to and from the transition. Colored Petri nets can be converted to traditional Petri

nets by expanding the network so that each color has its own network structure. In the Petri nets in

this research, the token type never changes (equivalent to a constant color function) and it is not

possible to eliminate the token types by adding additional network structures.

A significant feature of the Petri nets in this research is that tokens are allowed to contain other tokens.

Tokens represent things that travel through the manufacturing system, both physical entities and

information. In real world manufacturing systems, some physical entities are associated with other

physical entities and travel through the system together. Some method of representing this association

must be included in the modeling system (in the simulation domain, the Arena modeling language

includes a Group module to combine multiple entities into a single entity, Kelton et al., 1997). The

method chosen was to give tokens some characteristics of places and allow them to hold other tokens.

This resulted in a more complex transition firing implementation because the firing process must check

not only the places in the pre- and post-sets, but also the tokens in the places, for the appropriate type

tokens and spaces required to enable the transition. Part carriers (token type 3) can carry parts (token

type 4). Transporters (token type 1) can carry part carriers (token type 3) or parts (token type 4). As

 75

previously stated, some parts require part carriers to use transporters, others do not. Information

tokens (token type 0 and 2) are not allowed to contain tokens.

Figure 7 shows a common Petri net structure found in this research. It corresponds to an activity. The

bars represent transitions. The triangle represents a output place, the square an input place, the large

circle a standard place, and the circle with the wedge an external clock place. When conditions are met

(the transition’s preset is appropriately marked), the initial transition fires placing tokens in the

standard place and the output place. The standard place represents the activity in progress and has a

row in the status matrix associated with it. The status matrix row will be used for deadlock detection

in the cell controller.

Figure 7 Petri Net Activity Grouping

When the transition following the output place fires, it removes the token from the output message

place causing a message to be sent to the destination associated with the output place. It also places a

token in the external-clock place indicating that a response is expected from some device. The

transition following the external-clock place is an event-triggered transition. (All transitions preceding

input places are event-triggered.) When the appropriate message arrives (the message will be from a

lower level controller), the transition fires removing the token from the external-clock place and

placing a token in the input place. At this point, the final transition may fire depending on the post-set.

At the workstation level, there can be multiple transitions associated with a message from a given

controller. For any material processing machine in a workstation, there will be a workstation level

 76

load activity from each load point associated with the workstation and a workstation level transfer

activity from the other machines and buffers in the workstation. Figure 8 shows a partial workstation

movement graph with two load activities and one transfer activity. Each of these workstation level

activities will include an equipment level clamp activity. Each clamp activity will be represented by

an activity grouping as shown in Figure 7. The event triggered transition in each activity grouping will

be expecting the same message from the same machine, since they all require the same machine to

complete the same clamping activity.

When the clamp activity is completed, the machine will send a “Clamp complete” message to the

workstation. This message will not indicate the workstation activity that initiated the clamp action.

Because event-triggered transitions ignore events that occur when they are not enabled, the workstation

controller does not need to specifically track the transition that should be fired when the “Clamp

complete” message is received. When the workstation receives the “Clamp complete” message from

the machine, it attempts to fire all of the transitions that respond to the “Clamp complete” message.

Only the workstation level activity that is being processed will have an enabled transition, i.e. only one

of the activities will have a token in the appropriate e-clock place; therefore, the marking of the Petri

net can be used to track the activity instead of a separate variable.

Figure 8 Partial Workstation Graph

MP
1

MP
2

LP
1

LP
2

 77

5.3 Status Matrix

The status matrix is the method by which the Petri net transfers information to the neural net. The

status matrix is also used to determine if the system has developed a deadlock condition. The rows

represent locations and activities and the columns represent physical things (transporters, part carriers

and parts) that are present at a location or engaged in an activity. There is one row for each fixed part

location and each transporter location in the FMS. These rows are not used to detect deadlock. There

are two rows for each load or unload activity (these activities involve both a transporter and a part) and

one row for each non-load/unload activity controlled by the Petri net. These rows are used to detect

deadlock. There is one column for each transporter type, part carrier type and process plan node.

Figure 9 shows a status matrix for a small workcell consisting of three transporter locations, a storage

workstation, and a processing workstation with one material processor. The workcell uses one type of

transporter, one type of part carrier and makes one type of part, a candlestick with one processing step.

The status matrix indicates there is one transporter with a part carrier at transporter location 1 with a

finished candlestick, a second transporter is at transporter location 2 with a part carrier and a

candlestick that needs to be processed on the material processor. There is a candlestick currently

loaded on the material processor ready to begin processing. The storage workstation contains six part

carriers, four pieces of raw material and two finished candlesticks.

The rows that represent locations are not used for deadlock detection and are marked false in the

deadlock detection column. The rows that represent activities are used for deadlock detection and are

marked true in the deadlock detection column. By definition, the workcell cannot be deadlocked if an

activity is taking place. However, it is possible for a workstation to be deadlocked while an activity is

ongoing outside the workstation. To determine if the workcell is deadlocked, the values of the entries

in the rows marked for deadlock detection are summed if the value is greater than zero, then an activity

is taking place in the workcell and the workcell is not deadlocked. If no activity is taking place, the

number of completed parts is compared to the order vector. If the number of completed parts is less

 78

than the number ordered and no activity is taking place then the system is stalled or deadlocked and

corrective action must be taken.

Figure 9 Sample Status Matrix

The status matrix is updated when a transition fires. The status matrix rows associated with the Petri

net places in the transition’s pre- and post-sets are updated to reflect the tokens contained in them as

part of the transition firing process. Each token stores the index of the status matrix column that

represents its identity for use in this update process. Not all transitions will affect the status matrix.

The transitions preceding and following e-clock places do not have any Petri net places in either the

pre- or post-sets that are associated with status matrix rows.

5.4 Order Vector

The order vector is an organized list of the parts that should be manufactured. It is stored in two data

tables. The first table is used to associate the order vector position with a specific part type and is

Transporter Part carrier

Candle
Raw
Material
Node 1

Candle
Node 3

Candle
Finished
Product
Node 2

Deadlock
Detection

Tlocation 1 1 1 0 0 1 FALSE
Moving 1-2 0 0 0 0 0 TRUE
Tlocation 2 1 1 0 1 0 FALSE
Moving 2-3 0 0 0 0 0 TRUE
Tlocation 3 0 0 0 0 0 FALSE
Moving 3-1 0 0 0 0 0 TRUE
MP Has Part 0 0 0 1 0 FALSE
Loading MP 0 0 0 0 0 TRUE
UnLoading MP 0 0 0 0 0 TRUE
Load-2 MP 0 0 0 0 0 TRUE
Unload-2 MP 0 0 0 0 0 TRUE
MP Processing 0 0 0 0 0 TRUE
Storage 0 6 4 0 2 FALSE
Loading S 0 0 0 0 0 TRUE
UnLoading S 0 0 0 0 0 TRUE
Load-2 S 0 0 0 0 0 TRUE
Unload-2 S 0 0 0 0 0 TRUE

 79

filled in during the controller creation process. It has one record for each part type the FMS

manufactures. The second table is used to store the values representing the number of parts to be

created. The table is created during the controller creation process but no records are added to it. The

user must manually input the number of parts to be produced.

The order vector is used as an input to the neural net and in the deadlock detection process. When the

system determines that no activity is taking place and no new instructions have been issued by the

neural net, the number of completed parts in the system is compared to the number that have been

ordered (the values stored in the order vector). If the number of completed parts is less than the

number that have been ordered then a deadlock or stalled condition is determined to exist.

5.5 Neural Nets

The neural nets used in this research are feed forward neural nets. These nets are also known as back

propagation nets because of the way errors are propagated when supervised training is used. This

research does not use the typical training methods associated with neural nets. The weights were

restricted to the set (-1, 0, 1, 2, 3, …, n), where n is an integer constant defined by the capacity of

equipment in the workcell, prohibiting the normal training techniques which assume weights are real

valued and continuously variable, normally in the set (-1,1). In developing the deadlock recovery

logic, an exception to the weight restriction was made so the network would not need to have an

additional hidden layer added.

The net consists of layers of nodes connected via links. Links are directed arcs with associated types

and weighting factors. The neural net used in this research uses a single type of node and four types of

arcs (see Table 15). Inhibitory arcs have a fixed weight of one. The transfer function used in the

nodes is the TLU transfer function (see Equation 1) when the node output is not inhibited. If the node

is inhibited, the output is non-pulse (a value of 0.0 is used in this research) for all input values. The

network structure is organized to represent a rule based control system. A hidden layer is used to

represent logical conditions such as a part of type t is in location l. Additional layers are then used to

 80

implement a Boolean logic structure, resulting in rules of the form: IF (one or more conditions are true)

THEN (activate one or more control actions).

Table 15 Neural Net Arc Types

Arc type Arc characteristic
0 Excitatory arc with changeable weight
1 Inhibitory arc – inhibit on pulse (high)
2 Inhibitory arc – inhibit on non-pulse (low)
3 Excitatory arc with fixed weight

Rogers (1997) formally describes a neural net as a 3-tuple: NN = (S, P, T), where S is the pattern set,

P is the set of network parameters and T is the network topology. The pattern set S = {I,O}, where I is

a set of input patterns and O is a set of desired output patterns. The input set I = {pk,j }, where k is the

input pattern number and j is the input pattern component. The output set O = {ok,j }, where k is the

output pattern number and j is the output pattern component.

The parameter set P = {p1,p2,…,pn}, where pi is some parameter used in training, testing or operating

the neural network. The parameters are generally constants, but can be functions of time or some

network characteristic. Common parameters include: learning rate, momentum factor, maximum

number of training iterations, and testing tolerance.

The network topology (T) defines the framework (F) and the interconnecting links (L) between the

network nodes. T = (F,L). The framework defines the nodes of the network. It is the set of layers (also

called clusters) in the network. F = {c1,c2,…,cn} A cluster (or layer) is a set of nodes (n) identified by

its layer (i) and position (j) within the layer. ci = {ni,j}. Nodes are primitive elements of the network.

The interconnecting linkage, L = {wi,j k,l}, defines how the nodes are connected together. A link (w)

is identified by the layer (i) and the node position (j) of the starting node and the layer (k) and node

position (l) of the terminating node.

 81

The topology of the neural network used in the cell controller is: T = (F,L). F = {c0, c1, c2, c3, c4, c5},

where c0 represents the input layer, c1 is a hidden layer, c2 is a special purpose hidden layer, c3 a

second general purpose hidden layer, c4 is an initial output layer, and c5 is an inhibited output layer.

c0 = {n0,0, n0,1, …, n0,j} where j is the number of input nodes, and
j = status matrix rows * status matrix columns + order vector elements.
There is one input node for each cell of the status matrix and one for each element of the order vector

(product produced in the cell).

c1 = {n1,0, n1,1, …, n1,q} where q is the number of conditions both positive and negative that are used in

the Boolean logic.

c2 = {n2,0, n2,1, …, n2,r} where r is variable, it includes conditions that can not be represented with a
single node in c1

c3 = {n2,0, n2,1, …, n2,s} where s is variable

c4 = {n3,0, n3,1, …, n3,k} where k is the number of output nodes. K is determined by counting the
number of decision input nodes in the Petri net portion of the controller.

c5 = {n4,0, n4,1, …, n4,k} where k is the number of output nodes. Layers 4 and 5 use the same number of

nodes.

L = {w0,j 1,l, w0,r 5,s, w1,j 2,l, w1,j 3,l, w2,j 3,l, w3,j 4,l, w4,r 5,r, w4,r 5,s }
The functions of the linkages are:

(w0,j 1,l) generate logical conditions based on the input values
(w0,r 5,s) inhibit incompatible transporter movements if one is already moving
(w1,j 2,l) generate complex logical conditions
(w1,j 3,l) generate “ANDed” logical conditions
(w2,j 3,l) generate “ANDed” logical conditions or implement inhibit choice points
(w3,j 4,l) transfer “ANDed” results to the output layer
(w4,r 5,r) drive the final output layer
(w4,r 5,s) prevent incompatible transporter movement from starting

Not all nodes will be connected. There is an input (layer 0) node for every cell in the status matrix.

There are a number of cells that will always be zero and therefore provide no information. The input

nodes representing these cells may not be linked to any other nodes. Example cells include all those

cells in a row representing a transformation activity in progress that do not represent the part being

transformed, i.e. the row represents Part type 2, node 3 being transformed to node 2, all columns that

are not Part type 2, node 3 will always be zero.

 82

5.5.1 Choice points

The structure shown in Figure 10 is known as a choice point. It describes the situation where a single

condition being true would allow multiple conflicting outputs to be true. When the layer 1 node is

true, all of the outputs represented by the layer 4 nodes are valid. However, choosing one of the

outputs makes the others invalid. Two examples of this are: a workstation with parts ready to unload

on 3 machines all served by the same robot, unloading any of the three machines is possible, but it is

impossible to simultaneously unload more than one machine and a part with multiple processing

alternatives, choosing one processing path means the other can not be chosen. To ensure that only one

of the choices is selected the thresholds of the nodes inside the box are adjusted so that only one of the

nodes will be active.

Figure 10 Neural Net Choice Point

M1 Part i,k

M2 Part l,m

M3 Part r,s

UNLOAD,

UNLOAD, BF 1 0.5

0.5

T4

T3

T2 UNLOAD, 0.5

Layer 0 Layer 1 Layer 4 Layer 3

Choice pointT0 > # of inputs - 1

W = 1
W = 1

T0

T5

T1 UNLOAD, 0.5

UNLOAD, BF 2 0.5

BF 1 Part a,b

BF2 Part c,d

 83

5.5.2 Inhibit choice points

The structure shown in Figure 11 is known as an inhibit choice point. The inhibit choice point is used

where multiple conditions generate outputs that are incompatible with each other. The layer 3 nodes

that are driving the incompatible outputs (layer 4 nodes) are determined. Although it is not shown in

Figure 11, it is possible to have multiple layer 3 nodes connected to a layer 4 node. When multiple

layer 3 nodes are connected to the layer 4 node only those layer 3 nodes that are on are included. The

layer 1 conditions associated with all of the layer 3 nodes that are on are then determined and

combined into a new layer 2 node. The output of this new node is used to inhibit all but one of the

layer 3 nodes that were on by connecting the layer 2 node to the layer 3 nodes with type 1 (inhibit

high) arcs. The arc to the uninhibited node is assigned a weight of zero.

Figure 11 Neural Net Inhibit Choice Point

0.5 T1

0.5 T2

Layer 0 Layer 1 Layer 4 Layer 3

W = 1

W = 1

W = -1

-0.5

W = 1

T0

W = 1

T4

T5
Inhibitory Arcs
One arc has weight = 0
All others weight = 1

Layer 2

 84

5.6 Control System Construction

The control system consists of three levels: equipment, workstation, and cell. The equipment level

controller construction is out of the scope of this research. Each equipment level controller must be

developed individually to fit the piece of hardware. The equipment controller must respond to the

messages listed in Table 5.

5.6.1 Construction of the processing workstation controllers

The Petri nets for the processing workstation controllers are constructed using the processing

workstation movement graphs. The workstation controller deals with the following activities: loading a

part into the workstation, unloading a part from the workstation, moving a part within the workstation,

and performing a processing step on a part. The workstation controllers do not attempt to verify that a

part is available to load or a transporter is available when a part is to be unloaded. The cell controller is

responsible for ensuring that the part or transporter is in the appropriate place before sending a load or

unload command to the workstation. See section 5.6.2.3 for a discussion of how the cell controller

logic to accomplish this is developed. Figure 12 shows the process of creating the workstation

controllers.

Figure 12 Workstation Controller Construction Process

For each processing workstation, the following seven steps are performed to create the Petri net: (1) an

empty Access database with all of the appropriate tables is created, (2) the controller name information

is added to the database, (3) a node is added to indicate the availability of the material handling device,

(4) for each fixed part location, a node to indicate the FPL is available and a node to indicate a part is

Human description
of the factory

Petri net
models

 85

occupying it is added, (5) a processing activity is added for each MP device in the workstation, (6) for

each arc contained in the workstation movement graph the appropriate series of activities is added, (7)

tokens are added to the places that indicate the material handler and material processors are available.

Appendix E illustrates the growth of the Petri net for the simplest processing workstation that can be

created (the load point and unload point can be the same physical transporter location).

5.6.2 Construction of the cell controller

Figure 13 shows the process of building the cell controller. The process consists of creating a Petri net

to represent the workcell, and the part process plans, extracting information generated during Petri net

creation to form the status matrix and the order vector, creating an initial neural net, creating example

data for the neural net, using the example data to modify the neural net. The dashed lines represent the

flow of information when adjusting for deadlock. If the system does not deadlock (e.g. test case one)

the processes represented by the dashed lines would not be used.

5.6.2.1 Petri net

Conversion of the human description into a Petri net is the first step in the cell controller creation

process. The Petri net used in the cell controller is different from the Petri net used in the workstation

controller. The activities in the cell controller are simplified compared to the activities in the

workstation controller and the cell Petri net includes process plan information that is not included in

the workstation controller. The Petri net creation process consists of the following thirteen steps:

1. an empty database with all of the appropriate tables is created
2. the controller name information is added to the database
3. add two nodes for each transporter location to represent the location is available and the

location is occupied by a transporter
4. a node is added for each material handling device to indicate availability
5. for each fixed part location, add a node to indicate the FPL is available and a node to indicate

a part is occupying it, if the equipment associated with the FPL is an automated storage
system high capacity nodes are used instead of the standard nodes that are used for the other
FPLs

6. add a processing activity for each MP device in the cell
7. add an activity for each transportation movement graph arc
8. add an activity for each processing workstation movement graph arc, this is a single activity

not the expanded list of activities that was added in the workstation controller

 86

9. add an activity for each storage workstation movement graph arc
10. tokens are added to the places that indicate the material handler and material processors are

available
11. for each transporter, add an entry to the appropriate tlocation has a transporter node, add a

token to the tlocation available node for all tlocations that do not have a transporter
12. for each process plan node, add a high capacity node to the Petri net
13. for each process plan arc, add an activity, for each arc leaving a raw material node add a

decision input place, for each non-raw material node with multiple arcs leaving it add a high
capacity place, for each arc leaving a non-raw material node with multiple arcs, add a decision
input place.

Figure 13 Cell Controller Construction Process

5.6.2.2 Status matrix and order vector extraction

After the Petri net is complete, the status matrix can be created. The information for the status matrix

is stored as a table describing the rows and a table describing the columns. During the Petri net

creation process, the nodes are marked if they belong to a status matrix row or a status matrix column.

The algorithm is presented in Appendix I.

The status matrix column information is created in three steps. The first step is to add an entry for

each transporter type that is listed in the user model. The second step is to add an entry for each part

carrier type that is listed in the user model. The third step is to add an entry for each of the Petri net

Human description
of the factory

Petri net
model

System status
matrix

Basic neural net
decision maker

Boolean logic
neural net
decision maker

Example data

 87

nodes in the PNNode table that are marked as being status matrix columns. These nodes represent the

parts in their various stages of manufacture. Information for these entries is filled in using the

PartIndex table.

The status matrix row information is extracted from the PNNode table. An entry is added for each

node that is marked as being a status matrix row.

The order vector is created by adding an entry for each part type that is listed in the user model. This

entry consists of the order vector position and the part identification number, it does not include the

number of parts to be produced. For further discussion of the order vector refer to section 5.4.

5.6.2.3 Neural net creation

The initial neural net is created in three steps. The first step is to add a node to the input layer for each

entry in the order vector and each entry in the status matrix. The second step is to add nodes to the

preliminary and final output layers for each of the various types of commands. The output layers have

a node for each valid message the neural net must send to the Petri net portion of the controller. The

nodes in the preliminary output layer are linked to corresponding nodes in the final output layer with a

fixed weight excitatory link. The third step is to add inhibitor links to prevent incompatible transporter

movements from occurring at the same time. Links are added from the input layer to the final output

layer to prevent an activity from being initiated if an incompatible activity is already occurring and

from the preliminary output layer to the final output layer to prevent two incompatible activities from

being started.

Neural net elements are then added to implement a set of rules based on the Petri net decision places.

Each decision place in the Petri net has an associated transition that should fire when the decision is

issued. Conversely, if the transition cannot fire, (i.e. either the pre- or post- conditions are not met) the

message that constitutes the decision should not be sent. To prevent the message from being sent, one

or more hidden layer nodes are created with a set of fixed weight excitatory arcs that correspond to the

 88

logic necessary to determine if the transition can fire. The appropriate hidden layer node is then

connected to the output layer node with an inhibit on non-pulse arc. The rules used are weak because

only one node is used for each decision input place instead of one for each neural net output. Figure

14 shows a portion of the logic for a load decision input place (the robot and destination availability

logic is not shown). All of the messages on the right side of the figure will cause a token to be placed

in the decision input place associated with the rule. If any of the conditions on the left are true, then

the layer one node will generate a positive output. This means that a part of type one node six at

Tlocation 1 will eliminate the inhibition on all of the load messages not just the message that loads the

type one node six part. If the neural net structure is generated randomly this could result in invalid

outputs not being inhibited.

Figure 14 An Example of a Weak Rule

Additional nodes were added to identify conditions that would used frequently. These conditions

were: a transporter at tlocation x has type 3 capacity, a transporter at tlocation x has type 4 capacity, a

transporter is at tlocation x, a part is at tlocation x, workstation j needs type 3 capacity, workstation j

needs type 4 capacity, workstation j is blocked by empty transporters, buffer k is empty.

Load, 1, 3, Part 1 node 6

Load, 1, 3, Part 3 node 3

Load, 1, 3, Part 2 node 4

Load, 1, 3, Part 1 node 3

0.5

0.5

0.5

0.5

0.5

1

1

1

Layer 0 Layer 1 Layer 3

1Part 1 node 6 at Tloc 1

Part 3 node 3 at Tloc 1

Part 2 node 4 at Tloc 1

Part 1 node 3 at Tloc 1

IL = inhibit low

IL

IL

IL

IL

 89

Elements were then added to cause the nearest transporter with capacity to move to a workstation when

the workstation needs capacity node was active, transporters that were closer but did not have capacity

to move, and transporters that were past the workstation to move farther away until the transporter with

capacity could reach the workstation that needed the capacity. If there was no transport capacity in the

system and a processing workstation needed capacity then the transporter that was closest to a storage

workstation load point was moved to the load point and a part removed from it.

5.6.2.4 Neural net logic construction data creation

Neural net logic construction data consists of a set of neural net inputs with a corresponding set of

outputs. An input output set pairing is called an exemplar. The training data that is used in this

research consists of single input-single output data. A single neuron in the input layer is paired with a

single neuron in the output layer. When the input layer neuron is the only neuron that is on, it should

cause the output layer neuron paired with it and no others to be on. The data set is created in a multi-

step process. The first step is to identify all of the possible paths through the process plans from raw

material to finished product. All paths begin at process plan node one (raw material) and end at node

two (finished product). The paths were implemented as lists. All of the arcs leaving the start node

were selected from the process plan arcs table. For each arc, a list was created with two nodes, the

start node (list head) and the node at the head of the arc leaving the start node (list tail). Each list was

then extended by adding nodes to the tail. The current tail was used to select arcs from the process

plan, if there was only one arc, then the node at the head of the arc was added to the list as the new tail.

If there was more than one arc, then the list was duplicated (number of arcs minus one copies were

made) and each list (original plus copies) received a new tail. This process was repeated until each

path terminated at the finished product node.

After all of the process plan paths have been identified, they are then converted to one or more

equipment-based paths. The equipment-based path identifies the part type and part process node, the

physical location of the part, the type of location, and the command that should be executed at that

 90

physical location. There are potentially multiple equipment-based paths for each process plan path.

Multiple equipment paths are created when there are movement options. Options are created when the

workcell has multiple storage workstations, a storage workstation has multiple load or unload points, a

processing workstation the part must visit has multiple load or unload points, or a processing

workstation the part must visit contains a buffer.

After the equipment-based paths are completed, the corresponding neural net nodes are identified. To

identify the input layer node, the status matrix row and column are first identified and then the input

layer node that corresponds to that status matrix entry is identified. The status matrix row is identified

using the part location and location type. The status matrix column is identified using the part type and

process node. The output layer node is identified by finding the node that has a message matching the

command that needs to be executed. After all of the paths have been processed, duplicate entries

(entries with the same input and output values) are removed. Duplicate entries are created when there

are multiple equipment paths for a single process plan path or when multiple process plan paths have a

step or steps in common. Any time there are multiple process plan paths, the loading of the finished

product into storage will generate duplicate entries.

The following example has been extracted from test case one. For details of test case one, see section

6. The process plan can be seen in Figure 5a. Table 16 shows the process plan paths for parts of type

one. There are two paths because there are two alternative process to create the part. Table 17 shows

the equipment path for process plan path number two from Table 16. The “START” command assigns

the raw material its first processing step, node 4 in the process plan. The “UNLOAD” command

initiates the removal of the part from storage (fixed part location one) to the unload point (transporter

location two). The “LOAD” command causes the part to be taken from transporter location two (the

load point for the processing workstation) and placed in fixed part location two (the material

processing machine). The first process command causes the instructions for process node 4 to be

executed and the second one causes the instructions for process node 5 to be executed. The

 91

“UNLOAD” command then causes the part to be removed from fixed part location two to transporter

location one (the unload point). It is not necessary for the neural net to specify the part type to be

unloaded because the fixed part location can only have one part. The finished product is then loaded

into the storage workstation with the “LOAD” command.

Table 16 Sample Process Plan Paths

PartNumber PathNumber Path
1 1 Part # 1, Path 1, 3, 2
1 2 Part # 1, Path 1, 4, 5, 2

Table 17 Sample Equipment Path
Path

Number
Path
Step

Part
Type

Process
Node

Location
Identifier

Location Is
FPL

Command

2 1 1 1 1 -1 START, PLOC= 1, TYPE= 1, ONODE= 1, NNODE= 4

2 2 1 4 1 -1 UNLOAD,1,2, TYPE= 1, NODE= 4

2 3 1 4 2 0 LOAD,2,2, TYPE= 1, NODE= 4

2 4 1 4 2 -1 PROCESS, PLOC= 2

2 5 1 5 2 -1 PROCESS, PLOC= 2

2 6 1 2 2 -1 UNLOAD,2,1

2 7 1 2 1 0 LOAD,1,1, TYPE= 1, NODE= 2

Table 18, Table 19, and Table 20 show the neural net data for the sample equipment path. Exemplar

number 12 was deleted in the duplicate removal process because it was a duplicate of exemplar 5.

Table 18 Exemplar Identification Sample Equipment Path

Number InputSize OutputSize EpathNumber
7 1 1 2
8 1 1 2
9 1 1 2

10 1 1 2
11 1 1 2
12 1 1 2
13 1 1 2

 92

Table 19 Exemplar Input Values Sample Equipment Path

Number NNNode SMRow SMCol Value
7 46 2 2 0.95
8 49 2 5 0.95
9 29 1 5 0.95

10 69 3 5 0.95
11 70 3 6 0.95
12 67 3 3 0.95
13 7 0 3 0.95

Table 20 Exemplar Output Values Sample Equipment Path

Number NNNode Value Message
7 686 0.95 START, PLOC= 1, TYPE= 1, ONODE= 1, NNODE= 4
8 660 0.95 UNLOAD,1,2, TYPE= 1, NODE= 4
9 608 0.95 LOAD,2,2, TYPE= 1, NODE= 4

10 604 0.95 PROCESS, PLOC= 2
11 604 0.95 PROCESS, PLOC= 2
12 626 0.95 UNLOAD,2,1
13 628 0.95 LOAD,1,1, TYPE= 1, NODE= 2

5.6.2.5 Neural net logic construction

The exemplars are used as the basis for creating the initial neural net structure for generating positive

outputs. All previous neural net structure other than the initial node construction has been aimed at

preventing an invalid output from being generated. A key to generating a successful control structure

is that a single input should produce a single output. When there are alternatives (multiple paths

through a process plan, or multiple load or unload points for a workstation) the exemplar creation

process will generate multiple outputs for a single input. The neural net creation process must take this

into account and create a structure that will only activate one of the outputs.

Initially, duplicate input values were located and the associated output nodes prioritized by the length

of the path containing the output node. Prioritization was established by using a choice point (see

Figure 10) where the threshold values indicated the priority. This priority scheme will generate an

optimal flow time schedule for a single machine. For workcells with multiple machines, the schedule

 93

will normally not be optimal since this prioritization scheme will only accept one path. Once a routing

is selected, all parts will follow that route and the alternative routings will never be used.

The current system still uses the shortest processing time for prioritizing the process plan path that

should be selected when starting a part (this is an area for future improvement) but does not use the

prioritization scheme for other conflicts. Instead, the two choices are allowed to conflict so that an

inhibit choice point is created when the controller is executed.

The next step is to add elements to prevent multiple messages from being sent to the same decision

input place. Multiple messages are associated with storage workstations (there may be multiple parts

ready to unload) and transporter capacities greater than one (multiple parts may want to load into a

workstation or move the transporter).

5.6.2.6 Adaptation to deadlock situations

When a deadlocked or stalled condition occurs, a decision needs to be made by the control system

regarding what new action should be taken. The Petri net is examined to determine if there is a

transition that is decision input fireable. To be decision input fireable, a transition must have a

decision input place in its pre-set and all of the places in its pre-set, except the decision input place,

must be appropriately marked and all of the places in its post-set must have appropriate space. Figure

15 shows a decision input fireable transition taken from a Petri net sequence representing a transfer

between material processors (from material processor two to material processor one). The shaded

places to the left of the transition are marked and the unshaded places to the right of the transition are

empty. If the decision input place was marked, the transition would fire. There should always be at

least one decision input fireable transition in the Petri net, because the number of transporters in the

system is required to be at least one less than the number of transporter locations so there will always

be a transporter that can be moved.

 94

Figure 15 Decision Input Fireable Transition

After determining that at least one decision input fireable transition exists, the highest priority

deadlock or stall condition is identified. Priorities are assigned based on part locations. From highest

to lowest the priorities are: a part in a processing workstation, a part in the transportation system and

an uncompleted part in a storage workstation. A list of parts, part carriers and transporters is

developed by finding all of the non-zero entries in the status matrix. Multiple entries are added to the

list for status matrix entries greater than one. This list is then separated into four categories. One

category, parts in storage that should be in storage (i.e. raw material and finished product) is discarded

and new separate lists are generated for the other three categories: parts in processing workstations,

parts on transporters, uncompleted parts in storage.

The highest priority deadlock or stall type was then classified based on these new lists. The list of

parts in processing workstations is processed first. The first entry on the list is used to select the

processing workstation to have corrective measures applied to it. This gives priority to the workstation

that contains the lowest numbered status matrix row because of the way the list is generated. A new

list containing only the parts located in the workstation being corrected is then created. The

workstation is then checked for deadlock.

If there is only one part in the workstation, then it can not be deadlocked and the problem is the part is

blocked from unloading by a lack of transporter capacity. If there are two parts in the workstation,

MP2
Has P

MP1
Avail

MH
Avail

D

 95

then the current location of each part is compared with the desired location of the other part. If both

parts are occupying the desired location of the other part then a circular wait condition exists and the

type of deadlock is classified based on whether a buffer is present in the workstation. If a circular wait

condition did not exist then the problem is that one of the parts wants to leave the workstation and can

not because of lack of transporter capacity.

If there are three or more parts in the workstation then a multi-terminal shortest chain problem is

created. An n × n matrix A = Aij is used where n is the number of parts in the workstation. The rows

and columns represented locations occupied by a part. Aij is assigned a value of one if the part at

location i wants to move to location j and a value of infinity otherwise. The distance from a node to

itself, the Aii diagonal, is infinity instead of the zero normally found in shortest chain problems. The

problem was then solved using the procedure in Phillips and Garcia-Diaz (1981). After the problem is

solved the values of the diagonal are checked. A value less than infinity indicates that the part at that

location is involved in a circular wait. When a circular wait exists, the diagonal value also indicates

the number of parts involved in the circular wait. Note that it is possible for large workstations (four or

more machines) to have multiple circular wait conditions. The largest non-infinity value is selected as

the circular wait condition to correct. The path matrix is then used to find the locations of the parts

involved in the circular wait.

If a circular wait condition exists, then the deadlock is classified based on whether there is an available

buffer in the workstation, whether there were buffers in the workstation that are occupied and if so

whether all of the parts in the buffers want to remain in the workstation or whether at least one of the

parts wants to leave the workstation. If no circular wait condition exists, then the problem is that at

least one of the parts is blocked from unloading by lack of transporter capacity.

If there are no parts in a processing workstation, then the list of parts on transporters is checked. If

parts exist then either a part has been moved off of the normal paths contained in the neural net logic

 96

construction data or the transporter it was on is blocked from reaching the load point the part wants by

an empty transporter.

If no parts are in processing workstations or on transporters then there must be uncompleted parts in a

storage workstation either blocked because of lack of transport capacity or lack of controller logic.

The neural net logic construction data assumes that once a part leaves the storage workstation it will be

completed before reentering a storage workstation. This occurs because the neural net logic

construction data is generated for a single part moving through the system.

After the type of the deadlock or stall is determined, elements are added to the neural net to initiate a

recovery action. This involves generating a level 1 node to identify the deadlock or stall condition.

Where there were multiple options to overcome the deadlock, the indicator node is linked to a choice

point. For example, in a circular wait condition any of the two or more parts involved can be moved to

an available buffer or, if there is no available buffer, unloaded. For conditions involving lack of

transport capacity, the indicator node is linked to a level 2 node that indicates the workstation requires

transport capacity of a particular type.

The introduction of inhibit choice points (ICPs) made it possible to create a control logic stall. This

occurred when multiple conflicts had occurred and the conflicts involved subsets of the original

conflict condition. Consider the case where three parts are available for unloading from storage. Part

A is chosen to be unloaded leaving parts B and C in storage. Because the inhibit choice points are

created based on pairs of incompatible outputs two ICPs were created where A was chosen over B and

A was chosen over C. After A is unloaded an additional ICP will be created to determine whether B or

C should be unloaded. Assume B is chosen over C. During performance tuning it will be possible for

B to be chosen over A, A over C, and C over B resulting in all of the unload operations being inhibited.

While it would be possible to add additional logic to cause one of the parts to be unloaded because all

inhibition occurs at level 3 not at the preliminary output layer (layer 4), it was decided to terminate the

simulation and move to the next genome in the performance tuning process.

 97

5.6.2.7 Deadlock avoidance and/or prevention versus deadlock recovery

One of the basic assumptions of this research has been that a part can be unloaded from any machine in

a processing workstation and removed from the workstation. Further, after the part has been removed

from the workstation it can be reloaded into the workstation for further processing. Because of these

assumptions and the hierarchical nature of the control system it is possible to “preempt” a part in a

workstation, i.e. that is force it to give up the workstation resources it holds. The part no longer has

control of when the workstation resources are released removing the third condition of Coffman et al.

(1971) for deadlock. Preemption of some type is the basic deadlock recovery technique. When a

circular wait condition is detected, one of the parts is removed from its current location forcing a

release of the resources it holds. Generally special deadlock resolution resources must be available to

allocate temporarily to the part that was forced to release resources, i.e. a deadlock recovery buffer. In

this research, the transportation system and the storage workstation(s) that originally held the raw

material are used instead of a dedicated deadlock recovery buffer. Further, it is assumed that the

storage system has the capacity to store all raw material, in-process and finished parts. The number of

parts in the system will therefore always be less than the storage capacity plus the transporter capacity

so based on Co and Wysk (1986) the system will never reach a point where it cannot be undeadlocked.

Viswanadham et al. (1990) state, “Deadlocks usually arise as the final state of a complex sequence of

operations on jobs flowing concurrently through the system and are thus generally difficult to predict.”

Deadlock detection is relatively easy compared to deadlock prediction. A general deadlock recovery

mechanism can be developed where parts are transferred from the location they occupy when the

deadlock is detected to a storage facility. At some point, the system must become undeadlocked and

progress restart. The worst case scenario is that all but one part will have to be transported to a storage

facility.

Allowing “deadlocks,” that is, the creation of circular wait conditions, to occur may improve

performance or harm performance depending on the configuration of the FMS. Consider an FMS

 98

containing a processing workstation with two MP devices and a buffer. If the time to move between

the MP device and the buffer is small compared to the processing time on the MP device then

operating the MP devices in parallel is desirable even when it creates a circular wait between the two

machines. If the transfer between machines and the processing time is small compared to the transfer

time to the buffer then operating the machines in parallel may be undesirable when it causes a part to

be transferred to the buffer.

One kind of deadlock that is always harmful is the situation where a material transport device is

required to unload a machine and that material transport device has been assigned to another part that

wants to use the machine that needs to be unloaded. Test case 2 has the potential for this type of

deadlock. If a part is on the machine and a second part is unloaded from the storage workstation, the

second part must be reloaded into the storage workstation before the part on the machine can be

unloaded. To reduce this type of harmful delay, a deadlock reduction policy was implemented. The

number of parts that could be unloaded from storage workstations was limited to the number of non-

storage fixed part locations minus one plus the available transport capacity. For the single machine

case, this guarantees that this type of deadlock will be avoided. For systems with more than one MP

device, these deadlocks can still occur when the parts are released in an order that results in one of the

MP devices being empty.

5.7 Genetic Algorithm Performance Tuning

The genome used for performance tuning is constructed with two strands of alleles. The two strands

correspond to the set of choice points and the set of inhibit choice points. Each allele is the value of

the choice that should be used for the choice point. The location of the allele (locus) is the position of

the allele on the genome and corresponds to the choice or inhibit choice identifier. Three tables are

used to store the genomes: GenomeID, GenomeChoicePointValues, and

GenomeInhibitChoicePointValues. The GenomeID table has fields for the genome identifier, the

performance value, the number of choice points and the number of inhibit choice points. As the

 99

controller runs, the number of choice points and inhibit choice points may change. Recovering from a

deadlock with a circular wait will add a choice point for the selection of the part to be removed from its

current set of resources. Any set of choices that leads to resource contention will create an inhibit

choice point. The GenomeChoicePointValues and GenomeInhibitChoicePointValues tables have

fields for the genome identifier, the choice or inhibit choice point identifier, and the choice to be

selected for the point.

To evaluate a genome the neural net is modified to match the choices specified by the genome. For

each choice point the neuron associated with the selected choice has its threshold value set to the

minimum threshold value specified for the choice point. The neurons associated with the non-selected

choices have their thresholds set to the minimum threshold plus one. This threshold guarantees that

the neurons will not be active, since it is greater than the possible sum of all of the inputs to the neuron.

For each inhibit choice point, the arc associated with the selected choice has its weight value set to

zero. The weights of the arcs associated with the non-selected choices are set to one. The arc with the

weight of zero will have no effect on the node it would normally inhibit because the input value will be

less than that required to inhibit the node. The controller is then operated in simulation mode and

allowed to produce the batch of parts under consideration. When the part batch has been completed or

the controller determines it cannot complete the batch, the objective function is computed and assigned

to the genome as its performance value.

To achieve performance tuning a series of genomes are created and evaluated. The system used a

steady-state population approach. After each genome was created, it was evaluated. If the genome

performed better than the worst genome in the population then it replaced the worst genome in the

population. Genomes were created and evaluated until the maximum number of simulations specified

by the user was reached.

To create the initial population, a single genome was created where all of the choices and inhibit

choices were assigned choice one. The genome was then evaluated. If the number of genomes was

 100

less than one third of the maximum number to be kept in the population, the next genome was created

by mutating the current best performer. Each locus was mutated with a probability of 0.35. If the

locus was chosen for mutation, each possible allele, including the current one, was given equal

probability of replacing the current allele. It was possible for an allele to replace itself. This

effectively reduced the mutation rate. For a locus with two possible choices the probability that the

locus changed was 0.175 (probability of selection 0.35 * probability of change if selected 0.5).

If the population size was between one third and two thirds of the maximum population size the next

genome was created from two randomly selected parents. The alleles were selected from each parent

with equal probability (i.e. probability of selecting the allele for locus j from parent A equals 0.5).

When the population size was greater than two thirds of the maximum, the next genome was created

from the best performer and a randomly selected member of the population. The best performer was

modified by a crossover operator. The crossover operation could involve only the choice point strand,

only the inhibit choice point strand, or both strands. The strands involved were selected randomly with

equal weight given to the three options. The crossover operator functioned as both a two point

crossover and a one point crossover. A starting point and an ending point for the crossover for each

strand were randomly selected. If the value for the ending point was smaller than the value for the

starting point, the operator acted as a one point operator, taking the strand from the starting point to the

end of the strand. If the value for the ending point was larger, the operator took the strand from the

starting point to the ending point.

5.8 Control System Operation

The operation of the controllers will now be described starting with the equipment level and working
upward.

5.8.1 Equipment level

The operation of any individual equipment level controller is in general outside the scope of this

research. The controller must respond to a set of standardized interface commands. The response to

these commands will be machine specific. The controller will wait for a command to be received from

 101

a higher level controller, convert that command to a machine specific command, perform the machine

specific functions, monitor the process of the functions, and on completion of the functions send a

message to the higher level controller indicating the command has been completed.

5.8.2 Workstation level

The processing workstation controllers are Petri nets that function as command expanders. A single

activity sequence in the cell controller is expanded to a sequence of activities. Figure 16 shows the

general operation of an event driven Petri net. There is an implicit assumption that there will not be

any transitions that can fire before the first event happens. The workstation starts in the empty and idle

condition and requires a load message before any transition will be able to fire. If the workstation

controller is not starting from the empty and idle condition (i.e., it was stopped and then restarted) then

the only transitions that will not have fired will be ones that are waiting for an event to occur. The

other transitions are zero time events. While it is possible for the user to shut down the controller

between zero time events, it is unlikely to happen.

 102

Figure 16 Workstation Controller Operation

Figure 17 shows a simple workstation controller in the empty and idle condition. The workstation has

one material handler and one material processor with no buffers. The controller can perform three

actions: load a part into the material processor, unload a part from the material processor, and perform

a process on the processor. For each action, there is a corresponding decision input place, indicated in

the figure by the square boxes containing the letter “D.” The workstation initially contains two tokens,

one in the place indicating the material processor is available, the other in the place indicating the

material handler is available.

When a message is received from the cell controller, a token will be placed in the “Load Pending”

decision input place (the associated event fired transition is not shown in Figure 17). After the “Load

Pending” place receives a token the transition following it becomes enabled and fires, removing the

Fire Transition

Send a
message

No

Send the message

Yes

Can a
transition

fire

Wait
for an event

No

Yes

 103

tokens from the three places in its pre-set and placing a token in each of the two places in its post-set.

The tokens contain information about the type of part that should be loaded, and the transporter

location and the mobile part location from which the part should be loaded. This information was

contained in the message received from the cell controller.

The post-set contains a standard place used to indicate that an operation is in progress and an output

place. The output place has a destination and a message format string associated with it that were

assigned during the creation of the workstation controller. When the transition following the output

place fires (it was enabled when the output place received a token), removing the token from the output

place, a message is sent to the destination associated with the place using information held by the token

and the output place format string. A token is also placed in the external clock place, indicating that a

response is expected from another device. The transition between the external clock place and the

input place is an event triggered transition. When the event occurs (the proper message is received

from the controller associated with the event, in this case, a message indicating the Preparation has

been completed), the transition fires placing a token in the input place. The process repeats itself as the

transition starting the next activity (Picking) becomes enabled when the input place receives the token.

The process of firing transitions and moving tokens continues until no transitions are enabled. This

occurs after the transition following the “Load Complete” output place (not shown in Figure 17) fires.

The Petri net will have tokens in the “material handler available” place and the “MP has a part” place.

The system then waits until the next event occurs placing a token in one of the “decision input places.”

 104

Figure 17 Simple Workstation Controller

5.8.3 Cell level

The cell controller initiates all actions in the workcell. The cell controller is a combination of a Petri

net and a neural net. The workcell is represented as a Petri net. The Petri net performs the execution

function while the neural net performs the decision making function. Figure 18 shows the general

function of the controller. The Petri net attempts to fire each transition. If the transition fires, a flag is

set to indicate the Petri net should be restarted after the neural net has been processed. As part of the

transition firing process, the rows in the status matrix associated with the places in the transition’s pre-

and post-sets are updated.

After attempting to fire all Petri net transitions, the neural net is processed using the updated status

matrix. To ensure that the neural net does not make decisions based on conditions that no longer exist,

the Petri net is processed four times for each processing of the neural net. Four was used because the

number of transitions associated with an activity is four, i.e. an initial transition fires, a message

sending transition fires, a message received transition fires and then a final activity complete transition

Preparing Picking Placing

Unclamping

Clearing

Load
Pending

MP
Available
MH
Available

MP has
a part

Unload
Pending

Preparing Grasping

Clamping

ClearingPutting

Load
Complete

Unload
Complete

Loading NC File Processing

Process
Complete Process

Pending

D

D

D

 105

fires. This is done to allow actions initiated by the previous neural net decisions to be reflected in the

status matrix.

The results of the neural net processing are a set of messages that are sent to the Petri net. The set may

be empty. After the neural net is processed, the flag indicating whether a Petri net transition fired

during the last processing of the Petri net is checked. If a transition fired, then the Petri net is

processed again. If a transition did not fire, then the Petri net is not processed, because no transition

will be capable of firing. The system must wait until an event occurs. When the message arrives that

triggers the event, the transition associated with the event is fired, the transition fired flag is set, and

the Petri net is processed, restarting the Petri net -- Neural net processing cycle.

Figure 18 Cell Control Operation

If no Petri net transitions fire in the current cycle and the neural net does not initiate any decisions then

the status matrix is checked to determine if a stalled / deadlocked condition is present. The rows that

are marked for deadlock detection represent activities in progress. If these rows do not have any non-

zero entries then there are no activities in progress so no future events will occur. The system is stalled

or deadlocked and will remain in its current state indefinitely unless the deadlock recovery and

adaption procedure discussed in section 5.6.2.6 is executed.

Attempt to Fire
 Petri Net Transitions

Set Flag

Process
Neural Net

Send Messages

Receive Message
Fire Event Transition

Set Flag

Flag Set?
Yes

No

Update
 Status
Matrix

 106

5.9 Control System Summary

To operate the cell controller, storage workstation and equipment level controllers that respond to the

specified interface must be provided. Simple processing workstation controllers that act as command

expanders can be created automatically from the user input model of the workcell. The interesting

portion of the control system is the cell controller. The cell controller uses a Petri net to model the

workcell and an artificial neural net to model the control logic. The control logic can be extracted into

human understandable rules because the weights of the neural net have been restricted (with one

exception) to integer values resulting in a Boolean logic. The exception was used to implement an

“OR” operation and the logic remains Boolean. With an additional neural net layer the “OR”

operation could be performed using integer value weights.

A genetic algorithm is used to performance tune the controller. The genome is used to select among

choices of specific operations instead of the more common selection of a heuristic to make scheduling

decisions.

The inputs to the choice and inhibit choice points were created using data limited to the workstation

involved in the choice, so the controller is not using all of the information available to it. This means

that a guaranteed global optimum will not be achieved. The current usage of the choice points, where

only a single choice is allowed, is less efficient than the original idea of allowing additional

connections to the choice point where the thresholds of the nodes are used to indicate priority or

preference. This would allow the choice to change dynamically instead of being fixed. A method for

selecting the additional connections and allowing the connections to be changed to tune the controller

needs to be developed.

 107

6 EXAMPLE IMPLEMENTATION

A description of the process of generating the control system for test case one will now be presented.

Figure 19 shows the user input process, the facility side of the figure will be presented first. Test case

one is a very simple workcell consisting of a storage workstation, a processing workstation, and two

transporter locations. Both transporter locations are occupied by a transporter loaded with a part

carrier. Only parts are moved between workstations, not part carriers. Parts are required to be on part

carriers while stored in the storage workstation or while on a transporter. They are not on a part carrier

while in the processing workstation. Four types of parts are processed in the workstation. The

scheduling objective is minimum average flow time. For a single machine system, the shortest

processing time first (SPT) heuristic is known to optimize average flow time.

The first step is to identify the equipment and other resources (i. e. part carriers and transporters) used

in the workcell. Table 21 lists the equipment used by test case one, while Table 22 shows the

transporter types that are used and Table 23 shows the part carrier types. After the equipment and

resources are identified, the various locations can be specified. There is a fixed part location for each

piece of storage equipment and each material processor. Table 24 identifies the fixed part locations in

test case one. The other fixed locations (the transporter stopping locations) are then specified. Table

25 shows the two transporter locations in test case one. The mobile part locations with their associated

transporter type are then specified. Table 26 shows the single mobile part location associated with the

single transporter type.

Table 21 Test Case One Equipment

EquipmentNumber EquipmentDescription EquipmentType ControllerName
1 Automated Storage AS AS1
2 Storage Robot MH StorageMH
3 Material Processor MP MetalCutter
4 Processing Robot MH CuttingRobot
5 Transportation System MT BigMover

108

Figure 19 User Input Process

Specify equipment, transporter types and
part carrier types

Specify fixed part locations,
transporter locations, and mobile part

locations

Specify movement graphs

Transporter

Storage workstation

Processing workstation

Specify processing and storage
workstations with associated load and

unload points

Specify equipment used in each workstation

Specify incompatible transporter movements

Specify Parts Produced

Specify Process
Plan Nodes

Specify Process
Plan Arcs

109

Table 22 Test Case One Transporter Types

TransporterTypeNumber PlocationCount TransporterDescription
1 1 The only type

Table 23 Test Case One Part Carrier Types

PartCarrierTypeNumber PartCarrierDescription TransporterType
1 Holds a single part 1

Table 24 Test Case One Fixed Part Locations

LocationNumber LocationDescription EquipmentNumber
1 Storage 1
2 Material Cutter 3

Table 25 Test Case One Transporter Locations

LocationNumber LocationDescription EquipmentNumber LoadPoint UnLoadPoint
1 Storage Load 5 Yes Yes
2 Storage Unload 5 Yes Yes

Table 26 Test Case One Mobile Part Locations

LocationNumber Location Description TransporterType
1 The one and only 1

After the physical system has been specified, the organization of the workcell is specified by

identifying the processing (see Table 27) and storage (see Table 28) workstations with their associated

load (see Table 29 and Table 31) and unload (see Table 30 and Table 32) points, then the equipment is

assigned to the appropriate workstation (see Table 33 and Table 34). The transportation system is not

assigned to a workstation because the cell controller directly controls the movement between

workstations.

110

Table 27 Test Case One Processing Workstations

WorkstationNumber Description ControllerName
1 Processing Workstation PWS1

Table 28 Test Case One Storage Workstations

WorkstationNumber Description ControllerName
1 Storage Workstation SWS1

Table 29 Test Case One Processing Workstation Load Points

WorkstationNumber TlocationNumber
1 2

Table 30 Test Case One Processing Workstation Unload Points

WorkstationNumber TlocationNumber
1 1

Table 31 Test Case One Storage Workstation Load Points

WorkstationNumber TlocationNumber
1 1

Table 32 Test Case One Storage Workstation Unload Points

WorkstationNumber TlocationNumber
1 2

Table 33 Test Case One Processing Workstation Equipment

Workstation Number Equipment Number
1 3
1 4

111

Table 34 Test Case One Storage Workstation Equipment

Workstation Number Equipment Number
1 1
1 2

After the workstations have been defined and the equipment assigned, the movement possibilities must

be defined. Three sets of graphs are created by defining arcs between the locations previously defined.

The first graph describes how transporters move through the transportation system. Test case one does

not allow transporters to move, so there are no arcs in this graph. The other two sets of graphs define

how parts move in relationship to the workstations (see Table 35 and Table 36). As previously

mentioned, workstation movement graphs use the three location data points (LocationData1,

LocationData2, LocationData3) to store the end points of the arc in a from - to configuration. The

meaning of the location data changes depending on the type of arc. Load arcs store their origin using

LocationData1 to store the transporter location and LocationData2 to store the mobile part location.

LocationData3 is used to store the fixed part location where the part should be placed after it is

removed from the transporter. Unload arcs store their origin (a fixed part location) in LocationData1

and their destination in LocationData2 (transporter location) and LocationData3 (mobile part location).

Transfer arcs store the origin fpl in LocationData1 and the destination fpl in LocationData2. Transfer

arcs do not use LocationData3.

The final step in identifying the movement possibilities is to identify the transporter movements that

are not compatible. If two arcs are incompatible, there will be two entries in the table. Test case one

does not allow transporter movement, so it does not have any incompatible transporter movements.

Table 35 Test Case One Processing Workstation Movement Graph Arcs

Workstation
Number

Arc
Number

Equipment
Number

Estimated
Time

Type of
Arc

Part
Only

Location
Data1

Location
Data2

Location
Data3

1 1 4 15 1 Yes 2 1 2
1 2 4 15 3 Yes 2 1 1

112

Table 36 Test Case One Storage Workstation Movement Graph Arcs

Workstation
Number

Arc
Number

Equipment
Number

Estimated
Time

Type of
Arc

Part
Only

Location
Data1

Location
Data2

Location
Data3

1 1 2 30 1 Yes 1 1 1
1 2 2 30 3 Yes 1 2 1

At this point, the facility description has been completed. The parts that are to be processed in the

system must now be specified. This specification begins with a list of the parts that are to be produced

(see Table 37). After the parts are listed, all of the raw material, finished product and processing nodes

in the part process plans are specified (see Table 38). Each processing node has associated with it a

piece of equipment, an instruction set, and an estimated processing time. The estimated processing

time is used to simulate the performance of the workcell during training. The process plan nodes are

then connected together with process plan arcs to specify the manufacturing constraints (see Table 39).

After the process plan arcs have been specified, the user input is complete.

Table 37 Test Case One Part Identification

PartNumber PartName PartDescription
1 One Test case one has alternative route
2 Two Single option one step
3 Three Alternative Process allowed
4 Four Alternative process shorter than single step

113

Table 38 Test Case One Process Plan Nodes

PartNumber NodeNumber Equipmentnumber Instructions EstimatedTime
1 1 1 Raw Material 0
1 2 1 Finished Product 0
1 3 3 NC-1-1 600
1 4 3 NC-1-2 500
1 5 3 NC-1-3 120
2 1 1 Raw Material 0
2 2 1 Finished Product 0
2 3 3 NC-2-1 400
3 1 1 Raw Material 0
3 2 1 Finished Product 0
3 3 3 NC-3-1 800
3 4 3 NC-3-2 450
3 5 3 NC-3-3 450
4 1 1 Raw Material 0
4 2 1 Finished Product 0
4 3 3 NC-4-1 750
4 4 3 NC-4-2 200
4 5 3 NC-4-3 475

Table 39 Test Case One Process Plan Arcs

ArcNumber PartNumber StartingNode EndingNode
1 1 1 3
2 1 3 2
3 1 1 4
4 1 4 5
5 1 5 2
1 2 1 3
2 2 3 2
1 3 1 3
2 3 3 2
3 3 1 4
4 3 4 5
5 3 5 2
1 4 1 3
2 4 3 2
3 4 1 4
4 4 4 5
5 4 5 2

114

Figure 20 Test Case One Partial Cell Controller Petri Net

T1 A

T1
HT

T2 A

T2
HT

MH4

MH2
FPL2
Avail

FPL2
Has P

FPL1
Avail

FPL1
Has P

D
Processing

D
Unloading

D

Loading

D
D

Unloading

Loading

115

The user can now build the controllers. It does not matter whether the processing workstation

controller or the cell controller is created first. Separate controller construction programs are used for

the processing workstation and the cell controller. The processing workstation controller for test case

one will look like the controller in Figure 17.

The workcell controller consists of two parts, the Petri net that interacts with the other controllers and

the neural net that makes the decisions. The Petri net portion is partitioned into several distinct

groupings. There is one grouping that represents the facility and one grouping for each part process

plan. Figure 20 shows the unmarked Petri net grouping that represents the test case one facility.

The neural net was constructed with the minimum number of nodes necessary to represent the inputs,

outputs and the control rules derived from the Petri net. The input layer consisted of 604 nodes. Four

nodes represent the orders for the four part types. The other 600 nodes represent the status of the

workcell organized as a thirty row, twenty column, status matrix. The rows represent physical

locations and activities, Table 40 defines the meanings of the rows. The rows that are labeled as

“Transforming” indicate that a new process plan node is being assigned to the part. The old node label

is the node currently assigned to the part and the new node label is the one that will be assigned to the

part after the transformation. The columns represent physical objects in the system (parts, part carriers

and transporters), Table 41 defines the meanings of the columns. The output layer consisted of 47

nodes, each of these nodes has an associated message that represents a possible decision the neural net

can reach. These messages are listed in Table 42 along with the preliminary output layer node

associated with the message. The shortest path through each process plan was selected manually.

Table 43 shows the shortest paths arranged in increasing length order.

116

Table 40 Test Case One Status Matrix Row Definitions

Status Matrix
Row

Interpretation

0 Tlocation 1 Has a Transporter
1 Tlocation 2 Has a Transporter
2 FPL1 Has a Part
3 FPL2 Has a Part
4 Processing Ploc2
5 Loading Ploc2 from Tloc2 Transporter
6 Loading Ploc2 from Tloc2 Part
7 Unloading Ploc2 to Tloc1 Transporter
8 Unloading Ploc2 to Tloc1
9 Loading Ploc1 from Tloc1 Transporter
10 Loading Ploc1 from Tloc1 Part
11 Unloading Ploc1 to Tloc2 Transporter
12 Unloading Ploc1 to Tloc2
13 Transforming Ploc1, Type1, Old node 1, New node 3
14 Transforming Ploc1, Type1, Old node 1, New node 4
15 Transforming Ploc2, Type1, Old node 3, New node 2
16 Transforming Ploc2, Type1, Old node 4, New node 5
17 Transforming Ploc2, Type1, Old node 5, New node 2
18 Transforming Ploc1, Type2, Old node 1, New node 3
19 Transforming Ploc2, Type2, Old node 3, New node 2
20 Transforming Ploc1, Type3, Old node 1, New node 3
21 Transforming Ploc1, Type3, Old node 1, New node 4
22 Transforming Ploc2, Type3, Old node 3, New node 2
23 Transforming Ploc2, Type3, Old node 4, New node 5
24 Transforming Ploc2, Type3, Old node 5, New node 2
25 Transforming Ploc1, Type4, Old node 1, New node 3
26 Transforming Ploc1, Type4, Old node 1, New node 4
27 Transforming Ploc2, Type4, Old node 3, New node 2
28 Transforming Ploc2, Type4, Old node 4, New node 5
29 Transforming Ploc2, Type4, Old node 5, New node 2

117

Table 41 Test Case One Status Matrix Columns Definitions

Status Matrix
Column

Interpretation

0 Transporter Type 1
1 Part Carrier Type 1
2 Part Type 1 Node 1 (Raw material)
3 Part Type 1 Node 2 (Finished Product)
4 Part Type 1 Node 3
5 Part Type 1 Node 4
6 Part Type 1 Node 5
7 Part Type 2 Node 1 (Raw material)
8 Part Type 2 Node 2 (Finished Product)
9 Part Type 2 Node 3
10 Part Type 3 Node 1 (Raw material)
11 Part Type 3 Node 2 (Finished Product)
12 Part Type 3 Node 3
13 Part Type 3 Node 4
14 Part Type 3 Node 5
15 Part Type 4 Node 1 (Raw material)
16 Part Type 4 Node 2 (Finished Product)
17 Part Type 4 Node 3
18 Part Type 4 Node 4
19 Part Type 4 Node 5

118

Table 42 Test Case One Neural Net Output Messages

IDNumber Message
604 PROCESS, PLOC= 2
606 LOAD,2,2, TYPE= 1, NODE= 3
608 LOAD,2,2, TYPE= 1, NODE= 4
610 LOAD,2,2, TYPE= 1, NODE= 5
612 LOAD,2,2, TYPE= 2, NODE= 3
614 LOAD,2,2, TYPE= 3, NODE= 3
616 LOAD,2,2, TYPE= 3, NODE= 4
618 LOAD,2,2, TYPE= 3, NODE= 5
620 LOAD,2,2, TYPE= 4, NODE= 3
622 LOAD,2,2, TYPE= 4, NODE= 4
624 LOAD,2,2, TYPE= 4, NODE= 5
626 UNLOAD,2,1
628 LOAD,1,1, TYPE= 1, NODE= 2
630 LOAD,1,1, TYPE= 1, NODE= 3
632 LOAD,1,1, TYPE= 1, NODE= 4
634 LOAD,1,1, TYPE= 1, NODE= 5
636 LOAD,1,1, TYPE= 2, NODE= 2
638 LOAD,1,1, TYPE= 2, NODE= 3
640 LOAD,1,1, TYPE= 3, NODE= 2
642 LOAD,1,1, TYPE= 3, NODE= 3
644 LOAD,1,1, TYPE= 3, NODE= 4
646 LOAD,1,1, TYPE= 3, NODE= 5
648 LOAD,1,1, TYPE= 4, NODE= 2
650 LOAD,1,1, TYPE= 4, NODE= 3
652 LOAD,1,1, TYPE= 4, NODE= 4
654 LOAD,1,1, TYPE= 4, NODE= 5
656 UNLOAD,1,2, TYPE= 1, NODE= 2
658 UNLOAD,1,2, TYPE= 1, NODE= 3
660 UNLOAD,1,2, TYPE= 1, NODE= 4
662 UNLOAD,1,2, TYPE= 1, NODE= 5
664 UNLOAD,1,2, TYPE= 2, NODE= 2
666 UNLOAD,1,2, TYPE= 2, NODE= 3
668 UNLOAD,1,2, TYPE= 3, NODE= 2
670 UNLOAD,1,2, TYPE= 3, NODE= 3
672 UNLOAD,1,2, TYPE= 3, NODE= 4
674 UNLOAD,1,2, TYPE= 3, NODE= 5
676 UNLOAD,1,2, TYPE= 4, NODE= 2
678 UNLOAD,1,2, TYPE= 4, NODE= 3
680 UNLOAD,1,2, TYPE= 4, NODE= 4
682 UNLOAD,1,2, TYPE= 4, NODE= 5
684 START, PLOC= 1, TYPE= 1, ONODE= 1, NNODE= 3
686 START, PLOC= 1, TYPE= 1, ONODE= 1, NNODE= 4
688 START, PLOC= 1, TYPE= 2, ONODE= 1, NNODE= 3
690 START, PLOC= 1, TYPE= 3, ONODE= 1, NNODE= 3
692 START, PLOC= 1, TYPE= 3, ONODE= 1, NNODE= 4
694 START, PLOC= 1, TYPE= 4, ONODE= 1, NNODE= 3
696 START, PLOC= 1, TYPE= 4, ONODE= 1, NNODE= 4

119

Table 43 Test Case One Shortest Process Plan Paths

Part Process Plan Path Processing Time
2 1 3 2 400
1 1 3 2 600
4 1 4 5 2 200 + 475 = 675
3 1 3 2 800

The Petri net decision input places were used to create control rules (see Table 44, Table 45 and Table

46). If adding a token to a decision input place would not enable the transition following the decision

input place then decisions that would place a token in the decision input place should not be made.

The control rules used nodes 698 to 713 to represent conditions that need to be met to allow a decision

to be valid. The duplicate nodes in Table 44 are generated when the part process plan has alternative

routes. Each route has a decision input node associated with choosing that route. The conditions for

the feasibility of routes are identical, raw material must be available and the number of parts that have

been started must be less than the number of parts that have been ordered.

After the cell controller was built, the neural net was adjusted manually to implement the SPT

heuristic. This adjustment consisted of changing the arc type of the link from the conditions to the

start output node from 2 (inhibit low) to 3 (excitatory fixed weight) see Table 46 and adding additional

nodes (see Table 47) and arcs (see Table 48, Table 49, and Table 50). Movement activities were

prioritized from highest to lowest: Load PWS, Unload PWS, Unload SWS, Load SWS. See Appendix

F for a detailed description of the logic development.

120

Table 44 Test Case One Control Rule Conditions

Node Layer Interpretation
698 1 Fpl 2 has a part
699 1 Tloc 2 has a transporter and a part, the material handler is not active, and

there is no part processing or idle at FPL 1
700 1 There is a part idle at FPL 1
701 1 Tloc 1 has a transporter with space available to accept a part
702 2 There is a part idle at FPL 1, Tloc 1 has space available to accept a part,

and the material handler is not active
703 1 Tloc 1 has transporter and part, material handler is not active
704 1 FPL 1 has a part
705 1 Tloc 2 has a transporter with space available to accept a part
706 2 FPL 1 has a part, Tloc 2 has space for a part, and the material handler is not

active
707 1 Raw material for part 1 is available and the number of type ones that have

been started is less than the number of type 1 parts ordered
708 1 Duplicate of 707
709 1 Raw material for part 2 is available, and the number of type 2 parts started

is less than the number ordered
710 1 Raw material for part 3 is available, and the number of type 3 parts started

is less than the number ordered
711 1 Duplicate of 710
712 1 Raw material for part 4 is available, and the number of type 4 parts started

is less than the number ordered
713 1 Duplicate of 712

Table 45 Test Case One Petri Net Control Rules

Condition
Node (s)

Link Type Output Node (s) Interpretation

698 2 604 A part can not be processed if it is not in the
processing workstation

699 2 606,608,610,612,614,
616,618,620,622,624

The processing workstation can not be loaded
if it already has a part, there is not part
available, or the material handler is busy

702 2 626 The processing workstation can not be
unloaded if it does not have a part, there is not
space at the unload point, or the material
handler is busy

703 2 628,630,632,634,636,
638,640,642,644,646,
648,650,652,654

A part can not be placed in the storage
workstation unless there is a part at the load
point and the material handler is not busy

706 2 656,658,660,662,664,
666,668,670,672,674,
676,678,680,682

A part can not be taken from the storage
workstation unless there is a part in the
workstation, the material handler is not busy,
and there is space available at the unload point

121

Table 46 Test Case One Modified Petri Net Rules

Condition
Node (s)

Link Type Output Node (s) Interpretation

707 3 684 Conditions are correct to start part type 1
707 1 690,696 Don’t start part type 3 or 4 if a type 1 part can

be started
708 2 686 Don’t start part 1 alternate path unless raw

material is available and fewer parts are
started than ordered

709 3 688 Conditions are correct to start part type 2
709 1 684,690,696 Don’t start part type1, 3 or 4 if a type 2 part

can be started
710 3 690 Conditions are correct to start part type 3
711 2 692 Don’t start part 3 alternate path unless raw

material is available and fewer parts are
started than ordered

712 2 694 Don’t start part 4 path unless raw material is
available and fewer parts are started than
ordered

713 3 696 Conditions are correct to start part type 4
713 1 690 Don’t start part type 3 if a type 4 part can be

started

Table 47 Test Case One Manually Added Nodes

Node Layer Interpretation
714 1 Part type 2 has been ordered
715 1 Part type 1 has been ordered
716 1 Part type 4 has been ordered
717 1 Part type 3 has been ordered
718 1 A part is ready to be processed (P1N3, P2N3, P3N3, P4N4, P4N5)
719 1 A completed part is ready to be unloaded (P1N2, P2N2, P3N2, P4N2)
720 1 P2N3 is in the storage workstation
721 1 P1N3 is in the storage workstation
722 1 P4N5 is in the storage workstation
723 1 P4N4 is in the storage workstation
724 1 P3N3 is in the storage workstation
725 1 Tloc 2 has P2N3 (storage unload point, processing load point)
726 1 Tloc 2 has P4N5 (storage unload point, processing load point)
727 1 Tloc 2 has P1N3 (storage unload point, processing load point)
728 1 Tloc 2 has P4N4 (storage unload point, processing load point)
729 1 Tloc 2 has P3N3 (storage unload point, processing load point)
730 1 Tloc 1 has P2N2 (storage load point, processing unload point)
731 1 Tloc 1 has P1N2 (storage load point, processing unload point)
732 1 Tloc 1 has P4N2 (storage load point, processing unload point)
733 1 Tloc 1 has P3N2 (storage load point, processing unload point)

122

Table 48 Test Case One Manually Added Arcs from Manually Added Nodes

Input
NodeID

OutPut
NodeID

Weight LinkType Interpretation

718 604 1 3 A part is ready to be processed so process it
719 626 1 3 A completed part is ready to unload so unload it
720 658 -1 3 P2N3 is in storage do not unload P1N3
720 666 1 3 P2N3 is in storage unload it
720 670 -1 3 P2N3 is in storage do not unload P3N3
720 680 -1 3 P2N3 is in storage do not unload P4N4
720 682 -1 3 P2N3 is in storage do not unload P4N5
721 658 1 3 P1N3 is in storage unload it
721 670 -1 3 P1N3 is in storage do not unload P3N3
721 680 -1 3 P1N3 is in storage do not unload P4N4
722 658 -1 3 P4N5 is in storage do not unload P1N3
722 670 -1 3 P4N5 is in storage do not unload P3N3
722 680 -1 3 P4N5 is in storage do not unload P4N4
722 682 1 3 P4N5 is in storage unload it
723 670 -1 3 P4N4 is in storage do not unload P3N3
723 680 1 3 P4N4 is in storage unload it
724 670 1 3 P3N3 is in storage unload it
725 612 1 3 Tloc 2 has P2N3 load it into the PWS
726 624 1 3 Tloc 2 has P4N5 load it into the PWS
727 606 1 3 Tloc 2 has P1N3 load it into the PWS
728 622 1 3 Tloc 2 has P4N4 load it into the PWS
729 614 1 3 Tloc 2 has P3N3 load it into the PWS
730 636 1 3 Tloc 1 has P2N2 load it into the SWS
731 628 1 3 Tloc 1 has P1N2 load it into the SWS
732 648 1 3 Tloc 1 has P4N2 load it into the SWS
733 640 1 3 Tloc 1 has P3N2 load it into the SWS

123

Table 49 Test Case One Arcs Manually Added to Manually Added Nodes

InputNodeID OutPutNodeID Weight LinkType Interpretation
1 714 1 3 P2 ordered
0 715 1 3 P1 ordered
3 716 1 3 P4 ordered
2 717 1 3 P3 ordered

68 718 1 3 P1N3 in PWS
73 718 1 3 P2N3 in PWS
76 718 1 3 P3N3 in PWS
82 718 1 3 P4N4 in PWS
83 718 1 3 P5N5 in PWS
67 719 1 3 P1N2 in PWS
72 719 1 3 P2N2 in PWS
75 719 1 3 P3N2 in PWS
80 719 1 3 P4N2 in PWS
53 720 1 3 P2N3 in SWS
48 721 1 3 P1N3 in SWS
63 722 1 3 P4N5 in SWS
62 723 1 3 P4N4 in SWS
56 724 1 3 P3N3 in SWS
33 725 1 3 P2N3 in Tloc 2
43 726 1 3 P4N5 in Tloc 2
28 727 1 3 P1N3 in Tloc 2
42 728 1 3 P4N4 in Tloc 2
36 729 1 3 P3N3 in Tloc 2
12 730 1 3 P2N2 in Tloc 1

7 731 1 3 P1N2 in Tloc 1
20 732 1 3 P4N2 in Tloc 1
15 733 1 3 P3N2 in Tloc 1

124

Table 50 Test Case One Manually Added Arcs to Generated Nodes

InputNodeID OutPutNodeID Weight LinkType Interpretation
709 684 1 1 P2 can start so don’t start P1 (N3)
707 690 1 1 P1 can start so don’t start P3 (N3)
709 690 1 1 P2 can start so don’t start P3 (N3)
713 690 1 1 P4 can start so don’t start P3 (N3)
707 696 1 1 P1 can start so don’t start P4 (N4)
709 696 1 1 P2 can start so don’t start P4 (N4)

86 699 1 1 P1N1 is processing
87 699 1 1 P1N2 is processing
88 699 1 1 P1N3 is processing
89 699 1 1 P1N4 is processing
90 699 1 1 P1N5 is processing
91 699 1 1 P2N1 is processing
92 699 1 1 P2N2 is processing
93 699 1 1 P2N3 is processing
94 699 1 1 P3N1 is processing
95 699 1 1 P3N2 is processing
96 699 1 1 P3N3 is processing
97 699 1 1 P3N4 is processing
98 699 1 1 P3N5 is processing
99 699 1 1 P4N1 is processing

100 699 1 1 P4N2 is processing
101 699 1 1 P4N3 is processing
102 699 1 1 P4N4 is processing
103 699 1 1 P4N5 is processing

So Tloc 2 has a
transporter and a part,
the material handler is
not active, and there is
no part processing or
idle at FPL 1 is false

125

7 TESTING PROCEDURE AND RESULTS

The control system was tested using four cases. Test case one was used primarily for debugging the

program code and as a simple demonstration of the controller concept. Test case two was used to test

stall recovery and cycle avoidance. Test case 3 expanded the transportation system and added a

second machine to the processing workstation creating the possibility of a circular wait within the

processing workstation. Test case 4 added a buffer to the processing workstation. All possible

deadlock types were available using the four test cases.

A weighted flowtime with all time categories weighted equally was used as the objective function.

This is functionally equivalent to the sum of the completion times for the parts where completion is

defined as a completed part being placed in storage. All load, unload, transfer and transporter

movement times were assumed to be independent of the part or transporter type. Load and unload

operations to storage workstations were assigned a duration of 30. Load and unload operations to

processing workstations were assigned a duration of 15. Transfer operations within processing

workstations were assigned a duration of 20.

The original neural network design called for a fully-connected three-layer network with real weights.

The quantity of data required to determine appropriate weights was intractable. The network was then

changed to a three-layer network with integral weights where the links could be constructed to

represent Boolean logic. Test case one demonstrated that a three layer network did not have enough

depth. A layer was added to allow generation of conditions of the form: IF cond1 and cond2 and not

cond3 and not cond4 THEN output x is ON. Conditions of this type were required when generating the

neural net rules associated with Petri net decision input places (see section 5.6.2.3). Test case two and

the work done to implement deadlock and stall recovery showed that the four layer network that

worked for test case one was inadequate and an additional layer was added. Further deadlock recovery

development required an “ORing” of conditions that required an additional layer be added to the

126

network to maintain integral weights. An exception to the integral weight rule was made and the five

layer network was found to be sufficient to construct all of the required logic.

7.1 Test Case One

Tokens representing raw material for two parts of each part type with associated part carriers were

added to the empty and idle Petri net marking generated by the controller creation program. An order

for one part of each part type was placed in the order vector. The cell controller was then operated in

simulation mode to generate performance data.

The control logic for test case one was developed three times. The first set of control logic was

developed manually and implemented the shortest processing time first heuristic, which is known to be

optimal for the single-machine scheduling problem. This logic was discussed in section 6. The second

set of control logic was developed automatically with an early version of the building programs using

the neural net example data. This version used fixed priority paths. The paths were prioritized with

the shortest path having highest priority. The size of the controllers generated by these two methods is

shown in Table 51. The third version was developed with the final building program that used choice

and inhibit choice points enabling the paths priority to be changed.

Test case one demonstrated that the controller concept was viable. The Petri net did maintain the state

information describing the workcell. The neural net with appropriately designed weights functioned as

a set of logic rules that implemented the shortest processing time first algorithm. Because of the

construction of the workcell, it was impossible to generate a deadlock situation, so the deadlock

detection mechanism of the controller was not tested.

Test case one is single machine scheduling problem where shortest processing time first is known to be

optimal for minimizing mean flow time. To achieve this the parts should be processed in the order: 2,

1, 4, 3, following the routing shown in Table 52. The activities that minimize flowtime are shown in

127

Table 53. The sum of the completion times is 6090 with the parts completing at the times listed in

Table 54.

Table 51 Test Case One Logic Comparison

Element Manual Logic Automated Logic
Layer 0 nodes 604 604
Layer 1 nodes 34 50
Layer 2 nodes 2 41
Layer 3 nodes 47 47
Layer 4 nodes 47 47
Links 1277 1376

Table 52 Flowtime Minimizing Part Processing Sequence

Part Identifier Processing Steps
2 3 (400)
1 3 (600)
4 4 (200), 5 (475)
3 3 (800)

Table 53 Flowtime Minimizing Activities

Activity Start Time Finish Time
Unload part 2 from storage 0 30
Load part 2 to machine 30 45
Unload part 1 from storage 30 60
Process part 2 node 3 45 445
Unload part 2 from machine 445 460
Load part 1 to machine 460 475
Load part 2 to storage 460 490
Process part 1 node 3 475 1075
Unload part 4 from storage 490 520
Unload part 1 from machine 1075 1090
Load part 4 to machine 1090 1105
Load part 1 to storage 1090 1120
Process part 4 node 4 1105 1305
Unload part 3 from storage 1120 1150
Process part 4 node 5 1305 1780
Unload part 4 from machine 1780 1795
Load part 3 to machine 1795 1810
Load part 4 to storage 1795 1825
Process part 3 1810 2610
Unload part 3 from machine 2610 2625
Load part 3 to storage 2625 2655

128

Table 54 Optimal Part Completion Times

Part Identifier Finish time
2 490
1 1120
4 1825
3 2655

An initial test of twenty schedules was run with the mutation rate at 0.35. The best result found from

20 schedules was 6390 achieved by 4 different schedules (genomes 2, 4, 6, 7). All four schedules

selected the part routes found in Table 55. Table 56 shows the activity sequence generated and Table

57 shows the part completion times. The degradation of 300 is caused by two things: part 1 was

processed before part 2 (200) and the longer processing path was selected for part 3 (100). The

genomes were compared and found to be almost identical. The choice strand was identical for all four

genomes. The inhibit point strands were different lengths; however, the addition of loci past the

minimum length strand will have no effect if the first portion of the strand is identical to the shortest

length strand. The choices represented by those loci after the minimum length strand represent choices

that will not be required. Two of the extended strands were identical to the shortest length strand. The

third differed at only one locus. This uniformity indicates the mutation rate was two low in the

genome creation process. The mutation rate was increased to 0.85. The best result found from 20

genomes (maximum population 30) was 6470. The best result found from 500 genomes (maximum

population 50) was 6240. Two hundred and forty-one of the genomes reached the 6240 result.

Table 55 Genome Part Processing Path Selection

Part Process Step
1 3
2 3
3 4, 5
4 4, 5

129

Table 56 Generated Activity Sequence with Best Flowtime

Activity Start Time Finish Time
Unload part 1 node 3 from storage 0 30
Load part 1 to machine 30 45
Process part 1 45 645
Unload part 2 node 3 from storage 45 75
Unload part 1 from machine 645 660
Load part 2 to machine 660 675
Load part 1 to storage 660 690
Process part 2 675 1075
Unload part 4 node 4 from storage 690 720
Unload part 2 from machine 1075 1090
Load part 4 to machine 1090 1105
Load part 2 to storage 1090 1120
Process part 4 1105 1305
Unload part 3 from storage 1120 1150
Process part 4 second step 1305 1780
Unload part 4 from machine 1780 1795
Load part 3 to machine 1795 1810
Load part 4 to storage 1795 1825
Process part 3 1810 2260
Process part 3 second step 2260 2710
Unload part 3 2710 2725
Load part 3 to storage 2725 2755

Table 57 Generated Part Completion Times

Part Identifier Finish time
1 690
2 1120
4 1825
3 2755

7.2 Test Case Two

Test case two was a modified version of test case one. One of the transporters was removed and two

arcs were added to the transporter movement graph. In test case one, it is optimal to place a part from

the storage workstation on the transporter occupying the processing workstation load point as soon as

the transporter is empty (the part has been loaded into the processing workstation). In test case two,

the same action will generate a deadlocked condition because the transporter must be moved to the

processing workstation unload point to allow the part to be removed from the processing workstation.

Test case two is very similar to the simple manufacturing system analyzed by Viswanadham et al.

(1990) with the transporter serving the function of the AGV.

130

To clear the deadlock, the transporter will be moved to the storage workstation load point and the part

on the transporter placed in the storage workstation. The result is that an extra unload operation

(causing the deadlock) and an extra load operation (to clear the deadlock) are executed whenever there

is more than one part in the storage workstation ready to be processed. The extra unload operation will

not delay the processing of any parts because it occurs simultaneously with the processing of the part

ahead of it. It will result in extra movement of the material handler possibly resulting in additional

maintenance requirements. The extra load operation does delay the processing of parts because the

material processor is blocked for the length of time required to reload the part into the storage

workstation. The material processor cannot be unloaded until the storage workstation load is

completed.

A simple deadlock prevention policy can be implemented for this system. The deadlock is created

when the storage workstation is unloaded filling the space that is required to unload the processing

workstation. By inhibiting storage workstation unload operations when there is a part in the processing

workstation, it would always be possible to unload the processing workstation and deadlocks would

not occur. More generally if the number of parts in the transport system plus the number of parts in

non-storage fixed part locations is one less than the capacity of the transport system plus the capacity

of the fixed part locations then deadlock will not occur for a system organized like test case 2. This

rule can be applied to any system but will not prevent deadlocks in all systems. Consider a system

with the same transportation system as test case two and where the processing workstation has two

unique machines A and B that are not interchangeable. If parts requiring the same machine are

released sequentially then the system will deadlock. The part on the machine will not be able to

unload because the transporter is occupied and the part on the transporter cannot be loaded into the

processing workstation because the machine is occupied. The number of parts in the system will be

less than the capacity because of the empty space on the unused machine so the storage workstation

unload will not be prevented. For test case two the rule is a deadlock prevention policy, but in the

131

more general case it is a deadlock reduction policy. It reduces the number of deadlock states that can

be reached but does not eliminate them.

This is the same single-machine scheduling problem with delays introduced by the unavailability of

transportation capacity. The flow time minimizing part sequence is still that of test case one: 2, 1, 4, 3.

The storage workstation unload operation can no longer overlap the processing operations because the

transporter that would be filled by the storage unload is required to unload the processing workstation.

Also, due to the implementation of the control system, the processing workstation will not request that

the transporter move to the unload point until the part has completed processing, this causes an extra

delay in the unload operation that could be eliminated. Table 58 shows the activities, which now

include transporter movements. The part finish times for the non-concurrent moves show cumulative

delays. The first part is delayed 20, the second 40, the third 60 and the fourth 80. Table 59 shows the

optimal part completion times. The sum of completion times is 6570 for the concurrent move case and

6770 for the non-concurrent move case.

Three hundred control choice sets were generated; one hundred forty-three of them found the non-

concurrent move optimum performance value of 6770. The result was first found with control set 45.

Table 60 shows the messages generated by the neural net. Transformation messages generated by the

Petri net portion of the controller were included in Table 60 to show the completion of part processing.

132

Table 58 Optimal Flow Time Activities

 With concurrent moves Without concurrent moves
Activity Start Time Finish Time Start Time Finish Time
Unload part 2 from storage 0 30 0 30
Load part 2 to machine 30 45 30 45
Process part 2 node 3 45 445 45 445
Move transporter 45 65 445 465
Unload part 2 from machine 445 460 465 480
Load part 2 to storage 460 490 480 510
Move Transporter 490 510 510 530
Unload part 1 from storage 510 540 530 560
Load part 1 to machine 540 555 560 575
Process part 1 node 3 555 1155 575 1175
Move Transporter 555 575 1175 1195
Unload part 1 1155 1170 1195 1210
Load part 1 to storage 1170 1200 1210 1240
Move transporter 1200 1220 1240 1260
Unload part 4 from storage 1220 1250 1260 1290
Load part 4 to machine 1250 1265 1290 1305
Process part 4 node 4 1265 1465 1305 1505
Move transporter 1265 1285
Process part 4 node 5 1465 1940 1505 1980
Move transporter 1980 2000
Unload part 4 from machine 1940 1955 2000 2015
Load part 4 to storage 1955 1985 2015 2045
Move transporter 1985 2005 2045 2065
Unload part 3 from storage 2005 2035 2065 2095
Load part 3 to machine 2035 2050 2095 2110
Process part 3 node 3 2050 2850 2110 2910
Move transporter 2050 2070 2910 2930
Unload part 3 2850 2865 2930 2945
Load part 3 to storage 2865 2895 2945 2975

Table 59 Optimal Part Completion Times with Transporter Movements

 Finish times
Part Identifier Concurrent moves Without concurrent moves
2 490 510
1 1200 1240
4 1985 2045
3 2895 2975

133

Table 60 Test Case 2 Neural Net Messages

Source Time Message
Neural 0 START, PLOC= 1, TYPE= 1, ONODE= 1, NNODE= 3

START, PLOC= 1, TYPE= 2, ONODE= 1, NNODE= 3
START, PLOC= 1, TYPE= 3, ONODE= 1, NNODE= 3
START, PLOC= 1, TYPE= 4, ONODE= 1, NNODE= 4

 0 UNLOAD,1,2, TYPE= 2, NODE= 3
 30 LOAD,2,2, TYPE= 2, NODE= 3
 45 PROCESS, PLOC= 2
Petri 445 BigExec:PWS1:TRANSFORM, PLOC= 2, TYPE= 2, ONODE= 3, NNODE= 2
Neural 445 MOVE,2,1
 465 UNLOAD,2,1
 480 LOAD,1,1, TYPE= 2, NODE= 2
 510 MOVE,1,2
 530 UNLOAD,1,2, TYPE= 1, NODE= 3
 560 LOAD,2,2, TYPE= 1, NODE= 3
 575 PROCESS, PLOC= 2
Petri 1175 BigExec:PWS1:TRANSFORM, PLOC= 2, TYPE= 1, ONODE= 3, NNODE= 2
Neural 1175 MOVE,2,1
 1195 UNLOAD,2,1
 1210 LOAD,1,1, TYPE= 1, NODE= 2
 1240 MOVE,1,2
 1260 UNLOAD,1,2, TYPE= 4, NODE= 4
 1290 LOAD,2,2, TYPE= 4, NODE= 4
 1305 PROCESS, PLOC= 2
Petri 1505 BigExec:PWS1:TRANSFORM, PLOC= 2, TYPE= 4, ONODE= 4, NNODE= 5
Neural 1505 PROCESS, PLOC= 2
Petri 1980 BigExec:PWS1:TRANSFORM, PLOC= 2, TYPE= 4, ONODE= 5, NNODE= 2
Neural 1980 MOVE,2,1
 2000 UNLOAD,2,1
 2015 LOAD,1,1, TYPE= 4, NODE= 2
 2045 MOVE,1,2
 2065 UNLOAD,1,2, TYPE= 3, NODE= 3
 2095 LOAD,2,2, TYPE= 3, NODE= 3
 2110 PROCESS, PLOC= 2
Petri 2910 BigExec:PWS1:TRANSFORM, PLOC= 2, TYPE= 3, ONODE= 3, NNODE= 2
Neural 2910 MOVE,2,1
 2930 UNLOAD,2,1
 2945 LOAD,1,1, TYPE= 3, NODE= 2
Finish 2975 Genome 167 is among the 50 best with a score of 6770

7.3 Test Cases Three and Four

Test case three was an expansion of test case two. A second machine was added to the processing

workstation and a third transporter location was added. Test case four was created by adding a buffer

to test case three. The configuration of test case three is shown in Figure 21. The four parts used in

134

test cases one and two were used and a fifth part added that needed to be processed on the new

machine. The fifth part had two processing alternatives: 1) process for 800 time units on the new

machine, 2) process for 450 time units on the new machine followed by 450 time units on the old

machine. These test cases provided for the possibility of concurrent processing on the two machines.

There was also the possibility of a circular wait condition where the part on the transporter wanted a

machine and a part on the machine wanted to unload requiring the transporter. Because there are two

machines the deadlock reduction policy is not a deadlock prevention policy as discussed in section 7.2.

The system created one of these circular wait conditions and began to correct it. The transporter was

moved away from the processing load point to the storage workstation load point. The system then

created an inhibit choice point between removing the part from the transporter and moving the

transporter to location 2. The choice to move the transporter was selected and the system entered a

state of continuous cycling around the transportation system.

Figure 21 Test Case 3 Configuration

PWS

PWS
ULP

MP

MP

SWS

12

3

1

2

3

135

8 CONTRIBUTIONS, SUGGESTED FUTURE RESEARCH, AND

CONCLUSIONS

Flexible manufacturing research has been subject to the “Blind men and the Elephant” problem where

individual researchers have been developing control system pieces in isolation with only a limited

shared vision of what the control system should look like when complete. Further, researchers tend to

publish only general concepts and not specific implementation details. The lack of implementation

details means replicating a specific piece of work, if possible, requires significant effort that goes

unrewarded.

One result of this lack of detail is that there is no agreement on the details and function of an

equipment level controller. If there is one thing that is generally agreed upon, it is that an equipment

level controller is required. Naylor and Volz (1987) even discussed the structure of such a controller,

partitioning it into two parts: one to deal with hardware specific issues related to the equipment it was

controlling, the other to provide a standard interface to the rest of the control system. Yet, no standard

equipment controller exists. One of the advantages of a standardized equipment controller would be

the ability to easily share the flexible manufacturing systems held at various research facilities. Some

of this advantage could be achieved without standardization, by publishing the details of the control

interfaces of the various systems. This would be a significant boon to small research groups that

cannot afford the cost of maintaining their own FMS or to groups that are just entering the research

field.

8.1 Contributions

This research was designed to develop a cell level controller that could be rapidly generated for a

hierarchical control system. Three basic hypotheses were to be verified: 1) a factory reference model

could be developed to a level where implementation was unambiguous, 2) a Petri net model could be

generated from the factory reference model (objective three had been partially accomplished in that

136

Petri nets had been selected as the modeling system when this hypothesis was generated), and 3) an

artificial neural net could be generated given the factory reference model and the Petri net that would

generate valid control actions that would result in factory performance with some degree of

“goodness.” Five objectives were defined as steps to demonstrate the hypotheses above (see section

3.2).

The first two objectives were used to demonstrate that hypothesis one was true. There was actually no

doubt that it was true, given that other researchers have previously developed control systems. Any

control system that is developed has an implied reference model. What was needed was to document a

reference model to the point where it could be easily replicated. Objective one was to create a

specification for equipment controller interfaces. To complete this objective, a set of equipment level

activities was defined (see Table 2). A set of standard messages was then developed to signal the

initiation and completion of these activities (see Table 5 and Table 7). Objective two was to create a

specification allowing an FMS user to input a description of the FMS and a database to hold the

information. A model consisting of a set of process plan graphs and two sets of movement graphs was

designed. A set of database tables was specified (see Table 4 and Appendix B) and implemented using

Microsoft Access. A small FMS example was used to describe the data required (see section 6).

Objective three was to develop a model for the workcell and parts and to be able to automatically

generate this model from the data entered by the user. Modified Petri nets were selected to model the

workcell and the part process plans. Petri nets have been previously used to model process plans and

workcells individually. Because Petri nets are a form of graph, constructing Petri nets from the graphs

used to model the FMS was relatively straight-forward. The graphs used to in the FMS representation

used directed arcs to model activities and nodes to represent locations or part conditions. A Petri net

structure that corresponded to an activity was created. Preconditions and post-conditions were

developed based on the activity represented by the model arc and the nodes it connected. The

137

translation algorithm is contained in Appendix H. See Appendix C for a description of the output

database that holds the resulting Petri net.

Hypothesis three was originally stated as two hypotheses: 1) a neural net could be generated and 2)

scheduling knowledge could be induced in the neural net. Objectives four and five are based on the

original hypotheses. Objective four was the creation of a basic neural net structure. Objective five

was adjusting the basic structure to generate “good” results. The neural net structure was developed

using the Petri net model to specify the size of the input and output layers. The input layer consisted of

a node for each element of the status matrix and order vector. The status matrix was a construct

developed to convert information contained in the marking of the Petri net into a usable form. The

order vector was a user input indicating how many parts were to be manufactured. The output layer

consisted of a node for each decision (control action) the controller was required to express (initiate).

A partial control logic was created based on the Petri net decision input places. The manual

development of a logic for test case one (see Appendix F) demonstrated that the neural net structure

could be used as a controller.

Objective five, automatically creating scheduling knowledge was a more difficult task to meet than

demonstrating that the neural net controller concept was usable. The only system states where known

correct (optimal) control actions could be found were those states entered when processing a single

part in the workcell. The positive elements were extracted from these states (i.e. all state variables that

were zero were ignored) and used to create a control logic. Because the control logic was created

ignoring state variables that were zero, it allowed conflicting actions to be generated. A method of

identifying these conflicts and selecting among the conflicting actions (inhibit choice points) was

developed. A genetic algorithm was then used to process the sets of choices that developed as the

system evolved.

138

8.2 Suggested Future Research

Additional activities could be added to the ones proposed. The most significant of these would be a

refixturing activity where a part is removed from a material-processing device by a material handler

and then replaced in the same material processor in a different orientation. This will be a relatively

common requirement when multiple reference surfaces must be created on a part. Another activity that

would be useful is a transporter transfer operation where a part is removed from one transporter and

placed on another transporter. This would allow modeling systems with multiple transportation

systems (such as a conveyor and an AGV system) something that is not currently allowed (the

transporter movement graph was assumed to be a strongly connected digraph).

The transporter movement rules could be revised. The exemplar-based neural net generation originally

created exemplars to move transporters from workstation load points to unload points. This was

deactivated because it moved any transporter (including ones containing parts that needed to load into

the workstation) not just empty transporters. The model translation program was then later modified

(during development devoted to deadlock recovery) to add neural net nodes that indicated if a

transportation location was occupied (had a transporter) and whether a part was located at the

transportation location. With these nodes available, it should be possible to add logic to move only

empty transporters from load points to unload points. As was shown in Table 58, making the

movement of the transporters concurrent with the part processing results in a better schedule.

While controller size is not likely to be a significant limitation for the workcells considered, the

number of neural net inputs could be reduced by changing the way transformation tracking is handled.

There is currently a status matrix row for each part transformation that occurs (i.e. each process plan

arc). All entries in this row must be zero except the one column that represents the part entering the

transformation, so only one neural net input is needed per row. Because transformations are zero time

events and the controller processes the Petri net four times for each time the neural net is processed, it

would be possible to completely eliminate the transformation indicator rows when operating in

139

simulation mode. The rows will always be zero when the neural net is processed. In operational

mode, the rows are not guaranteed to be zero because events can occur on any part of the Petri net

processing cycle.

A logic translation program that converted the neural net structure to human understandable Boolean

logic rules and back would be a useful tool. Having the rules in Boolean logic form would allow the

users to develop insight into the operation of the workcell and allow for tuning or pruning of the logic

rules by a control expert. Also, additional rules could be added to the controller building logic.

Potential rules include:

1. a CONWIP style limit on the number of parts in the workcell
2. limiting the number of parts in the system that have been assigned to a workstation
3. limiting the number of parts in the system assigned to any machine

Even more rules could be added if time based inputs were added. The e-clock places in the Petri net

have the potential to indicate the time remaining before their associated processes are completed. A

system clock would have to be added to the controller and some method of providing the information

to the neural net. Perhaps by augmenting the status matrix with an additional column, since all e-clock

places have an associated activity that has a specific row in the status matrix.

While the system was developed as a controller not a scheduler, job shop scheduling may be possible

using the model shown in Figure 22. By setting all material handling times to zero and placing a

transporter in the tlocation with a capacity equal to or greater than the number of jobs to be scheduled,

the system represents the normal assumptions made when doing job shop scheduling.

140

Figure 22 Job Shop Representation Model

8.3 Conclusions

The proposed control system structure is viable although additional development is necessary. The

separation of the control logic (the artificial neural net) from the model of the manufacturing cell (the

Petri net) makes automatic generation of the controller possible. It will also make alternative

approaches to building control logic (such as a fuzzy neural net) easy to implement. The equipment

controller interface specification and the detailed user input model will allow other researchers to

easily apply the controller to their manufacturing systems.

Because the controller is automatically generated from an easy to construct / modify model of the

workcell, it has a very high degree of “expansion flexibility.” This expansion flexibility makes the

controller appropriate for small manufacturers that are implementing their first FMS.

MP 1

MP n

141

REFERENCES

Adlemo, A., Andreasson, S.-A., Fabian, M., Gullander. P., and Lannartsson, B. (1995) Towards a
Truly Flexible Manufacturing System. Control Eng. Practice, 3(4), pp. 545-554.

Ang W.L. and Bundell, G.A. (1996) A Petri Net Based Task Scheduler as a Real-Time FMS
Controller, in Proceedings of the 1996 IEEE Conference on Emerging Technologies and Factory
Automation, Hawaii, pp 738-744, Nov 18-21.

Banaszak, Z. A. and Krogh, B. H. (1990) Deadlock Avoidance in Flexible Manufacturing Systems
with Concurrently Competing Process Flows. IEEE Transactions on Robotics and Automation,
6(6), pp. 724-734.

Bose, N.K. and Liang, P. (1996) Neural Network Fundamentals with Graphs, Algorithms, and
Application., McGraw-Hill, Inc., New York

Chan, C.-C. and Wang, H.-P. (1993) Design and Development of a Stochastic High-Level Petri Net
System for FMS Performance Evaluation, International Journal of Production Research, 31(10),
pp. 2415-2439.

Chittipeddi, K. and Wallet, T. (1991) Entrepreneurship and Competitive Strategy for the 1990s.
Journal of Small Business Management, Jan, pp. 94-98.

Cho, H. and Wysk, R. A., (1995) An Intelligent Workstation Controller for Computer Integrated
Manufacturing: Problems and Models, Journal of Manufacturing Systems, 14(4), pp. 252-263.

Chryssolouris, G. and Lee, M. (1992) An Assessment of Flexibility in Manufacturing Systems.
Manufacturing Review, 5(2), pp. 105-116.

Co, C.H. and Wysk, R.A. (1986) The Robustness of CAN-Q in Modeling Automated Manufacturing
Systems. International Journal of Production Research, 27(6), pp. 1485-1503.

Coffman, E.G. Jr., Elphick, M., and Shoshani, A. (1971) System Deadlocks. Comput. Surveys, 3(2),
pp. 67-78, June.

Drake, G. (1996) A Framework for On-line Simulation Systems. Master Thesis, Texas A&M
University, College Station.

Drake, G., Smith, J.S., and Peters, B.A. (1995) Simulation as a Planning and Scheduling Tool for
FMS, in Proceedings of the 1995 Winter Simulation Conference, December, Washington, D.C.,
pp. 805-812.

Duffie, N.A., Chitturi, R. and Mou, J. (1988) Fault-tolerant Heterarchical Control of Heterogeneous
Manufacturing System Entities. Journal of Manufacturing Systems, 7(4), pp. 315-327.

Evert, B. (1980) Cluster Analysis. Heinemann, New York.

Ezpeleta, J. and Colom, J. M. (1997) Automatic Synthesis of Colored Petri Nets for the Control of
FMS. IEEE Transactions on Robotics and Automation, 13(3), pp. 327-337.

Ezpeleta, J., Colom, J. M. and Martinez, J. (1995) A Petri Net Based Deadlock Prevention Policy for
Flexible Manufacturing Systems. IEEE Transactions on Robotics and Automation, 11(2), pp.
173-184.

Florin, G. and Natkin, S. (1982) Evaluation Based upon Stochastic Petri Nets of the Maximum
Throughput of a Full Duplex Protocol, In Application and Theory of Petri Nets, C.Girault and W.
Reisig (eds), Springer, New York, pp. 280-288.

142

Foo, Y.P.S. and Takefuji, Y. (1988) Integer Linear Programming Neural Networks for Job-shop
Scheduling, in Proc. 1988 International IEEE Conference Neural Networks, 2, pp. 341-348.

Gowan, J. A. and Mathieu, R. G. (1996) Critical Factors in Information System Development for a
Flexible Manufacturing System, Computers in Industry, 28, pp. 173-183.

Gupta, M. and Cawthon, G. (1996) Managerial Implications of Flexible Manufacturing for
Small/Medium-sized Enterprises. Technovation, 16(2), pp. 77-83.

Haddock, J. and O'Keefe, R. M. (1990) Using Artificial Intelligence to Facilitate Manufacturing
Systems Simulation. Computers and Industrial Engineering, 18(3), pp. 275-283.

Hemant Kumar, N. S. and Srinivasan, G. (1996) A Genetic Algorithm for Job-shop Scheduling -- A
Case Study. Computers in Industry, 31, pp. 155-160.

Herrman, J. W., Lee, C. and Hinchman, J. (1995) Global Job Shop Scheduling with a Genetic
Algorithm. Production and Operations Management, 4(1), pp. 30-45.

Holland, J.H. (1975) Adaption in Natural and Artificial Systems, University of Michigan Press, Ann
Arbor.

Hwang, J.-L., and Henderson, M.R. (1992) Applying the Perceptron to Three-Dimensional Feature
Recognition. Journal of Design and Manufacturing, 2(4), pp. 187-198.

Jensen, K. (1992) Coloured Petri Nets: Basic Concepts, Analysis Methods and Practical Use,
Springer, New York.

Jensen, K. and Rozenberg, G., (eds) (1991) High-Level Petri Nets: Theory and Application, Springer-
Verlag, New York.

Jones, A.T. and McLean, C.R. (1986) A Proposed Hierarchical Control Model for Automated
Manufacturing Systems. Journal of Manufacturing Systems, 5(1), pp. 15-25.

Jones, A.T and Saleh, A. (1990) A Multi-Level / Multi-Layer Architecture for Intelligent Shopfloor
Control. International Journal of Computer Integrated Manufacturing, 3(1), pp. 60-70.

Kamarthi, S.V., Kunara, S.T., Yu, F.T.S. and Ham, I. (1990) Neural Networks and Their Applications
in Component Design Data Retrieval. Journal of Intelligent Manufacturing, 1(2), pp. 125-140.

Kelton, W.D., Sadowski, R.P. and Sadowski, D.A. (1997) Simulation with Arena, McGraw Hill, New
York.

Kempenaers, J, Pinte, J., Detand, J. and Kruth, J.-P. (1996) A Collaborative Process Planning and
Scheduling System. Advances in Engineering Software, 25, pp. 3-8.

Knapp, G.M. and Wang, H.-P. (1992a) Neural Networks in Acquisition of Manufacturing Knowledge,
in Kusiak, A. (ed), Intelligent Design and Manufacturing, , John Wiley & Sons, New York, pp.
723-744.

Knapp, G.M. and Wang, H.-P. (1992b) Acquiring, Storing, and Utilizing Process Planning Knowledge
Using Neural Networks. Journal of Intelligent Manufacturing, 3(5), pp. 333-344.

Kumara, S.R.T. and Ham, I. (1990) Use of Associative Memory and Self-Organization in Conceptual
Design. Annals of the CIRP, 39(1), pp. 117-120.

Kumara, S.R.T. and Kamarthi, S.V. (1991) Function-to-Structure Transformation in Conceptual
Design: An Associative Memory-Based Paradigm. Journal of Intelligent Manufacturing, 2(5), pp.
281-292.

143

Kumaran, T.K., Chang,W., Cho, H. and Wysk, R.A. (1994) A Structured Approach to Deadlock
Detection, Avoidance and Resolution in Flexible Manufacturing Systems. International Journal
of Production Research, 32(10), pp. 2361-2379.

Law, A.M. and Kelton, W.D. (1991) Simulation Modeling and Analysis, McGraw Hill, New York.

Lawley, M., Reveliotis, S., and Ferreira, P. (1997) Design Guidelines for Deadlock Handling
Strategies in Flexible Manufacturing Systems. International Journal of Flexible Manufacturing
Systems, 9(1), January, pp. 5-30.

Lee, A. (1994) Knowledge-Based Flexible Manufacturing Systems (FMS) Scheduling, Garland, New
York.

Lee, D.Y., and DiCesare, F. (1994) Scheduling Flexible Manufacturing Systems Using Petri Nets and
Heuristic Search. IEEE Transactions on Robotics and Automation, 10(2), pp. 123-132.

Leung, Y.T. and Sheen, G.-J. (1993) Resolving Deadlocks in Flexible Manufacturing Cells. Journal of
Manufacturing Systems, 12(4), December, pp. 291-304.

Li, D.C. and She, I. S. (1994) Using Unsupervised Learning Technologies to Induce Scheduling
Knowledge for FMSs. International Journal of Production Research, 32(9), pp. 2187-2199.

Liu, X. and Zhang, W.J. (1998) Issues on the Architecture of an Integrated General-Purpose ShopFloor
Control Software System. Journal of Materials Processing Technology, 76, pp. 261-269.

MacGregor, R.J. (1987) Neural and Brain Modeling, Academic Press, London.

McCulloch, W.S. and Pitts, W.A. (1943) A Logical Calculus of the Ideas Immanent in Neural Nets.
Bull. Math Biophysics, 5, pp. 115-133.

McKenna, T., Davis, J. and Zornetzer, S.F., editors, (1992) Single Neuron Computation, Academic
Press, San Diego.

Mettala, E.G. (1989) Automatic Generation of Control Software in Computer Integrated
Manufacturing, PhD Dissertation, The Pennsylvania State University, University Park.

Molloy, M.K. (1982) Performance Analysis Using Stochastic Petri Nets. IEEE Transactions on
Computers, C-31(9), pp. 913-917.

Moore, K.E. and S.M. Gupta (1996) Petri Net Models of Flexible and Automated Manufacturing
Systems: A Survey. International Journal of Production Research, 34(11), pp. 3001-3035

Murata, T. (1989) Petri Nets: Properties, Analysis and Applications. Proceedings of the IEEE, 77,
April, pp. 541-580.

Naylor, A. W. and Volz, R. A. (1987) Design of Integrated Manufacturing System Control Software.
IEEE Transactions on Systems, Man, and Cybernetics, SMC-17 (6), Nov/Dec, pp. 881-897.

Osakada, K. and Yang, G.B. (1991a) Neural Networks for Process Planning of Cold Forging. Annals
of the CIRP, 40(1), pp. 243-246.

Osakada, K. and Yang, G.B. (1991b) Application of Neural Networks to an Expert System for Cold
Forging. International Journal Machine Tools and Manufacture, 31(4), pp. 577-587.

Osakada, K., Yang, G.B., Nakamura, T. and Mori, K. (1990) Expert System for Cold Forging Process
Based on FEM Simulation. Annals of the CIRP, 39(1), pp. 249-252.

Panwalkar, S. S. and Iskander, W., (1977) A Survey of Scheduling Rules, Operations Research, 25(1),
pp. 45-61.

Peterson, J. L. (1981) Petri Net Theory and the Modeling of Systems, Prentice Hall, Englewood Cliffs.

144

Petri C.A. (1962) Kommunikation mit Automaten, Ph.D. Dissertation, Bonn: Institute fur
Instrumentelle Mathematik, Schriften des IIM Nr. 3. English Translation, “Communication with
Automata, New York: Griffis Air Force Base, Tech Report RADC-TR-65-377, Vol. 1, Suppl. 1,
1966.

Phillips, D.T., and Garcia-Diaz A. (1981) Fundamentals of Network Analysis, Prentice Hall, Inc.,
Englewood Cliffs.

Ramchandani, C. (1974) Analysis of Asynchronous Concurrent Systems by Timed Petri Nets, PhD
dissertation, Massachusetts Institute of Technology, Cambridge.

Rogers, J. (1997) Object-Oriented Neural Networks in C++, Academic Press, Inc., San Diego.

Rosenfeld, S.A. (1992) Competitive Manufacturing: New Strategies for Regional Development, Center
for Urban Policy Research, New Brunswick, NJ.

Senehi, M.K., Barkmeyer, E., Luce, M., Ray, S., Wallace, E., and Wallace, S. (1991) Manufacturing
Systems Integration Initial Architecture Document, National Institute of Standards and
Technology, NIST Interagency Report NISTIR 4682, Gaithersburg, MD.

Shinich, N., and Taketoshi, Y. (1992) Dynamic Scheduling System Utilising Machine Learning as a
Knowledge Acquisition Tool. International Journal of Production Research, 30, pp. 411-431.

Shukla, C.S., and Chen, F.F. (1996) The State of the Art in Intelligent Real-Time FMS Control: a
Comprehensive Survey. Journal of Intelligent Manufacturing, 7, pp. 441-455.

Simpson, J. A., Hocken, R. J., and Albus, J. S. (1982) The Automated Manufacturing Research Facility
of the National Bureau of Standards, Journal of Manufacturing Systems, 1(1), pp. 17-31.

Smith, J. S. (1992) A Formal Design and Development Methodology for Shop Floor Control in
Computer Integrated Manufacturing, Ph.D. Dissertation, The Pennsylvania State University,
University Park.

Smith, J. S., Cohen, P.H., Davis, J. W., and Irani, S.A. (1992) Process Plan Generation for Sheet Metal
Parts Using an Integrated Feature-Based Expert System Approach. International Journal of
Production Research, 30(5), pp. 1175-1190.

Smith, J. S., Hoberecht, W. C. and Joshi, S.B. (1996) A Shop Floor Control Architecture for Computer
Integrated Manufacturing. IIE Transactions, 28(10), pp. 783-794.

Smith, J.S. and Joshi, S.B. (1995) A Shop Floor Controller Class for Computer Integrated
Manufacturing. International Journal of Computer Integrated Manufacturing, 8(5), September-
October, pp. 327-339.

Smith, J.S. and Peters, B.A. (1998) Simulation as a Decision-Making Tool for Real-Time Control of
Flexible Manufacturing Systems, in the Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA-98), Leuven, Belgium, May 16-20, 1998, IEEE Computer
Society, pp. 586-590.

Smith, J.S., Wysk, R. A., Sturrock, D., Ramaswamy, S., Smith, G., and Joshi, S. B. (1994) Discrete
Event Simulation for Shop Floor Control, in Proceedings of the 1994 Winter Simulation
Conference, December 1994, Lake Buena Vista, FL, pp. 962-969.

Storer, R. H., Wu, S. D., and Vaccari, R. (1992) New Search Spaces for Sequencing Problems with
Application to Job Shop Scheduling. Management Science, 38(10), October, pp. 1495-1509.

Storer, R. H., Wu, S. D., and Vaccari, R. (1995) Problem and Heuristic Space Search Strategies for Job
Shop Scheduling. ORSA Journal on Computing, 7(4), Fall, pp. 453-467.

145

Venugopal, V. and Narendran, T.T. (1992) Neural Network Model for Design Retrieval in
Manufacturing Systems. Computers in Industry, 20, pp.11-23.

Viswanadham, N., Narahari, Y. and Johnson, T.L. (1990) Deadlock Prevention and Deadlock
Avoidance in Flexible Manufacturing Systems Using Petri Net Models. IEEE Transactions on
Robotics and Automation, 6(6), December, pp. 713-723.

Wall, M.B. (1996) A Genetic Algorithm for Resource-Constrained Scheduling, Ph.D. Dissertation,
Massachusetts Institute of Technology, Cambridge.

Wysk, R. A., Peters, B. A., and Smith, J. S. (1995) A Formal Process Planning Schema for Shop Floor
Control. Engineering Design and Automation Journal, 1(1), Spring , pp. 3-19.

Wysk, R. A. and Smith, J. S. (1995) A Formal Functional Characterization of Shop Floor Control.
Computers in Industrial Engineering, 28(3), pp. 631-644.

Wysk, R. A., Yang, N.S., and Joshi, S. (1991) Detection of Deadlocks in Flexible Manufacturing Cells.
IEEE Transactions on Robotics and Automation, 7(6), December, pp. 853-859.

Wysk, R. A., Yang, N.-S., and Joshi, S. (1994) Resolution of Deadlocks in Flexible Manufacturing
Systems: Avoidance and Recovery Approaches. Journal of Manufacturing Systems, 13(2), pp.
128-138.

Zhang, B.-T., Ohm, P., and Muhlenbein, H. (1997) Evolutionary Induction of Sparse Neural Trees.
Evolutionary Computation, 5(2), pp. 213-236.

146

APPENDICES

147

APPENDIX A

THE PARABLE OF THE BLIND MEN AND THE ELEPHANT

American poet John Godfrey Saxe (1816-1887) based the following poem on a fable, which was told
in India many years ago.

It was six men of Indostan
To learning much inclined,
Who went to see the Elephant
(Though all of them were blind),
That each by observation
Might satisfy his mind

The First approached the Elephant,
And happening to fall
Against his broad and sturdy side,
At once began to bawl:
“God bless me! but the Elephant
Is very like a wall!”

The Second, feeling of the tusk,
Cried, “Ho! what have we here
So very round and smooth and sharp?
To me ’tis mighty clear
This wonder of an Elephant
Is very like a spear!”

The Third approached the animal,
And happening to take
The squirming trunk within his hands,
Thus boldly up and spake:
“I see,” quoth he, “the Elephant
Is very like a snake!”

The Fourth reached out an eager hand,
And felt about the knee.
“What most this wondrous beast is like
Is mighty plain,” quoth he;
“ ‘Tis clear enough the Elephant
Is very like a tree!”

The Fifth, who chanced to touch the ear,
Said: “E’en the blindest man
Can tell what this resembles most;
Deny the fact who can
This marvel of an Elephant
Is very like a fan!”

The Sixth no sooner had begun
About the beast to grope,
Than, seizing on the swinging tail
That fell within his scope,
“I see,” quoth he, “the Elephant
Is very like a rope!”

And so these men of Indostan
Disputed loud and long,
Each in his own opinion
Exceeding stiff and strong,
Though each was partly in the right,
And all were in the wrong!

Moral:
So oft in theologic wars,
The disputants, I ween,
Rail on in utter ignorance
Of what each other mean,
And prate about an Elephant
Not one of them has seen!

148

APPENDIX B

USER INPUT DATABASE TABLE FIELDS

Table 61 Equipment

Field Name Data Type Usage
EquipmentNumber Integer Identifies the piece of equipment
EquipmentDescription Text Easy human identifier
EquipmentType Text Classification: MP, MT, MH, BF, AS
ControllerName Text Where command messages should be sent

Table 62 FixedpLocations

Field Name Data Type Usage
LocationNumber Integer Identifies the location
LocationDescription Text Easy human identifier
EquipmentNumber Integer Identifies the equipment associated with

the location

Table 63 IncompatibleTransporterMovements

Field Name Data Type Usage
PrimaryArc Integer The key field
IncompatibleArc Integer Arcs incompatible with the primary arc

Table 64 MobilepLocations

Field Name Data Type Usage
LocationNumber Integer Identifies the location
Location Description Text Easy human identifier
TransporterType Integer The transporter type associated with the

location

Table 65 PartCarrierTypes

Field Name Data Type Usage
PartCarrierTypeNumber Integer Identifies the part carrier type
PartCarrierDescription Text Easy human identifier
TransporterType Integer Transporter Type the carrier can be used

with

149

Table 66 PartID

Field Name Data Type Usage
PartNumber Integer Part Identification Number
PartName Text Short human recognizable name
PartDescription Text Longer human recognizable description

Table 67 PPArcs

Field Name Data Type Usage
ArcNumber Integer Identifies the arc
PartNumber Integer Identifies the part this arc applies to
StartingNode Integer Identifies the tail of the arc
EndingNode Integer Identifies the head of the arc

Table 68 PPNodes

Field Name Data Type Usage
PartNumber Integer Identifies the part type
NodeNumber Integer Identifies the Node of a given process

plan
Equipmentnumber Integer Identifies what piece of equipment this

node uses
Instructions Text Identifies the instruction file to be

processed
EstimatedTime Integer Time required for the process in seconds

Table 69 ProcessingWorkstations

Field Name Data Type Usage
WorkstationNumber Integer Identifies the workstation
Description Text Easy human identifier
ControllerName Text Where command messages should be sent

Table 70 ProcessingWSEquipAssn

Field Name Data Type Usage
Workstation Number Integer Identify the workstation
Equipment Number Integer Identify the equipment

150

Table 71 ProcessingWSLPAssn

Field Name Data Type Usage
WorkstationNumber Integer Identify the workstation
TlocationNumber Integer Identify the Tlocation (Load Point)

Table 72 ProcessingWSMGArcs

Field Name Data Type Usage
WorkstationNumber Integer Identifies the workstation the arc belongs to
ArcNumber Integer Identifies the Arc in the workstation
EquipmentNumber Integer Identifies the MH equipment that makes the

move
EstimatedTime Integer How long the move will take in seconds
TypeofArc Integer What the arc is doing: 3=Unload, 2=Xfer, or

1=Load
PartOnly Boolean Boolean: True, only the part moves; False,

means the part carrier moves with the part
LocationData1 Integer Data entered in From To format content

varies depending on the type of arc
LocationData2 Integer May contain a fixed plocation, tlocation or

mobile plocation
LocationData3 Integer

Table 73 ProcessingWSUPAssn

Field Name Data Type Usage
WorkstationNumber Integer Identify the workstation
TlocationNumber Integer Identify the Tlocation (Unload Point)

Table 74 StorageWorkstations

Field Name Data Type Usage
WorkstationNumber Integer Identifies the workstation
Description Text Easy human identifier
ControllerName Text Where command messages should be sent

Table 75 StorageWSEquipAssn

Field Name Data Type Usage
Workstation Number Integer Identify the workstation
Equipment Number Integer Identify the equipment

151

Table 76 StorageWSLPAssn

Field Name Data Type Usage
WorkstationNumber Integer Identify the workstation
TlocationNumber Integer Identify the Tlocation (Load Point)

Table 77 StorageWSMGArcs

Field Name Data Type Usage
WorkstationNumber Integer Identifies the workstation the arc belongs to
ArcNumber Integer Identifies the Arc in the workstation
EquipmentNumber Integer Identifies the MH equipment that makes the

move
EstimatedTime Integer How long the move will take in seconds
TypeofArc Integer What the arc is doing: 3=Unload, 2=Xfer, or

1=Load
PartOnly Boolean Boolean: True, only the part moves; False,

means the part carrier moves with the part
LocationData1 Integer Data entered in From To format content

varies depending on the type of arc
LocationData2 Integer May contain a fixed plocation, tlocation or

mobile plocation
LocationData3 Integer

Table 78 StorageWSUPAssn

Field Name Data Type Usage
WorkstationNumber Integer Identify the workstation
TlocationNumber Integer Identify the Tlocation (Unload Point)

Table 79 TLocations

Field Name Data Type Usage
LocationNumber Integer Identifies the location
LocationDescription Text Easy human identifier
EquipmentNumber Integer Identifies the equipment associated with the

location
LoadPoint Boolean True/False is this a load point
UnLoadPoint Boolean True/False is this an unload point

152

Table 80 TMGArcs

Field Name Data Type Usage
ArcNumber Integer Identifies the arc
EquipmentNumber Integer Identifies the equipment that moves the

transporter
EstimatedTime Integer Time for the move to complete (in seconds)
Startingtlocation Integer Identifies the tail of the arc
Endingtlocation Integer Identifies the head of the arc

Table 81 Transporters

Field Name Data Type Usage
TransporterNumber Integer Identifies the transporter
Type Integer Identifies the type of transporter
HomeLocation Integer the Tlocation number where the transporter

starts in Empty and Idle conditions

Table 82 TransporterTypes

Field Name Data Type Usage
TransporterTypeNumber Integer Identifies the transporter type
PlocationCount Integer The number of plocations associated with

this type
TransporterDescription Text Easy human identifier

Table 83 Parts

Field Name Data Type Usage
PartType Long Integer The part type identifer
ProcessNode Long Integer The part process plan node associated with

this part
ProcessComplete Boolean Has the part completed processing at this

node
PartCarrierType Long Integer The type of part carrier the part is attached

to, zero indicates no carrier
StorageLocation Long Integer The FPL for the storage system

153

APPENDIX C

PRIMARY OUTPUT DATABASE TABLES AND FIELDS

The primary output database holds the Petri net and neural net information.

Table 84 List of Primary Output Data Tables

Table Name Usage
BufferEmptyIndicatorIndex Index of neural net node that indicate a buffer is

empty
ControlData Holds identification information
CurrentTokens The tokens in the system
EmptyTokens The tokens in the system if it is empty and idle
FPLIndex Index to match the fixed part locations to the Petri

net nodes representing availability and occupation
MHIndex Index to match the material handlers to the Petri net

node representing availability
NeuralNetLinks The neural net links with properties
NeuralNetNodes The neural net nodes with properties
OrderVector The link between part numbers and order vector

position
OVValues The number of parts ordered
PartIndex Links the part process plan nodes to Petri net

processing nodes and fixed part locations
PNArc The Petri net arcs
PNEvents The Petri net events
PNMsg The Petri net output message formats
PNNode The Petri net nodes
SMColumnInfo Status matrix column information
SMRowInfo Status matrix row information
SMValues Status matrix values (not used, originally meant to

store the status matrix values)
TlocationIndex The link between transporter locations and the Petri

net nodes representing availability and occupation
TMGArcIndex Transporter movement graph arc index matches arcs

to Petri net nodes representing movement in progress
and the decision input node that authorizes the
movement

TokenCapacity The capacity of the tokens
WSNeedsTransCapIndex Index of nodes that indicate a workstation needs

transportation capacity

154

Table 85 BufferEmptyIndicatorIndex Fields

Field Name Data Type Usage
BufferFPL Integer The fixed part location allocated to the buffer
BufferEmptyNNNode Integer The identifier of the neural net node that indicates

the buffer is empty

Table 86 ControlData Fields

Field Name Data Type Usage
MyName Text The name the Petri net portion of the controller

uses
MyBoss Text The controller authorized to send decision inputs
MySubordinate Text The name the neural net sends commands to
RouterName Text The name of the router
RouterHost Text The host the router is running on
RouterIP Text The IP address of the host the router is running on
RouterPort Integer The port the router is listening on

155

Table 87 CurrentTokens and EmptyTokens Fields

Field Name Data Type Usage
PNNode Integer The location of the token
TokenType Integer The token type
TransporterType Integer The transporter type only valid for type 1 tokens
CarrierType Integer The part carrier type only valid for type 3 tokens
PartType Integer The part type only valid for type 4 tokens
ProcessComplete Integer The current part node process is complete
ProcessNode Integer The current process plan node only valid for type 4

tokens
MobilePL Integer The mobile part location occupied
LastEventTime Integer The time the last event involving this token

occurred
MTTime Integer Cumulative time spent in transport
MPTime Integer The cumulative time spent processing
MHTime Integer The cumulative time spent in material handling
BFTime Integer The cumulative time spent in buffers
ASTime Integer The cumulative time spent in storage excludes raw

material and finished products
MPdelayTime Integer The cumulative time spent occupying a material

processor not involved in processing
PartStartTime Integer The time the start command was issued
OrderArrivalTime Integer The time the order for the part arrived
SimpleFlowStartTime Integer The time the part was started used by type two

tokens
SimpleFlowEndTime Integer The time the part becomes finished product used

by type 2 tokens

Table 88 FPLIndex Fields

Field Name Data Type Usage
FPL Integer The fixed part location identifier
PNAvailable Integer The Petri net node indicating the fpl is available
PNHasPart Integer The Petri net node indicating a part is in the fpl
PNProcessing Integer The Petri net node indicating a part is processing

at the fpl

Table 89 MHIndex Fields

Field Name Data Type Usage
MH Integer Material Handler Identifier
PNNode Integer Petri net node indicating the handler is available

156

Table 90 NeuralNetLinks Fields

Field Name Data Type Usage
IDNumber Integer Identification number for the link
InputNodeID Integer The node at the tail of the arc that provides an

input value
OutPutNodeID Integer The node at the head of the arc that receives the

output of the link
Weight Double The link multiplier value
LinkType Integer Indicates the function of the link

Table 91 NeuralNetNodes Fields

Field Name Data Type Usage
IDNumber Integer Node Identifier
Layer Integer The neural net layer the node lies in
SMRow Integer The status matrix row associated with the node

only valid for layer 0 nodes
SMColumn Integer The status matrix column associated with the node

only valid for layer 0 nodes
Threshold Double The minimum input value the node must have to

generate a positive output
PNNodeAuthorized Integer The Decision Input Petri net node that precedes the

activity associated with this node
PNProcessingNode Integer The standard place Petri net node that represents

the ongoing activity associated with this node
IsOrderVector Boolean Is this node part of the order vector only valid for

layer 0 nodes
OrderVectorPosition Integer The order vector index position associated with

this node only valid for layer 0 nodes
Message Text The message that will be sent to the Petri net if this

node is activated, only valid for output layer nodes
Usage Integer Indicates what the neural net node does, used for

optimization purposes

Table 92 OrderVector Fields

Field Name Data Type Usage
OrderVectorIndex Integer The index into the order vector
PartIDNumber Integer The part represented by this element of the order

vector

157

Table 93 OVValues Fields

Field Name Data Type Usage
VectorPosition Integer The index into the order vector
Value Integer The number of parts to be created

Table 94 PartIndex Fields

Field Name Data Type Usage
PartType Integer Part type identifier
ProcessNode Integer Process process plan node identifier
ProcessComplete Boolean Indicates whether the part is complete
PetriNetNode Integer The Petri net node associated with the process plan

node and completion status
ProcessingFPL Integer The fixed part location where processing takes

place

Table 95 PNArc Fields

Field Name Data Type Usage
Number Integer Petri net arc identifier
Tail Integer The tail / origin of the arc
Head Integer The head / destination of the arc
Color Integer The arc type

Table 96 PNEvents Fields

Field Name Data Type Usage
TransitionNumber Integer The identifier of the transition that will fire when

the event occurs
Message Text The format for the message that will be received
Controller Text The source of the message that will be received
Conversions Integer The number of parameters that must be retrieved

from the incoming message

158

Table 97 PNMsg Fields

Field Name Data Type Usage
Number Integer The Petri net output node identifier
Controller Text The destination of the message
Msg Text The format of the message that must be sent

Table 98 PNNode Fields

Field Name Data Type Usage
Number Integer Identifier of the Petri net node
Type Integer The Petri net node type
SMCol Boolean Is this node associated with a status matrix column
SMRow Boolean Is this node associated with a status matrix row
Deadlock Boolean Is this node used for deadlock detection
TimeCategory Integer Indicates the where the time spent in this node

should be assigned

Table 99 SMColumnInfo Fields

Field Name Data Type Usage
StatusMatrixColumn Integer The status matrix column index
TokenType Integer The type (or color) of the token
TransporterType Integer The type of transporter if token type = 1
CarrierType Integer The type of part carrier if token type = 3
PartType Integer The part type if token type = 4
ProcessComplete Boolean Has the part completed the processing at the node
ProcessNode Integer The part process plan node if token type = 4

Table 100 SMRowInfo Fields

Field Name Data Type Usage
StatusMatrixRow Integer The status matrix row index
PNNode Integer The Petri net node associated with the status

matrix row
DeadlockFlag Boolean Is this row used for deadlock detection

159

Table 101 SMValues Fields

Field Name Data Type Usage
SMRow Integer The status matrix row index
SMCol Integer The status matrix column index
Value Integer The value of the status matrix element

Table 102 TlocationIndex Fields

Field Name Data Type Usage
Tlocation Integer The transporter location identifier
TlocAvailable Integer The Petri net node that indicates the transporter

location is available
TLocHasT Integer The Petri net node that indicates the transporter

location is occupied by a transporter
TLocNNT3CapAvail Integer The identifier of the neural net node that indicates

the transporter location is occupied by a
transporter with type 3 capacity available

TLocNNT4CapAvail Integer The identifier of the neural net node that indicates
the transporter location is occupied by a
transporter with type 4 capacity available

TLocNNOccupied Integer The identifier of the neural net node that indicates
the transporter location is occupied by a
transporter

TLocHasPart Integer The identifier of the neural net node that indicates
the transporter location is occupied by a
transporter that contains a part

Table 103 TMGArcIndex Fields

Field Name Data Type Usage
TMGArc Integer The transporter movement graph arc
ProcessingNode Integer The Petri net node that indicates a transporter is

moving along the arc
AuthorizedNode Integer The Petri net decision input node that authorizes

movement along the arc

Table 104 TokenCapacity Fields

Field Name Data Type Usage
TokenType Integer The token type
ItemType Integer The transporter or part carrier type
Capacity Integer The number of items that can be placed on the

transporter or part carrier

160

Table 105 WSNeedsTransCapIndex Fields

Field Name Data Type Usage
WSNumber Integer The workstation identifier
WSIsStorage Boolean True if the workstation is a storage workstation
Type3NodeNumber Integer Identifier of the neural net node that indicates the

workstation needs type 3 transport capacity
Type4NodeNumber Integer Identifier of the neural net node that indicates the

workstation needs type 4 transport capacity
BlockedEmptyNodeNum
ber

Integer Identifier of the neural net node that indicates a
part trying to reach the workstation is blocked by
empty transporters

161

APPENDIX D

EXEMPLAR DATABASE TABLES AND FIELDS

The Exemplar database holds the training data.

Table 106 List of Exemplar Data Tables

Table Name Usage
ChoicePointsChoices Identifies the possible choices at a choice point
ChoicePointsID Identifies the choice points
DeadlockBeginEndLocations Outdated. Stored data used in the first deadlock

recovery method
DeadlockIdentification Outdated. Same as Identification, but used for data

generated during deadlock recovery
DeadlockInputValues Outdated. Same as InputValues, but used for data

generated during deadlock recovery
DeadlockOutputValues Outdated. Same as OutputValues, but used for data

generated during deadlock recovery
DeadlockPathSteps Outdated. Same as EquipmentPaths, but used for

data generated during deadlock recovery
EquipmentPaths Paths through the workcell, there are one or more

equipment based paths for each process plan path
EquipPathPerformance The time required to complete the equipment path
GenomeChoicePointValues Holds the values assigned to a choice point by a

genome
GenomeID Holds the genome identification and performance

data
GenomeInhibitChoicePointValues Holds the values assigned to an inhibit choice point

by a genome
Identification Identification data for each exemplar data point
InhibitChoicePointsChoices Identifies the possible choices at an inhibit choice

point
InhibitChoicePointsID Identifies the inhibit choice points
InputValues The input portion of the exemplar data
L3Incompatibility Lists incompatibility between preliminary output

nodes
L3toL4map Matches the preliminary output node to the

corresponding final output node
MovementPaths Equipment paths for empty transporters
MovementPathPerformance The time required to complete the movement path
NeuralNetResults Outdated. Held data used in the original neural net

training scheme
OutputValues The output portion of the exemplar
ProcessPlanPath Paths through the process plan from the raw material

to the finished product node
TrainingParameters Outdated. Held data used to define the neural net

training procedure

162

Table 107 ChoicePointsChoices Fields

Field Name Data Type Usage
IDNum Integer The identification of the choice point
NNNode Integer The neural net node to set to the minimum threshold
ChoiceIDNum Integer The identification of the choice for this choice point
OutputNNNode Integer The preliminary output node activated by this choice

Table 108 ChoicePointsID Fields

Field Name Data Type Usage
IDNum Integer The identification number of the choice point
NumberOfChoices Integer The number of possible choices
MinimumThreshold Double The minimum threshold to assign to the nodes

associated with the choice point
Description Text A description of the choice point

Table 109 DeadlockBeginEndLocations Fields

Field Name Data Type Usage
DeadlockPathNumber Integer Path identification number
OriginLocation Integer Path start location
OriginIsFPL Boolean True if path starts at a fixed part location
DestinationLocation Integer Path end location
DestinationIsFPL Boolean True if path ends at a fixed part location
PreferredUnloadTLocatio
n

Integer Preferred unload point if the path starts at a fixed
part location

Table 110 EquipmentPaths and DeadlockPathSteps Fields

Field Name Data Type Usage
PathNumber Integer Equipment path identifier
PathStep Integer Path step identifier
PartType Integer The type of part being processed
ProcessNode Integer The process plan node
LocationIdentifier Integer The location where the part is located
LocationIsFPL Boolean Is the location a fixed part location
Command Text The command that needs to be sent

163

Table 111 EquipPathPerformance Fields

Field Name Data Type Usage
EquipmentPath Integer Equipment path identifier
Operations Integer The number of operations in the path
Length Integer The length of time the path requires

Table 112 GenomeChoicePointValues and GenomeInhibitChoicePointValues Fields

Field Name Data Type Usage
IDNum Integer The genome identification number
Choicepoint Integer The choice point identification number
TheChoice Integer The choice to be selected for this choice point

Table 113 GenomeID Fields

Field Name Data Type Usage
IDNum Integer The genome identification number
PerformanceValue Integer The objective value function for this genome
NumofChoicePts Integer The number of choice points used with this genome
NumofInhibitChoicePts Integer The number of inhibit choice points used with this

genome

Table 114 Identification and DeadlockIdentification Fields

Field Name Data Type Usage
Number Integer Identification number for the exemplar
InputSize Integer The number of inputs used
OutputSize Integer The number of outputs generated
EpathNumber Integer The equipment path associated with the exemplar

Table 115 InhibitChoicePointsChoices Fields

Field Name Data Type Usage
IDNum Integer The choice point identification number
ArcNumber Integer The arc that should have its weight set to zero
ChoiceIDNum Integer The identification number for this choice

164

Table 116 InhibitChoicePointsID Fields

Field Name Data Type Usage
IDNum Integer Identification number for the inhibit choice point
NumberOfChoices Integer The number of choices possible
Description Text A description of the inhibit choice point generally

includes the messages that were conflicting

Table 117 InputValues and DeadlockInputValues Fields

Field Name Data Type Usage
Number Integer The exemplar this input value belongs to
NNNode Integer The neural net node that is used as the input
SMRow Integer The status matrix row associated with the neural net

node
SMCol Integer The status matrix column associated with the neural

net node
Value Double The value of the neural net node input

Table 118 L3Incompatibility Fields

Field Name Data Type Usage
PrimaryL3Node Integer The node being considered
IncompatibleL3Node Integer A node that conflicts because of common resource

usage

Table 119 L3toL4mapFields

Field Name Data Type Usage
L3Node Integer Preliminary output node
L4Node Integer Matching final output node

Table 120 MovementPaths Fields

Field Name Data Type Usage
PathNumber Integer The movement path identifier
PathStep Integer The step in the movement path
LocationIdentifier Integer The location identifier (will always be a Tlocation)
Command Text The command that needs to be sent

165

Table 121 MovementPathPerformance Fields

Field Name Data Type Usage
MovementPath Integer The movement path identifier
Operations Integer The number of operations in the path
Length Integer The length of time the path requires

Table 122 NeuralNetResults Fields

Field Name Data Type Usage
PatternNumber Integer The pattern (exemplar) being trained
OutputNumber Integer The output node number
Cycle Integer The training cycle
Repetition Integer The repetition in the training cycle
Value Double The value the output node was outputting

Table 123 OutputValues and DeadlockOutputValues Fields

Field Name Data Type Usage
Number Integer The exemplar this output is attached to
NNNode Integer The neural net output layer node
Value Double The desired value of the output node

Table 124 ProcessPlanPath Fields

Field Name Data Type Usage
PartNumber Integer The part number the path applies to
PathNumber Integer The path number (not part specific)
Path Text The path as a comma delimited node list

Table 125 TrainingParameters Fields

Field Name Data Type Usage
LearningRate Double Back propagation training parameter
Momentum Double Back propagation training parameter
MaxCycles Integer Maximum number of cycles to train
PatternToRepeat Integer The identification number of a single patter
RepsPerCycle Integer Number of replications per training cycle
RepeatSinglePattern Boolean True use only one pattern from the set
PrelimaryOutputLayer Integer The neural net preliminary output layer
SaveResults Integer How often results should be saved to the database

166

APPENDIX E

PROCESSING WORKSTATION PETRI NET GROWTH

Figure 23 Simple Processing Workstation

Figure 24 Step 3 Add a Node for the MH

Load point

Unload point

MH MP

MH

167

Figure 25 Step 4 Add Nodes for FPL

MH FPL
Avail

FPL
Has Part

168

Figure 26 Step 5 Add Processing Activity

MH FPL
Avail

FPL
Has Part

D

Processing

169

Figure 27 Step 6 Add Activities for WSMG Arcs

MH FPL
Avail

FPL
Has

D

Processing

Unload Arc

Load Arc

D

D

170

Figure 28 Step 7 Add Tokens

MH FPL
Avail

FPL
Has

D

Processing

Unload Arc

Load Arc

D

D

171

APPENDIX F

MANUAL LOGIC DEVELOPMENT TEST CASE ONE

Because test case one involved a single machine it is known that scheduling parts using the shortest

processing time first heuristic will generate a schedule with the minimum mean flowtime. The neural

net structure required to implement a shortest processing time first logic was constructed starting with

a neural net that had the decision input control logic rules already in it (i.e. the output of the cell

controller building program prior to any exemplar based construction).

The process plans were analyzed to find the number of paths possible for each part type and the path

with the shortest processing time (see Table 126). Based on these results the parts need to be given

priority in the following order: 2, 1, 4, 3. The following movement priority was used (from highest to

lowest): load the processing workstation, unload the processing workstation, unload the storage

workstation, load the storage workstation. The movement priority was used in developing the logic for

the controller but the availability of the parts as they flowed through the system meant that there was

never a time when the movement priority had to be enforced.

When referring to parts in the text below a 2-tuple of part type and process plan node will be used:

(type, node).

Table 126 Process Plan Path Analysis Results

Part Type Number of Paths Minimum processing time Minimum time path
1 2 600 seconds 1, 3, 2
2 1 400 seconds 1, 3, 2
3 2 800 seconds 1, 3, 2
4 2 675 seconds 1, 4, 5, 2

Start Logic
An initial part start logic was developed. A neural net node was added for each part type to indicate

whether the part had been ordered or not (see Table 127). These nodes were supposed to turn the start

172

output on. The decision input rules built by the controller building program would prevent the output

from being on if the number of parts previously started was equal to or greater than the number ordered

or the raw material was not available.

Table 127 Initial Start Logic Nodes

Node Number Usage
714 Part type 2 has been ordered
715 Part type 1 has been ordered
716 Part type 4 has been ordered
717 Part type 3 has been ordered

These start logic nodes (see Table 127) were connected to the order vector input nodes and the output

nodes associated with part starting events as shown in Table 128. This logic was flawed. A part could

not be started if a higher priority part had been ordered, even if the higher priority part was already

completed. The links between the intermediate nodes and final nodes were removed (the intermediate

nodes and the links to them could also have been removed but were not).

Table 128 Initial Start Logic

Input Node Link weight,
type

Intermediate node Link weight,
type

Final node

1 -- Part 2
Order Vector

1, 3 714 1, 3 688 Start P2, N3

 714 -1, 3 684 Start P1, N3
 714 -1, 3 696 Start P4, N4
 714 -1,3 690 Start P3, N3
0 -- Part 1
Order Vector

1, 3 715 1, 3 684 Start P1, N3

 715 -1, 3 696 Start P4, N4
 715 -1, 3 690 Start P3, N3
3 -- Part 4
Order Vector

1, 3 716 1, 3 696 Start P4, N4

 716 -1, 3 690 Start P3, N3
2 -- Part 3
Order Vector

1, 3 717 1, 3 690 Start P3, N3

The controller building program created nodes that were designed to be true (high) when it was

appropriate to start a part. These nodes were then connected to the output nodes with an inhibit if low

173

arc. A new start logic was developed using these nodes (Table 129). The inhibit low link was

converted to a fixed weight excitatory link so the output would be triggered when the node was high.

Priority was then enforced with a series of inhibit high links. Nodes 708, 711, and 712 were logic for

alternate process plan paths that were not used so their logic was not altered and is not shown in Table

129. This logic corresponds to the following rule: IF the number of parts of type N that have been

ordered is greater than the number of parts of type N that have been started AND there is no higher

priority part type ready to be started THEN start the part of type N.

Table 129 Revised Start Logic

Generated Node Link weight, type Output Node Function
707 1, 3 684 Start Type 1 Node 3 Okay
 1, 1 690 Inhibit starting type 3
 1, 1 696 Inhibit starting type 4
709 1, 3 688 Start Type 2 Node 3 Okay
 1, 1 684 Inhibit starting type 1
 1, 1 690 Inhibit starting type 3
 1, 1 696 Inhibit starting type 4
710 1, 3 690 Start Type 3, Node 3 Okay
713 1, 3 696 Start Type 4, Node 4 Okay
 1, 1 690 Inhibit starting type 3

Processing Logic
The processing logic rule used was: IF there is a part in the processing workstation ready to process

THEN process it. The processing workstation was fixed part location 2 and was represented by status

matrix row 3. The only parts that would be ready for processing were: (1,3), (2,3), (3,3), (4,4), (4,5),

corresponding to status matrix columns 4, 9, 12, 18 and 19. The neural net nodes corresponding to this

status matrix row and these columns were connected to a new neural node (718) with an excitatory

link. This new node was then connected to the neural net output node that started the material

processor. Because the Petri net stores the information about the part that is located at the material

processor and there can be only one the neural net does not need to provide this information and uses

only one process start message per material processor.

174

Table 130 Processing Logic

Input Node Link weight,
type

Intermediate node Link weight,
type

Final node

68 1, 3 718 1, 3 604
73 1, 3 718
76 1, 3 718
82 1, 3 718
83 1, 3 718

Processing Workstation Unload Logic
Because the Petri net stores the information about the part that is located at the material processor and

there can be only one the neural net does not need to provide this information for unload commands

and uses only one message per unload arc. The processing workstation unload logic rule used was: IF

there is a part in the processing workstation ready to unload THEN unload it. No priority is required

because the workstation has a capacity of one. The parts that would be ready to unload were: (1,2),

(2,2), (3,2), (4,2) corresponding to status matrix columns 3, 8, 11, and 16. The neural net nodes

corresponding to the workstation status matrix row (3) and these columns were connected to a new

neural node (719) with an excitatory link. This new node was then connected to the neural net output

node that started the unload.

Table 131 Processing Workstation Unload Logic

Input Node Link weight,
type

Intermediate node Link weight,
type

Final node

67 1, 3 719 1, 3 626
72 1, 3 719
75 1, 3 719
80 1, 3 719

Storage Workstation Unload Logic
The storage workstation unload logic rule used was: IF there is a part in the storage workstation ready

to unload AND it is the highest priority part THEN unload it. This logic is in addition to the decision

input place base logic that will not allow an unload to occur if the unload destination is occupied. This

translated into the following set of rules.

175

1. IF there is a (2,3) THEN unload it.
2. IF there is a (1,3) AND there is not a (2,3) THEN unload it.
3. IF there is a (4,5) AND there is not a (2,3) or (1,3) THEN unload it.
4. IF there is a (4,4) AND there is not a (2,3), (1,3) or (4,5) THEN unload it.
5. IF there is a (3,3) AND there is not a (2,3), (1,3), (4,5) or (4,4) THEN unload it.

The controller was not designed to create any (4,5) parts, type 4 parts that had only one processing step

completed. However, by including the (4,5) part in the unload priority any existing parts of this type

would be completed.

A new node was created for each part type node combination to be unloaded (see Table 132). The

storage workstation was fixed part location one and was represented by status matrix row 2. The status

matrix columns of interest were 9, 4, 19, 18, and 12 corresponding to (2,3), (1,3), (4,5), (4,4) and (3,3)

respectively. A fixed weight excitatory arc was connected from the input layer node representing each

part type to the new node for that part type and a second fixed weight excitatory node connected the

new node to the output node that started the unload operation for that part type. Priorities were then

enforced by connecting the intermediate node of each part to the output nodes of the lower priority

parts with inhibit when high links (see Table 133).

Table 132 Storage Workstation Unload Logic Nodes

Node number Part type and node
720 (2,3)
721 (1,3)
722 (4,5)
723 (4,4)
724 (3,3)

176

Table 133 Storage Workstation Unload Logic

Input Node Link weight,
type

Intermediate node Link weight,
type

Final node

53 1,3 720 1,3 666
 720 1,1 658
 720 1,1 682
 720 1,1 680
 720 1,1 670
48 1,3 721 1,3 658
 721 1,1 682
 721 1,1 680
 721 1,1 670
63 1,3 722 1,3 682
 722 1,1 680
 722 1,1 670
62 1,3 723 1,3 680
 723 1,1 670
56 1,3 724 1,3 670

Processing Workstation Load Logic
The processing workstation load logic rule used was: IF there is a part at the load point ready to load

THEN load it. No priority is required because the transporters have a capacity of one. The parts that

would be ready for to load were: (1,3), (2,3), (3,3), (4,4), (4,5), corresponding to status matrix columns

4, 9, 12, 18 and 19. The load point was transporter location two represented by row one of the status

matrix. The corresponding neural net input layer nodes were: 28, 33, 36, 42, 43. The input layer node

for each part was connected to a new intermediate node (one per part type) by a fixed weight excitatory

link. The intermediate node was then connected to the output node that sent the appropriate load

command.

177

Table 134 Processing Workstation Load Logic

Input Node Link weight,
type

Intermediate node Link weight,
type

Final node

33 1,3 725 1,3 612
43 1,3 726 1,3 624
28 1,3 727 1,3 606
42 1,3 728 1,3 622
36 1,3 729 1,3 614

Storage Workstation Load Logic
The processing workstation load logic rule used was: IF there is a part at the load point ready to load

THEN load it. No priority is required because the transporters have a capacity of one. The parts that

would be ready for to load were: (1,2), (2,2), (3,2), (4,2), corresponding to status matrix columns 3, 8,

11, and 16. The load point was transporter location one represented by row zero of the status matrix.

The corresponding neural net input layer nodes were: 7, 12, 15, 20. The input layer node for each part

was connected to a new intermediate node (one per part type) by a fixed weight excitatory link. The

intermediate node was then connected to the output node that sent the appropriate load command.

Table 135 Processing Workstation Load Logic

Input Node Link weight,
type

Intermediate node Link weight,
type

Final node

12 1,3 730 1,3 636
7 1,3 731 1,3 628
20 1,3 732 1,3 648
15 1,3 733 1,3 640

178

APPENDIX G

ALGORITHM FOR GENERATING NEURAL NET LOGIC FROM PETRI

NET DECISION INPUT PLACES

• Select all of the Decision Input Places (Petri net nodes with type = 4)
• For each decision input place find the event that triggers the transition preceding the place.
• Call the appropriate function based on the type of message that triggers the transition

Move
4. Add a node to the first hidden layer (threshold = 0.9)
5. Determine the status matrix row that represents the location of the move origin
6. Determine the status matrix columns that represent transporters
7. Add a fixed weight excitatory (weight = 1, type = 3) link from the input layer nodes that

correspond to the status matrix row and columns found to the hidden layer node that was
added

8. Identify those status matrix rows that represent incompatibilities with the move, these
include other moves with the same destination in progress, the destination location has a
transporter, a transporter at the destination location is involved in a load or unload
operation

9. Add an inhibit high link to the node added in step one from the input layer nodes that
represent the rows found in step five and the columns found in step three

10. Add an inhibitory (weight = 1, type = 1) link from the node added in step one to the
output layer nodes that send messages that trigger the transition

Load
1. Add a node to the first hidden layer (threshold = 1.8)
2. Determine the status matrix row that represents the transporter location of the load

operation
3. Add a fixed weight excitatory (weight = 1, type = 3) link from the input layer nodes that

correspond to the status matrix row and the columns representing transporters to the
hidden layer node that was added in step 1

4. Add a fixed weight excitatory (weight = 1, type = 3) link from the input layer nodes that
correspond to the status matrix row and the columns representing part carriers to the
hidden layer node that was added in step 1

5. Add a fixed weight excitatory (weight = 1, type = 3) link from the input layer nodes that
correspond to the status matrix row and the columns representing parts to the hidden
layer node that was added in step 1

6. Determine the status matrix row that represents the fixed part location that is the
destination of the load operation

7. Add an inhibitory (weight = 1, type = 1) link from the input layer nodes that correspond
to the status matrix row and the columns representing parts to the hidden layer node that
was added in step 1

8. Determine if the destination is a material processor, if it is, find the status matrix row that
represents the processing activity and add an inhibitory (weight = 1, type = 1) link from
the input layer nodes that correspond to the status matrix row and the columns
representing parts to the hidden layer node that was added in step 1

179

9. Determine the status matrix rows of the other activities that use the same material handler
as the load operation and add an inhibitory (weight = 1, type = 1) link from the input
layer nodes that correspond to the status matrix row and the columns representing either
parts or part carriers depending on the Petri net arc associated with the activity to the
hidden layer node that was added in step 1

10. Add an inhibit if low (weight = 1, type = 2) link to the neural net output nodes that trigger
the load operation from the hidden layer node that was added in step 1

Unload
1. Add a node to the first hidden layer (threshold = 0.9) to represent a part ready to unload
2. Add a node to the first hidden layer (threshold = 0.9) to represent a transporter ready to

receive a part
3. Add a node to the second hidden layer (threshold =1.8) to combine the outputs of the

nodes added in steps 1 and 2
4. Add a fixed weight excitatory (weight = 1, type = 3) link from the nodes added in steps 1

and 2 to the node added in step 3
5. Determine the status matrix rows of the other activities that use the same material handler

as the load operation and add an inhibitory (weight = 1, type = 1) link from the input
layer nodes that correspond to the status matrix row and the columns representing either
parts or part carriers depending on the Petri net arc associated with the activity to the
hidden layer node that was added in step 3

6. Determine the status matrix row that represents the transporter location where the unload
operation will terminate

7. Determine the columns that represent transporters and add a fixed weight excitatory (type
= 3) link to the node added in step 2, where the weight equals the transporter capacity,
from the input neural nodes that correspond to the row found in step 6 and the columns
found in this step

8. Determine the columns that represent part carriers and add a fixed weight excitatory (type
= 3) link to the node added in step 2, where the weight equals the part carrier capacity
minus one, from the input neural nodes that correspond to the row found in step 6 and the
columns found in this step

9. Determine the columns that represent parts and add a fixed weight excitatory (type = 3)
link to the node added in step 2, where the weight equals minus one, from the input
neural nodes that correspond to the row found in step 6 and the columns found in this
step

10. Determine the status matrix row that represents the fixed part location where the unload
originates

11. Determine whether part carriers are involved in this unload operation. If part carriers are
involved add a set of links from the input neural nodes that correspond to the row found
in step 10 and the columns representing part carriers, if part carriers are not involved then
use the columns representing parts.

12. Add an inhibit if low (weight = 1, type = 2) link to the neural net output nodes that trigger
the unload operation from the hidden layer node that was added in step 3

Transfer
1. Add a node to the first hidden layer (threshold = 0.9)
2. Determine the status matrix row that represents the destination fixed part location.
3. Determine the status matrix columns that represent parts or part carriers
4. Add inhibit arcs (weight = 1, type = 1) from the input layer neural net nodes representing

the status matrix row found in step 2 and the columns found in step 3 to the node added
in step 1

180

5. Determine if the destination fixed part location is a material processor, if so find the
status matrix row that represents a part being processed.

6. Add inhibit arcs (weight = 1, type = 1) from the input layer neural net nodes representing
the status matrix row found in step 5 and the columns representing parts to the node
added in step 1

7. Determine the status matrix rows of all other activities that involve the material handler
8. Determine the whether to use part or part carrier columns (based on Petri net arc type)
9. Add inhibit arcs (weight = 1, type = 1) from the input layer neural net nodes representing

the status matrix row found in step 7 and the columns found in step 8 to the node added
in step 1

10. Determine the status matrix row that represents the origin FPL
11. Determine the status matrix columns that represent parts or part carriers (based on Petri

net arc type)
12. Add a fixed weight excitatory (weight = 1, type = 3) link from the input layer neural net

nodes representing the status matrix row found in step 10 and the columns found in step
11 to the node added in step 1

13. Add an inhibit if low (weight = 1, type = 2) link to the neural net output nodes that trigger
the transfer operation from the hidden layer node that was added in step 1

Transform
1. Add a node to the first hidden layer (threshold = 0.9)
2. Determine the status matrix column associated with the transform being processed
3. Determine the fixed part location associated with the part / node combination to be

transformed and use it to find the status matrix row associated with the transform
4. Add a fixed weight excitatory (weight = 1, type = 3) link from the input layer neural net

node representing the status matrix row found in step 4 and the columnsfound in step 2 to
the node added in step 1

5. Add an inhibit if low (weight = 1, type = 2) link to the neural net output nodes that trigger
the transform operation from the hidden layer node that was added in step 1

Start
1. Add a node to the first hidden layer (threshold = 0.9)
2. Determine the status matrix row associated with the fixed part location associated with

the start message (there will be one for each storage location)
3. Determine the status matrix column that represents the raw material
4. Add an inhibit low (weight = 1, type = 2) link to the neural net node added in step 1 from

the input neural node that represents the status matrix row found in step 2 and the status
matrix column found in step 3

5. Add a fixed weight excitatory (weight = 1, type = 3) link from the input layer neural net
node representing the order vector for this part type

6. Determine the status matrix columns for all stages of the part excluding raw material
7. Add a fixed weight excitatory (weight = -1, type = 3) link from the input layer neural net

nodes representing all status matrix rows and the columns found in step 6.
8. Add an inhibit if low (weight = 1, type = 2) link to the neural net output nodes that trigger

the start operation from the hidden layer node that was added in step 1

Process
1. Add a node to the first hidden layer (threshold = 0.9)
2. Determine the status matrix row associated with the fixed part location where the part

will be processed

181

3. Add a fixed weight excitatory (weight = 1, type = 3) link from the input layer neural net
nodes representing the status matrix row and the columns representing parts to the node
added in step 1

4. Add an inhibit if low (weight = 1, type = 2) link to the neural net output nodes that trigger
the start operation from the hidden layer node that was added in step 1

182

APPENDIX H

WORKCELL USER INPUT TRANSLATION ALGORITHM

Algorithm
Steps one through ten represent the creation of the equipment-based portion of the workcell controller.
See Process Plan Conversion Algorithm for the creation of the rest of the workcell controller.

1. For each TLocation add two standard places (type = 2). The first one signals the location is

available for a transporter to move into it. The second one signals when a transporter in the
location can move. Update the TLocationIndex table.

2. Add the material handler available nodes. “Select Equipment Number from Equipment where

Equipment Type = MH” For each MH add one standard place (type = 2) and update the
MHIndex.

3. Add the fixed part locations. Need to add a standard place (type = 2) for all plocations that are

associated with MP and BF equipment. Add a high capacity place for plocations (type = 7)
associated with automated storage equipment. Create recordset rs1 using “Select * from Fixed
Plocations” to get all fixed part locations. Then create recordset rs2 using “Select [Equipment
Type] from Equipment where [Equipment Number] = rs1.[Equipment Number]” if
rs2.[Equipment Type] = AS then add type 7 else add type 2. Update the FPLIndex.

4. Process transporter movement graph arcs. For each arc

Add a transition (type = 1)
Setup pre-conditions

Add a Decision input place (type = 4)
Add an arc from the decision input place to the transition
Add an event transition, message = MOVE,starting tlocation, ending tlocation
Add an arc from the event transition to the decision input place
Add an arc from the ending tlocation available place to the transition
Add an arc from the starting tlocation hasT place to the transition

Add Activity(equip_to_Controller, “MOVE,start tloc, end tloc”)
Setup post-conditions

Add arc from Activity complete transition to starting tlocation available place
Add arc from Activity complete transition to ending tlocation hasT place

5. Setup MP processing loops.

Add a transition (type = 1)
Setup pre-conditions

Add a Decision input place (type = 4)
Add an arc from the decision input place to the transition
Add an event transition, message = PROCESS, fpl
Add an arc from the event transition to the decision input place
Add an arc from the fpl has part place to the transition

Add Activity (fpl_to_WS, PROCESS,fpl, Type= %i,Node= %i)
Setup post-condtions
 Add an arc from the Activity complete transition to the fpl has part place

6. Process processing workstation movement graph arcs

Load

183

 Add a transition (type = 1)
Setup pre-conditions

Add a Decision input place (type = 4)
Add an arc from the decision input place to the transition
Add an event transition, message = LOAD,starting tlocation, ending fpl
Add an arc from the event transition to the decision input place
Add an arc from the ending fpl available place to the transition
Add an arc from the starting tlocation hasT place to the transition
Add an arc from the MH available place to the transition

Add Activity (fpl_to_WS, LOAD,tloc,%I, fpl, Type= %i,Node= %i)
Setup post conditions
 Add an arc from the Activity complete transition to the fpl has part place
 Add an arc from the Activity complete transition to the MH available place
 Add an arc from the Activity complete transition to the starting tlocation hasT place

Unload
 Add a transition (type = 1)
Setup pre-conditions

Add a Decision input place (type = 4)
Add an arc from the decision input place to the transition
Add an event transition, message = UNLOAD,starting fpl, ending tlocation
Add an arc from the event transition to the decision input place
Add an arc from the starting fpl has part place to the transition
Add an arc from the ending tlocation hasT place to the transition
Add an arc from the MH available place to the transition

Add Activity (fpl_to_WS, UNLOAD, fpl, tloc,%I, Type= %i,Node= %i)
Setup post conditions
 Add an arc from the Activity complete transition to the fpl available place
 Add an arc from the Activity complete transition to the MH available place
 Add an arc from the Activity complete transition to the ending tlocation hasT place

Transfer
 Add a transition (type = 1)
Setup pre-conditions

Add a Decision input place (type = 4)
Add an arc from the decision input place to the transition
Add an event transition, message = XFER,starting fpl, ending fpl
Add an arc from the event transition to the decision input place
Add an arc from the starting fpl has part place to the transition
Add an arc from the ending fpl available place to the transition
Add an arc from the MH available place to the transition

Add Activity (fpl_to_WS, XFER, starting fpl, ending fpl, Type= %i,Node= %i)
Setup post conditions
 Add an arc from the Activity complete transition to the starting fpl available place
 Add an arc from the Activity complete transition to the MH available place
 Add an arc from the Activity complete transition to the ending fpl has part place

7. Process storage workstation movement graph arcs
Load
 Add a transition (type = 1)
Setup pre-conditions

Add a Decision input place (type = 4)

184

Add an arc from the decision input place to the transition
Add an event transition, message = LOAD,starting tlocation, ending fpl
Add an arc from the event transition to the decision input place
Add an arc from the ending fpl available place to the transition
Add an arc from the starting tlocation hasT place to the transition
Add an arc from the MH available place to the transition

Add Activity (fpl_to_WS, LOAD,tloc,%I, fpl, Type= %i,Node= %i)
Setup post conditions
 Add an arc from the Activity complete transition to the fpl has part place
 Add an arc from the Activity complete transition to the MH available place
 Add an arc from the Activity complete transition to the starting tlocation hasT place

Unload
 Add a transition (type = 1)
Setup pre-conditions

Add a Decision input place (type = 4)
Add an arc from the decision input place to the transition
Add an event transition, message = UNLOAD,starting fpl, ending tlocation
Add an arc from the event transition to the decision input place
Add an arc from the starting fpl has part place to the transition
Add an arc from the ending tlocation hasT place to the transition
Add an arc from the MH available place to the transition

Add Activity (fpl_to_WS, UNLOAD, fpl, tloc,%I, Type= %i,Node= %i)
Setup post conditions
 Add an arc from the Activity complete transition to the fpl available place
 Add an arc from the Activity complete transition to the MH available place
 Add an arc from the Activity complete transition to the ending tlocation hasT place

8. Add Tokens for transporters

9. Add Tokens for equipment availability

10. Add Tokens for Parts and Part carriers

Process Plan Conversion Algorithm

All arcs in this section are type 0. All tokens are type 0 (information). No tokens are entered during
the Petri net creation process. The tokens must be taken from the users parts inventory.

1. For each node in the process plan add a standard place to the Petri net. Add an entry to the
PartIndex table.

2. If a node is NOT a default start node for a process plan then:

A. If a process node has only one arc leaving it then
Add a transition
Add an arc from the process node to the transition
Add an input place with its associated event triggered transition. The event is a
"PROCESS COMPLETED" message from the appropriate workstation controller.
Add an arc from the input place to the transition.
Add an activity. Message is "TRANSFORM"

185

Add an arc from the output transition to the process node at the head of the process
plan arc

B. If a process node has more than one arc leaving it then

Add a transition
Add an arc from the process node to the transition
Add an input place with its associated event triggered transition. The event is a
"PROCESS COMPLETED" message from the appropriate workstation controller.
Add an arc from the input place to the transition.
Add a standard place that represents "waiting for a decision"
Add an arc from the transition to the "waiting for a decision" place
For each arc leaving the process node

Add a transition
Add an arc from the "waiting for a decision" node to the transition
Add a decision input place with its associated event triggered transition. The
event is a "TRANSFORM" message from the neural net.
Add an arc from the input place to the transition.
Add an activity. Message is "TRANSFORM"
Add an arc from the output transition to the process node at the head of the
process plan arc

3. If a node is a default start node for a process plan then:
For each arc leaving the process node:

For each storage location in the model:
Add a transition
Add an arc from the process node to the transition
Add a decision input place with its associated event triggered transition. The
event is a "START" message from the neural net.
Add an arc from the input place to the transition.
Add an activity. Message is "TRANSFORM"
Add an arc from the output transition to the process node at the head of the
process plan arc

186

APPENDIX I

PETRI NET MARKING ALGORITHM FOR STATUS MATRIX

CONSTRUCTION

The status matrix row information table is created by adding an entry for each entry in the Petri net
node table that is marked as a status matrix row.

The status matrix column information table is created by adding one entry for each transporter type,
adding an entry for each part carrier type, and adding one column for each entry in the Petri net node
table that is marked as a status matrix column.

Marking the entries in the Petri net node table
1. For every TLocation, there is a node representing a transporter occupying the TLocation, mark this

node as an SMRow that does not get checked for deadlock.
2. For every storage workstation there is a node that represents the parts in the location, mark this

node as an SMRow that does not get checked for deadlock.
3. For every fixed part location that is not part of a storage work station there is a node that

represents the location is occupied by a part, mark this node as an SMRow that does not get
checked for deadlock.

4. For every fixed part location that is associated with a material processor, there is a node that
represents the material processor performing an operation on a part, mark this node as an SMRow
that does get checked for deadlock.

5. For each transporter graph movement arc there is a node that represents the transporter moving
across the arc, mark this node as an SMRow that does get checked for deadlock.

6. Process workstation arcs are combined such that mobile part locations are not kept distinct at the
cell controller level. For each load point associated with a processing workstation there exists a
set of combined arcs representing movement from the load point to the various fixed part locations
in the processing workstation. For each combined arc, there is a node representing the fact the
transporter is involved in a load operation, mark this node as an SMRow that gets checked for
deadlock. Further, for each combined arc there is also a node representing that a part is involved
in a load operation, mark this node as an SMRow that gets checked for deadlock.

7. For each unload point associated with a processing workstation there exists a set of combined arcs
representing movement from the various fixed part locations in the processing workstation to the
load point. For each combined arc, there is a node representing the fact the transporter is involved
in an unload operation, mark this node as an SMRow that gets checked for deadlock. Further, for
each combined arc there is also a node representing that a part is involved in an unload operation,
mark this node as an SMRow that gets checked for deadlock.

8. For each possible transfer within a workstation, there will be a node representing that a part is
transferring, mark this node as an SMRow that gets checked for deadlock.

9. Storage workstation arcs are also combined at the cell level and transfers within the storage
workstation are not considered. . For each load point associated with a storage workstation there
exists a set of combined arcs representing movement from the load point to the fixed part location
representing the storage workstation. For each combined arc, there is a node representing the fact
the transporter is involved in a load operation, mark this node as an SMRow that gets checked for
deadlock. Further, for each combined arc there is also a node representing that a part is involved
in a load operation, mark this node as an SMRow that gets checked for deadlock.

10. For each unload point associated with a storage workstation there exists a set of combined arcs
representing movement from the fixed part location representing the storage workstation to the
unload point. For each combined arc, there is a node representing the fact the transporter is

187

involved in an unload operation, mark this node as an SMRow that gets checked for deadlock.
Further, for each combined arc there is also a node representing that a part is involved in an unload
operation, mark this node as an SMRow that gets checked for deadlock.

11. For each process plan node there is a corresponding Petri net node, mark this node as an
SMColumn.

12. For each process plan node that has multiple arcs leaving the node there is a Petri net node that
represents the process being complete and a decision regarding which arc in the process plan to
take, mark this node as an SMColumn.

188

APPENDIX J

DEADLOCK AND STALL RECOVERY

Deadlocks and stalls were divided into four major categories: 1) a processing workstation circular wait,

2) a part blocked from exiting a processing workstation, 3) a part blocked from exiting a storage

workstation, and 4) a part in the transportation system. These categories were then subdivided giving

the eighteen categories listed in Table 136. The “ID No.” is the value returned from the deadlock

classification function.

Table 136 Deadlock and Stall Categories

Id No. Category Description
1 1A Processing WS circular wait, no buffers in the WS
2 1B Processing WS circular wait, an empty buffer in the WS
3 1C1 Processing WS circular wait, all buffers full at least one part in the WS

wants to exit the WS
4 1C2 Processing WS circular wait, all buffers full all parts want to remain in

the WS
5 2A Processing WS, no transporters at the WS unload points
6 2B Processing WS, no transporter capacity at primary unload point,

available capacity at a secondary unload point
7 2C Processing WS, type 4 unload arc, type 3 space available no type 4

space available
8 2D Processing WS, type 4 unload arc, no type 3 space and no type 4 space

available
9 2E Processing WS, type 3 unload arc, no type 3 space available
10 3 Storage WS, no unload logic implemented for a partially processed

part
11 4 Part located on a transporter that is not located at the proper WS load

point
12 3A Storage WS, no transporters at the WS unload points
13 3B Storage WS, no transporter capacity at primary unload point, available

capacity at a secondary unload point
14 3C Storage WS, type 4 unload arc, type 3 space available no type 4 space

available
15 3D Storage WS, type 4 unload arc, no type 3 space and no type 4 space

available
16 3E Storage WS, type 3 unload arc, no type 3 space available
17 2F Processing WS, no transporter at primary unload point, transporter

without available capacity at secondary unload point
18 3F Storage WS, no transporter at primary unload point, transporter

without available capacity at secondary unload point

189

Recovery Procedures

The initial exemplar creation process generated a set of alternative movement paths for transfers

between machines. These paths involved a direct transfer between machines, if possible, transfer from

the machine to a buffer and from the buffer to the second machine, if the workstation contains buffers,

and an unload operation followed by movement from the unload point to a load point and then a load

operation to the second machine. These paths were then prioritized and the threshold levels set on the

layer 2 neural net node associated with the path such that only the highest priority path could be

activated.

A large number of the recovery actions will require unloading a part from a workstation. Transporter

capacity must be available at a workstation unload point to allow a part to be unloaded. In fact, the

lack of available transport capacity is the cause of all type 2 and most type 3 stalls. Most recovery

actions will consist of finding a transporter with available capacity and moving it to the workstation

unload point. This may require moving other transporters to clear a path for the transporter with

capacity to reach the unload point. If there are no transporters with available capacity, it will be

necessary to move a transporter with unfinished parts to a storage workstation load point and place a

part into storage to create available transport capacity that can then be moved to the workstation that

must be unloaded.

In recovering from deadlocks and stalls, processing workstations were assigned the highest priority,

parts in the transportation system the second highest priority and parts in storage workstations the

lowest priority.

1A

To recover from a circular wait in a workstation with no buffers, a part must be unloaded to make

space to move other parts that are in the workstation. The first step is to check for the availability of

transporter capacity located at an unload point for the workstation. If transporter capacity is present

then the neural net logic must be modified to cause the appropriate unload command to be activated. If

190

transporter capacity is not present then a transporter with available capacity must be found and moved

to one of the workstations unload points.

1B

To recover from a circular wait in a workstation with an empty buffer, a part is moved from one of the

machines involved in the circular wait to the buffer allowing the other parts to move as they desire and

then the part in the buffer will move to the machine it desires from the buffer when it becomes

available.

1C1

In this case, the circular wait is secondary to the problem of a part wanting to exit the workstation. The

failure of the part to leave the workstation makes this problem equivalent to a type 2 stall. Removing

the part may transform the situation into a type 1B deadlock where a buffer in the workstation may be

used to solve the circular wait. If the part that wants to exit the workstation is not located in a buffer,

then after the part is removed the workstation the situation may remain a 1C1, if there were multiple

parts that wanted to leave the workstation or it may be transformed into a type 1C2. It is also possible

that removal of a part from a machine will allow a part in a buffer to be transferred to the machine

resulting in a indirect conversion to a type 1B stall. The stall will not be corrected until the parts that

have begun moving or processing have completed all available processing.

1C2

When all of the parts in the workstation wish to remain in the workstation, one of the parts involved in

the circular wait must be removed to allow the other parts to progress. This part will be a part located

on one of the machines. It is important to note that parts in a buffer can not be involved in a circular

wait because none of the parts on the machines desire a buffer as their next destination. They either

wish to move to another machine in the workstation or to leave the workstation. Parts wanting to leave

the workstation wish to move directly to an unload point not to a buffer. When resolving a circular

wait, it is preferable to give parts on other machines priority over parts in buffers after removing a part

191

from a machine. This will allow the maximum number of parts to progress forward. A part will not

necessarily move to a buffer from a machine to allow other parts requiring the machine to progress.

2A

Find a transporter with available capacity and move it to a workstation unload point.

2B

Add neural net logic to select an unload for the secondary unload point that has the available transport

capacity.

2C

Find a transporter with available capacity and move it to a workstation unload point. Move the

transporter currently at the unload point away. In this case the transporter currently at the unload point

has the wrong type of capacity. This will happen when the workstation being unloaded requires that a

part carrier be on the transporter and no part carrier is there.

2D

Find a transporter with available capacity and move it to a workstation unload point. Move the

transporter currently at the unload point away.

2E

Find a transporter with available capacity and move it to a workstation unload point. Move the

transporter currently at the unload point away. This will occur either if the transporter is filled to

capacity or it has a part carrier that is able to accept a part, but the workstation that needs to be

unloaded unloads a part carrier with the part.

192

2F

Find a transporter with available capacity and move it to a workstation unload point. The transporter

currently at the unload point may or may not need to be moved depending on the configuration of the

transportation system.

3

Add neural net logic to allow the unload command to be activated.

3A

Find a transporter with available capacity and move it to a workstation primary unload point for the

part type and node combination to be unloaded. There may not be any unload logic present to unload

the part to a non-primary unload point.

3B

Add neural net logic to select an unload for the secondary unload point that has the available transport

capacity.

3C

Find a transporter with available capacity and move it to a workstation unload point. Move the

transporter currently at the unload point away. In this case the transporter currently at the unload point

has the wrong type of capacity. This will happen when the workstation being unloaded requires that a

part carrier be on the transporter and no part carrier is there.

3D

Find a transporter with available capacity and move it to a workstation unload point. Move the

transporter currently at the unload point away.

193

3E

Find a transporter with available capacity and move it to a workstation unload point. Move the

transporter currently at the unload point away. This will occur either if the transporter is filled to

capacity or it has a part carrier that is able to accept a part, but the workstation that needs to be

unloaded unloads a part carrier with the part.

3F

Find a transporter with available capacity and move it to a workstation unload point. The transporter

currently at the unload point may or may not need to be moved depending on the configuration of the

transportation system.

4

Add neural net logic to move the transporter toward the required workstation. It may be necessary to

add neural net logic to move transporters that are blocking the transporter with the part.

194

APPENDIX K

ZIP FILE CONTENTS

Two zip files are included with this dissertation: releasecandidate9.zip and finaltestcasemodels.zip.

The releasecandidate9.zip file contains Visual C++ source code for the cell controller organized into

three subdirectories: 1) timedCellController, 2) fixedrules, and 3) exemplars. The timedCellController

directory contains the code for the actual controller. The fixedrules directory contains the code to

create the initial input for timedCellController from the user model. The exemplars directory contains

the code used to generate the control logic. It modifies the files created by the code in the fixed rules

directory and creates additional files used by timedCellController.

The finaltestcasemodels.zip file contains the user input models for the test cases used in this

dissertation.

195

VITA

Wesley Dane Scott

Permanent Address:

1051 N Dean St., Coquille, OR 97423

Educational Background:

B.S., Chemical Engineering, Oregon State University, 1985

M.S.E., Mechanical Engineering, Purdue University, 1992

