7 research outputs found

    On the moment dynamics of stochastically delayed linear control systems

    Get PDF
    In this article, the dynamics and stability of a linear system with stochastic delay and additive noise are investigated. It is assumed that the delay value is sampled periodically from a stationary distribution. A semi‐discretization technique is used to time‐discretize the system and derive the mean and second‐moment dynamics. These dynamics are used to obtain the stationary moments and the corresponding necessary and sufficient stability conditions. The application of the proposed method is illustrated through the analysis of the Hayes equation with stochastic delay and additive noise. The method is also applied to the control design of a connected automated vehicle. These examples illuminate the effects of stochastic delays on the robustness of dynamical systems

    STABILITY AND PERFORMANCE OF NETWORKED CONTROL SYSTEMS

    Get PDF
    Network control systems (NCSs), as one of the most active research areas, are arousing comprehensive concerns along with the rapid development of network. This dissertation mainly discusses the stability and performance of NCSs into the following two parts. In the first part, a new approach is proposed to reduce the data transmitted in networked control systems (NCSs) via model reduction method. Up to our best knowledge, we are the first to propose this new approach in the scientific and engineering society. The "unimportant" information of system states vector is truncated by balanced truncation method (BTM) before sending to the networked controller via network based on the balance property of the remote controlled plant controllability and observability. Then, the exponential stability condition of the truncated NCSs is derived via linear matrix inequality (LMI) forms. This method of data truncation can usually reduce the time delay and further improve the performance of the NCSs. In addition, all the above results are extended to the switched NCSs. The second part presents a new robust sliding mode control (SMC) method for general uncertain time-varying delay stochastic systems with structural uncertainties and the Brownian noise (Wiener process). The key features of the proposed method are to apply singular value decomposition (SVD) to all structural uncertainties, to introduce adjustable parameters for control design along with the SMC method, and new Lyapunov-type functional. Then, a less-conservative condition for robust stability and a new robust controller for the general uncertain stochastic systems are derived via linear matrix inequality (LMI) forms. The system states are able to reach the SMC switching surface as guaranteed in probability 1 by the proposed control rule. Furthermore, the novel Lyapunov-type functional for the uncertain stochastic systems is used to design a new robust control for the general case where the derivative of time-varying delay can be any bounded value (e.g., greater than one). It is theoretically proved that the conservatism of the proposed method is less than the previous methods. All theoretical proofs are presented in the dissertation. The simulations validate the correctness of the theoretical results and have better performance than the existing results

    On the moment dynamics of stochastically delayed linear control systems

    Get PDF
    In this article, the dynamics and stability of a linear system with stochastic delay and additive noise are investigated. It is assumed that the delay value is sampled periodically from a stationary distribution. A semi‐discretization technique is used to time‐discretize the system and derive the mean and second‐moment dynamics. These dynamics are used to obtain the stationary moments and the corresponding necessary and sufficient stability conditions. The application of the proposed method is illustrated through the analysis of the Hayes equation with stochastic delay and additive noise. The method is also applied to the control design of a connected automated vehicle. These examples illuminate the effects of stochastic delays on the robustness of dynamical systems

    Optimization and Communication in UAV Networks

    Get PDF
    UAVs are becoming a reality and attract increasing attention. They can be remotely controlled or completely autonomous and be used alone or as a fleet and in a large set of applications. They are constrained by hardware since they cannot be too heavy and rely on batteries. Their use still raises a large set of exciting new challenges in terms of trajectory optimization and positioning when they are used alone or in cooperation, and communication when they evolve in swarm, to name but a few examples. This book presents some new original contributions regarding UAV or UAV swarm optimization and communication aspects

    A Holmes and Doyle Bibliography, Volume 9: All Formats—Combined Alphabetical Listing

    Get PDF
    This bibliography is a work in progress. It attempts to update Ronald B. De Waal’s comprehensive bibliography, The Universal Sherlock Holmes, but does not claim to be exhaustive in content. New works are continually discovered and added to this bibliography. Readers and researchers are invited to suggest additional content. This volume contains all listings in all formats, arranged alphabetically by author or main entry. In other words, it combines the listings from Volume 1 (Monograph and Serial Titles), Volume 3 (Periodical Articles), and Volume 7 (Audio/Visual Materials) into a comprehensive bibliography. (There may be additional materials included in this list, e.g. duplicate items and items not yet fully edited.) As in the other volumes, coverage of this material begins around 1994, the final year covered by De Waal's bibliography, but may not yet be totally up-to-date (given the ongoing nature of this bibliography). It is hoped that other titles will be added at a later date. At present, this bibliography includes 12,594 items
    corecore