33,697 research outputs found

    Thermal And Mechanical Analysis of High-power Light-emitting Diodes with Ceramic Packages

    Get PDF
    In this paper we present the thermal and mechanical analysis of high-power light-emitting diodes (LEDs) with ceramic packages. Transient thermal measurements and thermo-mechanical simulation were performed to study the thermal and mechanical characteristics of ceramic packages. Thermal resistance from the junction to the ambient was decreased from 76.1 oC/W to 45.3 oC/W by replacing plastic mould to ceramic mould for LED packages. Higher level of thermo-mechanical stresses in the chip were found for LEDs with ceramic packages despite of less mismatching coefficients of thermal expansion comparing with plastic packages. The results suggest that the thermal performance of LEDs can be improved by using ceramic packages, but the mounting process of the high power LEDs with ceramic packages is critically important and should be in charge of delaminating interface layers in the packages.Comment: Submitted on behalf of TIMA Editions (http://irevues.inist.fr/tima-editions

    Active C4 electrodes for local field potential recording applications

    Get PDF
    Extracellular neural recording, with multi-electrode arrays (MEAs), is a powerful method used to study neural function at the network level. However, in a high density array, it can be costly and time consuming to integrate the active circuit with the expensive electrodes. In this paper, we present a 4 mm × 4 mm neural recording integrated circuit (IC) chip, utilizing IBM C4 bumps as recording electrodes, which enable a seamless active chip and electrode integration. The IC chip was designed and fabricated in a 0.13 μm BiCMOS process for both in vitro and in vivo applications. It has an input-referred noise of 4.6 μV rms for the bandwidth of 10 Hz to 10 kHz and a power dissipation of 11.25 mW at 2.5 V, or 43.9 μW per input channel. This prototype is scalable for implementing larger number and higher density electrode arrays. To validate the functionality of the chip, electrical testing results and acute in vivo recordings from a rat barrel cortex are presented.R01 NS072385 - NINDS NIH HHS; 1R01 NS072385 - NINDS NIH HH

    Thermo-mechanical analysis of flexible and stretchable systems

    Get PDF
    This paper presents a summary of the modeling and technology developed for flexible and stretchable electronics. The integration of ultra thin dies at package level, with thickness in the range of 20 to 30 μ m, into flexible and/or stretchable materials are demonstrated as well as the design and reliability test of stretchable metal interconnections at board level are analyzed by both experiments and finite element modeling. These technologies can achieve mechanically bendable and stretchable subsystems. The base substrate used for the fabrication of flexible circuits is a uniform polyimide layer, while silicones materials are preferred for the stretchable circuits. The method developed for chip embedding and interconnections is named Ultra Thin Chip Package (UTCP). Extensions of this technology can be achieved by stacking and embedding thin dies in polyimide, providing large benefits in electrical performance and still allowing some mechanical flexibility. These flexible circuits can be converted into stretchable circuits by replacing the relatively rigid polyimide by a soft and elastic silicone material. We have shown through finite element modeling and experimental validation that an appropriate thermo mechanical design is necessary to achieve mechanically reliable circuits and thermally optimized packages

    Innovative teaching of IC design and manufacture using the Superchip platform

    No full text
    In this paper we describe how an intelligent chip architecture has allowed a large cohort of undergraduate students to be given effective practical insight into IC design by designing and manufacturing their own ICs. To achieve this, an efficient chip architecture, the “Superchip”, has been developed, which allows multiple student designs to be fabricated on a single IC, and encapsulated in a standard package without excessive cost in terms of time or resources. We demonstrate how the practical process has been tightly coupled with theoretical aspects of the degree course and how transferable skills are incorporated into the design exercise. Furthermore, the students are introduced at an early stage to the key concepts of team working, exposure to real deadlines and collaborative report writing. This paper provides details of the teaching rationale, design exercise overview, design process, chip architecture and test regime

    Ball lens embedded through-package via to enable backside coupling between silicon photonics interposer and board-level interconnects

    Get PDF
    Development of an efficient and densely integrated optical coupling interface for silicon photonics based board-level optical interconnects is one of the key challenges in the domain of 2.5D/3D electro-optic integration. Enabling high-speed on-chip electro-optic conversion and efficient optical transmission across package/board-level short-reach interconnections can help overcome the limitations of a conventional electrical I/O in terms of bandwidth density and power consumption in a high-performance computing environment. In this context, we have demonstrated a novel optical coupling interface to integrate silicon photonics with board-level optical interconnects. We show that by integrating a ball lens in a via drilled in an organic package substrate, the optical beam diffracted from a downward directionality grating on a photonics chip can be coupled to a board-level polymer multimode waveguide with a good alignment tolerance. A key result from the experiment was a 14 chip-to-package 1-dB lateral alignment tolerance for coupling into a polymer waveguide with a cross-section of 20 x 25. An in-depth analysis of loss distribution across several interfaces was done and a -3.4 dB coupling efficiency was measured between the optical interface comprising of output grating, ball lens and polymer waveguide. Furthermore, it is shown that an efficiency better than -2 dB can be achieved by tweaking few parameters in the coupling interface. The fabrication of the optical interfaces and related measurements are reported and verified with simulation results

    High Power Solid State Retrofit Lamp Thermal Characterization and Modeling

    Get PDF
    Thermal and thermo-mechanical modeling and characterization of solid state lightening (SSL) retrofit LED lamp are presented in this paper. Paramount importance is to design SSL lamps for reliability, in which thermal and thermo-mechanical aspects are key points. The main goal is to get a precise 3D thermal lamp model for further thermal optimization. Simulations are performed with ANSYS and CoventorWare software tools to compere different simulation approaches. Simulated thermal distribution has been validated with thermal measurement on a commercial 8W LED lamp. Materials parametric study has been carried out to discover problematic parts for heat transfer from power LEDs to ambient and future solutions are proposed. The objectives are to predict the thermal management by simulation of LED lamp, get more understanding in the effect of lamp shape and used materials in order to design more effective LED lamps and predict light quality, life time and reliability

    Research pressure instrumentation for NASA space shuttle main engine

    Get PDF
    The breadboard feasibility model of a silicon piezoresistive pressure transducer suitable for space shuttle main engine (SSME) applications was demonstrated. The development of pressure instrumentation for the SSME was examined. The objective is to develop prototype pressure transducers which are targeted to meet the SSME performance design goals and to fabricate, test and deliver a total of 10 prototype units. Effective utilization of the many advantages of silicon piezoresistive strain sensing technology to achieve the objectives of advanced state-of-the-art pressure sensors for reliability, accuracy and ease of manufacture is analyzed. Integration of multiple functions on a single chip is the key attribute of the technology

    Transient electrothermal simulation of power semiconductor devices

    Get PDF
    In this paper, a new thermal model based on the Fourier series solution of heat conduction equation has been introduced in detail. 1-D and 2-D Fourier series thermal models have been programmed in MATLAB/Simulink. Compared with the traditional finite-difference thermal model and equivalent RC thermal network, the new thermal model can provide high simulation speed with high accuracy, which has been proved to be more favorable in dynamic thermal characterization on power semiconductor switches. The complete electrothermal simulation models of insulated gate bipolar transistor (IGBT) and power diodes under inductive load switching condition have been successfully implemented in MATLAB/Simulink. The experimental results on IGBT and power diodes with clamped inductive load switching tests have verified the new electrothermal simulation model. The advantage of Fourier series thermal model over widely used equivalent RC thermal network in dynamic thermal characterization has also been validated by the measured junction temperature

    Validation by Measurements of a IC Modeling Approach for SiP Applications

    Get PDF
    The growing importance of signal integrity (SI) analysis in integrated circuits (ICs), revealed by modern systemin-package methods, is demanding for new models for the IC sub-systems which are both accurate, efficient and extractable by simple measurement procedures. This paper presents the contribution for the establishment of an integrated IC modeling approach whose performance is assessed by direct comparison with the signals measured in laboratory of two distinct memory IC devices. Based on the identification of the main blocks of a typical IC device, the modeling approach consists of a network of system-level sub-models, some of which with already demonstrated accuracy, which simulated the IC interfacing behavior. Emphasis is given to the procedures that were developed to validate by means of laboratory measurements (and not by comparison with circuit-level simulations) the model performance, which is a novel and important aspect that should be considered in the design of IC models that are useful for SI analysi
    corecore