221 research outputs found

    Packet filter performance monitor (anti-DDOS algorithm for hybrid topologies)

    Get PDF
    DDoS attacks are increasingly becoming a major problem. According to Arbor Networks, the largest DDoS attack reported by a respondent in 2015 was 500 Gbps. Hacker News stated that the largest DDoS attack as of March 2016 was over 600 Gbps, and the attack targeted the entire BBC website. With this increasing frequency and threat, and the average DDoS attack duration at about 16 hours, we know for certain that DDoS attacks will not be going away anytime soon. Commercial companies are not effectively providing mitigation techniques against these attacks, considering that major corporations face the same challenges. Current security appliances are not strong enough to handle the overwhelming traffic that accompanies current DDoS attacks. There is also a limited research on solutions to mitigate DDoS attacks. Therefore, there is a need for a means of mitigating DDoS attacks in order to minimize downtime. One possible solution is for organizations to implement their own architectures that are meant to mitigate DDoS attacks. In this dissertation, we present and implement an architecture that utilizes an activity monitor to change the states of firewalls based on their performance in a hybrid network. Both firewalls are connected inline. The monitor is mirrored to monitor the firewall states. The monitor reroutes traffic when one of the firewalls become overwhelmed due to a HTTP DDoS flooding attack. The monitor connects to the API of both firewalls. The communication between the rewalls and monitor is encrypted using AES, based on PyCrypto Python implementation. This dissertation is structured in three parts. The first found the weakness of the hardware firewall and determined its threshold based on spike and endurance tests. This was achieved by flooding the hardware firewall with HTTP packets until the firewall became overwhelmed and unresponsive. The second part implements the same test as the first, but targeted towards the virtual firewall. The same parameters, test factors, and determinants were used; however a different load tester was utilized. The final part was the implementation and design of the firewall performance monitor. The main goal of the dissertation is to minimize downtime when network firewalls are overwhelmed as a result of a DDoS attack

    Automating Mitigation of Amplification Attacks in NFV Services

    Get PDF
    The combination of virtualization techniques with capillary computing and storage resources allows the instantiation of Virtual Network Functions throughout the network infrastructure, which brings more agility in the development and operation of network services. Beside forwarding and routing, this can be also used for additional functions, e.g., for security purposes. In this paper, we present a framework to systematically create security analytics for virtualized network services, specifically targeting the detection of cyber-attacks. Our framework largely automates the deployment of security sidecars into existing service templates and their interconnection to an external analytics platform. Notably, it leverages code augmentation techniques to dynamically inject and remove inspection probes without affecting service operation. We describe the implementation of a use case for the detection of DNS amplification attacks in virtualized 5G networks, and provide extensive evaluation of our innovative inspection and detection mechanisms. Our results demonstrate better efficiency with respect to existing network monitoring tools in terms of CPU usage, as well as good accuracy in detecting attacks even with variable traffic patterns

    A State-Based Proactive Approach To Network Isolation Verification In Clouds

    Get PDF
    The multi-tenancy nature of public clouds usually leads to cloud tenants' concerns over network isolation around their virtual resources. Verifying network isolation in clouds faces unique challenges. The sheer size of virtual infrastructures paired with the self-serviced nature of clouds means the verification will likely have a high complexity and yet its results may become obsolete in seconds. Moreover, the _ne-grained and distributed network access control (e.g., per-VM security group rules) typical to virtual cloud infrastructures means the verification must examine not only the events but also the current state of the infrastructures. In this thesis, we propose VMGuard, a state-based proactive approach for efficiently verifying large-scale virtual infrastructures against network isolation policies. Informally, our key idea is to proactively trigger the verification based on predicted events and their simulated impact upon the current state, such that we can have the best of both worlds, i.e., the efficiency of a proactive approach and the effectiveness of state-based verification. We implement and evaluate VMGuard based on OpenStack, and our experiments with both real and synthetic data demonstrate the performance and efficiency

    Network Slicing in 5G: Admission, Scheduling, and Security

    Get PDF
    In the past few decades, there was an increase in the number of devices that have wireless capabilities such as phones, televisions, and home appliances. With the high demand for wireless networking, the fifth generation (5G) of mobile networks was designed to support the different services of new applications. In addition, one of the technical issues that 5G would evolve is the increase in traffic and the need to satisfy the user’s experience. With the evolution of wireless networking and 5G, Network Slicing has been introduced to accommodate the diverse requirements of the applications. Thus, network slicing is the concept of partitioning the physical network infrastructure into multiple self-contained logical pieces which can be identified as slices. Each slice can be customized to serve and meet different network requirements and characteristics. In terms of security, network security has allowed for new security vulnerabilities such as Distributed Denial of Service (DDoS) and resource exhaustion. However, slices can be isolated to provide better resource isolation. In addition, each slice is considered an end-to-end virtual network, operators would be able to allocate resources to the tenants which are the service providers. The isolated resources are controlled by the tenants; each tenant has control over how to use them to meet the requirements of the clients. One of the challenges in network slicing is RAN slicing. The target of RAN Slicing is to meet the QoS requirements of different services for each end-user. However, the coexistence of different services is challenging because each service has its requirements. Each slice must estimate its network demands based on the QoS requirements and control the admission to the slice. To solve this issue, we consider the scenario for the enhanced mobile broadband (eMBB) and the ultra-reliable-low-latency communication (URLLC) use cases’ coexistence, and we slice the RAN based on the priority of the user applicatio

    Resource Allocation in Networking and Computing Systems: A Security and Dependability Perspective

    Get PDF
    In recent years, there has been a trend to integrate networking and computing systems, whose management is getting increasingly complex. Resource allocation is one of the crucial aspects of managing such systems and is affected by this increased complexity. Resource allocation strategies aim to effectively maximize performance, system utilization, and profit by considering virtualization technologies, heterogeneous resources, context awareness, and other features. In such complex scenario, security and dependability are vital concerns that need to be considered in future computing and networking systems in order to provide the future advanced services, such as mission-critical applications. This paper provides a comprehensive survey of existing literature that considers security and dependability for resource allocation in computing and networking systems. The current research works are categorized by considering the allocated type of resources for different technologies, scenarios, issues, attributes, and solutions. The paper presents the research works on resource allocation that includes security and dependability, both singularly and jointly. The future research directions on resource allocation are also discussed. The paper shows how there are only a few works that, even singularly, consider security and dependability in resource allocation in the future computing and networking systems and highlights the importance of jointly considering security and dependability and the need for intelligent, adaptive and robust solutions. This paper aims to help the researchers effectively consider security and dependability in future networking and computing systems.publishedVersio

    Enhancing Data Security for Cloud Computing Applications through Distributed Blockchain-based SDN Architecture in IoT Networks

    Full text link
    Blockchain (BC) and Software Defined Networking (SDN) are some of the most prominent emerging technologies in recent research. These technologies provide security, integrity, as well as confidentiality in their respective applications. Cloud computing has also been a popular comprehensive technology for several years. Confidential information is often shared with the cloud infrastructure to give customers access to remote resources, such as computation and storage operations. However, cloud computing also presents substantial security threats, issues, and challenges. Therefore, to overcome these difficulties, we propose integrating Blockchain and SDN in the cloud computing platform. In this research, we introduce the architecture to better secure clouds. Moreover, we leverage a distributed Blockchain approach to convey security, confidentiality, privacy, integrity, adaptability, and scalability in the proposed architecture. BC provides a distributed or decentralized and efficient environment for users. Also, we present an SDN approach to improving the reliability, stability, and load balancing capabilities of the cloud infrastructure. Finally, we provide an experimental evaluation of the performance of our SDN and BC-based implementation using different parameters, also monitoring some attacks in the system and proving its efficacy.Comment: 12 Pages 16 Figures 3 Table

    Mecanismos dinâmicos de segurança para redes softwarizadas e virtualizadas

    Get PDF
    The relationship between attackers and defenders has traditionally been asymmetric, with attackers having time as an upper hand to devise an exploit that compromises the defender. The push towards the Cloudification of the world makes matters more challenging, as it lowers the cost of an attack, with a de facto standardization on a set of protocols. The discovery of a vulnerability now has a broader impact on various verticals (business use cases), while previously, some were in a segregated protocol stack requiring independent vulnerability research. Furthermore, defining a perimeter within a cloudified system is non-trivial, whereas before, the dedicated equipment already created a perimeter. This proposal takes the newer technologies of network softwarization and virtualization, both Cloud-enablers, to create new dynamic security mechanisms that address this asymmetric relationship using novel Moving Target Defense (MTD) approaches. The effective use of the exploration space, combined with the reconfiguration capabilities of frameworks like Network Function Virtualization (NFV) and Management and Orchestration (MANO), should allow for adjusting defense levels dynamically to achieve the required security as defined by the currently acceptable risk. The optimization tasks and integration tasks of this thesis explore these concepts. Furthermore, the proposed novel mechanisms were evaluated in real-world use cases, such as 5G networks or other Network Slicing enabled infrastructures.A relação entre atacantes e defensores tem sido tradicionalmente assimétrica, com os atacantes a terem o tempo como vantagem para conceberem uma exploração que comprometa o defensor. O impulso para a Cloudificação do mundo torna a situação mais desafiante, pois reduz o custo de um ataque, com uma padronização de facto sobre um conjunto de protocolos. A descoberta de uma vulnerabilidade tem agora um impacto mais amplo em várias verticais (casos de uso empresarial), enquanto anteriormente, alguns estavam numa pilha de protocolos segregados que exigiam uma investigação independente das suas vulnerabilidades. Além disso, a definição de um perímetro dentro de um sistema Cloud não é trivial, enquanto antes, o equipamento dedicado já criava um perímetro. Esta proposta toma as mais recentes tecnologias de softwarização e virtualização da rede, ambas facilitadoras da Cloud, para criar novos mecanismos dinâmicos de segurança que incidem sobre esta relação assimétrica utilizando novas abordagens de Moving Target Defense (MTD). A utilização eficaz do espaço de exploração, combinada com as capacidades de reconfiguração de frameworks como Network Function Virtualization (NFV) e Management and Orchestration (MANO), deverá permitir ajustar dinamicamente os níveis de defesa para alcançar a segurança necessária, tal como definida pelo risco actualmente aceitável. As tarefas de optimização e de integração desta tese exploram estes conceitos. Além disso, os novos mecanismos propostos foram avaliados em casos de utilização no mundo real, tais como redes 5G ou outras infraestruturas de Network Slicing.Programa Doutoral em Engenharia Informátic

    Software Defined Networks based Smart Grid Communication: A Comprehensive Survey

    Get PDF
    The current power grid is no longer a feasible solution due to ever-increasing user demand of electricity, old infrastructure, and reliability issues and thus require transformation to a better grid a.k.a., smart grid (SG). The key features that distinguish SG from the conventional electrical power grid are its capability to perform two-way communication, demand side management, and real time pricing. Despite all these advantages that SG will bring, there are certain issues which are specific to SG communication system. For instance, network management of current SG systems is complex, time consuming, and done manually. Moreover, SG communication (SGC) system is built on different vendor specific devices and protocols. Therefore, the current SG systems are not protocol independent, thus leading to interoperability issue. Software defined network (SDN) has been proposed to monitor and manage the communication networks globally. This article serves as a comprehensive survey on SDN-based SGC. In this article, we first discuss taxonomy of advantages of SDNbased SGC.We then discuss SDN-based SGC architectures, along with case studies. Our article provides an in-depth discussion on routing schemes for SDN-based SGC. We also provide detailed survey of security and privacy schemes applied to SDN-based SGC. We furthermore present challenges, open issues, and future research directions related to SDN-based SGC.Comment: Accepte
    corecore