6,170 research outputs found

    Pathway to the PiezoElectronic Transduction Logic Device

    Full text link
    The information age challenges computer technology to process an exponentially increasing computational load on a limited energy budget - a requirement that demands an exponential reduction in energy per operation. In digital logic circuits, the switching energy of present FET devices is intimately connected with the switching voltage, and can no longer be lowered sufficiently, limiting the ability of current technology to address the challenge. Quantum computing offers a leap forward in capability, but a clear advantage requires algorithms presently developed for only a small set of applications. Therefore, a new, general purpose, classical technology based on a different paradigm is needed to meet the ever increasing demand for data processing.Comment: in Nano Letters (2015

    Damage identification in structural health monitoring: a brief review from its implementation to the Use of data-driven applications

    Get PDF
    The damage identification process provides relevant information about the current state of a structure under inspection, and it can be approached from two different points of view. The first approach uses data-driven algorithms, which are usually associated with the collection of data using sensors. Data are subsequently processed and analyzed. The second approach uses models to analyze information about the structure. In the latter case, the overall performance of the approach is associated with the accuracy of the model and the information that is used to define it. Although both approaches are widely used, data-driven algorithms are preferred in most cases because they afford the ability to analyze data acquired from sensors and to provide a real-time solution for decision making; however, these approaches involve high-performance processors due to the high computational cost. As a contribution to the researchers working with data-driven algorithms and applications, this work presents a brief review of data-driven algorithms for damage identification in structural health-monitoring applications. This review covers damage detection, localization, classification, extension, and prognosis, as well as the development of smart structures. The literature is systematically reviewed according to the natural steps of a structural health-monitoring system. This review also includes information on the types of sensors used as well as on the development of data-driven algorithms for damage identification.Peer ReviewedPostprint (published version

    Rayleigh Wave Calibration of Acoustic Emission Sensors and Ultrasonic Transducers.

    Get PDF
    Acoustic emission (AE) sensors and ultrasonic transducers were characterized for the detection of Rayleigh waves (RW). Small aperture reference sensors were characterized first using the fracture of glass capillary tubes in combination with a theoretical displacement calculation, which utilized finite element method (FEM) and was verified by laser interferometer. For the calibration of 18 commercial sensors and two piezoceramic disks, a 90° angle beam transducer was used to generate RW pulses on an aluminum transfer block. By a substitution method, RW receiving sensitivity of a sensor under test was determined over the range of frequency from 22 kHz to 2 MHz. Results were compared to the sensitivities to normally incident waves (NW) and to other guided waves (GW). It was found that (1) NW sensitivities are always higher than RW sensitivities, (2) differences between NW and RW receiving sensitivities are dependent on frequency and sensor size, (3) most sensors show comparable RW and GW receiving sensitivities, especially those of commonly used AE sensors, and (4) the receiving sensitivities of small aperture (1 mm diameter) sensors behave differently from larger sensors

    Technology transfer: Transportation

    Get PDF
    Standard Research Institute (SRI) has operated a NASA-sponsored team for four years. The SRI Team is concentrating on solving problems in the public transportation area and on developing methods for decreasing the time gap between the development and the marketing of new technology and for aiding the movement of knowledge across industrial, disciplinary, and regional boundaries. The SRI TAT has developed a methodology that includes adaptive engineering of the aerospace technology and commercialization when a market is indicated. The SRI Team has handled highway problems on a regional rather than a state basis, because many states in similar climatic or geologic regions have similar problems. Program exposure has been increased to encompass almost all of the fifty states

    DEVELOPMENT OF A SIMPLIFIED, MASS PRODUCIBLE HYBRIDIZED AMBIENT, LOW FREQUENCY, LOW INTENSITY VIBRATION ENERGY SCAVENGER (HALF-LIVES)

    Get PDF
    Scavenging energy from environmental sources is an active area of research to enable remote sensing and microsystems applications. Furthermore, as energy demands soar, there is a significant need to explore new sources and curb waste. Vibration energy scavenging is one environmental source for remote applications and a candidate for recouping energy wasted by mechanical sources that can be harnessed to monitor and optimize operation of critical infrastructure (e.g. Smart Grid). Current vibration scavengers are limited by volume and ancillary requirements for operation such as control circuitry overhead and battery sources. This dissertation, for the first time, reports a mass producible hybrid energy scavenger system that employs both piezoelectric and electrostatic transduction on a common MEMS device. The piezoelectric component provides an inherent feedback signal and pre-charge source that enables electrostatic scavenging operation while the electrostatic device provides the proof mass that enables low frequency operation. The piezoelectric beam forms the spring of the resonant mass-spring transducer for converting vibration excitation into an AC electrical output. A serially poled, composite shim, piezoelectric bimorph produces the highest output rectified voltage of over 3.3V and power output of 145uW using ¼ g vibration acceleration at 120Hz. Considering solely the volume of the piezoelectric beam and tungsten proof mass, the volume is 0.054cm3, resulting in a power density of 2.68mW/cm3. Incorporation of a simple parallel plate structure that provides the proof mass for low frequency resonant operation in addition to cogeneration via electrostatic energy scavenging provides a 19.82 to 35.29 percent increase in voltage beyond the piezoelectric generated DC rails. This corresponds to approximately 2.1nW additional power from the electrostatic scavenger component and demonstrates the first instance of hybrid energy scavenging using both piezoelectric and synchronous electrostatic transduction. Furthermore, it provides a complete system architecture and development platform for additional enhancements that will enable in excess of 100uW additional power from the electrostatic scavenger

    Bridges Structural Health Monitoring and Deterioration Detection Synthesis of Knowledge and Technology

    Get PDF
    INE/AUTC 10.0
    • …
    corecore