16,014 research outputs found

    Modeling and Characterization of Traffic Flows in Urban Environments

    Full text link
    [EN] Currently, one of the main challenges faced in large metropolitan areas is traffic congestion. To address this problem, adequate traffic control could produce many benefits, including reduced pollutant emissions and reduced travel times. If it were possible to characterize the state of traffic by predicting future traffic conditions for optimizing the route of automated vehicles, and if these measures could be taken to preventively mitigate the effects of congestion with its related problems, the overall traffic flow could be improved. This paper performs an experimental study of the traffic distribution in the city of Valencia, Spain, characterizing the different streets of the city in terms of vehicle load with respect to the travel time during rush hour traffic conditions. Experimental results based on realistic vehicular traffic traces from the city of Valencia show that only some street segments fall under the general theory of vehicular flow, offering a good fit using quadratic regression, while a great number of street segments fall under other categories. Although in some cases such discrepancies are related to lack of traffic, injecting additional vehicles shows that significant mismatches still persist. Thus, in this paper we propose an equation to characterize travel times over a segment belonging to the sigmoid family; specifically, we apply logistic regression, being able to significantly improve the curve fitting results for most of the street segments under analysis. Based on our regression results, we performed a clustering analysis of the different street segments, showing that they can be classified into three well-defined categories, which evidences a predictable traffic distribution using the logistic regression throughout the city during rush hours, and allows optimizing the traffic for automated vehicles.This work was partially supported by Valencia's Traffic Management Department, by the "Ministerio de Economia y Competitividad, Programa Estatal de Investigacion, Desarrollo e Innovacion Orientada a los Retos de la Sociedad, Proyectos I + D + I 2014", Spain, under Grant TEC2014-52690-R, and the "Programa de Becas SENESCYT" de la Republica del Ecuador.Zambrano-Martinez, J.; Tavares De Araujo Cesariny Calafate, CM.; Soler Fernández, D.; Cano, J.; Manzoni, P. (2018). Modeling and Characterization of Traffic Flows in Urban Environments. Sensors. 18(7):1-19. https://doi.org/10.3390/s18072020S11918

    A Simulation Framework for Fast Design Space Exploration of Unmanned Air System Traffic Management Policies

    Full text link
    The number of daily small Unmanned Aircraft Systems (sUAS) operations in uncontrolled low altitude airspace is expected to reach into the millions. UAS Traffic Management (UTM) is an emerging concept aiming at the safe and efficient management of such very dense traffic, but few studies are addressing the policies to accommodate such demand and the required ground infrastructure in suburban or urban environments. Searching for the optimal air traffic management policy is a combinatorial optimization problem with intractable complexity when the number of sUAS and the constraints increases. As the demands on the airspace increase and traffic patterns get complicated, it is difficult to forecast the potential low altitude airspace hotspots and the corresponding ground resource requirements. This work presents a Multi-agent Air Traffic and Resource Usage Simulation (MATRUS) framework that aims for fast evaluation of different air traffic management policies and the relationship between policy, environment and resulting traffic patterns. It can also be used as a tool to decide the resource distribution and launch site location in the planning of a next-generation smart city. As a case study, detailed comparisons are provided for the sUAS flight time, conflict ratio, cellular communication resource usage, for a managed (centrally coordinated) and unmanaged (free flight) traffic scenario.Comment: The Integrated Communications Navigation and Surveillance (ICNS) Conference in 201

    Caching-Aided Collaborative D2D Operation for Predictive Data Dissemination in Industrial IoT

    Get PDF
    Industrial automation deployments constitute challenging environments where moving IoT machines may produce high-definition video and other heavy sensor data during surveying and inspection operations. Transporting massive contents to the edge network infrastructure and then eventually to the remote human operator requires reliable and high-rate radio links supported by intelligent data caching and delivery mechanisms. In this work, we address the challenges of contents dissemination in characteristic factory automation scenarios by proposing to engage moving industrial machines as device-to-device (D2D) caching helpers. With the goal to improve reliability of high-rate millimeter-wave (mmWave) data connections, we introduce the alternative contents dissemination modes and then construct a novel mobility-aware methodology that helps develop predictive mode selection strategies based on the anticipated radio link conditions. We also conduct a thorough system-level evaluation of representative data dissemination strategies to confirm the benefits of predictive solutions that employ D2D-enabled collaborative caching at the wireless edge to lower contents delivery latency and improve data acquisition reliability

    Weak nodes detection in urban transport systems: Planning for resilience in Singapore

    Full text link
    The availability of massive data-sets describing human mobility offers the possibility to design simulation tools to monitor and improve the resilience of transport systems in response to traumatic events such as natural and man-made disasters (e.g. floods terroristic attacks, etc...). In this perspective, we propose ACHILLES, an application to model people's movements in a given transport system mode through a multiplex network representation based on mobility data. ACHILLES is a web-based application which provides an easy-to-use interface to explore the mobility fluxes and the connectivity of every urban zone in a city, as well as to visualize changes in the transport system resulting from the addition or removal of transport modes, urban zones, and single stops. Notably, our application allows the user to assess the overall resilience of the transport network by identifying its weakest node, i.e. Urban Achilles Heel, with reference to the ancient Greek mythology. To demonstrate the impact of ACHILLES for humanitarian aid we consider its application to a real-world scenario by exploring human mobility in Singapore in response to flood prevention.Comment: 9 pages, 6 figures, IEEE Data Science and Advanced Analytic

    Optimal Content Downloading in Vehicular Networks

    Get PDF
    We consider a system where users aboard communication-enabled vehicles are interested in downloading different contents from Internet-based servers. This scenario captures many of the infotainment services that vehicular communication is envisioned to enable, including news reporting, navigation maps and software updating, or multimedia file downloading. In this paper, we outline the performance limits of such a vehicular content downloading system by modelling the downloading process as an optimization problem, and maximizing the overall system throughput. Our approach allows us to investigate the impact of different factors, such as the roadside infrastructure deployment, the vehicle-to-vehicle relaying, and the penetration rate of the communication technology, even in presence of large instances of the problem. Results highlight the existence of two operational regimes at different penetration rates and the importance of an efficient, yet 2-hop constrained, vehicle-to-vehicle relaying
    corecore