4,912 research outputs found

    Using an FPGA for Fast Bit Accurate SoC Simulation

    Get PDF
    In this paper we describe a sequential simulation method to simulate large parallel homo- and heterogeneous systems on a single FPGA. The method is applicable for parallel systems were lengthy cycle and bit accurate simulations are required. It is particularly designed for systems that do not fit completely on the simulation platform (i.e. FPGA). As a case study, we use a Network-on-Chip (NoC) that is simulated in SystemC and on the described FPGA simulator. This enables us to observe the NoC behavior under a large variety of traffic patterns. Compared with the SystemC simulation we achieved a factor 80-300 of speed improvement, without compromising the cycle and bit level accuracy

    From FPGA to ASIC: A RISC-V processor experience

    Get PDF
    This work document a correct design flow using these tools in the Lagarto RISC- V Processor and the RTL design considerations that must be taken into account, to move from a design for FPGA to design for ASIC

    Fast, Accurate and Detailed NoC Simulations

    Get PDF
    Network-on-Chip (NoC) architectures have a wide variety of parameters that can be adapted to the designer's requirements. Fast exploration of this parameter space is only possible at a high-level and several methods have been proposed. Cycle and bit accurate simulation is necessary when the actual router's RTL description needs to be evaluated and verified. However, extensive simulation of the NoC architecture with cycle and bit accuracy is prohibitively time consuming. In this paper we describe a simulation method to simulate large parallel homogeneous and heterogeneous network-on-chips on a single FPGA. The method is especially suitable for parallel systems where lengthy cycle and bit accurate simulations are required. As a case study, we use a NoC that was modelled and simulated in SystemC. We simulate the same NoC on the described FPGA simulator. This enables us to observe the NoC behavior under a large variety of traffic patterns. Compared with the SystemC simulation we achieved a speed-up of 80-300, without compromising the cycle and bit level accuracy

    DyPS: Dynamic Processor Switching for Energy-Aware Video Decoding on Multi-core SoCs

    Full text link
    In addition to General Purpose Processors (GPP), Multicore SoCs equipping modern mobile devices contain specialized Digital Signal Processor designed with the aim to provide better performance and low energy consumption properties. However, the experimental measurements we have achieved revealed that system overhead, in case of DSP video decoding, causes drastic performances drop and energy efficiency as compared to the GPP decoding. This paper describes DyPS, a new approach for energy-aware processor switching (GPP or DSP) according to the video quality . We show the pertinence of our solution in the context of adaptive video decoding and describe an implementation on an embedded Linux operating system with the help of the GStreamer framework. A simple case study showed that DyPS achieves 30% energy saving while sustaining the decoding performanc

    A case study for NoC based homogeneous MPSoC architectures

    Get PDF
    The many-core design paradigm requires flexible and modular hardware and software components to provide the required scalability to next-generation on-chip multiprocessor architectures. A multidisciplinary approach is necessary to consider all the interactions between the different components of the design. In this paper, a complete design methodology that tackles at once the aspects of system level modeling, hardware architecture, and programming model has been successfully used for the implementation of a multiprocessor network-on-chip (NoC)-based system, the NoCRay graphic accelerator. The design, based on 16 processors, after prototyping with field-programmable gate array (FPGA), has been laid out in 90-nm technology. Post-layout results show very low power, area, as well as 500 MHz of clock frequency. Results show that an array of small and simple processors outperform a single high-end general purpose processo
    • 

    corecore