611 research outputs found

    A survey on engineering approaches for self-adaptive systems (extended version)

    Full text link
    The complexity of information systems is increasing in recent years, leading to increased effort for maintenance and configuration. Self-adaptive systems (SASs) address this issue. Due to new computing trends, such as pervasive computing, miniaturization of IT leads to mobile devices with the emerging need for context adaptation. Therefore, it is beneficial that devices are able to adapt context. Hence, we propose to extend the definition of SASs and include context adaptation. This paper presents a taxonomy of self-adaptation and a survey on engineering SASs. Based on the taxonomy and the survey, we motivate a new perspective on SAS including context adaptation

    A Conceptual Framework for Adapation

    Get PDF
    We present a white-box conceptual framework for adaptation. We called it CODA, for COntrol Data Adaptation, since it is based on the notion of control data. CODA promotes a neat separation between application and adaptation logic through a clear identification of the set of data that is relevant for the latter. The framework provides an original perspective from which we survey a representative set of approaches to adaptation ranging from programming languages and paradigms, to computational models and architectural solutions

    A Conceptual Framework for Adapation

    Get PDF
    This paper presents a white-box conceptual framework for adaptation that promotes a neat separation of the adaptation logic from the application logic through a clear identification of control data and their role in the adaptation logic. The framework provides an original perspective from which we survey archetypal approaches to (self-)adaptation ranging from programming languages and paradigms, to computational models, to engineering solutions

    A Conceptual Framework for Adapation

    Get PDF
    This paper presents a white-box conceptual framework for adaptation that promotes a neat separation of the adaptation logic from the application logic through a clear identification of control data and their role in the adaptation logic. The framework provides an original perspective from which we survey archetypal approaches to (self-)adaptation ranging from programming languages and paradigms, to computational models, to engineering solutions

    SACRE: Supporting contextual requirements' adaptation in modern self-adaptive systems in the presence of uncertainty at runtime

    Full text link
    Runtime uncertainty such as unpredictable resource unavailability, changing environmental conditions and user needs, as well as system intrusions or faults represents one of the main current challenges of self-adaptive systems. Moreover, today's systems are increasingly more complex, distributed, decentralized, etc. and therefore have to reason about and cope with more and more unpredictable events. Approaches to deal with such changing requirements in complex today's systems are still missing. This work presents SACRE (Smart Adaptation through Contextual REquirements), our approach leveraging an adaptation feedback loop to detect self-adaptive systems' contextual requirements affected by uncertainty and to integrate machine learning techniques to determine the best operationalization of context based on sensed data at runtime. SACRE is a step forward of our former approach ACon which focus had been on adapting the context in contextual requirements, as well as their basic implementation. SACRE primarily focuses on architectural decisions, addressing self-adaptive systems' engineering challenges. Furthering the work on ACon, in this paper, we perform an evaluation of the entire approach in different uncertainty scenarios in real-time in the extremely demanding domain of smart vehicles. The real-time evaluation is conducted in a simulated environment in which the smart vehicle is implemented through software components. The evaluation results provide empirical evidence about the applicability of SACRE in real and complex software system domains.Comment: 45 pages, journal article, 14 figures, 9 tables, CC-BY-NC-ND 4.0 licens

    SACRE: Supporting contextual requirements’ adaptation in modern self-adaptive systems in the presence of uncertainty at runtime

    Get PDF
    Runtime uncertainty such as unpredictable resource unavailability, changing environmental conditions and user needs, as well as system intrusions or faults represents one of the main current challenges of self-adaptive systems. Moreover, today’s systems are increasingly more complex, distributed, decentralized, etc. and therefore have to reason about and cope with more and more unpredictable events. Approaches to deal with such changing requirements in complex today’s systems are still missing. This work presents SACRE (Smart Adaptation through Contextual REquirements), our approach leveraging an adaptation feedback loop to detect self-adaptive systems’ contextual requirements affected by uncertainty and to integrate machine learning techniques to determine the best operationalization of context based on sensed data at runtime. SACRE is a step forward of our former approach ACon which focus had been on adapting the context in contextual requirements, as well as their basic implementation. SACRE primarily focuses on architectural decisions, addressing selfadaptive systems’ engineering challenges. Furthering the work on ACon, in this paper, we perform an evaluation of the entire approach in different uncertainty scenarios in real-time in the extremely demanding domain of smart vehicles. The real-time evaluation is conducted in a simulated environment in which the smart vehicle is implemented through software components. The evaluation results provide empirical evidence about the applicability of SACRE in real and complex software system domains.Peer ReviewedPostprint (author's final draft

    Comparison of approaches for self-improvement in self-adaptive systems (extended version)

    Full text link
    Various trends such as mobility of devices, Cloud Computing, or Cyber-Physical Systems lead to a higher degree of distribution. These systems-of-systems need to be integrated. The integration of various subsystems still remains a challenge. Self-improvement within self-adaptive systems can help to shift integration tasks from the static design time to the runtime, which fits the dynamic needs of these systems. Thus, it can enable the integration of system parts at runtime. In this paper, we define self-improvement as an adaptation of an Autonomic Computing system’s adaptation logic. We present an overview of approaches for self-improvement in the domains of Autonomic Computing and self-adaptive systems. Based on a taxonomy for self-adaptation, we compare the approaches and categorize them. The categorization shows that the approaches focus either on structural or parameter adaptation but seldomly combine both. Based on the categorization, we elaborate challenges, that need to be addressed by future approaches for offering self-improving system integration at runtime

    Twinning-by-Construction: Ensuring Correctness for Self-adaptive Digital Twins

    Get PDF
    Postponed access: the file will be available after 2023-10-17Digital twin applications use digital artefacts to twin physical systems. The purpose is to continuously mirror the structure and behavior of the physical system, such that users can analyse the physical system by means of the digital twin. However, the physical system might change over time. In this case, the digital twin’s ensemble of digital artefacts needs to be reconfigured to correctly twin the physical system again. This paper considers a digital twin infrastructure combining MAPE-K feedback loops and semantic reflection to automatically ensure that the digital artefacts correctly twin the physical system; i.e., the resulting system is twinned-by-construction. We consider the monitoring of both structural and temporal correctness properties for digital twin, including the time delay required by reconfiguration, and the capture of execution traces to reflect digital threads in the digital twin framework.acceptedVersio
    corecore