5 research outputs found

    A System for 3D Ultrasound-Guided Robotic Retrieval of Foreign Bodies from a Beating Heart

    Get PDF
    Abstract²By way of the venous system or direct penetration, particles such as thrombi, bullet fragments, and shrapnel can become trapped in the heart and disrupt cardiac function. The severity of disruption can range from asymptomatic to fatal. Injuries of this nature are common in both civilian and military populations. For symptomatic cases, the conventional approach is removal of the foreign body through open heart surgery, which comes with high perioperative risks and a long recovery period. To circumvent these disadvantages, we propose a minimally invasive surgical approach for retrieving foreign bodies from a beating heart. This paper describes the first use of 3D transesophageal echocardiography (TEE) for steering a robot. Experiments demonstrate the feasibility of using 3D ultrasound to both guide and track a robot as it pursues a foreign body, with an RMS error of 1.6 mm in a laboratory setup. Results also support the hypothesis that direct pursuit of the foreign body may exceed the capabilities of conventional surgical robots, necessitating alternate retrieval strategies

    Modeling and 3D local estimation for in-plane and out-of-plane motion guidance by 2D ultrasound-based visual servoing

    Get PDF
    International audienceThis paper presents a new model-free visual servoing that is able to servo a robotized 2D ultrasound probe that interacts with a soft tissue object. It makes direct use of the B-mode ultrasound images in order to reach a desired one. This approach does not require the 3D model of the object nor its location in the 3D space. The visual features are based on image moments. The exact analytical form of the interaction matrix relating the image moments variation to the probe velocity is modelled. To perform model-free servoing, the approach combines the image points coordinates with the probe pose to estimate efficiently 3D parameters required in the control law. The approach is validated with simulation and experimental results showing its robustness to different errors and perturbations

    Asservissement en position d'un manipulateur robotique pour l'échographie 3D des artères des membres inférieurs

    Get PDF
    La maladie occlusive artérielle périphérique requiert une imagerie en trois dimensions des vaisseaux sanguins pour le diagnostic, la localisation et le traitement des sténoses. Le système d’imagerie échographique 3D est une alternative non invasive et non dispendieuse comparativement aux systèmes conventionnels. Cette reconstruction en trois dimensions peut être obtenue via la combinaison d’images échographiques planaires dont la position de chaque capture est connue. Le robot échographique ETS 3D-US de l’École de technologie supérieure est conçu pour accomplir cette imagerie. Il effectue les déplacements de la sonde en contact avec le patient pour la capture des images tout en mesurant la position de ces dernières. Ce mémoire expose la conception et la mise en oeuvre d’un système de commande de position de premier niveau pour ce robot. Grâce à la modélisation du robot, aux faibles vitesses d’opération et à des réducteurs de vitesse à ratio élevé, la loi de commande par couple pré-calculé est linéaire et décentralisée. Cette dernière est couplé de manière sérielle avec une loi de commande de type proportionnel-intégral-dérivée (PID). Lorsqu’estimée à partir des erreurs d’asservissement des moteurs, les résultats expérimentaux montrent une précision en position de 0.5 mm et en orientation de 0.3°, ce qui satisfait les exigences du cahier de charge. Par conséquent, nous concluons que cette approche constitue un système de commande de premier niveau valable si la structure mécanique du robot présente de faibles erreurs géométriques. Donc, un étalonnage géométrique sera nécessaire pour assurer une précision adéquate

    Investigating Ultrasound-Guided Autonomous Assistance during Robotic Minimally Invasive Surgery

    Get PDF
    Despite it being over twenty years since the first introduction of robotic surgical systems in common surgical practice, they are still far from widespread across all healthcare systems, surgical disciplines and procedures. At the same time, the systems that are used act as mere tele-manipulators with motion scaling and have yet to make use of the immense potential of their sensory data in providing autonomous assistance during surgery or perform tasks themselves in a semi-autonomous fashion. Equivalently, the potential of using intracorporeal imaging, particularly Ultrasound (US) during surgery for improved tumour localisation remains largely unused. Aside from the cost factors, this also has to do with the necessity of adequate training for scan interpretation and the difficulty of handling an US probe near the surgical sight. Additionally, the potential for automation that is being explored in extracorporeal US using serial manipulators does not yet translate into ultrasound-enabled autonomous assistance in a surgical robotic setting. Motivated by this research gap, this work explores means to enable autonomous intracorporeal ultrasound in a surgical robotic setting. Based around the the da Vinci Research Kit (dVRK), it first develops a surgical robotics platform that allows for precise evaluation of the robot’s performance using Infrared (IR) tracking technology. Based on this initial work, it then explores the possibility to provide autonomous ultrasound guidance during surgery. Therefore, it develops and assesses means to improve kinematic accuracy despite manipulator backlash as well as enabling adequate probe position with respect to the tissue surface and anatomy. Founded on the acquired anatomical information, this thesis explores the integration of a second robotic arm and its usage for autonomous assistance. Starting with an autonomously acquired tumor scan, the setup is extended and methods devised to enable the autonomous marking of margined tumor boundaries on the tissue surface both in a phantom as well as in an ex-vivo experiment on porcine liver. Moving towards increased autonomy, a novel minimally invasive High Intensity Focused Ultrasound (HIFUS) transducer is integrated into the robotic setup including a sensorised, water-filled membrane for sensing interaction forces with the tissue surface. For this purpose an extensive material characterisation is caried out, exploring different surface material pairings. Finally, the proposed system, including trajectory planning and a hybrid-force position control scheme are evaluated in a benchtop ultrasound phantom trial

    Study on a Robotic Carotid Blood Flow Measurement System

    Get PDF
    制度:新 ; 報告番号:甲3589号 ; 学位の種類:博士(工学) ; 授与年月日:2012/3/15 ; 早大学位記番号:新592
    corecore