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Abstract—Industrial automation deployments constitute chal-
lenging environments where moving IoT machines may produce
high-definition video and other heavy sensor data during survey-
ing and inspection operations. Transporting massive contents to
the edge network infrastructure and then eventually to the remote
human operator requires reliable and high-rate radio links
supported by intelligent data caching and delivery mechanisms.
In this work, we address the challenges of contents dissemination
in characteristic factory automation scenarios by proposing to
engage moving industrial machines as device-to-device (D2D)
caching helpers. With the goal to improve reliability of high-rate
millimeter-wave (mmWave) data connections, we introduce the
alternative contents dissemination modes and then construct a
novel mobility-aware methodology that helps develop predictive
mode selection strategies based on the anticipated radio link
conditions. We also conduct a thorough system-level evaluation
of representative data dissemination strategies to confirm the
benefits of predictive solutions that employ D2D-enabled collab-
orative caching at the wireless edge to lower contents delivery
latency and improve data acquisition reliability.

I. Collaborative Edge Caching for Industrial IoT

In recent years, there has been considerable progress in
data caching and delivery techniques, especially for mobile
applications and services. Conventionally, mobile contents are
cached in the intermediate servers to reduce transmitted traffic
volumes and avoid duplicate downloads of selected popular
data [1], such as viral video files with high revisit rates. This
approach helps alleviate extensive response times to fetch the
more demanded data at the mobile device as well as improves
spectral efficiency and reduces energy consumption [2]. Sub-
ject to appropriate delivery and placement strategies, popular
contents may be reused when accessed asynchronously (i.e.,
at different times) by a multitude of data consumers.

Historically, caching has been most explored to facilitate
delivery of non-real-time contents, such as video-on-demand.
The many strategies proposed to date primarily catered for
the optimum balance between the transmission costs (in
terms of e.g., wireless bandwidth required for data delivery)
and the storage costs (as memory capacity becomes more
affordable today). However, the proliferation of advanced
Internet of Things (IoT) applications is driving the storage
and computing resources toward further dispersion [3]. This
means that storage nodes are deployed at the network edge
while the classical communication—storage trade-off shifts to
employing edge caching for increased contents availability and
improved reliability of data delivery.
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Placed in closer proximity to mobile IoT devices, additional
storage capacity improves end-to-end data transfer latency,
especially when the human operator is also located on-site
e.g., in a nearby control cabin. In industrial applications, lower
latency translates into better responsiveness while producing
backup copies of critical contents improves scalability, avail-
ability, and reliability of mission-aware applications. This is
particularly important to support surveying and inspection op-
erations where a fleet of industrial vehicles, robots, or drones
observes factory facilities, mines, harbors, and construction
sites in remote and high-risk locations. These intelligent mov-
ing machines may produce high-definition video streams and
other heavy sensor data [4], which need to be transferred to
the human operator in a delay-sensitive manner and potentially
on-demand. The latter requires reliable and high-quality radio
communication links between the industrial machines and the
control station.

Fig. 1. Industrial IoT with collaborative in-device caching.

However, industrial IoT environments are typically large and
challenging locations where provisioning for seamless high-
rate wireless connectivity is cumbersome. Fifth-generation
(5G) mobile technology is a radical innovation that attempts
to improve over this situation by outlining a New Radio (NR)
solution operating in millimeter-wave (mmWave) frequencies.
While offering much higher bandwidths, mmWave links are
susceptible to many adverse effects, such as dynamic blockage
by smaller obstacles, which need to be taken into account
comprehensively (see Fig. 1). As a result, mission-critical data
of future industrial IoT applications will benefit from high-
rate connections, but contents availability, delivery reliability,
and acquisition latency may still be disadvantaged without
intelligent edge caching solutions.
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Fortunately, today’s IoT machines are more advanced de-
vices that can afford to cache popular contents locally by
facilitating delay-aware multimedia delivery in surveying and
inspection operations. Accordingly, industrial machines mov-
ing at various speeds may exchange and retrieve from each
other partial video segments as requested by the human
operator(s) currently. Such intelligent precaching at mobile
devices equipped with 5G-grade device-to-device (D2D) com-
munication capabilities constitutes a flexible and cost-efficient
deployment option that augments static 5G mmWave layouts
to reduce harmful outages. Very different from caching in
the core network, collaborative D2D-enabled caching at the
wireless edge has the potential to better accommodate imme-
diate service quality requirements and traffic demand profiles,
but requires a careful research perspective. Systematically
delivering it becomes the primary focus of this work and the
next section discusses the key benefiting applications.

II. D2D-Enabled Caching in Factory Automation

Industrial automation emerges as an important economy sec-
tor where various products are assembled, tested, or packaged
in several well-defined production stages (automotive, general
consumer electronics, goods production, etc.). For factory
automation, surveying and inspection operations require on-
time delivery of heavy traffic with high levels of reliability to
avoid unwanted intermissions in the manufacturing process.
Typically, every production stage involves interactions with a
multitude of sensors and actuators controlled centrally (e.g.,
with a programmable logical controller). In the past, many of
these connections used to be wired, which made them endure
the stress of repeating movements in harsh industrial environ-
ments. For this reason, the in-factory sensors and actuators are
now increasingly accommodated with wireless technology to
improve the flexibility and augment the availability of their
produced data.

As today’s factories are becoming increasingly complex
and wireless, they require frequent surveying and inspection
operations that may employ fleets of small-sized industrial
vehicles or robots that observe the factory facilities and report
on their status to the human operator(s) located inside the
control station. These moving machines can perform au-
tonomously (or be controlled remotely via AR/VR equipment)
and produce bandwidth-hungry video streams together with
other heavy sensor data [4]. Consequently, high-rate mmWave
communication links are needed to deliver such delay-sensitive
traffic from the remote machines to the on-site operator(s).
Further, the moving robots can also be arranged into virtual
teams that may exchange and retrieve heavy maintenance data
collaboratively (see Fig. 1) subject to appropriate incentives.
However, adequate reliability and controlled latency are essen-
tial to ensure that such mission-aware operations run without
harmful interruptions [5].

To support timely dissemination of collaborative contents
at the edge, in-device caching is envisioned as an effective
technology solution to satisfy the stringent requirements of
industrial surveying and inspection applications. The ben-
efits that collaborative edge caching brings to the factory

automation contexts are significant. In this work, we address a
characteristic scenario where moving industrial machines pro-
duce and exchange bandwidth-demanding (e.g., multimedia)
contents collaboratively. They also employ in-device caching
and D2D communication capabilities to compensate for the
potential intermittency of mmWave connections, and thus
lower the response times as well as improve the operational
reliability. D2D-enabled caching at the edge can also alleviate
backhaul requirements and enjoy higher degrees of spatial
reuse while facilitating local distribution of delay-sensitive
traffic. The following section explains the nature of reliability-
related concerns in the considered use cases.

III. Caching-Aided Reliability over mmWave Connections

It is becoming widely understood that advanced industrial
IoT applications will require mmWave connections, partic-
ularly in surveying and inspection operations that produce
high-rate video streams. Because of the potential latency
constraints, such services may not use compression of mul-
timedia data, which adds to the link capacity requirements
that can only be satisfied with abundant mmWave bandwidths.
However, the link-layer performance of 5G mmWave systems
is drastically different from that at microwave frequencies.
Even though the utilization of higher carrier frequencies and
larger bandwidths promises to enable much better transmission
rates, mmWave bands introduce their specific challenges to
the respective system design. At these frequencies, the path
loss becomes significantly higher, which limits the achievable
coverage ranges. This issue can be mitigated by exploiting
highly directional antennas at both ends of a communication
link.

Another specific feature of mmWave systems, which operate
at wavelengths of under a centimeter, is that not only the
larger objects – such as (parts of) buildings – affect the
radio propagation properties, but also much smaller obstacles
become impactful, which may include the elements of the
factory floor and conveyor belts, industrial machines them-
selves, etc. Across the envisioned deployment scenarios of 5G
mmWave cellular, 3GPP has identified that human body block-
age becomes another major factor in characterizing mmWave
propagation [6], [7]. More recently, a growing number of
works addressed the key mmWave propagation phenomena.
They confirm that dynamic blockage of the line-of-sight (LoS)
link between a mobile device and its serving mmWave station
by various objects, such as humans and vehicles, not only
causes frequent and abrupt deviations in the amounts of
the required radio resources at sub-second timescales, but
may also lead to harmful outages [8], [9]. These adverse
effects call for intelligent edge caching mechanisms to improve
upon communication reliability over inherently intermittent
mmWave links.

To augment reliability of data dissemination in industrial
mmWave deployments, a range of potential solutions has been
considered, including fallback to other radio-access technolo-
gies, bandwidth reservation, and multi-connectivity operation.
In integrated multi-radio systems, an active mmWave session
can in principle be (partially) offloaded onto LTE or Wi-Fi
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technology [10], [11]. However, the dramatic gap between
the data rates of mmWave and microwave radios as well as
the bandwidth-hungry nature of industrial IoT applications
impose considerable limitations on the use of this method. To
complement, multi-connectivity operation in dense mmWave
deployments allows to employ several mmWave connections
simultaneously to decrease the outage time [12]. Finally,
reserving some bandwidth at the mmWave stations exclusively
for serving the ongoing data flows may also benefit session
continuity.

However, the practical applicability of the above methods is
limited to specific environments that feature dense mmWave
deployments and may require provisioning of other radio
access networks across the service area. This is generally
costly and even if achieved the resultant connection reliability
may still be inadequate. In industrial automation scenarios, it
is more typical that the mobile device is connected to a single
serving station and can seldom benefit from multi-connectivity
or multi-radio improvements in contrast to outdoor urban
deployments. In these situations, collaborative D2D-enabled
caching has the potential to augment performance of cell-edge
moving devices and thus may become a key mechanism to
decisively decrease the outage time in mmWave systems. This
is due to significantly higher spatial channel diversity across
the neighboring IoT machines.

Moreover, the highly directional nature of mmWave links
may efficiently mitigate radio interference created by several
simultaneous transmissions and thus further boost the area
capacity [13]. To make this vision a reality and unlock the
potential benefits of reliable edge caching over mmWave, a
number of challenges need to be resolved. Because of the
bandwidth-hungry nature of the considered factory automation
applications, moving industrial machines may have to perform
proactive caching and intelligent forwarding of crucial data
collaboratively [14]. Since the data rates on the mmWave
links are substantial, devices need to be equipped with a
matching cache size, which is fortunately feasible for the
advanced factory automation machines. In what follows, we
discuss the available options for caching-aided collaborative
data dissemination over mmWave and introduce the distinct
operational modes.

IV. Available Data DisseminationModes
This work focuses on the factory automation scenarios

where various moving devices, such as industrial vehicles,
robots, or drones, are involved collaboratively into surveying
and inspection operations. To this aim, they are equipped with
advanced capabilities to capture, store, and stream multimedia
data (e.g., raw video contents and/or massive sensor readings)
that are eventually made available in a delay-sensitive manner
or on-demand to the remote human operator(s) located e.g., in
a (virtual) control station. The advanced IoT devices are also
supplied with the mmWave-based radio technology to reach a
base station as well as with the means for D2D connectivity.
Accordingly, we differentiate between three alternative data
dissemination modes depending on the perceived radio link
quality and the availability of proximate devices or network
infrastructure.

The first mode is named here Direct Push and assumes
that a moving machine that experiences favorable radio link
conditions to its serving mmWave station decides to immedi-
ately push its heavy data into the network instead of storing
it locally (see Fig. 2(a)). Then, the data are cached in the
edge network infrastructure until when they are demanded
by any of the potential remote operators (i.e., for control or
monitoring purposes). In this situation, the main requirement
is the presence of a stable and unobstructed mmWave path,
which is not blocked by any obstacle.

Fig. 2. Considered data dissemination modes.

However, as explained in the previous section, it is very
typical for a mobile device to experience intermittent mmWave
connectivity in non-LoS locations and whenever occluded
by another (moving) object. Due to substantial losses in
signal strength under non-LoS conditions and unpredictable
device mobility, it becomes cumbersome to maintain a stable
mmWave link for extended periods of time. Therefore, an
alternative data dissemination mode considered here for the
delivery of heavy multimedia data is to first cache it locally in
the device and then, once the connection quality is restored,
push the contents into the edge network infrastructure for
further storage or immediate delivery to the intended recipient.
This option is referred to as Store and Push (see Fig. 2(b)).

Another viable alternative to compensate for the unpre-
dictable fluctuations in mmWave connection quality is to rely
on the opportunistic assistance of the ‘helper’ IoT devices
in proximity. By leveraging other moving machines within
a fleet, the device with poor mmWave link may decide to
forward its captured data to a neighboring device whenever the
latter is sufficiently close. Such a behavior becomes beneficial
whenever the proximate helper device has (or will soon have)
a better quality link to the edge infrastructure. In this case,
the helper device stores the forwarded data in its local cache
and then pushes them into the edge network as soon as the
channel quality is/becomes adequate. The use of collaborative
in-device caching further lowers the data acquisition latency
(by trading it for the increased utilization of in-device memory
capacity) as well as improves the associated energy effi-
ciency. Since the envisioned data dissemination mode involves
forwarding of the contents to nearby device(s), it is called
Forward and Push hereinafter (see Fig. 2(c)).

As a result, the moving industrial machines generally have
three distinct possibilities, which they may choose between
intelligently. In doing so, they need to balance their experi-
enced ‘infrastructure’ link quality, the availability of caching
helpers in proximity, and the properties of D2D channels
toward them, among other factors. In contrast to any locally-
optimal ‘hard’ decisions as dictated by the preset contents
delivery and placement strategies, the IoT devices may also
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Fig. 3. Example application for the proposed LoS characterization methodology that captures moving patterns of industrial objects.

leverage rich assistance information coming from the side
of the network infrastructure. Such network-assisted mode
selection processes may be driven by ‘smooth’ decision-
making policies that involve system-wide knowledge of the
immediate and expected LoS conditions as well as employ ap-
propriate device incentives. Most importantly, smart industrial
machines may adapt their mode/relay selection strategies ‘on
the fly’ by applying information about the predicted residual
time in the LoS/non-LoS state. Hence, the appropriate data
dissemination mode may be selected proactively, and a flexible
dynamic methodology to employ such probabilistic knowledge
is developed in the sequel.

V. PredictiveMobility-Aware Channel Characterization

In the use cases discussed above, there are essentially two
main data transfer paths: (i) an infrastructure link, where
a moving device pushes its contents directly into the edge
network via a serving mmWave station (which is stationary
and may be deployed on a wall of the factory), and (ii) a
D2D link, where the device in question forwards the contents
to a proximate IoT machine because of its poor infrastructure
link conditions. Here, one of the key reasons for infrastructure
link outage is dynamic blockage by moving objects in the
scenario, which may occlude the LoS path. Therefore, we are
primarily interested in characterizing the LoS probability as
the key link quality indicator. This knowledge may then be
utilized to design predictive mode selection policies.

Given that the optimal mmWave station association rules are
complicated for practical implementations [12], we continue
by sketching an example heuristic methodology that exploits
the synergy between the mmWave radio channel knowledge
and the available data dissemination modes. Going further,
we also discuss its extensions to more complex and practical
scenarios. Since factory automation environments are highly
deterministic, we first employ our in-house 3D modeling soft-
ware and then develop a suitable post-processing technique in
what follows. We begin with characterizing the infrastructure
link, where an industrial IoT device is served by a single
mmWave station installed in a particular location. Hence, our
approach needs to reconstruct a probabilistic LoS map that

quantifies the chances of having an unobstructed mmWave
path from an arbitrary point to the base station.

A practical heuristic method is to employ photogrammetry
techniques as displayed in Fig. 3. Accordingly, one first
identifies a plane of interest as shown in Fig. 3(a). By means
of 3D modeling, a set of images is obtained that capture all
possible motions of the target IoT object inside the area with
the desired granularity, see Fig. 3(b). All of the collected
images are segmented by binarizing them based on the color
of the plane considered in the first step, which creates raw
LoS maps where the moving objects therein have a certain
specific position (see Fig. 3(c)). The segmented images are
then combined and the output is normalized as demonstrated
in Fig. 3(d) and Fig. 3(e), respectively. The resultant image
is then utilized to determine the LoS probability between a
moving IoT device, which is located arbitrarily inside the area
of interest, and its serving mmWave station.

Clearly, the characterization of D2D links calls for a more
general approach, where the LoS probabilities are provided for
two arbitrarily located moving devices due to dual mobility.
The corresponding process comprises two stages. First, the
above set of preparatory steps needs to be completed for
supplying the second stage with the probabilistic LoS data for
each of the objects in question. As soon as the LoS blockage
effects within the area of interest have been quantified, a
similar procedure is applied at the second stage for every
device type. The second stage of the proposed methodology
delivers the LoS probability between two moving IoT devices
located at their specified coordinates. The final probability of
interest is a superposition of the LoS probabilities for each
individual industrial object within the target factory area. The
concluding step is to extract the sought LoS probability from
the image that has been prepossessed in the first stage, and then
repeat this procedure for every IoT object in the scenario.

Whenever a more detailed radio channel characterization
is required or the trajectories of IoT devices are varying
frequently with time, the described approach can be im-
plemented on site. This can be realized by introducing a
learning period, which is invoked every time when the device
trajectory in question changes significantly. During this period,
the IoT devices may collect information about their mmWave
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connection states with the serving base station as well as their
neighbors. Once such state information is obtained, it is then
propagated to the proximate IoT devices, while the entire
system transitions to the operational state. Once subsequent
alterations in the device trajectories are detected, the learning
period is initiated again.
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Fig. 4. Example mobility-aware LoS dependence on time.

An illustration of the LoS blockage probabilities provided
by the proposed methodology is shown in Fig. 4 for three IoT
machines, which move along the trajectories highlighted in
Fig. 3(a). We observe that even in this simple scenario with
all the trajectories having identical length, where IoT devices
travel at the same constant speed, there is a high degree of
spatial diversity on the mmWave links that can be exploited
efficiently to improve the overall system-level performance.
Particularly, at a certain point of time t, it is very probable
to have at least one link to the serving station that remains
entirely in the LoS conditions (hence offering the best choice
of the data delivery path).

Considering the data dissemination modes in Section IV and
applying the system-wide knowledge of the LoS probability –
that varies with time subject to the actual moving patterns
of different IoT objects – it is then possible to construct
and evaluate the data dissemination strategies, which are
introduced and compared numerically in the following section.

VI. Assessment of Caching-Aided Data Dissemination

In this section, we report on the results of our simulation-
based performance evaluation campaign that has been con-
ducted to assess the data dissemination strategies. It deliv-
ers important numerical insights, which help understand the
impact of collaborative D2D-enabled caching at the wireless
edge. The parameters of interest are related to the proportion
of data acquired before the completion deadline as well as the
average delay in delivering the desired content.

A. Alternative Data Dissemination Strategies

In our subsequent performance assessment, we consider
three alternative data dissemination strategies that can be
exploited concurrently by the moving industrial IoT devices
in the target factory scenario to deliver their massive contents.

The underlying objective is to disseminate data in a timely
and reliable manner thus making the contents available to the
factory operator(s) whenever requested. According to the data
delivery modes introduced in Section IV, the first strategy
considered here is Direct dissemination. In this case, moving
machines rely solely on the Direct Push transmission mode
where data are sent to the edge network regardless of the cur-
rent state of the infrastructure link. This simple approach does
not take into account the potential performance degradation
e.g., due to the mmWave link blockage by various obstacles
as IoT devices move along their trajectories.

Hence, an alternative solution is to consider a combined
use of the Direct Push and the Store and Push dissemination
modes by outlining Direct dissemination with storage strategy.
In this case, if a mobile IoT device experiences a significant
decrease in the infrastructure link quality as predicted by
utilizing the knowledge in Fig. 4, it caches the contents in
its internal storage until when mmWave connectivity becomes
available/feasible again. However, with this solution the con-
tents delivery latency becomes a critical limiting factor, since
the data may be kept in the internal memory for extended
periods of time if the infrastructure link is unstable.

To overcome this constraint, we introduce a smart data
dissemination strategy named Predictive dissemination, which
intelligently leverages the spatial diversity across the available
links (both infrastructure and D2D) at any given instant of
time, see Fig. 4. It therefore exploits all three dissemination
modes as per Section IV: in case the contents cannot be
pushed into the edge network immediately (i.e., due to poor
infrastructure connectivity), the mobile IoT device attempts to
forward its data to the proximate D2D helpers, which will
then be responsible for their delivery. Hence, caching the
contents in the internal storage is only considered as the last-
resort option, since it incurs additional latency in data delivery
to the edge network. In Predictive dissemination, the target
IoT device makes its mode selection decisions ‘on-the-fly’
in accordance with the network-assistance information on the
expected LoS conditions (see the methodology summarized in
Section V and the results provided in Fig. 4).

B. Considered Factory Automation Deployment

Our representative scenario of interest is a factory floor of
[18x10] m where 16 robots are deployed together with two
conveyor belts. The restricted movements of these industrial
machines are captured with the relevant mobility models
that involve realistic rotations and tilts. The 5G mmWave
radio technology is assumed to operate at 28 GHz with the
bandwidth of 800 MHz. The target mmWave base station
is deployed in the middle of the south wall inside the
target area, see Fig. 3(a). The radio channel conditions of
the communicating machines are evaluated according to the
methodology described in Section V using the pathloss model
proposed by 3GPP, which accounts for the necessary signal
losses and fading effects. The D2D-specific neighbor discovery
and connection establishment operations are managed directly
by the 5G mmWave infrastructure as dictated by the ProSe
functionality developed by 3GPP. The actual D2D links use
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the WiGig (802.11ad) protocol that has been standardized by
the IEEE and operates at 60 GHz.

We consider several mobile IoT devices that travel across
the area of interest. Initially, they are distributed horizontally
and at equal distance, while during simulations they move back
and forth along the factory floor with the constant speed of
3 km/h. The moving machines disseminate their heavy traffic
originating from the high-end sensors and cameras deployed
on them as well as around them. Thus generated data need to
be cached in the edge network before potential delivery to the
human operator located in the remote control station. Contents
are assumed to be undelivered (dropped) when the moving IoT
device experiences a lack of connectivity or when the link
budget is insufficient to complete the data transfer on time.
The main modeling parameters are summarized in Table I.

TABLE I
Main modeling parameters

System parameter Value
mmWave carrier frequency 28 GHz
Bandwidth of mmWave cellular 800 MHz
WiGig carrier frequency 60 GHz
Maximum WiGig radius 100 m
mmWave station transmit power 20 dBm
IoT device transmit power 23 dBm
WiGig link setup time 0.100 ms
WiGig target data rate 10 Gbps
Number of simulation runs 500
Application parameter Value
Video resolution 4K (4096x4096), 120 FPS
Key-frame interval [5-50] ms
Max bit rate 300 Mbps
Rate control CBR

C. Representative Performance Results

Our numerical assessment is conducted by relying on the
network simulator 3 (ns-3) environment that is applied in
conjunction with our in-house 3D modeling software [15].
In particular, we adopt the mmWave module developed by
the New York University (NYU) team and publicly available
on GitHub1. The transmitted traffic is modeled after 4K VR
360◦ video streaming service with the resolution of 4096x4096
and the maximum bitrate of 300 Mbps. The system-level
metrics under consideration are: (i) the proportion of contents
dropped due to dynamic LoS blockage, (ii) the proportion
of contents dropped due to insufficient link data rate, and
(iii) the average delay experienced in caching the contents
inside the edge network. These parameters are evaluated by
taking into account the intensity with which new contents are
generated that corresponds to certain inter-arrival time of the
video transfer requests.

First, we focus on the proportion of undelivered contents
that do not meet the target deadline because of mmWave
propagation losses or blockage phenomena for different data
arrival intensities. Fig. 5(top) and Fig. 5(middle) demonstrate
both effects by varying the inter-arrival time from 5 ms
to 50 ms. Recall that the top sub-figure refers to the case

1ns-3 module for simulating mmWave-based cellular systems. Available at
https://github.com/nyuwireless/ns3-mmwave [Accessed on 02/2018]
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Fig. 5. Proportion of undelivered contents and average acquisition delay.

where the data do not reach the edge network timely due
to LoS dynamics, whereas the middle sub-figure is related
to the case where the actual link data rate is not sufficient
to complete the acquisition. We learn from the figure that
when the new requests are generated less frequently the
chances of completing their acquisition on time increase. The
Predictive dissemination strategy shows the best performance
as compared to its other two counterparts.



7

Observe that the mmWave systems are generally able to
support the data rates on the order of Gbps, thus requiring
relatively little time to deliver the contents. However, as the ar-
rival intensity grows, the IoT devices experience difficulties in
transferring all of their heavy data. This situation is aggravated
by the presence of factory equipment units deployed within our
scenario of interest that may act as blockers for the mmWave
radio signal. Another crucial conclusion is that forwarding
the data to the neighboring devices via D2D links helps
overcome these limitations and results in having more reliable
connectivity. Further, it is also evident that obstacles are the
dominant factor for the contents to be dropped in relation
to the case where the link budget is insufficient. Indeed,
this is an important learning that highlights the extent of
performance degradation, which represents a serious challenge
for the mmWave-based industrial system design.

Further, Fig. 5(bottom) demonstrates the average delay in-
curred when acquiring massive contents from the edge network
storage. Here, the more intelligent Predictive dissemination
strategy outperforms the alternative solutions, since it exploits
dynamic selection of the appropriate data transfer mode. In
fact, this approach does not always forward the traffic to the
closest IoT device in proximity, but adaptively selects the
best delivery mode based on the LoS conditions. Accordingly,
when the channel quality is adequate, the smarter predictive
strategy pushes the data directly into the edge network over
the infrastructure mmWave link. Otherwise, if there is no
benefit in doing so, contents are forwarded via a D2D link
to one of the helper devices, which are then responsible to
cache the data and push them into the network as soon as
the link condition becomes favorable. Naturally, if neither
infrastructure link nor D2D link are available, the contents are
stored in the originating IoT device and only pushed/forwarded
whenever feasible.

VII. Main Conclusions

In this work, we introduced a novel methodology for the
LoS path prediction that helps construct proactive data dis-
semination strategies in complex factory environments where
industrial IoT devices travel along arbitrary trajectories and
are surrounded by moving obstacles. Understanding that data
transfer at mmWave frequencies is susceptible to sudden
blockage and propagation losses, we therefore explored the
benefits of collaborative in-device caching to improve delivery
reliability and acquisition latency in mission-aware IoT oper-
ation. As a result, D2D-enabled caching at the wireless edge
was shown to constitute a promising solution for augmenting
system-level performance and the related practical challenges
were discussed.

In particular, we constructed and evaluated a predictive
data dissemination strategy that exploits dynamic transmission
mode selection where massive contents are pushed into the
edge network immediately, forwarded to the proximate helper
device for assistance, or cached inside the originating device
until when the link recovers. With the proposed adaptive
mode selection, our methodology delivers useful tools to
enhance contents dissemination in realistic factory automation

scenarios, mindful of device mobility and mmWave connection
properties. Construction of pragmatic incentive-aware D2D
relay and mode selection mechanisms for realistic industrial
IoT setups becomes an attractive direction for further research.
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