12 research outputs found

    A Reference Architecture for Digital Ecosystems

    Get PDF
    Digital ecosystems are a new type of application based on a “universal digital environment” populated by digital entities that form communities that evolve and interact with information exchange and who trade digital objects that are produced through the system. Entities that participate and form the ecosystem can be applications running not only on simple devices: wearable, sensors, actuators, but also on complex services executed on smartphones, tablets, personal computers, company servers, etc. A reference architecture for digital ecosystems is a step toward standardization, as it defines a set of guidelines in designing and implementing a digital ecosystem. Often such architectures are very abstract, difficult to understand and implement. In this chapter, we introduce a vendor- and technology-neutral reference architecture for digital ecosystems and apply this architecture to an actual use case

    Coordination of Supply Webs Based on Dispositive Protocols

    Get PDF
    A lot of curricula in information systems, also at master level, exists today. However, the strong need in new approaches and new curricula still exists, especially, in European area. The paper discusses the modern curriculum in information systems at master level that is currently under development in the Socrates/Erasmus project MOCURIS. The curriculum is oriented to the students of engineering schools of technical universities. The proposed approach takes into account integration trends in European area as well as the transformation of industrial economics into knowledge-based digital economics The paper presents main characteristics of the proposed curriculum, discuses curriculum development techniques used in the project MOCURIS, describes the architecture of the proposed curriculum and the body of knowledge provided by it

    Equilibrium analysis in multi-echelon supply chain with multi-dimensional utilities of inertial players

    Get PDF
    In a supply chain, the importance of information elicitation from the supply chain players is vital to design supply chain network. The rationality and self-centredness of these players causes the information asymmetry in the supply chain and thus situation of conflict and non-participation of the players in the network design process. In such situations, it is required to analyse the supply chain players’ behaviour in order to explore potential for coordination through incentives. In this paper, a novel approach of social utility analysis is proposed to elicit the information for supply chain coordination among the supply chain players in a dyadic relationship – supplier and buyer. In principal, we consider a monopsony situation where buyer is a dominant player. With the objective of maximizing the social utility, efforts have been made to value behavioural issues in supply chain. On the other hand, the reluctance of player due to the information asymmetry is measured in the form of inertia – an offset to the supply chain profit. The suppliers’ behaviour is analysed with three distinct level of risk for two types of the product in procurement process. The useful insight from this paper is in supplier selection process where the reluctance of supplier offsets supply chain profit. The paper provides recommendations to supply chain managers for efficient decision-making ability in supplier selection process

    Decentralized supply chain formation using max-sum loopy belief propagation

    Get PDF
    Supply chain formation is the process by which a set of producers within a network determine the subset of these producers able to form a chain to supply goods to one or more consumers at the lowest cost. This problem has been tackled in a number of ways, including auctions, negotiations, and argumentation-based approaches. In this paper we show how this problem can be cast as an optimization of a pairwise cost function. Optimizing this class of energy functions is NP-hard but efficient approximations to the global minimum can be obtained using loopy belief propagation (LBP). Here we detail a max-sum LBP-based approach to the supply chain formation problem, involving decentralized message-passing between supply chain participants. Our approach is evaluated against a well-known decentralized double-auction method and an optimal centralized technique, showing several improvements on the auction method: it obtains better solutions for most network instances which allow for competitive equilibrium (Competitive equilibrium in Walsh and Wellman is a set of producer costs which permits a Pareto optimal state in which agents in the allocation receive non-negative surplus and agents not in the allocation would acquire non-positive surplus by participating in the supply chain) while also optimally solving problems where no competitive equilibrium exists, for which the double-auction method frequently produces inefficient solutions. © 2012 Wiley Periodicals, Inc

    Agent-Organized Network Coalition Formation

    Get PDF
    This thesis presents work based on modeling multi-agent coalition formation in an agent organized network. Agents choose which agents to connect with in the network. Tasks are periodically introduced into the network. Each task is defined by a set of skills that agents must fill. Agents form a coalition to complete a task by either joining an existing coalition a network neighbor belongs to, or by proposing a new coalition for a task no agents have proposed a coalition for. We introduce task patience and strategic task selection and show that they improve the number of successful coalitions agents form. We also introduce new methods of choosing agents to connect to in the network and compare the performance of these and existing methods

    Using min-sum loopy belief propagation for decentralised supply chain formation

    Get PDF
    Modern business trends such as agile manufacturing and virtual corporations require high levels of flexibility and responsiveness to consumer demand, and require the ability to quickly and efficiently select trading partners. Automated computational techniques for supply chain formation have the potential to provide significant advantages in terms of speed and efficiency over the traditional manual approach to partner selection. Automated supply chain formation is the process of determining the participants within a supply chain and the terms of the exchanges made between these participants. In this thesis we present an automated technique for supply chain formation based upon the min-sum loopy belief propagation algorithm (LBP). LBP is a decentralised and distributed message-passing algorithm which allows participants to share their beliefs about the optimal structure of the supply chain based upon their costs, capabilities and requirements. We propose a novel framework for the application of LBP to the existing state-of-the-art case of the decentralised supply chain formation problem, and extend this framework to allow for application to further novel and established problem cases. Specifically, the contributions made by this thesis are: • A novel framework to allow for the application of LBP to the decentralised supply chain formation scenario investigated using the current state-of-the-art approach. Our experimental analysis indicates that LBP is able to match or outperform this approach for the vast majority of problem instances tested. • A new solution goal for supply chain formation in which economically motivated producers aim to maximise their profits by intelligently altering their profit margins. We propose a rational pricing strategy that allows producers to earn significantly greater profits than a comparable LBP-based profitmaking approach. • An LBP-based framework which allows the algorithm to be used to solve supply chain formation problems in which goods are exchanged in multiple units, a first for a fully decentralised technique. As well as multiple-unit exchanges, we also model in this scenario realistic constraints such as factory capacities and input-to-output ratios. LBP continues to be able to match or outperform an extended version of the existing state-of-the-art approach in this scenario. • Introduction of a dynamic supply chain formation scenario in which participants are able to alter their properties or to enter or leave the process at any time. Our results suggest that LBP is able to deal easily with individual occurences of these alterations and that performance degrades gracefully when they occur in larger numbers.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore