2,857 research outputs found

    Image guidance in neurosurgical procedures, the "Visages" point of view.

    Get PDF
    This paper gives an overview of the evolution of clinical neuroinformatics in the domain of neurosurgery. It shows how image guided neurosurgery (IGNS) is evolving according to the integration of new imaging modalities before, during and after the surgical procedure and how this acts as the premise of the Operative Room of the future. These different issues, as addressed by the VisAGeS INRIA/INSERM U746 research team (http://www.irisa.fr/visages), are presented and discussed in order to exhibit the benefits of an integrated work between physicians (radiologists, neurologists and neurosurgeons) and computer scientists to give adequate answers toward a more effective use of images in IGNS

    Navigated Ultrasound in Laparoscopic Surgery

    Get PDF

    Robot Autonomy for Surgery

    Full text link
    Autonomous surgery involves having surgical tasks performed by a robot operating under its own will, with partial or no human involvement. There are several important advantages of automation in surgery, which include increasing precision of care due to sub-millimeter robot control, real-time utilization of biosignals for interventional care, improvements to surgical efficiency and execution, and computer-aided guidance under various medical imaging and sensing modalities. While these methods may displace some tasks of surgical teams and individual surgeons, they also present new capabilities in interventions that are too difficult or go beyond the skills of a human. In this chapter, we provide an overview of robot autonomy in commercial use and in research, and present some of the challenges faced in developing autonomous surgical robots

    A method for the assessment of time-varying brain shift during navigated epilepsy surgery

    Get PDF
    Image guidance is widely used in neurosurgery. Tracking systems (neuronavigators) allow registering the preoperative image space to the surgical space. The localization accuracy is influenced by technical and clinical factors, such as brain shift. This paper aims at providing quantitative measure of the time-varying brain shift during open epilepsy surgery, and at measuring the pattern of brain deformation with respect to three potentially meaningful parameters: craniotomy area, craniotomy orientation and gravity vector direction in the images reference frame

    A Review on Advances in Intra-operative Imaging for Surgery and Therapy: Imagining the Operating Room of the Future

    Get PDF
    none4openZaffino, Paolo; Moccia, Sara; De Momi, Elena; Spadea, Maria FrancescaZaffino, Paolo; Moccia, Sara; De Momi, Elena; Spadea, Maria Francesc

    Interactive Visualization of Multimodal Brain Connectivity: Applications in Clinical and Cognitive Neuroscience

    Get PDF
    Magnetic resonance imaging (MRI) has become a readily available prognostic and diagnostic method, providing invaluable information for the clinical treatment of neurological diseases. Multimodal neuroimaging allows integration of complementary data from various aspects such as functional and anatomical properties; thus, it has the potential to overcome the limitations of each individual modality. Specifically, functional and diffusion MRI are two non-invasive neuroimaging techniques customized to capture brain activity and microstructural properties, respectively. Data from these two modalities is inherently complex, and interactive visualization can assist with data comprehension. The current thesis presents the design, development, and validation of visualization and computation approaches that address the need for integration of brain connectivity from functional and structural domains. Two contexts were considered to develop these approaches: neuroscience exploration and minimally invasive neurosurgical planning. The goal was to provide novel visualization algorithms and gain new insights into big and complex data (e.g., brain networks) by visual analytics. This goal was achieved through three steps: 3D Graphical Collision Detection: One of the primary challenges was the timely rendering of grey matter (GM) regions and white matter (WM) fibers based on their 3D spatial maps. This challenge necessitated pre-scanning those objects to generate a memory array containing their intersections with memory units. This process helped faster retrieval of GM and WM virtual models during the user interactions. Neuroscience Enquiry (MultiXplore): A software interface was developed to display and react to user inputs by means of a connectivity matrix. This matrix displays connectivity information and is capable to accept selections from users and display the relevant ones in 3D anatomical view (with associated anatomical elements). In addition, this package can load multiple matrices from dynamic connectivity methods and annotate brain fibers. Neurosurgical Planning (NeuroPathPlan): A computational method was provided to map the network measures to GM and WM; thus, subject-specific eloquence metric can be derived from related resting state networks and used in objective assessment of cortical and subcortical tissue. This metric was later compared to apriori knowledge based decisions from neurosurgeons. Preliminary results show that eloquence metric has significant similarities with expert decisions

    Multi-trajectories automatic planner for StereoElectroEncephaloGraphy (SEEG)

    Get PDF
    open13E. De Momi; C. Caborni; F. Cardinale; G. Casaceli; L. Castana; M. Cossu; R. Mai; F. Gozzo; S. Francione; L. Tassi; G. Lo Russo; L. Antiga; G. FerrignoDE MOMI, Elena; Caborni, Chiara; F., Cardinale; G., Casaceli; L., Castana; M., Cossu; R., Mai; F., Gozzo; S., Francione; L., Tassi; G., Lo Russo; L., Antiga; Ferrigno, Giancarl

    Recent trends, technical concepts and components of computer-assisted orthopedic surgery systems: A comprehensive review

    Get PDF
    Computer-assisted orthopedic surgery (CAOS) systems have become one of the most important and challenging types of system in clinical orthopedics, as they enable precise treatment of musculoskeletal diseases, employing modern clinical navigation systems and surgical tools. This paper brings a comprehensive review of recent trends and possibilities of CAOS systems. There are three types of the surgical planning systems, including: systems based on the volumetric images (computer tomography (CT), magnetic resonance imaging (MRI) or ultrasound images), further systems utilize either 2D or 3D fluoroscopic images, and the last one utilizes the kinetic information about the joints and morphological information about the target bones. This complex review is focused on three fundamental aspects of CAOS systems: their essential components, types of CAOS systems, and mechanical tools used in CAOS systems. In this review, we also outline the possibilities for using ultrasound computer-assisted orthopedic surgery (UCAOS) systems as an alternative to conventionally used CAOS systems.Web of Science1923art. no. 519
    corecore