6,221 research outputs found

    AI and OR in management of operations: history and trends

    Get PDF
    The last decade has seen a considerable growth in the use of Artificial Intelligence (AI) for operations management with the aim of finding solutions to problems that are increasing in complexity and scale. This paper begins by setting the context for the survey through a historical perspective of OR and AI. An extensive survey of applications of AI techniques for operations management, covering a total of over 1200 papers published from 1995 to 2004 is then presented. The survey utilizes Elsevier's ScienceDirect database as a source. Hence, the survey may not cover all the relevant journals but includes a sufficiently wide range of publications to make it representative of the research in the field. The papers are categorized into four areas of operations management: (a) design, (b) scheduling, (c) process planning and control and (d) quality, maintenance and fault diagnosis. Each of the four areas is categorized in terms of the AI techniques used: genetic algorithms, case-based reasoning, knowledge-based systems, fuzzy logic and hybrid techniques. The trends over the last decade are identified, discussed with respect to expected trends and directions for future work suggested

    Simulation, optimization, and machine learning in sustainable transportation systems: Models and applications

    Full text link
    [EN] The need for effective freight and human transportation systems has consistently increased during the last decades, mainly due to factors such as globalization, e-commerce activities, and mobility requirements. Traditionally, transportation systems have been designed with the main goal of reducing their monetary cost while offering a specified quality of service. During the last decade, however, sustainability concepts are also being considered as a critical component of transportation systems, i.e., the environmental and social impact of transportation activities have to be taken into account when managers and policy makers design and operate modern transportation systems, whether these refer to long-distance carriers or to metropolitan areas. This paper reviews the existing work on different scientific methodologies that are being used to promote Sustainable Transportation Systems (STS), including simulation, optimization, machine learning, and fuzzy sets. This paper discusses how each of these methodologies have been employed to design and efficiently operate STS. In addition, the paper also provides a classification of common challenges, best practices, future trends, and open research lines that might be useful for both researchers and practitioners.This work has been partially supported by the Spanish Ministry of Science, Innovation, and Universities (PID2019-111100RB-C21-C22/AEI/10.13039/501100011033, RED2018-102642-T) and the SEPIE Erasmus+ Program (2019-I-ES01-KA103-062602), and the IoF2020-H2020 (731884) project.Torre-Martínez, MRDL.; Corlu, CG.; Faulin, J.; Onggo, BS.; Juan-Pérez, ÁA. (2021). Simulation, optimization, and machine learning in sustainable transportation systems: Models and applications. Sustainability. 13(3):1-21. https://doi.org/10.3390/su1303155112113

    Proactive Assessment of Accident Risk to Improve Safety on a System of Freeways, Research Report 11-15

    Get PDF
    This report describes the development and evaluation of real-time crash risk-assessment models for four freeway corridors: U.S. Route 101 NB (northbound) and SB (southbound) and Interstate 880 NB and SB. Crash data for these freeway segments for the 16-month period from January 2010 through April 2011 are used to link historical crash occurrences with real-time traffic patterns observed through loop-detector data. \u27The crash risk-assessment models are based on a binary classification approach (crash and non-crash outcomes), with traffic parameters measured at surrounding vehicle detection station (VDS) locations as the independent variables. The analysis techniques used in this study are logistic regression and classification trees. Prior to developing the models, some data-related issues such as data cleaning and aggregation were addressed. The modeling efforts revealed that the turbulence resulting from speed variation is significantly associated with crash risk on the U.S. 101 NB corridor. The models estimated with data from U.S. 101 NB were evaluated on the basis of their classification performance, not only on U.S. 101 NB, but also on the other three freeway segments for transferability assessment. It was found that the predictive model derived from one freeway can be readily applied to other freeways, although the classification performance decreases. The models that transfer best to other roadways were determined to be those that use the least number of VDSs–that is, those that use one upstream or downstream station rather than two or three.\ The classification accuracy of the models is discussed in terms of how the models can be used for real-time crash risk assessment. The models can be applied to developing and testing variable speed limits (VSLs) and ramp-metering strategies that proactively attempt to reduce crash risk

    An Intelligent Method for Industrial Location Selection: Application to Markazi Province, Iran

    Get PDF
    Decision-making and selection are important and sensitive aspects of planning. An important part of land-use planning is the location of human activities. Locating activities in the right places determines the future space of a region. Selection and definition of natural and human indices and criteria for location always face uncertainty. Thus, this study aimed to develop an intelligent method for industrial location. In this study a developmental-applied approach was used along with a descriptive-analytical method for data analysis. Through the review of related literature and a Delphi survey, 18 criteria were extracted and 6 main components were categorized. The data were analyzed and modeled by GIS, MATLAB software, and the Fuzzy Inference System (FIS) and Adaptive Neuro-Fuzzy Inference System (ANFIS) methods. For each modeling three industrial domains were extracted, i.e. weak, medium, and premium. A total of 42,968 hectares of premium industrial location with a score higher than 0.7 resulted from combining the produced maps. Other important findings were related to the architecture and methodology applied in the research based on computational intelligence and knowledge-based systems to analyze and understand the processes that influence the score of locations. The novelty of this method lies in the use of high computing power and information evaluation based on artificial intelligence (AI), making it possible to analyze and understand the processes influencing industrial location.   Abstrak. Pengambilan keputusan dan seleksi adalah aspek-aspek penting dan sensitive dalam perencanaan. Bagian yang penting dalam sebuah perencaan penggunaan lahan adalah terkait lokasi kegiatan manusia. Alokasi kegiatan manusia pada tempat yang benar adalah penentu ruang masa depan dari suatu wilayah. Dalam hal seleksi dan definisi index, juga kriteria lokasi selalu menghadapi ketidakpastian. Sehingga, studi ini dilakukan untuk mengembangkan metode yang berguna dalam alokasi industri. Pada artikel ini, digunakan pendekatan terapan-terkembangkan dengan metode analisis deskriptif dalam hal analisis data. Berdasarkan tinjauan pada literatur terkait dan survey Delphi, 18 kritersia diekstraksi yang dikategorikan pada 6 komponen utama. Data dianalisis dan dimodelkan menggunakan GIS, MATLAB, Fuzzy Inference System (FIS), dan metode Adaptive Neuro-Fuzzy Inference System (ANFIS). Untuk setiap model, tiga domain industry ditentukan, yakni: lemah, moderat, dan premium. Terdapat lokasi industry premium dengan total 42,968 ha dengan nilai lebih dari 0.7. Hasil penting lainnya berkaitan dengan arsitektur dan metode terapan dalam penelitian yang berdasar kepada ilmu komputasi untuk memahami proses yang memengaruhi nilai untuk suatu lokasi. Kebaruan dari metode ini ada pada penggunaan model komputasi tinggi dan evaluasi informasi berdasarkan kecerdasan buatan (AI) yang memungkinkan untuk melakukan analisis dan memahami proses yang memengaruhi lokasi industri.   Kata kunci. Fuzzy Inference System (FIS), Adaptive Neuro-Fuzzy Inference System (ANFIS), Artificial Neural Network (ANN), lokasi industri, Provinsi Markazi

    Enabling Factors and Durations Data Analytics for Dynamic Freight Parking Limits

    Get PDF
    Freight parking operations occur amid conflicting conditions of public space scarcity, competition with other users, and the inefficient management of loading zones (LZ) at cities’ curbside. The dynamic nature of freight operations, and the static LZ provision and regulation, accentuate these conflicting conditions at specific peak times. This generates supply–demand mismatches of parking infrastructure. These mismatches have motivated the development of Smart LZ that bring together technology, parking infrastructure, and data analytics to allocate space and define dynamic duration limits based on users’ needs. Although the dynamic duration limits unlock the possibility of a responsive LZ management, there is a narrow understanding of factors and analytical tools that support their definition. Therefore, the aim of this paper is twofold. Firstly, to identify factors for enabling dynamic parking durations policies. Secondly, to assess data analytics tools that estimate freight parking durations and LZ occupation levels based on operational and locational features. Semi-structured interviews and focus group analyses showed that public space use assessment, parking demand estimation, enforcement capabilities, and data sharing strategies are the most relevant factors when defining dynamic parking limits. This paper used quantitative models to assess different analytical tools that study LZ occupation and parking durations using tracked freight parking data from the City of Vic (Spain). CatBoost outperformed other machine learning (ML) algorithms and queuing models in estimating LZ occupation and parking durations. This paper contributes to the freight parking field by understanding how data analytics support dynamic parking limits definition, enabling responsive curbside management

    Data analytics 2016: proceedings of the fifth international conference on data analytics

    Get PDF

    Modelling Freight Allocation and Transportation Lead-Time

    Get PDF
    The authors have investigated sustainable environment delivery systems and identified transportation lead-time investigation cases. This research study aimed to increase freight delivery lead-time and minimize distance in transportation. To reach the goal, the paper\u27s authors, after analysis of the hierarchy of quantitative methods and models, proposed the framework for modeling freight allocation and transportation lead-time and delivered a study that includes discrete event simulation. During the simulation, various scenarios have been revised. Following the simulation mentioned above analysis, around 3.8 % of distance could be saved during freight delivery if lead-time for transportation were revised by choosing five days criteria for modeling freight allocation. The savings depend on the number of received orders from different geographic locations

    Evaluation Index System for Railway Hub Logistics Base System Layout Planning, Taking Hefei Railway Hub in China as an Example

    Get PDF
    The construction of a railway hub logistics base system has many influencing factors and a high construction cost. There is an extremely important social and economic significance to the evaluation of its planning scheme. This study has obtained practical experience from a large number of existing railway hub planning schemes in China, using the analytic hierarchy process. Then, macro- and micro-level layout planning principles were analyzed. Moreover, 16 evaluation indicators were established at the macro and micro levels. The analytic hierarchy process and a comprehensive evaluation index method were used to deal with all indicators and give the score of the planning scheme. Lastly, Hefei railway hub in China was taken as an example to test the theory above
    corecore