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Michael James Winsper
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Thesis Summary

Modern business trends such as agile manufacturing and virtual etigp re-

quire high levels of flexibility and responsiveness to consumer demaidiean
quire the ability to quickly and efficiently select trading partners. Automatea co
putational techniques for supply chain formation have the potential to prewd
nificant advantages in terms of speed and efficiency over the traditiomalaha
approach to partner selection. Automated supply chain formation is thesgrote
determining the participants within a supply chain and the terms of the exchanges
made between these participants.

In this thesis we present an automated technique for supply chain formased b
upon the min-sum loopy belief propagation algorithm (LBP). LBP is a decen-
tralised and distributed message-passing algorithm which allows participants to
share their beliefs about the optimal structure of the supply chain basedhgr
costs, capabilities and requirements.

We propose a novel framework for the application of LBP to the existing-sfate
the-art case of the decentralised supply chain formation problem, antiekie
framework to allow for application to further novel and established proloiases.
Specifically, the contributions made by this thesis are:

e A novel framework to allow for the application of LBP to the decentralised
supply chain formation scenario investigated using the current state-of-th
art approach. Our experimental analysis indicates that LBP is able to match
or outperform this approach for the vast majority of problem instancestes



e A new solution goal for supply chain formation in which economically mo-
tivated producers aim to maximise their profits by intelligently altering their
profit margins. We propose a rational pricing strategy that allows produc
ers to earn significantly greater profits than a comparable LBP-basgd pro
making approach.

e An LBP-based framework which allows the algorithm to be used to solve
supply chain formation problems in which goods are exchanged in multiple
units, a first for a fully decentralised technique. As well as multiple-unit
exchanges, we also model in this scenario realistic constraints suchiasy fac
capacities and input-to-output ratios. LBP continues to be able to match or
outperform an extended version of the existing state-of-the-art apprio
this scenario.

e Introduction of a dynamic supply chain formation scenario in which partici-
pants are able to alter their properties or to enter or leave the process at an
time. Our results suggest that LBP is able to deal easily with individual oc-
curences of these alterations and that performance degradesujyacben
they occur in larger numbers.

Keywords: Supply chain formation, min-sum algorithm, loopy belief propaga
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Chapter 1

Introduction

1.1 Supply Chain Formation

A supply chain is a multi-layered network of entities involved in the productiafe and
delivery of a product or service to an end consumer. A typical matwiag supply chain
network might be composed of a set of organisations involved in souraimgmaterials and
supplying them to manufacturers, several layers of manufacturerstrahsform these raw
materials step-by-step into a finished product, adding value along the waya aeries of
distributors and retailers who are involved in delivering the finished proiduthe consumer.
Services and intangible goods, such as software, often undergo a siroitass, with features
and functionalities being sourced, modified and maintained by a dispargte edproviders.
Supply chain formation is “the process of determining the set of participargsupply
chain, the set of goods which are exchanged between the participadtteaterms of these

exchanges’| [Walsh and WeIIan, 2b03]. The use of computational tagmiqr supply chain
formation is a relatively new area of research which has generatedsnésre means to fa-

cilitate trends in business towards outsourcing, virtual corporations gitelraanufacturing.
Outsourcing involves the contracting out of business functions to extemganisations, with
the aim of reducing costs and allowing for an increased focus on conpetencies. Virtual
corporations are “groups of individuals or small businesses which ¢ogether temporarily
to work together towards a common business g(JzaI” |Naghiré Jat_LIl 20@1g Aanufacturing
is an operations concept characterised by high responsivenestdmen demands, flexibility

in the face of rapidly changing market conditions, and an ability to quicklygpiducts to
sale. Each of these three paradigms relies heavily on the ability to efficietdlst beiSiness
partners who are able join to form efficient and mutually beneficial tradifagionships.

For businesses wishing to engage in practices such as these, ordaizatgns simply
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wishing to cut costs and increase adaptability, the traditional approacippb/sthain forma-
tion, with trade relationships manually established, built and strengthenediowextended
period of time, is too slow and inflexible to be suitable. A manual approach alsgsbwith
it the risk that time constraints and human irrationality may lead to the establishmieef-of
ficient, suboptimal supply chains. This is a problem that could be mitigatedoddex)/ with
the use of computational techniques. Indeed, such techniques haagygireven their worth
in a commercial setting, with combinatorial multi-attribute sourcing auctions havoduped
over $5 billion iSQnthIH, ZQbB] of real-world savings to businesses.

Computational approaches to supply chain formation generally model pbtemtiply
chain participants - businesses capable of forming a link in the supply clasnndividual
computational agents with limited information about the structure of the suppin esaa
whole. These agents express their capabilities and costs through a imetHgpically nego-
tiations or auctions, through which the subset of agents capable of fothrengost efficient
supply chain is determined. At the conclusion of this process, which is tipampleted in
a fraction of the time required by the manual approach, the supply chaimigdb

Agent-based approaches to supply chain formation may either be cewtratiskecen-
tralised. Centralised approaches typically make use of combinatorial asi¢ticshetermine
allocations, with the NP-hard winner determination problem usually beingaalith integer
programming. The use of integer programming implies complete knowledge by fzantye
about the bids of all agents; this is an assumption which might not alwaysab&gal or al-
lowable in the real world. Centralised approaches also introduce a sioiglegd failure into
the process. Decentralised approaches to the supply chain formathdamnmake only mini-
mal assumptions about the participating agents, giving them a wide rangplimfaility than
centralised approaches. However, they are faced with a difficullgarolm determining allo-
cations, given that agents only possess local information about theuseoc the network and
the capabilities of other participants. The state of the art in decentraliseddaek, presented
in Walsh and nglmér{[;oj)?,], uses a market-based approach consistingeoies of simul-
taneous double auctions. While these auctions were shown to frequerdahbldo&o produce
good allocations over many network structures, results were consisteattyzhen the cost
structures of participants did not allow for the existence of competitive equiti).

With this in mind, we argue there exists a need for a decentralised approtmhgopply
chain formation problem which is capable of producing consistently stribocpéions over a
large variety of network structures while not being unduly affected bgdisestructures of par-

1Competitive equilibrium in_Walsh and Wellnjan [2003] is a set of producstscwhich permits a Pareto
optimal state in which agents in the allocation receive non-negative swaptliagents not in the allocation would
acquire non-positive surplus by participating in the supply chain.
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ticipants. Rather than adopting a market-based approach, we use a tectonigrobabilistic
inference in graphical models known as min-sum loopy belief propagat®mR)(| I8].
The LBP algorithm possesses a number of properties that make it well-asitedechnique
for supply chain formation. LBP is decentralised, with participants acting @miyhe basis of
local information. This presents an advantage over other techniqupsofzabilistic inference
in graphical models such as graph cuts or the junction tree algorithm, witjahreesignificant
modifications to and thus complete knowledge of the structure of the underigimgrk. By
avoiding such modifications, LBP also allows for the preservation of thénfgaelationships
originally present in the graph - an agent passes messages only to #rs bay sellers of its
associated goods. Finally, LBP allows agents to assign reserve prices gpabds in a manner
no different to the way such values would be held by participants in a looiersarket-based
protocol, and to share these values only with relevant participants. phegerties mean that
the economic self-interest of participating agents is preserved.

In this thesis, we aim to develop a novel technique for the supply chain flamaroblem
based upon the use of the LBP algorithm. Specifically, the objectives afakrare:

e Formulate a framework for the representation of supply chain formatioblgmoin-
stances which permits the use of a graphical inference algorithm su@rag his forms
part of the contribution explained in detail in Section 11.2.1, and is built uporeicdin-
tribution detailed in Section 1.2.3.

e Produce a technique for decentralised supply chain formation using tRealdg®drithm
which outperforms the current state-of-the-art approach. This alsosfpart of the
contribution laid out in Section 1.2.1.

e Formulate and apply LBP to problem scenarios more realistic than that whiclegiin
gated by the existing state-of-the-art in decentralised approachesdly shpin forma-
tion, and outpeform comparable techniques in each. These includeaiscenvhich
economically motivated producers aim to maximise their profits, supply chammatan
problems where goods are exchanged in multiple units, and a dynamicisdarvetich
producers are able to change their properties or to leave or enter thesprat any time.
These scenarios form the basis of the contributions detailed in SelctiondII2Z®and
[1.Z.4, respectively.

1.2 Summary of Contributions

This thesis addresses the decentralised supply chain formation prolklemia-sum loopy
belief propagation. The main contributions of this thesis are the following:

13



1.2.1 Application of min-sum loopy belief propagation to deentralised supply
chain formation

In Chaptef#, we explain our min-sum loopy belief propagation-basecbapip to the supply
chain formation problem. This work was originally published in shorter forwinsper and
Chli [I;Oﬂ]; an extended version is currently in pre{ss [Winsper adﬂl’ M]. The use of
min-sum loopy belief propagation is a novel approach to the supply chamafon problem,
and represents a significant departure from the established literatiod, as focused exclu-
sively on market-based approaches such as auctions and negoti@iimmesperiments suggest
that LBP is capable of producing more efficient allocations over many twfarks we tested
than the state-of-the-art decentralised auction based method.

1.2.2 Introduction of dynamic profit-seeking behaviour by sipply chain partic-
ipants

Surplus maximisation is a common goal of many approaches to supply chairtitoxm&/hile
this maximises the utility of the recipients of the goods which are ultimately producéteb
supply chain, it also limits the utility of the participants involved in producing thasedg.
With this in mind, in Chaptdr]5 we propose a decentralised technique for sueglissribution
by introducing the ability for participants to dynamically adjust the prices of igfiputs as
the allocation is being determined. We also propose a pricing strategy fouges to use
in conjunction with our technique, and show that the use of this strategy afiavdsicers to
obtain profits which greatly exceed those produced by a comparabldobB&d profit-making

approach. This work forms the basis of the materiél in Winsper anh

1.2.3 Application of LBP to a multi-unit case of the supply chan formation
problem

The literature on decentralised supply chain formation is relatively limited, aadhéretofore
only examined scenarios which model simple, single-unit exchanges dégdbis is despite
the fact that exchanges of multiple units have been modelled in centralisezhapps to the
supply chain formation problem for some time, most notably with mixed multi-unit coarbin
torial auctions[[Q_eLquidgs_eIJMO?]. In Chajter 6 we apply our idigorto a multi-unit
supply chain formation scenario, allowing us to demonstrate its effectisenes problem
domain more close to that which is examined by state-of-the-art centralipedaghes. We
compare the performance of our protocol to extended versions of thauation protocols
from the state-of-the-art decentralised approach, and show thageBérally produces results

14



equivalent to those of the auction protocols. This work, together with th& described in

Sectio1.Z}4, was published in shorter form in Winsper and Chii |jOb2hn],aIso forms part

of the basis i i 2c).

1.2.4 Investigation of the performance of multi-unit LBP in a supply chain re-
configuration scenario

One of the key advantages of automated computational techniques fdy shpm formation
is their ability to offer businesses greater responsiveness and aitigptalchanging market
conditions. Despite this, most computational approaches model supply fonaiation as
a closed system, with a static list of participants who keep their preferendegaduations
constant for the duration of the process. In order to truly reflect ghidlsachanging conditions
of real-world markets, in Chaptier 7 we propose a scenario in which panitsjare able to enter
and leave the process and to change their preferences and valuationspatint before the
final allocation is determined. We investigate the ability of our multi-unit LBP modeétver
efficient allocations in this more realistic scenario. Our results indicate thasi2rformance
is generally unaffected by small numbers of these alterations, and thiatmance degrades
gracefully as the number of alterations increases. This work, together withidrk described

in Section 1.213, was published in shorter foran_'LnJMnip_Qr_a.nd thlj_LjOlﬂh:] also forms

part of the basis ch Winsper and drhli 2Qll2c].

1.3 Contents of Thesis

The contents of this thesis are as follows:

e In Chapter 2 we introduce supply chain formation and explain why agesgebap-
proaches present a promising approach to this problem. We preseiig defaevious
related work in the fields of agent-based supply chain management aply styain
formation, and also include a summary of other work which served to insgri®tpy
belief propagation-based approach to supply chain formation presertted thesis.

e Chapter 3 formalises the fundamental properties underpinning the spemiion of
the supply chain formation problem we tackle in this thesis, explains the piegpef
competitive equilibrium and input complemetarities, and explains how we use mixed
integer programming to produce optimal benchmark values against whiclonweatce
the results produced by our loopy belief propagation-based approach

15



In Chapter 4 we explain the details of how we apply min-sum loopy belief jgatpzn
to an instance of the supply chain formation problem identical to that which éstinv
gated using the current state-of-the-art decentralised approaticparpare the results
produced by these approaches with those produced using our Lé&fe-technique.

In Chapter 5 we present a new version of the supply chain formatiorgunoin which
producers aim to maximise their profits. We present a variation of the min-sopy lo
belief propagation algorithm, which we refer to a8 P,,, which attempts to find an ap-
proximate solution to this problem by allowing producers to change their pnafigins
as the algorithm is being run.

Chapter 6 tests the performance of LBP in a more complex scenario wheds goe
traded in multiple units. We compare the results of LBP in this scenario to a multi-unit
version of the auction protocol we tested against in the previous two chapte

Chapter 7 introduces a dynamic supply chain formation scenario in whiticipants
are able to enter and leave the process and to change several of tparties as the
algorithm is run. This allows us to test the ability of LBP to respond to unexgecte
changes to the parameters of the potential supply chain.

A summary of the thesis and potential directions for future work are preds@mChapter
8.
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Chapter 2

Background

Supply chain formation is the process of determining the supply chain partisipa
producers able to process inputs and manufacture outputs - capabtenafd a supply
chain which ultimately leads to the production of goods which are sold to one i@ mo
consumers according to some predefined social goal.

A software agent is a computer program that acts on behalf of a user. lthagent
system is a collection of multiple intelligent software agents which interact within an
environment. Interactions between agents are usually conducted uaaenttraints of
limited information about the environment and system as a whole. Multi-agstereg
allow large global problems to be decomposed into multiple smaller problems wieich ar

solved by the agentE_DALo_QldLiddﬂ,_ZbOQ].

Multi-agent systems enable us to model a number of properties charactefristipply
chains, includinguncertainty decentralised decision makingy self-interested agents
and the process afelf-organisatiorby participants. It is no surprise, then, that applica-
tion of the agent-based paradigm to several aspects of supply chaibedrman ongoing
focus of multi-agent systems research for several years, particudaiypply chain man-

agement| [Pardoe and Stuw_eAdeQ; Wellman H al.,|2003], most notab AGISTM

game Eijgligg et dl], ggdzsh and in the area of supply chain formation [Waldh/\éell-
man ]. The majority of the literature on supply chain formation uses tbased

approaches to elicit costs and capabilities from participants. These nhased- ap-

proaches can be classified into two broad areas: research whickefoon the use of
negotiation-based methods as a means for determining allocations, and sthities
model the supply chain as a series of auctions. We explore backgroomkdimthese
two areas in Sectiois 2.1 aphdl12.2 respectively. We introduce related wolkiing the

17



use of LBP for similar problems in Sectién P.4, and assess the feasibility ofiatiter
non-market-based approaches in Sedfioh 2.5.

2.1 Negotiations

Distributed negotiation is an approach which is well-suited to the modeling oflysupp
chain formation: each individual procurement and sale decision by gaticipant in
the supply chain can be modelled as a multi-party negotiation, with bids or @ffers
lowing participants to express their capabilities and preferences to potextiadnge
partners. The Contract Net protoc|QI [Davis and SHJiIh, h983], a teabriar distributed
problem-solving based on task decomposition and negotiation, formed ike@bamny
agent-based models of distributed negotiation. The main focus of the CoNgads
problem distribution, involving discussions between a decentralised riebikaranager
nodes which require tasks to be executed and contractor nodes capabl@apleting
these tasks. These nodes are referred to collectively as the Conatadiddes are not
designated with roles, and may act as both managers and contractors ssowsisn
Selection of bids by manager nodes is performed in a greedy manner. Th@any
approach limits the usefulness of the standard Contract Net protocsufgly chain
formation due to a subsequent inability to deal with resource contention.

In more recent literature, a number of other negotiation-based apg®ieve been
proposed and applied to the supply chain formation probl|em. Wand M][me
argumentation-based negotiation for decision making in supply chain formatiole
Kim and QhJ)[[LO_lb] propose a heuristic-based agent negotiation methsadply chain
formation. The results &_Klm_and_dhb_ﬁﬁm] suggest that their negotiatietmod is
capable of producing reliably near-optimal allocations in their scenarihathvolves
scheduling and manufacturing cost minimisation within a three-tiered supgly. cbae

common limiting factor present in negotiation-based approaches to supjtyfohaa-
tion, shared by bollhAAla.ng_eﬂ ELL_LZLIJOG] MDQJMOIO], is amadiapon dedi-
cated “mediator” agents in order to facilitate allocations through prefermmteapabil-

ity elicitation and aggregation. The use of these mediator agents implies an éssump
of centralisation which precludes the application of these methods in aresas wiis
assumption is not valid. Our approach is based upon the sharing of limitedhetion
directly between agents, avoiding the need for mediators and ensuriegtddisation.
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2.2 Auctions

The other main approach to supply chain formation involves modeling the sapaily
as one or more auctions, with first and second-price sealed bid auct@ride auctions
and combinatorial auctions among the most frequently-used methods. Sthajtyfor-
mation through auctions is a popular approach for a number of reasardios are
frequently used in real-world tendering and sales situati @],m are
a very widely-studied approach for agent-mediated e-commerce in ¢ L
; 11], they are often able to form adequate seltidhe sup-
ply chain formation problem, and some auctions are able to guarantee vagsivsble
game-theoretic properties. Such properties inclandentive compatibilitywhich means

that a participant’s dominant strategy is to truthfully reveal its private inftionain-
dividual rationality, where participants are guaranteed to receive non-negative utility by
participating pbudget balancewhere the net flow of money into and out of the mechanism
is equal to zero, andllocative efficiencywhere the utility of participants is maximised.

It is important to note, however, that it is impossidl_e_[MLeLx&md_S_aleﬁl,\l@_&é]

for a two-sided mechanism to satisfy each of these four properties simulisige Al-
though auctions are a common area in which these properties are studjechaphde
present in any mechanism. The game-theoretic properties of our apmmevaluated

for each respective scenario it is applied to in Chapters 5, 6, 7 and Btkduce these
concepts in this section because game-theoretic analysis tends to be nmomgeptan

supply chain formation models which use auctions.

Perhaps the most comprehensive series of studies on supply chainidoroeing auc-
tions comes from Walsh, Wellman and Babaioff, who examine the efficiensymbly

chains formed using simultaneous double auction Ish and Wi |Imm{1 hot
double auction%ba&iandﬂdli&lb%] and combinatorial aucﬁ'.,
]. These approaches are evaluated in more detail in Secfionls 2022122 for
double auctions and combinatorial auctions respectively.

2.2.1 Double Auctions

In Walsh and WeIImAnL[;Oj)S], the authors characterise their supply cbaimafion

model in terms of several defining features. First and foremost is theréeaf hierar-
chical task decompositionin their model, supply chain participants are specialised and
are only capable of completing specific tasks (i.e. producing a certain fygmod). In
order to complete their task, they are often reliant on the completion of sgbgimk
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production of their input goods) by producers upstream in the suppglynciihese pro-
ducers, in turn, rely on the production of their inputs from producemthéu upstream,
and so on, forming a hierarchy of subtasks.

The authors introduceesource contentioas another key feature of their model. Mul-
tiple participants may rely on common resources, such as goods prodosteeam in

the supply chain. If these resources are scarce, then these pattiaipay be unable

to participate simultaneously in the supply chain. This serves to constrain thigenu

of possible solutions for a given set of participants. Resource scalsibyleads to the
exposure problemma situation in which participants acquire an incomplete set of their
input goods and are thus unable to produce their output good.

Walsh and WeIImar@bB] proposes a market protocol with bidding restrictieferred
to as SAMP-SB. The SAMP-SB mechanism comprises a set of auctiongpioeach
good. These auctions are run simultaneously, asynchronously argeimdkntly, with-
out direct communication. SAMP-SB remains the current state of the artenttalised
approaches, and so forms the main basis of comparison for the wolnpedsn this
thesis. SAMP-SB was shown to be capable of producing highly-valuedasibms -
solutions which maximise the difference between the costs of participatingigemd
and the values received by participating consumers - over severabnkesivuctures,
although it frequently struggled on networks where competitive equilibriandickxist.

The authors also propose a similar protocol, SAMP-SB-D, with the provisipde-

commitment in order to remedy the inefficiencies caused by “dead endstiosslun

which one or more producers acquire an incomplete set of complementartygiopds
and are unable to produce their output good, leading to negative utility. UBki®f a
post-allocation decommitment stage was recognised as an imperfect dppgroaever,
due to the possible problems created by rendering the results of auctioois-agding.
Despite their age, SAMP-SB and SAMP-SB-D represent the curretet agtdhe art in
decentralised approaches to supply chain formation, and form the marobasmpar-
ison for our work. .

Babaioff and Walsh@?ﬂ propose a one-shot double auction mechareferred to
as Trade Reduction auctions, based upon existing deK_In_B_ahaJQIf_aaﬂI ltEQ_O.h],
that sacrifices perfect allocative efficiency, in order to guarantemtive compatibility,
individual rationality and budget balance. The authors propose botimt@atised and
a distributed algorithm for determining allocations; however, their distributgarighm
relies on the use of mediators for each good, communication between thesearsed
and a central coordinator agent. These factors combine to indicate @amgsm of
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centralisation which, as mentioned earlier, may not always be valid.

2.2.2 Combinatorial Auctions

In|Walsh et aH[ZOdO], the authors apply a combinatorial auction protoelsubset of
the networks ill]MLalah_andAALellLdeln_LZLbOS] to attempt to find allocations undéegita
bidding behaviour by agents. Combinatorial approaches to supply avamafion hold
the advantage of being able to avoid the problem of dead ends in the @eesfeinput
complementarities by allowing agents to bid for bundles of goods. Due to the-stra
gic bidding behaviours adopted by the agen e@EjZOOO], sttsef the
combinatorial protocol did not represent a signficant improvement otidtiele auction
protocol, with the quality of the solutions found to be influenced in large pathb
amount of available surplus in the networks.

2.2.2.1 Multi-Unit Combinatorial Auctions

Multi-unit combinatorial auctions are a relatively recel;m_LLe;ﬂQn;B_Lomﬂle[ZDﬂb] ex-

tension to standard combinatorial auctions in which goods may be exchiarmettiple
units. A generalisation of this class of auction was applied to the supply drarafion
problem in the form of mixed multi-unit combinatorial auctions (MMUCAS) [Qédgs
et al.,|;O_Q|7], with the standard combinatorial model of bids being placetuiodles
of goods replaced by negotiations over “transformations”, essentiathngtnents by
bidders to produce a set of output goods given a set of input gdduse exist several
approaches to solving the NP-hard winner determination problem assbwigteMMU-
CAs, and the quality of the solutions produced by these techniques tendpeéadion
the characteristics of the network being tesk&d_[_o_nenﬁ_a.nd_EHdLiS;'L,. 2068ugh all
existing MMUCA solvers rely on integer programming and thus may eventuatly fa
difficulties with scalability, work by Gi mOS] has improveel dpplica-
bility of MMUCASs to larger supply chain formation problems by proposing angate
program mapping which improves the computational efficiency of the winetrihi-
nation problem (WDP) calculation by taking advantage of the structurpkpties of the
network. Finding a local, decentralised solver for MMUCAS remains aminggarea of
research.
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2.3 Multi-Agent Systems for Supply Chain Management

Although the area of supply chain formation is the focus of this thesis, fopteteness

we now present a summary of the most well-known applications of multi-ageteras

to the related problem of supply chain management. Supply chain managenaent is
distinct problem to supply chain formation because it involves coordinafiarsapply
chain that has already been formed.

The seminal work in this area lis Fox eﬂ MOO], which proposes assefiagent-
based coordination strategies in an existing multi-tiered supply chain in whigk- un
pected events occur. The paper provides an illustrative example dieallgrintegrated
computer manufacturer, with planning, materials, production and dispatphiicgsses

at each hypothetical factory being controlled by separate autonomeunssagrhe au-
thors present a series of simulations demonstrating the effectivenesaatifieation
system in minimising inventory levels due to disruptions at different tiers within the
supply chain. Significant inventory reductions compared to a non-naiificapproach
were found when disruption occured at the final tier of the supply chdiite reductions
were less significant with disruptions occured at tiers upstream of tHeiéna

The most well-known current and ongoing use of agent-based teamigu supply
chain management comes in the form of the Trading Agent Competition Suppin Ch
Management (TAC SCM) gamé [Collins et eLL_ZbOG]. In TAC SCM, agentsere
sent competing computer manufacturers, who vie to sell computers to custancer
maximise their profits whilst operating under limited information in constantly chang-
ing market conditions. This involves purchasing components from supplfecheaply

as possible while still ensuring that commitments are fulfilled, optimising production
scheduling and minimising inventory costs.

The most successful agents in the TAC SCM competition to date are TacAeoPand
Stonel_ZQ_dG] and Deep Maizle_MLel[ma.n_ét [aL_iOOS]. TacTex uses a maeghyleoach,
with relatively little communication between separate supply manager and demand ma
ager modules. These modules make use of three predictive models - asonmuled, a
demand model and an offer acceptance predictor - in order to prediatghks of their
actions and the state of the market in future steps. Deep Maize focuses acctirate
estimation of marginal values for inputs and outputs in order to break dowartder
coordination problem present in TAC SCM into more manageable sub-pnsble
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2.4 Loopy Belief Propagation

Although auctions and negotiations are by far the most commonly-employeaddeels
in agent-based approaches to the supply chain formation problem, LBffebasused
as a method for task allocation for several years in the related area oflzaged de-
centralised coordination, particularly for the coordination of sensorar&sCrick and

Pfeffer, 2008} Voice et al., 2010].

LBP is a decentralised and distributed approximate inference scheme imytherap-
plication of Pearl’s belief propagation algorith@%S] to graphiaadels con-
taining cycles. We explain the concept of graphical models in Selction 2.8R.uses
iterative stages of message passing as a means for estimating the mardiaali|jpies
of nodes being in given states: at each iteration, each node in the gnagh & message
to each of its neighbors giving an estimation of the sender’s beliefs abolikétihoods
of the recipient being in each of its possible states. Nodes then updategheis bbout
their own states based upon the content of these messages, and thef egekesage
passing and belief update continues until the beliefs of each node betaitee s

The most commonly used version of LBP, the sum-product algorithm, is usstitaate
marginal probabilities at individual nodes. This is not suitable as an apprfor the
supply chain formation problem because we are interested in finding thal glebof
states that produces the most efficient supply chain network, ratheestiamating the
probability of each node being in the globally optimal solution.

Because the sum-product algorithm is not suitable for solving supply ¢baimation
problem, we use a well-known variant of LBP, the min-sum algorithm, whichsexlu

to find the most likely assignment - the maximum a posteriori (MAP) assignment - o
the graph as a whole given the probabilities encoded at each node.owedepfurther
details of states in Sectign 4.3 and our application of the min-sum algorithm tdysupp
chain formation in Section 4.6.

Min-sum LBP presents a promising solution technique for supply chain towméor a
number of reasons. Replacing the process of bidding in auctions with geegaasing
between agents allows participants to share their beliefs about the optintlisgrof
the supply chain without revealing any more private cost information thamnwbald in
an open auction. The LBP algorithm is decentralised and distributed, iisspenpor-
tant for the realistic representation of individual self-interested busiarsties. LBP
also guarantees optimality for problem instances possessing certainistrpobperties,
while still being able to produce good results for instances without thegepies. We
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provide more detail about the properties and performance guarariteB® an Section

242

2.4.1 Graphical Models

Both standard and min-sum LBP require that problems are formulated@scabmod-
els. Graphical models are a means for encoding probability distributionsacset of
variables using graphwa@%} Graphical models may betddewr undi-
rected. Directed graphical models are also known as Bayesian Net(@&is3, while
undirected graphical models are also known as Markov random fielB$ &)

In a directed graphical models, an edge from node node; indicates that causes
j. Specifically, the strength of this causal relationship is specified in theitomomal
probability table at each nodepfx;|z;) represents the probability gfbeing in stater;
given that its parentis in stater;.

Undirected graphical models - Markov Random Fields (MRFs) - arailsefrepresent-
ing symmetric dependencies between variables. In MRFs, as in BNs, acjgtierough
an undirected edge) of nodes indicates dependence, while nodesawhinbt directly
connected are strictly independent.

Graphical models are suitable as a means for encoding instances of g shigin
formation problem because they allow for the representation of the ¢hasgic fea-
tures of supply chain formation proposed_anALalih_a.ndJALedIrJnan_t2003] attveical
subtask decomposition can be represented explicitly in BNs (through thetioliref
edges between nodes) or implicitly in MRFs (if we assume that nodes consaods g
from linked nodes to their left, and supply goods to linked nodes on theit) righile
resource contention can be represented implicitly through edges.

2.4.2 Properties

While LBP is known to converge to exact results in a finite number of iteratioreee-
structured graphs, there is no such guarantee for more loopy geaph#,convergence
is reached, the solution will be an approximation, unless the graph contdjna single
loop @@0}. Recent wodkﬂ[m;@ls_ejl &L,_ZJlO] has establisleedt-case bounds
on the quality of solutions produced by min-sum LBP, although these guesahtdd
only when all unary and pairwise potentials are non-negative, whichtitheacase in

our model. Despite these limitations, LBP has seen great success in a ndrateas
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including Turbo CodeiLM_QElie_c_e_eﬂalLﬁ%] and Low Density Parity Check codes
[Erey and MQQKQM 1998], stereo visidn [Felzenszwalb and HuIIgnIH;;herl 2004], as well
as in the related field of communication in sensor netdeKs_[QLigk_a.nd_El’fL?ﬂQLl 2003;

Farinelli et al.| 2008].

2.5 Feasibility of Alternative Non-Market-Based Approaches

There are, of course, other potential approaches to the supply chain formation problem,
but, for various reasons, many of these are not practical.

Fully centralised techniques such as mixed integer programming and global search are
capable of finding optimal allocations in fractions of a second; however, the complete
global knowledge required by these methods limits their practicality for most supply
chain formation applications.

Myopic techniques such as greedy search may generate optimal solutions on networks
without resource contention, such as the Simple network, an example of which is shown
in Figure[3.1. However, their inability to look ahead means they are unsuitable for net-
works where a decision to allocate a scarce good to a certain producer, such as good 4
being allocated to producer P6 in the Greedy-Bad network (see Figlire 2.1), may lead to
infeasible solutions.

Aston University

ustration removed for copyright restrictions

Figure 2.1: Greedy-Bad network, fram Walsh and Wellman 12003]

As mentioned in Chaptéd 1, exact graphical inference techniques such as graph cuts and
junction trees are also possible alternatives; however, the need for complete knowledge
of the underlying network obviates the usefulness of these techniques to decentralised
applications, and such modifications, whether they involve clustering nodes or cutting
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edges, serve to destroy the trading relationships (and thus the logicalfpathforma-
tion flows) originally present in the network. LBP is able to deal with reseaontention
whilst preserving the original structure of the network, and operateslistabuted and
decentralised manner.

2.6 Summary

Research into supply chain formation has been an ongoing focus of meitit-agstems
research for some time. Market-based approaches, such as negst@tianctions,
are the most common techniques used in the literature, but these apprbacédkeir
drawbacks. Centralised methods, such as most negotiation-based methodsnbi-

natorial auctions, face problems with scalability, while decentralised tecksisiuch as
double auctions are prone to the exposure problem and may face praoblprogucing

good solutions. Min-sum loopy belief propagation, a non-market-bagpach, has
been used to solve similar problems, and is used as the basis for our vaakskeit
represents a promising potential technique for decentralised supplyfonaiation for

several reasons - it is a distributed and decentralised algorithm, it recanig mini-

mal information-sharing, and it possesses performance guaranteesrt@in problem
instances.

The following chapter presents the core properties common to each ofeb#is|n-
stances of the supply chain formation problem examined in this thesis. Weralsdgp
details of how we determine optimal benchmarks, through the use of mixedrititegge
programming, to provide a point of comparison for the performance of LBP.
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Chapter 3

Problem Formulation

Supply chain formation is the process of determining the set of participants aigup-
ply chain and the terms of exchanges between these participants. The ultoabtd g
any supply chain is the production and sale of goods to end consumengevelp the
production of these final goods depends upon the completion of a sésabtasks by
participants further upstream in the supply chain. In most cases, befm@ducer can
produce any goods, it must acquire a set of input goods from its supplieturn, these
suppliers must have acquired their sets of input goods from their suppdied so on.
Because of this characteristic feature, supply chains lend themselvewefiresen-
tation in the form of task dependency networks. This representationpfoposed in

Walsh and WellmgH_[;Ong], forms the basis of our supply chain networkeseptation.

3.1 Task Dependency Networks

Our task dependency networks take the form of bipartite directed acyelhg. An

example of this representation is given in Figlrel 3.1. There are two typaeds:

individual producers and consumers, which are represented tayngdes in our network
diagrams, and goods represented by circles. Directed edges inditattigddlows of

goods. An edge leading from a producer to a good indicates that theqanoid capable
of producing the good, while an edge leading from a good to a producasrsumer
means that the producer or consumer is able to consume the good. Cossasrtbeir
name suggests, cannot produce goods.

This representation allows for the clear statement of network structuriés netaining
fidelity to the structure of real-world supply chains. For example, in Fi@@rave see
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Figure 3.1: A sample supply chain network - Simple - fiom Walsh and Wellman
[dﬁ]. Producers (P1, P2, P3, P4) and consumers (C1) are represented by rect-
angles, while goods are represented by circles. Edges between vertices indicate
potential flows of goods. Numbers below producers represent production costs,
while numbers below consumers indicate consumption values.

that producer P1 is able to produce good 1 at a price of 0.36, which producer P3 needs
to consume in order to produce good 3, at a price of 0.53 plus the cost of acquiring
good 1, for consumer C1. Similarly, producer P2 is able to produce good 2, for possible
consumption by producer P4, which is also able to supply consumer C1 with good 3. If
both producers P3 and P4 are able to acquire their single input good, C1 must make a
choice about which producer to purchase from. Ideally it will choose the producer able
to supply the good at the lowest total price, in this example P3, leaving C1 with a final
positive consumption value df216 — (0.362 + 0.535) = 0.319.

In Chapter§ ¥4 and 5, we assume that each good represents a single unit of a commodity
which is non-divisible, and equivalent in all aspects other than price. In CHapter 6 we ex-
plain how we extend this representation to the multi-unit case of supply chain formation
by allowing goods to be traded in multiple units, and introduce additional factors in-
cluding production capacities, input-to-output good ratios and consumer desired goods.
ChaptefY continues to explore the multi-unit case in a supply chain reconfiguration set-
ting.

3.1.1 Agents

Our supply chain networks are made up of multiple interlinked producers aiming to
supply goods to one or more consumers. Each producer and consumer is represented by
a software agent.
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3.1.1.1 Producers

Producers are capable of producing one or more types of outputgoadth do so are re-
quired to have obtained the necessary quantities of each good in theiirgaitagoods.
In this thesis, we assume that producers produce a single type of ootmlitathough
our model is readily generalisable to scenarios where producerslarn® giooduce more
types of goods. Some producers do not require any input goodg pineducers form
the initial echelon of the supply chain. In the case of a producer requininigple in-
puts, we refer to the goods as complementary - a producer is unable te@pridsloutput
good if it is only able to acquire a subset of its required input goods. Cangritarities
are explained in greater detail in Sect[on]3.2. Producers assign aegsas R /1 to
each unit of their output good, which is a producer-specific constautteng the cost of
producing each unit of the good plus an additional fixed profit marginekample, P1’s
reserve price in Figufe 3.1 is 0.36. In Chaptédrs 4[dnd 5, goods aregeahdexchanged
and consumed in single units. This allows us to present a clear comparitos ér-
formance of our approach to the results produced by the auction pletodginally

presented i||1 Walsh and Welldeln |2b03]. In Chapkérs 6[and 7, we exanenargrs

where goods are produced, exchanged and consumed in multiple units.

3.1.1.2 Consumers

Consumers aim to obtain goods from their set of consumable goods. pietdid and

[, where we assume that goods are exchanged in single units, consiméesobtain a
single unit of each of their consumable goods. In Chapiers €land 7 we @losumers

to obtain multiple units of their consumable goods. In each network, eachimenss
assigned a static consumption valje this is the personal valuation the consumer holds
for obtaining one unit of one of its consumable goods. Consumer¢iis Figure[3.1
is1.216.

3.2 Complementary Goods and Exposure

Complementary goods and the exposure problem are characteristiegeatuhe sup-
ply chain formation problemlnput complementaritis a situation in which a producer

1The reserve prices of our producers are equivalent to the produmiis of producers in Walsh and Welliman
[@]. We assume that reported costs include a profit margin in todeovide producers with an incentive to
participate in the mechanism.
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requires multiple separate goods in order to produce its output good [WadistWall-
man,QO_Qb]. Input complemetarities, in the presence of resource comteadiostrain
the number of possible solutions to a supply chain network. An example of comor
plementarities is for producer P4 in the Two-Cons network, as shown ireHigi4,
which requires units of both goods 1 and 2 in order to produce its outmd. gmput
complementarities also introduce problenmegposurén non-combinatorial approaches
to supply chain formatiorLDALalih_a.ndAALeMén._ZbOS]. The exposure probkurs
due to the fact that producers must acquire complementary goods irallyidr his
leads to the risk of the producer acquiring some but not all of their redjinput goods.
Combinatorial approaches avoid this problem by allowing producers torblulindles
of goods. Our LBP approach limits the exposure problem somewhat logiergcall of
each producer’s required inputs in each of their active states. Theepbof states is
explained in greater detail in the following chapter.

3.3 Competitive Equilibrium

Competitive equilibrium, as defined [’LDAALa.Ish_a_ndJALQIJ}T{a.n_dZOO3], is a set odpHs-

signed to goods in which producers in the optimal allocation obtain non-megatiplus
by being active, and producers not in the allocation would acquire neitine surplus
by being active. Additionally, all consumers in the optimal allocation are reduio
obtain the consumable good which gives them the maximum non-negativesswapd
consumers not in the allocation would receive non-positive surplus kainihg any
good. Figuré_3]2 shows an optimal allocation to the Greedy-Bad network vsigh af
reserve prices that do not permit competitive equilibrium. Active produaad their
associated goods are in grey, while inactive producers and goods areicot produced
in the allocation are in white. Edges associated with unproduced goodasiredi For
example, in order for P5 to receive its reserve price, the price of gandsh be greater
than the sum of the prices of producer P5’s inputs plus P5’s reseine prowever,
because inactive producer P6 must not be able to make a profit if it wastioijpate,
the price of good 5 must also be lower than the sum of the prices of proBécein-
puts plus its reserve price. In much the same way, good 6 must be exdrargerice
below consumer C1’s consumption value, but above P7’s reservegusehe sum of
the prices of its inputs. Because the goods cannot be exchangedestyhich fulfil all
of the inequalities given the set of agent reserve prices, competitividoeigun does not
exist in this instance of the network.
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Figure 3.2: An instance of the Greedy-Bad network with sample prices that do
not permit competitive equlibrium

3.4 Networks

Following|Walsh and Wellminr{ |20b3], we define a set of supply chain network struc-

tures exhibiting a variety of structural properties, and use these networks to test the per-
formance of LBP and all comparison techniques. Networks Simple, Two-Cons, Greedy-
Bad, Unbalanced, Many Cons and Bigger were originally definE_d_'LnMLalah_a.ndMJellman

]. Network Harder was originally definedLiﬂJNa.lih_andJALelllnha.n_LllQQQ], while the
Huge network is of our own creation.

The Simple network, shown in Figure B.3, is a small three-tier network with two possible
sources for the supply of C1's consumable good, good 3. Two-Cons, shown in Figure
[B:4, introduces the issue of complementary goods - P4 needs both goods 1 and 2 to
produce its output. Because of this, only one of the consumers in this network can be
satisfied at one time.

The Greedy-Bad network, shown in Figlire]3.5, introduces further complementarity is-
sues. Producer P6 is a possible seller of one of Producer P7’s input goods, good 5.
However, in order to produce good 5, P6 requires good 4, which is also one of P7’s in-
puts. Because P7 is necessarily present in the single optimal solution to this network, it
must buy good 5 from P5, even if the price is more expensive than when bought from P6.
This network serves to show the weakness of greedy search-based techniques for supply
chain formation - although P7 may be able to acquire good 5 more cheaply from P6, in
doing so it renders the rest of the supply chain infeasible.
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Figure[3.6 shows Unbalanced, a larger network with several instancesnpilementar-

ity. The Many-Cons network, shown in Figure13.7 is a larger tree-structured network in
which multiple consumers may be satisfied simultaneously. The Bigger network, in Fig-
ure[3.8 is a large-scale network with many feasible solutions. Harder, shown in Figure
[3:9 can be seen as a much larger version of Greedy-Bad: despite the scale of this network,
there exists only one possible solution due to the presence of a number of complementar-
ities. Finally, the Huge network, shown in Figlire 3.10, models a very large-scale supply
chain, with six tiers of production and three consumers.

Aston University
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Figure 3.4: Two-Cons network, from Walsh and Wellman |2003]
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Figure 3.5: Greedy-Bad network, fram Walsh and Wellman [2003]
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Figure 3.6: Unbalanced network, from Walsh and Wellman [2003]
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Figure 3.7: Many Cons network, from Walsh and Welliman |iOO3]

Aston University

ustration removed for copyright restrictions

Figure 3.8: Bigger network, from Walsh and Wellman [2003]
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Figure 3.9: Harder network, from Walsh and Wellﬂnhn_[i999]

Aston University

llustration removed for copyright restrictions

Figure 3.10: Huge network
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3.5 Conversion to MRF form

As mentioned in Sectidn 2.4.1, in order to use LBP we must formulate our prasem
graphical model. To convert the task dependency networks projpo¥ealsh and Well-
man tZD_Qb] into pairwise MRF form, two simple modifications must be made: First,
the explicit representation of goods is removed from the network. Wtdereseprevi-
ously linked an agent to a good or a good to an agent, edges now link atjesutdy,
though they preserve the notion of an edge between agents meaning tapobere

of exchange. Second, we remove direction from the edges in the ghdfihthe graph
converted into pairwise MRF form, we are now in a position to define the statesosts
required for the running of LBP.

P1 P3

C1

P2 P4

Figure 3.11: The Simple supply chain network converted into MRF form. &dge
now link agents directly, and are undirected.

3.6 Creating Benchmark Solutions

In order for us to be able to evaluate the quality of the solutions producéd@Bywe
require an optimal benchmark value as a means for comparison. To thisvendse
Ip,solveﬂto calculate the values of the optimal allocations within our network instances.
Each network is formulated as a general MILP model, with production ccetsicities

and ratios and consumption values and consumer desired good quanfipésdito the
model on a per-run basis. While our MILP models are necessarily netsypatific, they

are equally applicable to both the single and multi-unit case - if a solution fomgéesin
unit scenario is required, all capacities, ratios and desired good qusatigeset to a
value of 1.

lp_solve is a free mixed integer linear programming (MILP) solver, availabletp://Ipsolve.sourceforge.net
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3.6.1 Optimal Solutions

We formulate each network as a general mixed integer linear model whicdesnthe
structural properties of the network as a series of linear constraintsgelinand non-
integer values representing production costs, producer capacitoeijger ratios and
consumer desired good quantities and consumption values are suppliedrtodbkeon

a per-run basis by our Java code. In Appefdix 8.1.1 we use the Twer@nwork model
as an example of how we formulate supply chain networks as linear models.

3.7 Summary

In this Chapter, we presented details of how we formulate the supply charation
problems studied in this thesis. FoIIowil]gAALalﬁh_a_ndAALellnllan_ﬂZOO3], we use&ka tas
dependency network formulation, composed of multiple producer andio@rsagents
linked within a graph. In the following four Chapters, we demonstrate hovapptied
LBP to this problem formulation and to three variations of it. Specifically, in @rép

we present details of how we applied LBP to the basic supply chain formatiorufa-

tion described in this chapter, a scenario also studiéd in Walsh and V_\Hmll][ﬂﬁ)e
current state-of-the-art decentralised approach. In Chapter Sopoge a novel solu-
tion goal for this formulation of the supply chain formation problem, where timeis

to allow self-interested producers to maximise their own profits. Chapter @lintes a
scenario in which agents exchange goods in multiple units, to our knowlefiige far

a fully decentralised approach. Finally, in Chagpfer 7 we investigate a dyrampjly
chain formation scenario in which participants are able to change theirniesper to
enter or leave the supply chain formation process at any time.
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Chapter 4

Supply Chain Formation with
Min-Sum Loopy Belief Propagation

In this chapter, we present details of our first contribution: applicaticih@imin-sum
loopy belief propagation algorithm to an established case of the supply fomaiation
problem, and experimental analysis that demonstrates that this technique tis edn-
sistently outperform the existing state-of-the-art. This work was originalbfiphed in
shorter form iA Winsper and CHi_[A)IlO], and an extended versionrigitly in press
insper an IiLLOﬁd]. The specific instance of the supply chamdtion problem

we consider in this chapter was originally investigated_i IIEJ@EIZOO

and involves a relatively abstract scenario in which goods are tradéagie sinits and

producers aim to break even.

We consider this scenario an ideal starting point for demonstrating LB#fermance
as a technique for supply chain formation because, despite advancesontplexity of
scenarios investigated by centralised approaches such as combiraiotianhs, this in-
stance of the supply chain formation problem represents the most difffadtaurrently
investigated by a decentralised approach. We compare the results gudadumin-sum
LBP to those produced by our reimplementations of the two decentralisetednudtion
protocols detailed ihMLalﬁh_andMLeJJﬁé.n_LZbOS].

4.1 Background

As discussed in Chaptel 2, existing approaches to supply chain formapicalty pro-
duce solutions through the use of market-based techniques such asth@goor auc-
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tions. Decentralised market-based approaches from the literature haleel t® be un-
able to consistently produce optimal or near-optimal solutions, while centtaliaeket-
based approaches require agents to share information with a centrataonediaich
may not always be possible or preferable. Many potential non-masdssebapproaches
require impractical levels of global knowledge, either in terms of the ptigseof par-
ticipants, the structure of the network, or, in many cases, both. We suggestin-sum
loopy belief propagation presents a promising approach to the supply fcnaiation
problem for several reasons - it has been demonstrated to prododerggults in ap-
plication areas similar to the supply chain formation problem. Most notable of thes
in the related area of agent-based decentralised coordination, partidolatiye coor-
dination of sensor networkmmmwmoumike other
non-market-based approaches to supply chain formation, LBP opgratdscentralised
and distributed manner, and does not require global knowledge ofipartiqroperties
or network structure.

Min-sum LBP uses iterative stages of message passing as a means fotiegtiina
marginal probabilities, which in our case correspond to the cost to the valhe so-
lution, of nodes being in given states. At each iteration, each node in dipé gends a
message to each of its neighbors giving an estimation of the sender’s ladl@itthe
likelihoods of the recipient being in each of its possible states. Nodes thutauheir
beliefs about their own states based upon the content of these messadjése cycle
of message passing and belief update continues until the beliefs of edethacome
stable. We explain the concept of states in Seéfioh 4.3, costs in Secliondimeanage
passing and belief update in Section/4.6. In the following Section, we exphaitiffier-
ent levels of knowledge which may be available to the collaborators of pantitspvhen
using a decentralised approach such as ours.

4.2 Collaborator Knowledge

Decentralised supply chain requires participants to provide some levefoomation
to outside parties, either to independent auctioneers or directly to coltatmyrauch as
buyers of their outputs and sellers of their inputs.

There exist three levels of knowledge a participant may have of its cod&drsr The first
and most private level is for participants to have no knowledge of the sibtksir col-
laborators. This is the level of information available in the SAMP-SB protpomposed

byhA[alsh_andAALeUmAMZQbS]. Second, a participant may know that its codtdochas
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k states and that states in the Seare compatible with the states in which it collabo-
rates and are incompatible with those in which it does not. Finally, the greatekbfe
knowledge is for participants to have full knowledge of the states of théalmrators.
This is the level of knowledge available using our technique.

4.3 States

Due to the fixed structure of the networks, for each agent there existearfumber
of purchases and sales (if the agent is a producer) in which the ageabls, i.e. it

acquires all its input goods and sells its output good. We encode eacbseftiliples of
exchange relationships as states, with each state defining a list of supplieasbuyer
if the agent is a producer, and a single supplier for consumers. Fomsaa possible
state for producer P3 in Figute 8.1 is “Buy from P1 and sell to C1". Thalrer of

states an agent possesses increases with the number of producésssaplay its input
good(s), and the number of producers or consumers able to consuratpits good. As
well as a list of active states, we also allow for the inactive state, wheregtmd does
not acquire or produce any goods.

Because the LBP algorithm requires that agents are aware of the stalesr afeigh-
bours, we assume that when setting up their states, agents also consideigdours
states when considering the viability of a particular state. Specifically, areasttite is
viable if it encodes a complete set of purchases and sales as well ascbeipgtible
with at least one of the states of each of the buyers and sellers listed.

For example, if agents do not take into account the states of their neightheur pro-

ducer P6 in the Greedy-Bad network, shown in Figure 3.5, has a sirtgle state where
it buys goods 2, 3 and 4 from P2, P3 and P4 respectively and sellssgodel7. Producer
P7 has two active states: one where it buys good 4 from P4, good 5 fsoamdPsells

good 6 to C1, and another where it buys good 4 from P4 good 5 froomé&6ells good

6 to C1. P6’s sole active state is not compatible with either of its listed seller BfRs a
states.

The first of P7’s states is incompatible because P6 is not listed as a sellese@nd

state does list P6 as a seller, but it also lists P4 as a buyer, as does fe6'®amto the
single-unit limitation in this scenario, producer P4 cannot satisfy both P&@@nd his

means that P7’s second active state and, therefore, P6’s sole dat&var® non-viable
for this network. Agents prune these non-viable states before the algastiun.
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4.4 Costs

4.4.1 Unary Cost

Each agent associates each of its states with a cost. These valuesnefirexost to
the value of Equation 4.1 were the agent to be assigned with that state in treiatioc
For all agents, the cost of being in the inactive state is zero. For prsjusleactive
states incur a positive cost, equal to the reserve price of the produgeegtion. Con-
sumers assign a negative cost V. to all states in which they acquire a good, where
V. represents the consumer’s consumption value, the value the consuiges dasghe
acquisition of its consumable good.

4.4.2 Pairwise Cost

Pairwise costs encode the compatibility of two of the states of a pair of neiglabor
agents. Two states are compatible if agénstate lists agent as a buyer and the list of
sellers inj’s state includeg and vice versa, or if agelis state does not list ageiitas

a buyer andj’s state does not list agents a seller and vice versa, or if both states are
inactive states. If the states are compatible, the pairwise cost is equabtdfzbe two
states do not meet any of these conditions, they are incompatible, and thespaiost

of this combination of states is equal to positive infinity.

4.4.3 Example of States and Costs

To provide an example of our system of costs in practice, we now shovetlué states
and the unary and pairwise cost values (in Téblé 4.1) in the Simple netwsshaavn
in Figure[3.1. The Simple network is made up of a set of four produceraaagle
consumer, as well as three potential goods for production. The possé#tés of our
agents are:

— P1: tq,to.

x 11 = “Inactive”. to = “Sell to P3".
— P2: uy,us.

x up = “Inactive”. uy = “Sell to P4".

- P3: U1, V2.
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x v1 = “Inactive”. vo = “Buy from P1 and sell to C1".
— P4 wq, ws.

x w1 = "Inactive”. wy = “Buy from P2 and sell to C1".
— C1: x1,x9, 3.

x x1 = “Inactive”. xo = “Buy from P3". z3 = “Buy from P4”.

ProducerP1 does not require any inputs, and is only capable of selling to one agent -
producerP3 - meaning its sole active statetig representing the state of not buying any
inputs, and selling td’3. Consumer’'1 has two valid active states: buying froR8 and
selling to no-one «5 - and buying fromP4 and selling to no-ones.

With our list of states complete, we now show the unary costs of the statetivénstates
incur a unary cost o), while active states depend upon the type of agent in question.
For producers, the unary cost is equal to the reserve price of tlieiggpin question.
Consumers incur a unary cost of— V., whereV, is the consumption value of the
consumer in question. Thus, our unary costs are as follows:

- PL: fp1(t1) = 0, fpi1(t2) = 0.362.

— P2: fpa(u1) = 0, fpa(uz) = 0.619.

— P3: fpa(v1) = 0, fps(vs) = 0.535.

— P4 fpy(wr) = 0, fpa(ws) = 0.854,

— CL: for(a1) = 0, for(ws) = —1.216. for(ws) = —1.216.

Finally, we show in Table 1 the pairwise costs associated iR#tin the Simple network:

Table 4.1: Pairwise costs betweétl and P3, and P3 andC1, in the Simple
network.

Pairwise Costs
Pl < P3 P3 + C1
gpsci(vi, 1) = goips(x1,v1) =0
grip3(ti,v1) = gprspi(vi,t1) =0 | gp3ci(v1, x2) = goips(x2,v1) = 00
0
0

grip3(ti,v2) = gpapi(ve,t1) = 00 | gpsci(vi,x3) = geips(xs,v1) =
grip3(t2,v2) = gpsp1(v2,t2) =0 | gpsci(v2, T2) = go1ps(x2, v2) =
gp3ci(v2, x3) = goi1ps(x3, v2) =
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4.5 Cost Function

We allow for two distinct types of cost, denoted &$x,,) , the unary cost for agentof
being in stater,, andg,, (x., z,) , the pairwise cost of connected ageatandv being

in statesr,, andx,. Our method aims to minimise these costs and thus the cost function
given below:

6($1,---,$N) = va(ffv) + guv(l'ual‘v) (4.1)
veV (u,v)EE
Wherez, ..., zy is the set of agentd;,(x,) is the unary cost of agentbeing in state

Xy, aNd gy, (24, ) IS the pairwise cost of linked agentsand v, being labeled with
statesr,, andx,,. With all else equal, the lower the result of our cost function, the more
efficient the allocation. We use the efficiency of the allocation as a meaftie quality

of a solution.

The next section introduces the details of min-sum LBP, the technique we emaplo
minimise our cost function.

4.6 Supply Chain Formation using Min-Sum LBP

Min-sum LBP uses iterative stages of message passing as a means fotiegtiima
marginal probabilities of nodes being in given states. At each iteratioh,rezue in the
graph sends a message to each of its neighbors giving an estimation ofdeesbeliefs
about the likelihoods of the recipient being in each of its possible statesed\tbén
update their beliefs about their own states based upon the content ofitessages, and
the cycle of message passing and belief update continues until the belegfstohode
become stable. To use LBP in a supply chain formation scenario, we tdhgelask
dependency networks described in Chapter 3 into a Markov randonrédigidsentation
suitable for use with LBP, and allow producers and consumers to pasagaedsetween
one another encoding their beliefs about the cost of their neighbdatssgo the overall
efficiency of the supply chain.

The value of an agent’s belief about one of its states represents thisdgsief about
the cost to the efficiency of the network as a whole were it to be assignestale, given
the content of the messages it has received. Accordingly, LBP begingtialising the
beliefs of each agent about each of their possible states to zero. g@uttlaen passes a
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message containing a vector of belief values to each of its neighbors intthherkeOnce
all agents have passed a message to each of their neighbors, edalpagéss its beliefs
based upon the content of the messages it received. This processsafga@assing and
belief update continues until the beliefs of our agents about the MAP assigrof the
network become stable, at which point we determine the final state of eanhage
perform the allocation.

4.6.1 Belief Update

For each of agent’s possible states, we use Equation 4.2 to calcul&delief in that
state. At initialisation, each agent holds a belief of zero about each ofti¢ssta

bely(zu) = fu(@u) + Y Muwsul(@y) (4.2)
weN,
bel, (x,) denotes agent’s belief in its stater,,. This belief is made up of two parts: first
is the unary cosf,, (z,,) to u incurred by being in state,. This is added to the sum of
the beliefs about state, contained within the messages,_,, (z,,) received fromu’s
set of neighbors € N,,.

4.6.2 Messages

At each step of LBP, each agent in the network passes a message tf géacleighbors,
consisting of a vector of values representing the sender’s belief$ abdolu of the recip-
ient’s states. This involves sendecomparing the compatibility of each individual state
x,, from its own set of states with each individual statefrom recipient’s set of states,
taking into account:’s belief about its own state,,, as well as the belief value about
stater,, contained within the message passed froto« in the previous step. Messages
can therefore be interpreted as encoding both a compatibility componemidththe
pairwise cost) and a cost component (through the encoding of coshdata’s current
beliefs, if the states are compatible).

My (Ty) = ming, (belu(wu) — My (o) + Guo (T, acv)> (4.3)

Equation 4.B shows the process of calculating a message to be passexhéotm to
agentv. bel, (z,,) corresponds to agents belief in its own state:,,. We subtract from
this the belief passed from to u about stater,, in the previous round of messages,
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represented as.,—.,(z,). Finally, we add the pairwise cost incurred by agentndv

being in states:, andz,. We repeat this process for each of agestpossible states,
comparing them in turn to agents statex,. Once the set of possible costs for state
x, dependent om’s set of states have been determined, we take the minimum of these
values and add it to the vector of beliefs to be passed from agémtagentv. This
process is repeated for eachuts possible states, resulting in a final vector of values to
be passed from to v.

4.6.3 Example of Min-Sum LBP for Supply Chain Formation

To provide an example of how LBP works in a supply chain formation se@nae now
present a snapshot of the message passing and belief update behavite Simple
network example shown [n3.1. Again, we focus on agents P1, P3 and €folldwing
subsections show the beliefs of agents P1, P3 and C1 at the step immediatetp pr
convergence, the ensuing messages that are passed, and thdiéhaplate that leads
to a stabilisation of beliefs.

4.6.3.1 Beliefs of P1, P3 and C1 Prior to Convergence

- Pl:belpl (tl) = —0.362, belpl(tg) = —0.319.
— P3:belps(v1) = 0.000, belps(vy) = —0.319.
— Cl:beley(z1) = 0.000, bele (z2) = 0.257, bele (z3) = —0.319.

At this point, the beliefs of agents P3 and C1 are completely correct, buga® hin
erroneous belief that its inactive stdtehas less cost to the efficiency of the network
than its active statéts). This is because the number of iterations that have occurred
have not yet been enough for the beliefs of each agent to propadtearfound the
network.

4.6.3.2 Messages Passed Between P1, P3 and C1 Prior to Convergenc

P1to P3:mP1_>p3(’Ul) = 0.000, mP1_>p3(U2) = 0.362.
P3to Plimps,pi(t1) = 0.000, mp3_p1(te) = —0.681.

P3to Climps_c (xl) = 0.000, mp3_—c1 (.1‘2) = 0.000, mp3_—c1 (xg) = 0.897.
Clto P3:mP3_>p1(1)1) = 0.000, mP3_>p1(1}2) = —1.216.
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4.6.3.3 Beliefs of P1, P3 and C1 at Convergence

- Pl:belpl(tl) = 0.000, bel pq (tg) = —0.319.
- P3:belp3(v1) = 0.000, belpg(vz) = —0.319.
— Cl:belcy(z1) = 0.000, belgy(x2) = 0.257, belc (x3) = —0.319.

At this point, all agents have correct beliefs - P1 has correctly updatéetlies in its
inactive state, based upon the content of the message from P3. The bEliedsagents
are that P1 and P3’s active states and C2’s second active state bailug &o/the network
of 0.319, and that their inactive states bring a value of 0.000. From this poiother
round of message passing and belief update occurs to ensure that baliefstabilised,
and convergence is then called. The process of convergence igwexplathe following
Section.

4.7 Convergence

We make use of a convergence detector agent, as recommel*de_d_mmmhna&

] for scenarios with multiple agents in initially non-quiescent states.ehish
and Wellman scenario, non-quiescence is a state in which all auctions diayet iheen
finalised; in our model, this is essentially equivalent to a state in which beligésrat
yet fully propagated around the network. The convergence deteggat eontrols termi-
nation but is otherwise uninvolved in the workings of the algorithm. The usedi an
agent is not unrealistic for supply chain formation settings - in the real wioitdhighly
likely that supply chain formation facilitation would be provided by a coordirmgttird
party, who would be represented by such an agent, rather than beiitgtéusdirectly
by the businesses themselves. This means that limited communication between partic
ipating agents and the third party is a reasonable assumption. Indeed stnispdion
of communication with third parties is made by all market-based approacheshevh
centralised or decentralised, in the form of bids placed in auctions ottiaggo via
dedicated mediator agents.

Even in decentralised approaches such as Walsh and V_\)ellmacl [2008hatket for

a single good can ultimately be viewed as centralised, with a single auctiomsespo
ble for aggregating the bids of multiple participants and deciding the winningetsdd
The difference between this approach and a centralised approach ihehsolution
produced relies upon the result of multiple local auctions, rather thaniogie global
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auction. Thus, the goal in decentralised supply chain formation is not tlupeoa tech-
nigue for the niche situation which requires all aspects of the processdonbgletely
decentralised, but to decentralise the most important aspect of the gradash is to
computeglobal solutionsin a local manneron the basis of limited information. Our
convergence detector agent allows us to detect convergence mokéy guid with less
overhead than a distributed method such as the Dijkstra-Scholten algoritijkst{&®
and Scholter{._lQJSO] for directed cyclic graphs, which involves a similgestd span-
ning tree construction. It also plays no part in the computation of solutichthais does
not centralise our approach.

It is also important to note that while the use of a convergence detector sgjees to
shorten the running time of the algorithm, the fact that it is not required faaltiggithm
to produce solutions means that it does not represent a single poirituoé farhis in
contrast with the auctions or mediators present in market based apespdoé failure
of which would prevent the technique from producing solutions in mogiscas

In the following paragraphs, we explain the operation of our convesydatector agent.
We present at the end of this section two potential alternatives to the usgedicated
convergence detector agent for situations requiring full decentralisatio

Once the LBP algorithm has begun, each agent reports to the convedgtector agent
at each iteration specifying whether the state in which they believe holds tkestloast
has changed since the previous iteration. This is the only information sharagents
with the convergence detector - no data about reserve prices, vakiati@apabilities
is exchanged. If the current number of iterations is greater than thefdize spanning
tree (please see Appendix B for an explanation of how we find the sgaitnei@) and
all agents reported that their lowest-cost state has remained the same asvibasp
iteration, then this indicates that the beliefs of the agents have stabilised leasat
reached the first stage of a stable oscillation. In this case, the congerdetector agent
halts the algorithm, and allocation is performed. If such a state is neverecattie
algorithm is halted after a pre-defined number of steps and allocation @ped. The
process of allocation is outlined in Sectlonl4.8.

As mentioned in Sectidn 2.4.2, LBP is known to converge on tree-structuaptigin a
number of iterations equal to the diameter of the gr]mh_LMJJmh;A 193hough
not all of our networks are trees, we take this value as the earliest nahibenations at
which it can be said that LBP has converged. In the absence of aeetfidistributed
and fully general technique for finding an exact value for the grapmelier [Magnien
et al.,.2009], we use distributed depth-first search to find a spannie@frde graph,
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and determine the diameter of the spanning tree using distributed breadsedirsh to
rovide an upper bound for the value of the actual diameter of the gkéad
]. The full process we follow for this is given in Appendix B.

A random agent present in the original network can perform the fumafahe con-
vergence detector agent if the use of such an agent is not permisshsedesignated
agent is not aware of the beliefs of its neighbours about their own statdshus has
no incentive to manipulate the calling of convergence. Once LBP hasagachumber
of iterations equal to the diameter of the spanning tree, the agent initiatesilaudéstr
breadth-first search similar to that used to find the diameter of the spaneagThis
time, agents send messages to their neighbors indicating whether they davedeon-
vergence or not. These messages are propagated back to the afmniipg the func-
tion of the convergence detector. Once the agent has received agméasdigating the
convergence status of each node in the network - it is aware of the idewfitezch
agent, though not their costs or capabilities, through the construction aptning
tree - then it either terminates the algorithm if all agents have convergesktarts it for
a number of steps equal to the diameter of the spanning tree. These additioris of
message passing increase the bandwidth required by the algorithm bentpaebetter
solution in terms of bandwidth and running time in most cases than the finalggdpo
solution, given below.

In situations where neither of the above two techniques are practical, ittty can
instead be run for a pre-designated number of iterations. This requatiehéhalgorithm
is run for a longer period of time than if convergence detection were bsgdloes not
significantly affect the quality of solutions produced.

4.8 Allocation

Before allocation is performed, each agent determines fm&t state- the state, at
convergence, in which the agent believes holds the lowest cost. Onfiedhstates of
each of the agents have been determined, the process of allocatiorggarHoe each of
the agents in the network, we remove edges leading to other agents whiubt éisted

in their final state if there are no other producers/consumers of that gotite case of
agents being in the inactive state, we remove all of their edges. We then ttexaigh

the agents once more, this time checking to see if, given the results of theyzrstage
of allocation, each producer was able to acquire all the goods in its setuifgopds.
If a producer is determined to have acquired an incomplete set, we remoeedbe
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leading to the buyers of their output good, but any edges leading to seflgrsir input
goods are untouched. This allows for the presence of “dead endsfyation where
a producer acquires a subset of its required input goods and is uoad®d its output
good.

At the conclusion of the allocation process, producers with an edge tetdine buyers
of their output good are regarded as having produced a good in thatalocwhile
consumers with an edge connected to one of the sellers of their consunoaklleig
regarded as having acquired their consumable good in the allocation.

4.8.1 Allocation Value

We determine the value of our allocations using Equdiioh 4.4, given belogrewhis
the set of consumers to acquire a gobdis the consumption value obtained by each of
those consumerg’ is the set of producers in the allocation who produce a goodfgnd
is the production cost of each produgerThis is corresponds to Equatibn}4.1.

Value =Y V.- Y R, (4.4)

ceC peEP

4.9 Payments

Once the allocation has been performed, each active produceregeepayment equal
to their reserve price plus the accumulated cost of their inputs from the bbiyeeir
output good. All active producers therefore recover their total aafspsoduction plus
the additional fixed margin encoded in the reserve price. This allows peosito make
a profit, motivating participation by economically self-interested producarssumers
receive a value equal to their consumption value minus the cost of the pt/they
make to the supplier of their consumable good. In an allocation with no “dedsf’,en
i.e. all producers in the allocation produce their output good, the sum dfiffeeences
between the payments made by active consumers and their consumptionyaigesl
to the allocation value.
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4.10 Experiments

We test our LBP-based method over the full set of network structuoes Walsh and
Wellman k;O_Qb], one network froln Wellman and Wiallsﬂ[jOOO], and one adaditlarger
network of our own creation. These networks, which are presenteddtioB[3.4, ex-
hibit a variety of structural properties which allow us to show the perfooeari LBP
under varying conditions. Further details about the properties of esttéork are also
presented in Sectidn 3.4. Upon initialisation of each of the networks, theveeggce
of each producer is set to a decimal value drawn from the intéi@l1). These values
are re-computed and changed after each run. Consumption valuesfrtakeé/NValsh and
Wellman tZD_Q ], are fixed at the values given underneath each con$GmheC2 and so
on) in each of the networks presented in Sediioh 3.4, over every run.

4.10.1 Performance Evaluation

To evaluate the performance of our method, we perform LBP on eaclorietmtil a
convergent state is reached, using the final state of each agent asithéb our alloca-
tions. If convergence is not reached, i.e. the state which each belieldssthe lowest
cost continues to oscillate, LBP continues to run for a maximum of ZSOBté'[tBe pro-
cedure by which we determine convergence is explained in Sécfibn 4.7edbkrthe
result at the end of these 250 steps as normal. We compare the valueadiboations to

the optimally efficient value, determined using mixed integer programming, ane to th
results of our re-implementation of the auction protocols give{niLsth_ﬂm
[@]z SAMP-SB, and SAMP-SB-D.

SAMP-SB uses a series of double auctions, one per good, which ruttanmously and
independently. Winner determination is performed according to the (Mpfiyst rule,
where buyers win with a bid at or above the (M+1)st price and a sellerswtina bid
at or below this price. Buyers and sellers place ascending bids acg@dimple set of
rules, with producers seeking to pay no more for their combined set of ggmas than
they expect to receive from the sale of their output good. Consumelrt®aioguire their
single consumable good as cheaply as possible. Allocation is performed 28R, as
described in Section 4.8, with production costs of active producers tékinglace of
reserve prices in the allocation value calculation.

1We use this value as a reasonable upper limit to the number of iterations t@Rifor on the networks we
tested.
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SAMP-SB-D is a modification of SAMP-SB which allows inactive producetsose
producers who do not produce an output good in the allocation - to decofmomit
contracts to buy inputs for which they would pay a positive price, a situagifemred to

as a “dead end”. In such a situation, decommitment means that the incomirgadge
producers in a dead end are removed, and the production cost ehadettiog producer

is not counted in the value of the allocation. Producers further down thim etho

are affected by this decommitment are, in turn, also allowed to decommit. Once the
decommitment stage is completed, the value of the allocation is calculated as outlined
in Section[4.811. Decommitment allows for the avoidance of this potential sofirce o
inefficiency, though at the cost of rendering contracts between lsdaer-binding.

As with M&sh_mdﬂell_mérﬂlo_bﬂ, we gather 100 results for each netvaork BP,

SAMP-SB and SAMP-SB-D, discarding runs in which the optimally efficieadtig is
non-positive. Due to this fairly small sample size the results produced bseouple-

mentations of SAMP-SB and SAMP-SB-D differ slightly to those given in Walst

Wellman k;O_Qb], but in all cases they follow similar trends and thus give adairesen-
tation of the performance of these auction protocols.

4.10.2 Competitive Equilibrium

For fair comparison with SAMP-SB and SAMP-SB-D, we divide our residtsnet-
works Unbalanced, Two-Cons, Greedy-Bad and Harder into instamicere the sets of
reserve prices (for LBP) or production costs (for SAMP-SB) admingetitive equilib-
rium, and instances where they do not. We generated 100 instanced eadhpetitive
equilibrium and non-competitive equilibrium for these networks, determiniagtbs-
ence (or otherwise) of competitive equilibrium using mixed integer programming

Input complementarities - a situation where a producer has to make a chbiceehe
two or more identical goods from two or more different producers - egeired for the
non-existence of competitive equilibrium; because networks Simple and-Kang are
polytrees, competitive equilibria always exist for these networks. Althabg Bigger
and Huge networks do contain input complementarities, we, as wi

], in the case of Bigger, were unable to generate no-equilibriutarioss of these
networks. We explain competitive equilibrium in greater detail in Seéfian 3.3.
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4.10.3 Efficiency

We divide our results into one of four efficiency classes: negative, zaboptimal and
optimal. Recall Equatioh 4.4, which allows us to determine the value of an allocation
The optimally efficient allocation within a network, given a set of produosis; is the

one which maximises this value. We use the optimally efficient allocation as a-bench
mark for the results we obtain using our LBP method. We determine the optimally effi
cient allocation for each run using mixed integer programming. We classifyesults
using the LBP method as follows:

4.10.3.1 Negative

A negative-valued allocation is an allocation in which the reserve priced.8&) or
production costs (for SAMP-SB) of active producers exceeds thewnption values of
active consumer(s). This is caused by dead ends: inactive predunberacquire one or
more input goods but do not produce an output, either due to no buiyey tweind for
their potential output good, or due to the producer acquiring an incommetd s1put
goods. In LBP, dead ends may be produced by the double-countinglief alues
caused by loopy networks, or by non-convergence. SAMP-SBeavhe problem of
dead ends by allowing producers in such situations to decommit from ctentcabuy
their inputs. While a similar post-allocation decommitment stage is possible with LBP,
we omit this functionality to avoid problems with rendering post-allocation cotstrac
non-binding.

4.10.3.2 Zero

A zero-valued allocation is one in which all producers are assigned tcaativie state,
meaning that no goods are bought or sold. Zero-valued allocations assdesirable
than negative-valued allocations, but less desirable than suboptimatiorabplloca-
tions.

4.10.3.3 Suboptimal

Suboptimal allocations are allocations in which a positive non-optimal solutian wa
found. This can be caused by the presence of dead ends, or bygfiawdiallocation
without dead ends when an allocation of higher value existed.
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4.10.3.4 Optimal

An optimal allocation means that our algorithm was able find the allocation whiech pro
duced the maximum efficiency available, meaning we achieved the same vahe as
centralised benchmark, determined by local search.

411 Results

4.11.1 Efficiency Classes

In keeping with our desire for as fair a comparison between the methodssibie, the
efficiency classes of the results produced by SAMP-SB and SAMBSiBe identical
to those we use for our LBP-based method. For SAMP-SB and SAMP-SBzero
result means that no solution was found, and no dead ends were ciBagedefinitions
of negative, suboptimal and optimal allocations giverhin.DA[al&h.andMLélle]Zire
identical to ours. The ability for inactive producers to decommit from catgrand thus
eliminate the problem of dead ends under the SAMP-SB-D protocol mearth¢ha is
no negative efficiency category for SAMP-SB-D.

We see from Table 4.2 that LBP is able to match SAMP-SB’s performanaefarorks
Simple and Bigger, while producing less efficiency on Huge. The inabilityL®P
to converge to the optimal on the Huge network is attributable to the large nurhber o
undirected cycles present in the network, rather than its size - as we n8tection
[2.4.2, LBP is guaranteed to converge to the optimal on trees, regardibsiraiize. The
presence of undirected cycles leads to the double counting of beliefsdeg mvithin the
cycles, which in turn leads these agents to pass incorrect values to theades in the
network. This may lead to agents being assigned incorrect states in thelli@caltion.
For all other networks, LBP strongly outperforms SAMP-SB. It is alsardkat in most
cases, the existence of competitive equilibrium has little effect on the resatsiged
by LBP; as would be expected given our non-market-based appribectistribution of
reserve prices/production costs for producers does not appeattey asmmuch for LBP
as it does for SAMP-SB. Even if we compare our results with the bestfoaSAMP-
SB, using only those results in which competitive equilibria exist, we are still table
show a clear advantage in the proportions of our runs showing optimaikeffy, with
marked reductions in negative, zero and suboptimal solutions in almostal.ca

Our results are also comparable to those produced by SAMP-SB-D, with isiffila
ciency class proportions between the two methods for most networks if anhggults
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where competitive equilibria exist for SAMP-SB-D are compared. In thée cCRAMP-
SB-D generates optimal allocations with equal frequency to LBP for n&sMdnbal-
anced, Bigger and Greedy-Bad, though like SAMP-SB it struggles wbempetitive
equilibria are not present, with the allocations produced by LBP in the ebs#rihese
conditions once again being vastly more efficient.

Table 4.2: Distribution of efficiency classes from LBP, and the SAMP-88 a
SAMP-SB-D protocols from Walsh and Wellman |2b03]. Classes are tNega

Zero, Suboptimal and Optimal.

LBP % of SAMP-SB % of |SAMP-SB-D % of
instances instances instances
Network |Neg Zero Sub OptNeg Zero Sub OptZero Sub Opt
Simple |0.0 0.0 0.0 100.00.0 0.0 0.0 100.p0.0 0.0 100.G
Unbalanced
CE 0.0 1.0 0.0 99.00.0 0.0 17.0 83.00.0 6.0 94.0
NoCE |0.0 3.0 0.0 97.095.0 0.0 1.0 4.0/920 10 7.0
Two-Cons
CE 0.0 0.0 2.0 98.018.0 0.0 11.0 71.00.0 6.0 94.0
NoCE |0.0 0.0 0.0 100.25.0 1.0 74.0 0.0 0.0 100.0 0.0
Bigger |2.0 1.0 0.0 97.00.0 0.0 2.0 98.00.0 2.0 98.0
Many-Cons 0.0 0.0 0.0 100.(86.0 0.0 54.0 10.00.0 0.0 100.@
Greedy-Bad
CE 0.0 0.0 0.0 100.02.0 0.0 19.0 79.00.0 0.0 100.d
NoCE |0.0 0.0 0.0 100.®9.0 0.0 1.0 0.0/96.0 0.0 4.0
Harder
CE 0.0 37.0 0.0 63.053.0 0.0 4.0 44.034.0 0.0 66.0
NoCE |1.0 87.0 0.0 12.093.0 0.0 7.0 0.0/69.0 0.0 31.0
Huge |0.0 3.0 96.0 1.0/0.0 0.0 0.0 100.00.0 0.0 100.G

While the use of a post-allocation decommitment protocol similar to SAMP-SB-Ddvou
have slightly improved the performance of LBP on the Bigger network byexing the
two negative-valued allocations into zero-valued allocations, the contsigtemality of
our results suggests that such an addition would largely be unneceBsaperformance
of our method is aided by the fact that, when viewed as undirected graptwgorks
Simple, Greedy-Bad and Many-Cons are all acyclic - LBP is guaranteeahteerge to
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the correct solution on networks with this structure. The strong perfaeaahLBP on
the other networks, however, shows that this network structure is n@raquisite for
allocative efficiency, and that LBP is still able to produce optimal results ae toopy
networks.

4.11.2 Average Efficiency

Table[4.3 shows the average efficiency achieved over 100 runsdomeawvork by LBP,

SAMP-SB and SAMP-SB-D as a fraction of the available efficiency. Aerage effi-

ciency of 1.000 indicates that 100% of the available efficiency was captureach of

the hundred runs for that particular network instance, and repregentsest possible
result. Negative values indicate that over 100 runs the method recordativecaver-

age efficiency in that network. For example, a result showing -1.00@gee=fficiency

means the method achieved, on average, -100% of the maximum availakieneyfic
value. Because we are measuring results as a fraction of the efficielt g&rongly

negatively efficient results can lead to average efficiency values b&lo@0.
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Table 4.3: Average efficiency in each network produced by the psazpbbBP-
based technigue, and the SAMP-SB and SAMP-SB-D protocols fromhveald
Wellman [ZD_Q ]. Aresult of 1.000 is equal to the capture of an averagé@#o
of available efficiency, while a result of -1.000 is equal to an averagtuoa of
-100% of available efficiency. Note that while 1.000 is the maximum achievable
positive value, it is possible to produce negative overall efficiencikesvd..000.

LBP average SAMP-SB average SAMP-SB-D average
Network efficiency efficiency efficiency
Simple 1.000 1.000 1.000
Unbalanced
CE 0.988 0.951 0.996
No CE 0.944 -4.224 0.066
Two-Cons
CE 0.998 0.719 0.963
No CE 1.000 0.215 0.543
Bigger 0.941 0.998 0.998
Many-Cons 1.000 0.174 1.000
Greedy-Bad
CE 1.000 0.941 1.000
No CE 1.000 -3.316 0.047
Harder
CE 0.734 -0.655 0.843
No CE 0.192 -3.260 0.431
Huge 0.646 1.000 1.000

We see from Tablg 4.3 that once again, LBP essentially equals or sigtiificarper-
forms SAMP-SB for the majority of networks, capturing, with the exceptiothefBig-
ger and Huge networks, a higher proportion of the efficient value tAdMFSSB is able
to. As with the previous set of experiments, if our results are comparedydtuwse
where competitive equilibria are present for SAMP-SB-D, then we saeSihisP-SB-
D is able to capture 30% more for the Huge network, around 6% more of drags/
efficiency than LBP for the Bigger network, and around 1% more fordlarced, with
essentially equally near-optimal or optimal results for the other networkset#zr, with
the exception of the Harder network, LBP tends to strongly outperforidi3/&B-D in
the absence of competitive equilibria, performing near-perfectly onraemetworks,
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such as Greedy-Bad and Unbalanced, where SAMP-SB-D captaeshien 10% of
available efficiency. Table 4.4 shows that for most networks there exsdittle spread
within our results.

Table 4.4: Median and interquartile ranges measures for the results opteBP
sented in Table4l3

LBP LBP
Network | median| interquartile range
Simple 1.000 0.000
Unbalanced
CE 1.000 0.000
No CE 1.000 0.000
Two-Cons
CE 1.000 0.000
No CE 1.000 0.000
Bigger 1.000 0.000
Many-Cons| 1.000 0.000
Greedy-Bad
CE 1.000 0.000
No CE 1.000 0.000
Harder
CE 1.000 1.000
No CE 0.000 2.211
Huge 0.642 0.274

4.11.3 Messages and Bids Before Convergence

Tabld 4.} shows a comparison between the mean averages over 10 eachf network
of the total number of messages passed and the total bandwidth requiveel dafver-
gence in LBP versus the mean average total number of bids placed, anuldidd plus
price quotes sent, before quiescence - a state in which no agent wisbleantge its
bid for any good - in SAMP-SB. We measure the total bandwidth requireld®y by

recording the total number of belief values sent between agents in eacRegording
this value allows us to perform a like-for-like comparison with the total banthwie-

quired by SAMP-SB, as measured by adding the total number of pricegseté¢ to the
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Table 4.5: Average numbers of messages passed before conengeach net-
work using the proposed LBP-based compared with the average nuoilizds
placed in each network before quiescence in the SAMP-SB protoaul Walsh
and Wellman|[2003].

LBP average | LBP average|SAMP-SB averag&SAMP-SB average
Network number of |total bandwidth ~ number of number of
messages passed required bids placed bids placed and
price quotes sen
Simple 46.4 120.78 107.96 411.46
Unbalanced
CE 367.54 1626.0 615.51 3045.83
No CE 368.0 1621.5 871.93 4649.17
Two-Cons
CE 90.86 270.3 534.01 2070.68
No CE 84.0 305.32 661.14 2678.82
Bigger 1440.0 17945.28 888.91 6956.41
Many-Cons 399.36 1166.0 2620.12 9153.11
Greedy-Bad
CE 90.0 284.24 543.32 1934.6
No CE 90.0 292.16 801.15 2995.02
Harder
CE 11626.48 79547.2 1769.03 16190.65
No CE 12260.32 175237.9 731.06 8091.07
Huge 4548.36 14429.28 3164.4 15412.44

number of bids placed.

We see that, in most cases, LBP requires the passing of far fewer raggsageach
convergence than the number of bids needed for SAMP-SB to reacécquiee. One
exception to this is the Bigger network - 1440 is the minimum total number of message
that can be passed before LBP can be said to have converged foetvsrk, and is
equal to the diameter of the network plus one (an additional iteration is regess
determine that the states have not changed) multiplied by the number of megaaged
in a single step.

We see similar outcomes when comparing the total bandwidth required by LBfhweith
total number of bids placed plus price quotes sent in SAMP-SB. LBP religlfyires
less bandwidth than SAMP-SB on both small networks and large networkslawith
interconnectedness, such as Many-Cons and Bigger, but tendsuiceraggreat deal
more bandwidth on large, highly interconnected networks like Harder atavthMany-
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Alts networks.

4.11.4 Scaling

In this section, we examine how the efficiency of the allocations producedBy

SAMP-SB and SAMP-SB-D are influenced by three network properties:number
of agents in the network, the average degree of connectivity betwesrisagnd the
number of tiers of agents in the network.

We see from Figurds 4.1, 4.2 dndl4.3 that, over the networks we testealyaedficiency
in LBP appears to be weakly negatively correlated to the number of agehte@num-
ber of tiers, while there is little or no correlation between the average efficieih BP
and average interconnectedness. SAMP-SB and SAMP-SB-D shaorrelation be-
tween average efficiency and network structure. It is clear fromesuits that, as would
be expected, LBP performs flawlessly on tree-structured networkg, & Simple or
Many-Cons, achieving perfect allocative efficiency. This is a guaswhich holds re-
gardless of the network’s size. The performance of LBP on netwoitksl@ops cannot,
unfortunately, be guaranteed, and a full set of convergence camslftio LBP has yet to
be found. This, again, is true regardless of the size of the network,ingean analysis
of the efficiency produced on a set of even larger networks woulb@aotstructive. The
absence of a convergence guarantee is the one unavoidable weakittes algorithm:
in much the same as SAMP-SB and SAMP-SB-D are generally unable to dbahe
non-existence of competitive equilibrium, LBP may sometimes find difficulties when
applied to loopy networks.
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Figure 4.1: A graph showing how efficiency in each of the protocols savith
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4.11.5 Game-theoretic Properties

As previously mentioned, auction-based approaches are often dafarsupply chain
formation due to their possession of various game-theoretic properti¢sisisection,
we analyse the game theoretic properties of our LBP-based approaotompare them
to those of SAMP-SB and SAMP-SB-D. Although LBP is not incentive caibjg it is
strongly budget balanced and guarantees perfect allocative efffaidren networks are
acyclic; individual rationality could also be guaranteed with a post-allocagmommit-
ment stage similar to that used by SAMP-SB-D.

4.11.5.1 Individual Rationality

A mechanism is classified as individually rational if a participant cannetiveqegative
utility by participating. As with SAMP-SB, we cannot guarantee the individatbnal-
ity of our approach given that there exists the possibility of dead endg Ipegsent in
our allocations. Producers involved in dead ends purchase inputsebubhable to sell
their outputs, and so receive negative utility. SAMP-SB-D guarante@adndl ratio-
nality through its post-allocation decommitment stage, which allows producerséul
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in dead ends to decommit from their contracts to buy goods which are naloegéded,
and thus avoid negative utility. Individual rationality could be guaranteeduinap-
proach if we were to use a similar process of post-allocation decommitment isfrioh
shown here to avoid the aforementioned problem of rendering postiatiocantracts
non-binding.

4.11.5.2 Incentive Compatibility

A mechanism is incentive compatible if the dominant strategy for participants igtho tr
fully reveal their private valuations. At present, our mechanism is netitiae compat-
ible for either buyers or sellers due to the fact that participants may poteritieiase
their utility by inflating their reserve prices. However, there is an uncerggpeulimit to
this potential increase in utility - if a producer reports a reserve price whitdo high,
there may be, depending on the network structure and the reportedcpoodcosts of
other producers, an alternative, cheaper allocation in which the misirepagent does
not participate. The upper limit is uncertain due to the fact that produeees o in-
formation about the structure of the network as a whole, nor do they kreweforted
costs of any agents other than those which they are directly linked to. Thissisuenfor
sellers in any real-life market-based scenario.

4.11.5.3 Budget Balance

Our approach involves no payments either to or from the mechanism, andeotiee
strongly budget balanced. This property is also present in both SABIBRE SAMP-
SB-D, where no payments are made to or by the auctions.

4.11.5.4 Allocative Efficiency

The results presented in Tables 2 and 3 suggest that our approagialidecaf reliably
producing more efficient allocations than SAMP-SB and SAMP-SB-D ométe/ork
instances tested. LBP guarantees perfect allocative efficiency clicaogtworks, due
to its ability to reliably converge to the optimal MAP assignment on graphs whictoto
contain loops. If LBP converges on a network with a single loop, the regudtlocation
is also guaranteed to have perfect allocative efficiency. Becauseithap guarantee
of the quality of solutions produced by LBP on networks with more than a slogfe
allocative efficiency for these networks is also impossible to guarantethe@ketworks
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we tested, two - Unbalanced and Bigger - contain multiple loops, and LBPeshsinong
allocative efficiency for both.

4.12 Conclusions

In this chapter, we presented a new method for decentralised supply fohaiation,

using work b)J{AALa.Iih_a.ndAALeUmHJ_LZdOS] as both a foundation for the steictuour

networks, and as a basis for comparison to our results. Our LBP-baestbbd, involv-
ing decentralised message passing to propagate beliefs held by our, ageitie to
perform significantly better at finding efficient allocations for most nekvtban the es-
tablished approach utilising simultaneous ascending double auctions we reoitnjoa

whilst making no assumptions of centralisation.

For the majority of networks tested, we were able to show that min-sum LBRes@b
match or outperform the results obtained by the auction-based methodcprgaon-
sistently optimal or near-optimal average efficiency results regardlesssbétructures.
With one exception, our method is able to avoid the problem of consistenptuniad-
ity of allocative efficiency encountered by the auction-based appmwheh competitive
equilibrium is not present, continuing to produce optimal or near-optimal atltmts
over most networks.

In the following chapter, we introduce a min-sum LBP-based method whiclsboo-
ducers to attempt to make a profit in the LBP mechanism. This technique, which we
refer to asL B P, also allows for the property of incentive compatibility for producers.
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Chapter 5

Supply Chain Formation with
Profit-seeking Producers using
LBP,

The ultimate goal of many approaches to supply chain formation is surplus maximis
tion, with a goal of finding a set of producers able to supply goods toef sensumers
which maximises the difference between the total cost of production andithations
held by consumers for the goods they obtain. In order to achieve thisigsassumed
that producers compete to sell their outputs at the lowest possible pricerth®if as-
sumption made frequently in decentralised approaches, suc i

], is that producers bid to sell their output goods at a price wHiolvathem to
break even and make no profit. Under these assumptions, all of the sig@ojoyed
by consumers, while producers are left with little room for self-interestindeed, any
incentive to participate. The work presented in Chapter 4 motivates patitcipay
economically self-interested producers by encoding a fixed profit masigiim reserve
prices, but the ultimate goal remains that of surplus maximisation.

Although surplus maximisation is by far the most common solution goal, there lar@ so
notable instances of work in which alternative goals are pursued.

The Trading Agent Competition Supply Chain Management (TAC SCM) game+e
sents possibly the most well-known instance of the use of agent-basetqiges for
supply chains in a non-surplus maximisation setting. TAC SCM models a thressfier
ply chain, with suppliers of components at the first tier, producers aettensl tier and
consumers of finished goods at the third tier. The goal of each produd&C SCM
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is to maximise its own profit by purchasing components from suppliers at thestow
price possible and selling assembled goods to consumers at the grelaggiogsible.
The TAC SCM game is not comparable with our work because it deals with tie dds
supply chain management, where supply chains are already formed, trethesupply
chain formation.

]
Babaioff and Nisan@l] investigates the approximability of a series a@akgoals
when using combinatorial exchanges in a supply chain formation setting. iGatoital
exchanges are a generalisation of both double auctions and standasthatworial auc-
tions in which bundles of heterogeneous goods are traded betweers laungksellers.
As well as the standard surplus maximisation problem, the authors also intestiga
approximability of solutions to problems involving volume maximisation - maximising
the number of goods traded subject to positive surplus - and sociahmgoshisation,

where the aim is to minimise the difference between the valuations of tradingsseller
and non-trading buyers. Unfortunately, the work presentE_d_ln_B_dtmidINisaHLZgl]
is not comparable with our due to the fact that they compute solutions in a lcssdra

manner.

In this chapter, we propose a novel goal for supply chain formationccphefit max-
imisation Profit maximisation eschews the commonly-held assumption that producers
are satisfied with making zero or negligible profit by participating, and insteakls to
maximise the amount of available surplus converted into profit by participatoapup-

ers. Specifically, we aim to maximise the following function:

>_pep Hp
ZCEC* Ve — ZpGP* Rp

We divide the sum of the margins of active producers P is divided by the total
surplus available in theptimalallocation, which is calculated by subtracting the sum of

(5.1)

SurplusConverted =

reserve pricest, of producers in the set of producers in the optimal allocatterfrom

the sum of consumption values of consumers in the optimal allocétiorin short, the
closer the sum of the margins of active producers to the value of the opfilozdtion,

the more effective the technique is for profit maximisation.

Profit maximisation therefore shifts some of the incentive of participation ftom

sumers to producers, but is still compatible with the assumption that consuraesata
isfied as long as they obtain their consumable good at or below the valuatjoassign
to it. We suggest that this technique is especially applicable in scenarios &ten-
sumer has already agreed to pay a specified price and there is a neegbbr chain
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participants to intelligently add margins to their outputs. Like surplus maximisatien, on
of the primary aims of profit maximisation is to find the allocation with the maximum
surplus available. By minimising the base costs of participating producers wienisa

the available profit.

We propose an LBP-based method for decentralised profit maximisatferrectto as
LBP,, which allows producers to update their profit margins as the LBP algoritbetis

ing run. The aim of our algorithm is to allow a significant proportion of avédairplus

to be captured by producers in the form of profit, providing them with anggpincen-

tive to participate than in approaches which assume price-taking breaksetaviour.
Because there exists no other method for profit maximisation in the literatutesitbe
performance of. B P, against an optimal benchmark determined using integer program-
ming, and an LBP-based naive profit-making method.

5.1 LBP, Model

In this section, we explain the features of th& P, model which differ from those of
our original model, as is described in Chajter 4.

5.1.1 Producers and Consumers

As in standard LBP, producers are individual self-interested busieesties capable
of consuming and producing goods. Each producer is capable ofigirgda single
type of output good, and in order to do so are required to have obtaiedthplete
set of their input goods. Producers attach a base reservepyite their output good

- this is a constant, producer-specific value. In order to try to maximise thafitg)
producers also add a margm,onto the sale price of their output good. Margins change
in value over the course of each run and cannot drop below zero. gl values
we use forR, andy in Sectior[5.B. As with the single-unit case explained in Chapter
[, Consumers aim to acquire a single unit of their consumable good at aeppirce

to or below their consumption valug,, which is held static. Allowing consumers to
revise their consumption values downwards would lead to allocations witintese
zero surplus available, defeating the purpose of a profit maximisation meaiand is
therefore not allowed for.

66



5.1.2 Unary Cost

Like standard LBP, each state of every agent is associated with a cos taltre of

the allocation were the agent to be assigned that state. For producearsatiyecost of
active states is equal t8,+.,, whereR, andp, are the production cost and margin,
respectively, of produces. For consumers, the unary cost of active states is equal to
0 — C, where(C, is consumer’s consumption value. For all agents, the unary cost of
inactive states is zero.

5.2 LBP, Algorithm

In the previous chapter, we explained how loopy belief propagationitesative stages
of message passing and belief updates in order to determine the netwerlesgign-
ment of states that maximises the value of the allocation. In this section, webdescr
how we modified the standard min-sum LBP algorithm, through the addition ofgimar
update step, to allow producers to make a profit.

5.2.1 Margin Update

To allow producers to change the price of their output goods, we addditicenal step

to the standard min-sum LBP algorithm as is described in Chiapter 4, by aaldiaggin
update step. This margin update step occurs at iterations which are multipes of
approximate network diameter, and is conducted after each agent Isasl passsages
and updated their beliefs at that step. The process for finding the>apate network
diameter is explained in Section 5.2.5. For example, given an approximaterketwo
diameter of 4, producers will update their margins at steps 4, 8, 12 and.sd\e
implement this restriction, rather than allowing participants to update their margins a
every step, to allow enough iterations for the changes in beliefs brobght as a result

of these margin updates to propagate throughout the network. Be@auszplained
below, the nature of. 3P, means that producers are aware of the maximum surplus
available to them, we impose an upper botma the amount each producer may change
its margin by at any given margin step. This upper bound is necessargitbsitwations
where multiple producers simultaneously attempt to capture all of the availaplesu

for themselves, increasing the cumulative price of goods in the supply tthairch an
extent that no potential solutions exist.
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In the following subsections, we present a self-interested strategygbatsaparticipat-
ing in the LB P, mechanism may choose to follow.

5.2.2 Margin Update Strategy

Assuming the beliefs of producerare correct, the amount of surplus available tis
equal top’s belief in its inactive statéel,, minusp's belief in its lowest cost active
statebel,,. As well as the belief values of each agent, our proposed margin update
strategy relies on three values,, d, and3,. p, is producerp’s current margin.é,

is the maximum amount by which a producer is permitted to increase or dedigase
margin at each margin update step. Finallyjs a value used as a “buffer zone” where
producers choose to hold their margin at its current value. This enhiatgsroducers do

not overshoot the surplus available to them. An explanation of why this migturas
provided in Section 5.611. In order to simplify explanation, we assume thatallipers

use the samg value and that, when changing their margins, all producers increment or
decrement their margin by the maximum amodnA discussion of the implications of
allowing producers to choose their own values daand 3 is provided in Section 516.
The use of our strategy is not a requiremeht3 P, allows producers to use any strategy
they wish; the only restrictions imposed are that margin updates be concicteagin
update steps, and margins are not raised or lowered at any step by @rediter than.

Before updating its margin, each produgetompares its belief value in its lowest cost
active statébel,,, with its belief value in its inactive statégl,,. For example, ifp has
three statesy,,, x, andx,,, with z,, being the inactive state, ands belief values for
these states are, = —0.2, =z, = —0.5 andz,, = 1.3, thenx, is p's lowest cost
active state, anélel,,, = —0.2 andbel,,, = —0.5. Because each agent is assigned that
state in which they believe holds the lowest cost at allocation, in comparing thkses,
producers determine, given their current beliefs, whether they wauddtive or inactive

if the allocation were to be performed at the current step. Producerth@dellowing
logic to decide whether to change their margin:

— | Fbel,, <=bel,, N, >=09 THEN p, := p, — 9,
— ELSE | Foely, — B > bel,, THEN 1, := 11, + 9,

This means that ip believes, giverbelp, andbelp,, that it would be inactive in the
allocation, then, if possible, it reduces its marginby increment,. This is based on
the principle that it is better to make a smaller profit than not participate at all. ©n th
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other hand, ibelp, is sufficiently lower tharbel p,, a situation wherg would be active
in the allocationp increasesg, by 6,,.

5.2.3 Margin Update Example

We now present an example of how this strategy workisAhP, in two different scenar-

ios: the first is a situation in which there exists only a single solution to the supply chain,
and second is a situation where multiple potential solutions are present. We present two
different scenarios because margin update works slightly differently when multiple po-
tential solutions exist. For both scenarios we assume all agents+#d9@01 in order to
facilitate a clear explanation.

5.2.3.1 Single Solution

Aston University

ustration removed for copyright restrictions

Figure 5.1: An instance of the Simple network from Walsh and Wellrh_an_[2003]
with a set of production costs that allow for one positive-valued solution. In this
exampley = 0, 8 = 0.01 andd = 0.01 for all producers.

Figure[5.1 shows a sample set of costs in the Simple network for which there exists only
one positive-valued solution: P2 selling good 2 to P4, which sells good 3 to C1, gener-
ating an allocation value (and thus a total surplus) of 0.626. As we describe in Section
[4.:81, allocation values are calculated by subtracting the sum of the reserve prices of
active producers from the sum of consumption values of active consumers. The other
possible solution to this network, involving P1 and P3, produces a negative total surplus
of -0.404. Given our minimum margin update increment of 0.01, the maximum obtain-
able surplus given the costs shown in Figuré 5.1 is therefore 0.62. These values are
reflected in the pre-update column of Table 5.1, which shows the beliefs of each partic-
ipant about their inactive state and their lowest cost active state before the initial margin
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update step. Producers P2 and P4 and consumer C1 each believe thsirdost active
state would lead to a negative cost - a surplus - to the allocation of 0.626, whileqers
P1 and P3 believe their lowest cost active state would lead to a cost of ®\dOdrding
to the margin update rules laid out in Secfion 3.2.1, this leads P2 and P4 to emasec
their margin by 0.01. Although producers P1 and P3 believe that their irastAtes
hold a lower cost than their active state, they cannot reduce their margiasise we
assume that all producers begin with margins equal to zero, and thaigersdare not
interested in selling goods at a price below their reserve price. The pulate)2 column
of Table[5.1 shows the beliefs of agents before the second margin upelate sumu-
lative margin increase of 0.02 increases the cost of P2, P4 and C1'stloas active
states before the next margin update step to -0.606. It also, as a side ieifecases
the cost of P1 and P3's inactive states to the same value. Producerd P2 aontinue
to increase their margins at each margin update step until the differencedretast of
their inactive state (0.000) and their lowest cost active state (0.006) rteatnseither
of the margin update conditions specified in Sedfion b.2.1 are triggered.€likéstand
margins of each agent at this point are shown in the Final Beliefs colummbéb.1. At
this point, with the cumulative total of P2 and P4’s margins representing the miaximu
obtainable surplus in this network, and with no agent compelled to update itgurthey
LBP, algorithm converges, as is explainedin 5.2.5, and allocation is performed.

Table 5.1: A table showing the belief values of agents in the Simple network,
given the set of costs shown in Figlrel5.1. The pre-update column semis
agents belief in their inactive state and lowest cost active state immediatehg befo
the first margin update step. The pre-update 2 column shows these balies,va
and the margin of each agent, immediately before the second margin update step
Finally, the final beliefs column shows beliefs and margins at the point atwhic
convergence is called. All margins immediately before the first margin update
step are equal to zero.

Pre-Update Pre-Update 2 Final Beliefs
AgentlnactiveLowest CostnactivgLowest CosMargin/InactiveLowest CosMargin
Active Active Active

P1 |-0.626] 0.404 |-0.606| 0.404 |0.000|-0.006] 0.404 |0.000

P2 | 0.000| -0.626 | 0.000| -0.606 |0.010| 0.000| -0.006 |0.310

P3 |-0.626| 0.404 |-0.606/ 0.404 |0.000|-0.006| 0.404 |0.000

P4 | 0.000| -0.626 | 0.000| -0.606 |O0.010| 0.000| -0.006 |0.310

Cl1 | 0.000| -0.626 | 0.000| -0.606 |0.000| 0.000| -0.006 |0.000
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5.2.3.2 Multiple Solutions

Aston University

Hlustration removed for copyright restrictions

Figure 5.2: An instance of the Simple network from Walsh and Wellrh_an_[2003]
with a set of production costs that allow for two positive-valued solutions. In this
exampley = 0, 8 = 0.01 andd = 0.01 for all producers.

Given the set of costs of the agents shown in Fifurk 5.2, there exist two positive-valued
solutions to this network. The first, where P1 sells good 1 to P3, which in turn sells good
3 to C1, produces an allocation value of 0.376. The other possible solution, where P2
sells good 2 to P4 and P4 sells good 3 to C1, allows for an allocation value of 1.046.
Thus, the latter of these solutions is the optimal allocation for this network given this set
of costs, and 1.04 is the maximum obtainable profit given our margin update increment.
We describe how the value of an allocation is determinédinl4.8.1.

The Pre-Update column of Takle 5.2 shows that these two possible allocation values
are reflected in the beliefs of the agents immediately prior to the first margin update
step. Following the margin update rule, producers P2 and P4 each increase their margin
by 0.01 at the first margin step. The Pre-Update 2 column shows the result that these
margin updates have on the beliefs of each agent.

The key difference between the single-solution and multiple-solution cases is revealed in
the Final Beliefs column: the presence of an alternative positive-valued solution means
that the inactive-state beliefs of agents in the optimal solution carry negative values rather
than zeroes as in the single-solution case, meaning there is a smaller distance between the
beliefs of agents in the optimal solution about their inactive and lowest-cost active states
in multiple-solution cases than in single-solution ones, particularly if all producers not
present in the optimal allocation hold their margins at zero as in this example. Because
the margin update rules do not compel P1 and P3 to alter their margins at any point given
these costs, producers P2 and P4 are able to extend their margins only up to the point
at which they still represent the most efficient solution when = 0 andups = 0.
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This is expected behaviour: while there exists additional unclaimed surpleis this
solution method, it can only be claimed by P2 and P4 if they are able to participate.
either producer was to extend their margin so that the total margins of the seyemts
exceeded 0.66 then P1 and P3, with margins of zero, would represerneeeifioient
solution and P2 and P4 would receive nothing.

Table 5.2: A table showing the belief values and margins of agents in the Simple
network, given the set of costs shown in Figuré 5.2. The pre-updatsmoahows

each agents belief in their inactive state and lowest cost active state immediately
before the first margin update step. The pre-update 2 column showshiblésfe
values and the margin of each agent immediately before the second margte upd
step. Finally, the final beliefs column shows beliefs and margins at the point a
which convergence is called. All margins immediately before the first margin
update step are equal to zero.

Pre-Update Pre-Update 2 Final Beliefs
AgentlnactiveLowest CostnactivgLowest CosMargin InactiveLowest CosMargin
Active Active Active

P1 |-1.046| -0.376 |-1.026/ -0.376 | 0.00 |-0.386| -0.376 |0.000

P2 |-0.376] -1.046 |-0.376/ -1.026 | 0.01 |-0.376] -0.386 |0.330

P3 |-1.046] -0.376 |-1.026/ -0.376 | 0.00 |-0.386| -0.376 | 0.000

P4 |-0.376| -1.046 |-0.376/ -1.026 | 0.01|-0.376| -0.386 |0.330

Cl1 | 0.000| -1.046 | 0.000| -1.026 n/a | 0.000| -0.386 | 0.000

5.2.4 Profit Distribution

When attempting to maximise profits in a supply chain formation scenario, we aim to
find the allocation which maximises surplus - the difference between thevegseces
of active producers and the consumption values of active consumacscoavert the
difference in surplus between this allocation and the allocation with the sétghdst
surplus into profits for active producers. This is accomplished throughimapdates:
active producers raise their prices to the point at which the total of thieiegrs just
slightly cheaper than that of the next-best option. Because we assunad firaducers
follow the same margin update strategy, and all producers update their msiminlta-
neously, all active producers tend to profit equally, as is shown in taepbes provided
in Sectiond 5.2.311 arld 5.2.8.2. In networks permitting solutions where multiple con-
sumers acquire goods simultaneously, such as Many-Cons, activecpredn the sub-
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chains upstream of each active consumer tend to profit equally whegeaitsafollow
our margin update strategy, though the profits obtained by producersanapetween
sub-chains.

5.2.5 Convergence

As with standard LBP, we make use of a convergence detector agerit ishiespon-
sible for controlling termination of the algorithm but is otherwise uninvolved laas
no knowledge of the costs, margin or states of any particpating agents.dasdsbed
in Section[4.\7, the convergence detector agent initiates a distributed dsptbefirch
in order to find a spanning tree of the network, and then a series of distlibueadth-
first searches to find the diameter of the spanning tree. The diameter gigheirsg
tree provides an upper bound for the actual diameter of the graph. @his is used
for the margin update step ihBP,, and is broadcast to all participating agents by the
convergence detector before the algorithm begins. Convergenaioet® LB P, is
performed according to the following rules: at each margin update step,aggent re-
ports whether there was any change to its margin to the convergence datggta We
assume that all agents report truthfully. If no agent reports a chanige reargin for
two consecutive margin update steps, the convergence detector adfsrthb L B P,
algorithm and begins the allocation process.

5.2.6 Allocation

The allocation process ihB P, is conducted exactly as it is in standard LBP. This pro-
cess is explained in Sectibn #.8.

5.2.6.1 Allocation Value

The source of potential profits ihB P, is the surplus of the allocation - the difference
between the consumption values of consumers that acquire a good in ttegiatipand

the total production costs of active producers. Allocations which maximissutpus
offer greater opportunities for producers to extend their margins arslghtn more
profit. With this in mind, we measure the efficiency of the allocations produged b
LBP, in the same way as for standard LBP. Secfion #.8.1 describes how we determin
the value of allocations.
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5.2.7 Payments

Payments are calculated in a similar way to standard LBP, as is explained innSectio
[4.9 with one crucial difference. Active producers now receive argayt equal to their
production costplus their margin plus the accumulated cost of their input goods from
the buyer of their output good. No payments are made to or from the meghanis

5.2.8 Profit Maximisation

Because the goal of theB P, algorithm is to allow producers to convert the surplus in
these allocations into profit, we require a metric in addition to the allocation value in
order to be able to judge the quality of the solutions it produces.

> _pep Hp
ZCEC* ‘/C - ZpGP* Rp

Equatior 5.1l shows the method for calculating the performance of a techoigpefit
maximisation. The sum of the margins of active produgegsP is divided by the total

SurplusConverted = (5.1)

surplus available in theptimal allocation, which is calculated by subtracting sum of
reserve prices?, of producers in the set of producers in the optimal allocatferfrom
the sum of consumption values of consumers in the optimal allocétion

We use the surplus available in the optimal allocation rather than in the actuaitaioc
to allow this metric to be used as a quality measure independently of the effiviginey
If we were to use the surplus present in the actual allocation then a teehmigch con-
sistently produces suboptimal allocations with negligible efficiency and ctsnt80%
of this into profit would be judged as superior to a technique which consisterds the
optimal allocation and converts 99% of it into profit.

5.3 Experiments

We perform 100 runs of B P, for each of the networks described in Chapler 3. Produc-
tion costs are drawn from the intenv&l(0, 1) and varied between runs. Consumption
values are held static between runs. We compare our results to thosegutdgua min-
sum LBP-based naive profit-making method. In the naive method, peoslueport their
margins ask,, x z wherez is a number drawn randomly from the inter¢a(0, 1). Our
rationale for this strategy is that in a situation where producers may wish toanaiodit
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but are not aware of the amount of surplus available to them, it is likely thgtviiie
attach a margin to their goods for sale equal to some proportion of the qustdafction.
We use LBP as the basis for this strategy to allow for fair comparison ini#’,. We
run LBP, until convergence is reached, as defined in Se¢fion]5.2.5. We say that the
naive technique converges when no agent reports a change in thelsichat believes

it holds the lowest cost in consecutive steps past the approximate geapbtdr. For
both techniques, if convergence is not found then we run the algorithendiamber of
iterations equal t@50AD whereAD is the diameter of the spanning tree of the network.
We use values di.08 for 3 for all producers, and a value 0101 for §; these values were
experimentally determined to provide a good balance between efficiencyrafit as
explained in Section 5.4.1.

5.3.1 Performance Evaluation

We use two different metrics to assess the quality of our results: the distriboftief-
ficiency classes produced by each method, and the average availgiies swwnverted
to profit. To determine the distribution of efficiency classes, we calculate timal
solution for each set of production costs in a centralised manner usisgp, a free
linear programming solver. Using this value as a benchmark, we categadkeaio-
cation produced by each method into one of four classes: optimal, subomeragnd
negative. A result is optimal if the value of the allocation produced by the rdatho
equal to that determined by LP. A suboptimal result is a positive-valuedt rekich is
less efficient than the LP value. A zero-valued result means no goadssetkl in the
allocation. Finally, a negative-valued result means that the sum of thegfod costs
of active producers outweighed the sum of the consumption values wé @cthsumers.
Negative-valued allocations are caused by the presence of “deat-gmmdducers which
acquire an incomplete set of their input goods and so are unable to pradugutput
good - and are the worst possible result. The average available semiuerted to
profit is calculated by dividing the sum of the total profits gained by predum each
network by the sum of the total available surplus in the optimal allocation, daiezg

in Sectiori 5.2.8.
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5.4 Results

5.4.1 Choosing & value

Figured5.B and 514 show the average efficiency and average availghligssconverted
to profit over all networks for a range gfvalues.
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Figure 5.3: Average efficiency and proportion of surplus convertearaét by
producers over all networks using globsabalues from 0.01 to 0.1, in steps of 0.0l.
Both average efficiency and profits increase sharply at lower vadtadsilising at
values above 0.05.

Figure[5.3 shows results fgt values from 0.01 to 0.1, in increments of 0.01. Both av-
erage efficiency and average available surplus converted to pmfitoar ats = 0.01,

but follow similar upward trends a8 is increased. The similar trends are because, as
mentioned i 4.8]1, the source of potential profits lies in finding allocations whigh ma
imise efficiency; at lowep values, wherd B P, tends to be unable to produce efficient
allocations, we also see correspondingly low profits. By raiginghich allowsLB P,

to produce more efficient allocations, we see a similar improvement in the nimpof
surplus converted to profit. We did not teést= 0.0 because, as we explain in Section
521, as value of 0.0 leads producers to attempt to equalise théirandbel 4 values.
This leads to inefficient allocations and little or no profits for producers.

Figure[5.4 shows results fgrvalue between 0.1 and 0.5, in increments of 0.05. We see
that average overall efficiency stabilises at around 71%\atlues greater than 0.1. At
these values[.BP, is capable of producing essentially LBP-like allocations, with effi-
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Figure 5.4: Average efficiency and proportion of surplus convertgarafit by
producers over all networks usimgvalues from 0.1 to 0.5, in steps of 0.05. Profit
gradually decreases as glolais increased beyond 0.1, while efficiency remains
stable for all values from 0.1 to 0.5.

ciency differences between the two algorithms (standard LBP produeesge overall
efficiency of 87% over the twelve network instances tested) being due tiffesent
convergence rules used, as is discussed in Sectiod 5.4.3. As expaeage avail-
able surplus converted to profit tends to decrease at hjglvatues - the higher thg
value used, the greater the difference there must be between protuedy, andbel,, ,
before it will decide to increase its margin.

5.4.2 Average Available Surplus Converted to Profit

Table[5.3 shows the average available surplus converted to profit, agatadtusing
Equatioi5.1L, by. BP, and a naive LBP-based technique for profit maximisation, details
of which are provided in Sectidn 5.3. Average available surplus comlesterofit is the
most important measure of the success of a technique for profit maximisation.

From Table 5.8, we see th@tBP, enabled producers to convert at least 43% of the
available efficiency into profit for ten of the twelve network instances, vétlesal values
considerably higher than thisLB P, also consistently allows producers to convert a
greater amount of surplus into profit than the naive profit-making approla this set
of experiments, as for all the sets of experiments in this section, we @seatdue of
0.08, which was experimentally determined to be a value which producespyofits
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Table 5.3: Average available surplus converted to profit by prodwséng L B P,
and a naive LBP-based profit-making technique. A result of 1.000 is&gqut to
the conversion of 100% of available surplus in the optimal solutions into profit.

Naive
Network | LBP, | technique
Simple | 0.574| 0.237

Unbalanced
CE 0.679| 0.367
No CE 0.636 | 0.053
Two-Cons

CE 0.748| 0.218
No CE 0.464 | 0.295
Bigger 0.473| 0.285
Many-Cons| 0.911| 0.334
Greedy-Bad
CE 0.934| 0.328
No CE 0.848| 0.113
Harder
CE 0.341| -0.208
NoCE |-0.342| -0.98
Huge 0.431 0.2

on the majority of the networks we tested. While smaller values than this foight
produce more profit on some networks, on others, particularly loopyanksysmaller
values may lead to less efficient allocations and smaller profits. From [Tablee5sée
that there exists a moderate amount of spread within our results. This is mosttp d
the sometimes strongly negative profits produced when negative-vdloedt@ns are
found.

5.4.3 Efficiency

Table[5.5 shows the distribution of efficiency classes produced overut@0by each
method over each network instance. We seelliab,, was able to outperform the naive
LBP-based profit-making method on all but two of the network instanceslteStiethe
two networks in which the naive method performs better, in one - UnbalaDEedthe
difference is very slight, while in the other, Two-Cons No CE, both LBBedamethods
tend to oscillate between optimal, zero and negative-valued solutions. Tdiliatisn

is brought about by the loopy nature of the network. The large difterém efficiency
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Table 5.4: Median and interquartile range measures for the averagetvaila-
plus converted to profit by. B P,

LBP, LBP,
Network | median| interquartile range
Simple 0.744 0.357
Unbalanced
CE 0.931 0.120
No CE 0.760 0.648
Two-Cons
CE 0.820 0.254
No CE 0.911 1.187
Bigger 0.611 0.901
Many-Cons| 0.942 0.054
Greedy-Bad
CE 0.933 0.073
No CE 0.818 0.293
Harder
CE 0.000 0.877
No CE 0.000 0.000
Huge 0.442 0.379

results between the two LBP-based methods in this network instance is bednagh by

the different convergence rules used - the naive method is able torgeratany step

in which all agents report that their lowest-cost beliefs have not clihradiewing it to
converge at a point in which the solution has converged to an optimal anghether
hand,L B P, uses a more restrictive rule, necessary to allow margin updates, which only
allows convergence at multiples of the approximate diameter of the netwoik, ifith
some cases, leavés3 P, unable to converge at a point where the solution has oscillated
to an optimal one.

5.4.4 Average Efficiency

Tabld5.6 shows the average efficiency achieved over 100 runsdioneéwork byL. BP,
and the naive-profit making LBP-based techique as a fraction of thiallesefficiency.
An average efficiency of 1.000 indicates that 100% of the available efbgie/as cap-
tured on each of the hundred runs for that particular network instamckerepresents
the best possible result. Negative values indicate that over 100 runs thedwmecorded
negative average efficiency in that network. For example, a resuktisfe1.000 aver-
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Table 5.5: Distribution of efficiency classes produced/by P, and an LBP-
based approach with producers which follow a naive profit-seekiategty over
twelve network instances. Efficiency classes are Negative, Zerap8otal and
Optimal.

LBP, Naive profit-seeking LBP
% of instances % of instances
Network | Neg Zero Sub Opt| Neg Zero Sub Opt
Simple 00 00 0.0 100.0 0.0 53.0 1.0 46.0

Unbalanced

CE 70 10 6.0 86.0 00 420 7.0 51.0
No CE 00 3.0 00 97.0 00 970 20 1.0
Two-Cons

CE 20 00 0.0 098.0] 0.0 48.0 12.0 40.0
NoCE |31.0 00 16.0 53.0 0.0 3.0 21.0 76.0
Bigger 60 10 20 910 0.0 750 20 230

Many-Cons| 0.0 0.0 0.0 100.0 0.0 47.0 35.0 18.0

Greedy-Bad
CE 00 00 00 100.0 0.0 69.0 0.0 31.0
No CE 00 00 0.0 100.00.0 940 0.0 6.0
Harder
CE 1.0 60.0 20 39.0015.0 25.0 0.0 60.0

NoCE |24.0 640 0.0 120420 480 0.0 100
Huge 30 20 940 10| 0.0 59.0 0.0 41.0

age efficiency means the method achieved, on average, -100% of the maairailable
efficiency value. Because we are measuring results as a fraction dffitiens value,
solutions with very high negative efficiency can lead to average effigiemicies below
-1.000.

We see from Table 5.6 thdtB P, produces greater efficiency than the naive LBP-based
profit-making technique over all but two network instances. If we reféneaverage ef-
ficiency results for SAMP-SB and SAMP-SB-D from Chafer 4, we a¢sothatL BP,
essentially equals or improves upon the efficiency results of SAMP-Stidomajority

of networks. SAMP-SB-D tends to produce slightly better overall effmyeior most
networks thanL B P, is able to, but this is due in large part to the assumption in this
protocol that contracts may be voided after the allocation has been finalised
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Table 5.6: Average efficiency in each network produced B/, and the naive
profit-making LBP-based technique. A result of 1.000 is equal to the eapfu
an average of 100% of available efficiency, while a result of -1.000 isleip
an average capture of -100% of available efficiency. Note that while01i£0
the maximum achievable positive value, it is possible to produce negativallove
efficiencies below -1.000.

LBP, averageNaive profit-seeking
efficiency LBP average
Network efficiency
Simple 1.000 0.724
Unbalanced
CE 0.778 0.722
No CE 0.944 0.066
Two-Cons
CE 0.916 0.703
No CE 0.399 0.939
Bigger 0.827 0.498
Many-Cons 1.000 0.562
Greedy-Bad
CE 1.000 0.5
No CE 1.000 0.151
Harder
CE 0.455 0.49
No CE -0.330 -0.816
Huge 0.630 0.319

5.4.5 Messages and Bids Before Convergence

Table[5.7 shows a comparison of the number of messages passésiiyyand the naive
LBP-based profit maximisation technique over each network, and a cmoparf the
bandwidth required by each method. It is clear thd P, tends to require a vastly
higher number of messages to be passed over most networks than theéecanique,
but this is to be expected given the difference in approaches taken $w dlgorithms.
The sole network in whicl. BP, requires less messages and bandwidth is Harder - for
both CE and non-CE instances of this netwakl; P, requires fewer messages to be
passed and less bandwidth to be used, but this is diigtB, converging very quickly
and frequently to a large number of zero-valued solutions in this netwdtkoégh the
naive method is functionally identical to the algorithm described in Chaptégyrifisant
differences exist in the bandwidth requirements for the two methods on semverks.
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This is due to the different upper bounds on the number of steps eadiittaigonay

run for - the algorithm in Chaptél 4 runs for a maximum of 250 steps, while dhen
algorithm, for fair comparison witlh, B P,,, runs for a maximum o250AD steps, where

AD is the approximate graph diameter. The number of margin update steps (and thu
the number of messages and bandwidth) could be reduced by increasimgrimment

by which producers raise or lower their margins or increasingstialue used; unfor-
tunately, both of these measures would also incur a reduction in the amosuntpddis
producers are able to convert into profit.

5.5 Mechanism Properties

In this section, we present the mechanism propertidsidP,,, comparing them to those
of standard LBP, SAMP-SB and SAMP-SB-D.

5.5.1 Individual Rationality

A mechanism is individually rational if participants cannot incur negative utijtyar-
ticipating. As with standard LBP, we cannot guarantee the individual rttgrof our
approach given the potential for dead ends in our allocations, thoughld be guar-
anteed using a process of post-allocation decommitment similar to that whictdigwuse
SAMP-SB-D.
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Table 5.7: Average numbers of messages passed and average amdgudred before convergence in each network using

LBP, and the naive LBP-based approach for profit maximisation

LBP, average| LBP, average | Naive LBP average Naive LBP average
Network number of total number of total
messages passethandwidth required messages passedbandwidth required
Simple 728.0 1638.0 48.16 108.36
Unbalanced
CE 31776.8 103620.0 485.76 1584.0
No CE 3054.4 9960.0 492.2 1605.0
Two-Cons
CE 1893.5 4598.5 104.16 252.96
No CE 4778.2 11604.2 138.46 336.25
Bigger 30297.6 181785.6 2982.24 17893.44
Many-Cons 6996.0 15449.5 488.64 1079.08
Greedy-Bad
CE 1600.2 3911.6 120.06 293.43
No CE 710.1 1735.8 119.88 293.04
Harder
CE 70824.4 386738.4 189367.7 1034047.04
No CE 355695.2 1942283.0 532819.3 2909473.81
Huge 284107.2 901305.7 4844.16 15367.68




5.5.2 Incentive Compatibility

Unfortunately, as with standard LBPB P, is not incentive compatible for producers or
consumers.

5.5.3 Budget Balance

As with standard LBPLB P, involves no payments to or from the mechanism, and is
therefore strongly budget balanced.

5.5.4 Allocative Efficiency

The results presented in Talhle]5.6 suggest that over the networks tadtadtla the 5

value used, our approach produces slightly less allocative efficieaoystandard LBP.

This is to be expected given the constant alteration of unary values tbrthugut by
margin updates. Although perfect allocative efficiency can be guaarfte acyclic
networks if 5 is set to a value large enough so that no producers wish to change their
margins at any point, leading to behaviour identical to that of standardthBRyroduces

no profit and thus defeats the purpose of the mechanism.

5.6 Discussion

Throughout this chapter, we have made the assumption that all prodiseetse same
values for their buffer zong and their margin update increment These abstractions
were made in order to simplify the presentation of our algorithm, and are similae to th
abstractions made in terms of agent bidding behavio@MMeM]{Z

in this work, all producers and consumers bid according to the same gsetegfand in
most cases increase the value of their bids by a global increment valvertiNgess, we
recognise that, in practice, agents may wish to set their own valugsdndo. In this
section, we discuss the implications of producers being able to set theiralwesvor
these variables.

5.6.1 Producer-specifideta values

Producers are able to increase their margins when the difference béts/beliefs in its
lowest cost active state and its inactive state exceeds a certain amouvahuhefs. A
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positives value is necessary because without it, producers would increase thiginma
to a point at which the beliefs in their lowest cost active state and their ieasttite are
equal. This is undesirable because producers assign themselves witadieistate if
they believe their inactive state and lowest cost active state have egisl co

[ values must also be large enough to avoid situations where produceshasethe
amount of surplus available to them, which can lead to an unending semqfénceases
and decreases in margins. This situation is possible because all pdpdate their
margins simultaneously. As we explaiin5]2.1, producers increase theiinsdreir
belief in their lowest cost active state mingiss greater than their belief in their lowest
cost active state. I8 = 0, the value of this calculation is equal to the amount of surplus
available to the agent and the other producers on that agent’s sub-dfzla there may

be sufficient surplus for one producer to increase its margin, there otdyersufficient
surplus for all other producers on that sub-chain to also increass.their

5.6.2 Producer-specifie values

¢ is the increment by which producers are able to increase or decreasedingins. We
used a global value of 0.01 fér with the justification that for all but one of the networks
we tested, values for available surplus have a maximum two decimal Hlaneasbest—
case scenario - an acyclic network, with a globakalue of 0.01 and an available surplus
with two decimal places - a value of 0.01 fdtheoretically allows for the possibility of
converting all but 0.01 of the available surplus into profit. This value coelddrreased

to 0.001 or 0.0001 and so on by usifigalues of 0.001, 0.0001 and so on, at the cost of
slower convergence.

Because producers are aware of the total surplus available to theral(afthe produc-

ers in their sub-chain) through the difference between their lowestctise state and
their inactive state, if we allow producers to update their value$ fas the algorithm

is running then it is likely that all producers will immediately choose values equal

to the total surplus available. This is, of course, undesirable: if all of tbdyzers in a
subchain simultaneously try to acquire all of the surplus available to thahaumdhe
cumulative increase in prices will render that subchain non-viable. lergtare logical

to specify a small upper limit to the margin update increment, as we do, to enstire th
producers benefit equally and do not price themselves out of the mamketessarily.

The Simple network is the exception: Consumer C1 in this network has aiomtisn value with three
decimal places, allowing for the possibility of available surplus with thre@m@places.
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5.7 Conclusions

In this chapter we formalised a new solution goal for the supply chain formptmblem
called profit maximisation, and introduced an intelligent decentralised LBBebizch-
nique for solving this problem calletlB P,. LB P, enables producers to alter their mar-
gins with the aim of making a profit by participating in the supply chain. Becausg,

is the first instance of a technique for profit maximisation in supply chain fooma
we tested its ability to convert available surplus into profit against a naive-hdsed
technique for profit maximisation. Our results suggest fha®, is reliably able to out-
perform the naive approach, and converts a significant amoun&déhie surplus into
profit over the majority of the network instances we tested. Because thenaof@vail-
able surplus depends on the efficiency of the underlying allocation, weeabmined
the efficiency of the solutions produced by P,,, and compared these efficiency results
to those of the naive LBP-based profit maximisation method as well as the SSBJIP
and SAMP-SB-D auction protocols frOImJALa.Ish_a.ndAALeldT{an_dZOQEBPM was able

to match or outperform the naive and auction-based methods on the majorigt-of n
works tested, while performing comparably to LBP, and avoided the conjsisoor

allocations produced by the auction protocols in the absence of competjtildbgum.
LBP, is also budget balanced.

Having investigated the performance of an LBP-based approachdiir paximisation,
in the next chapter we test LBP’s capability to determine allocations in a datisetf
supply chain formation scenario involving the exchange of multiple units adigjoo
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Chapter 6

Multi-Unit Supply Chain Formation
using Min-Sum LBP

In this chapter, we propose a framework for the representation of multswpply chains
and extend the single-unit loopy belief propagation (LBP) based tedhriarudecen-
tralised SCF presented in Chagiér 4 to the multi-unit case. We aim to demonsatate th
min-sum LBP is capable of scaling up and continues to produce allocationstvwatigy
efficiency when applied to this more complex supply chain formation probleiis.eka
tension represents the first instance of a fully decentralised multi-unitysapain for-
mation scenario, and brings our work into line with the multi-unit property of threenit
state of the art in centralised supply chain formation techniques, namely mixié&d mu
unit combinatorial auctions. We also introduce the additional constraintsodfiption
capacities and input-to-output good ratios for producers, as wellsiedeyood quanti-
ties for consumers, greatly increasing the state space over standdedwiiid.BP. We
compare the allocations produced by multi-unit LBP to the results of the auatiborp
cols presented inAALa.Iih_a.ndAAL&U&&n_LZbO?,], which we extended to allow fhbir umit
exchanges. Our results indicate that LBP is capable of generating teonisiopti-
mal allocations in the multi-unit case, outperforming the distributed auction mistoc
and performing comparably to single-unit LBP, whilst operating in a fullyed¢@lised
manner. Our results also suggest that LBP is able to converge to optimabssiby
passing a number of messages far smaller than the number of bids regheedising
the auction-based approaches.
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6.1 Multi-Unit Model

We extend this representation with input good ratios, production capagcitieoasumer
desired good quantities in order to model the multi-unit case. This is shown imeig
[6.1. Production capacities and consumer desired good quantities areedeiaswhole
units of the good in question. A producer with a single input and an inpute&2dor
that good requires two units of that good in order to produce one unit otiffsut, four
units of that good to produce two of its output, and so on.

1.216
Desired: 2

Figure 6.1: The Simple supply chain task dependency network extended to th
multi-unit case. Producers (P1, P2, P3, P4) and a consumer (CBpesented

by rectangles, while goods are represented by circles. Edges betedmes
indicate potential flows of goods. Numbers immediately below producers rep-
resent production costs, while numbers immediately below consumers indicate
consumption values. Our extension to the multi-unit case includes the follow-
ing additional features: the values given below production costs arsliogstion
values indicate production capacities for producers and desiredroab$eigood
gquantities for consumers, respectively, and are measured in whole @itits o
good in question. Edges from goods to producers are labelled with tdageds
input-to-output ratio for that good.

In our example, we see that producer P1 is able to produce up to 2 unitedflg at a
cost of 0.223 for each unit of good 1 it produces. Producer P3nexj2 units of good 1
(as signified by the edge from good 1 to P3) to produce a single unit oftisibgood,
good 3. Although P3 has the capacity to produce up to 2 units of good 3, thiklw
require P3 to obtain 4 units of good 1, which is not possible in this network iostan
given P1’'s maximum output capacity of 2. Similarly, producer P2 is able tdym® up

to 3 units of good 2 at a cost of 0.619 per unit, and producer P4 requiuegs of this
good in order to produce one unit of good 3. Consumer C1 desires a nraxghad
units of good 3, and obtains a consumption value of 1.216 for each unitoof § that it
acquires.

88



6.1.1 Producers

Producers are capable of producing multiple units of a single type of ogtmd. At
initialisation, each producer is assigned a production capéatity’, which specifies the
maximum number of units each producer is able to produce of its output good.

In order to produce one unit of their output good, producers arginejto acquire a
number of units of each of their input goods equal to their input good rggjdfor that
good. In order to produce two units of their output, producers requicetas many units
of their inputs as for one good, three units of output will require three timesaay units
of inputs, and so on. Input good ratios are assigned to produceisaligation, and each
producer may have different ratios for each of their input goodsdurrers which do not
require any inputs to produce their output good are known as no-inpdtipers, and
form the initial echelon of the supply chain. If a producer requires multigbesyof
input good, we refer to these goods as complementary. A produceotcaroduce its
output good unless it acquires the necessary number of all of its inpdisgo

Producers incur a production c@st in producing their output good, which is a producer-
specific constant. Production costs model the expense incurred bgacpran produc-
ing a single unit of their output, plus some small additional fixed profit margimeyT
therefore can be said to be equivalent to sale price of a single unit ofadeger’s out-
put good. The total production cost incurred by a producer is lineartivtimumber of
units of its output good that it produces: if a producer produces two ahits output
good, it incurs a production cost equal26),, a cost of3C,, if it produces three units,
and so on.

6.1.2 Consumers

Consumers seek to acquire a number of units of their consumable goodaterghan
their desired consumable good quanti®y?'S.. In each network, each consumer is as-
signed a static consumption valUg this is the valuation the consumer holds for obtain-
ing a single unit of its consumable good. Similar to production costs, the tota walu
consumer receives is linear with the number of goods a consumer obtaarsonsumer
acquires two units of its consumable good it recei2®s, if it acquires three units it
receives3V,. and so on.
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6.1.3 States

Due to the fixed structure of the networks, for each agent there existgerfiumber
of purchases and sales (if the agent is a producer) in which the agéabls, i.e. it
acquires the necessary number of units of its input goods and sells tresmmmnding
quantity of its output good. We encode each of these tuples of exchalagiemships as
states. For producers, each state defines a list of suppliers, a quaniifytifrom each
supplier, a list of buyers and the quantity sold to each buyer. For comspanstate lists
a set of suppliers and the quantity bought from each supplier. For égampossible
state for producer P3 in Figuke 6.1 is “Buy 2 units of good 1 from P1 aldcs# unit
of good 3 to C1". The number of states an agent possesses incradstdsemumber of
producers able to supply its input good(s), its production capacity or euofldesired
consumable good quantity, and the number of producers or consuntets abnsume
its output good. Because we model each type of good as an identical catyynaod
producer or consumer can buy multiple units of the same good from differeducers.
For example, C1 derives equal value from acquiring 2 units of goodr8 froducer P2
and 1 unit of good 3 from Producer P3 as it does from acquiring 3 uhgead 3 from
either Producer P2 or P3. As well as a list of active states, we also alfalweganactive
state, where the agent does not acquire or produce any goods.

6.1.4 Unary Cost

Each agent associates each of its states with a cost. For all agents, ttloé loemg
in the inactive state is zero. For producers, all active states incur aveositst, equal
to the total reserve price, which is in turn equal to the produdey’snultiplied by the
number of units the producer produces in that state. Consumers assgatve cost
to all states in which they acquire a good. If the consumer acquires a simgl& their
consumable good in the state in question, the cost is eqOal tid., whereV,. represents
the consumer’s consumption value, the value the consumer assigns to tirstecgof
its consumable good. If the consumer acquires two goods, the cost id@qua2 « V7,
with the cost decreasing linearly as the number of goods the consumersabtaeases.

6.1.5 Pairwise Cost

Pairwise costs encode the compatibility of two of the states of a pair of neigigbor
agents. Two states are compatible if ageststate lists agent as a buyer and the list
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of sellers inv’s state includes:, and the number of units sold hyto v in u’s state is
equal to the number of units bought byfrom « in v’s state and vice versa. They are
also compatible if agent’s state does not list agentas a buyer and’s state does not
list agentu as a seller and vice versa, or if both states are inactive states. If thestates
compatible, the pairwise cost is equal to zero. If the two states do not meef trese
conditions, they are incompatible, and the pairwise cost of this combinatidatesss
equal to positive infinity.

6.1.6 Convergence

Convergence detection is performed by a dedicated convergencéodetgent, as out-
lined in Sectioh 417.

6.1.7 Allocation

Allocation is performed as for the single-unit LBP model, as explained in sedii,
with one difference. In order for an agent to be considered actieesdhiers and buyers
of its goods must not only list the agent in question in their final states, bufuietity
values encoded in the states must also adigactlyin order to be valid.

For example, the following combination of final states in the simple networleaadid,
and would result in edges being removed between all of the listed agents:

— P1: Sell 4 units of good 1 to P3.
— P3: Buy 6 units of good 1 from P1; sell 3 units of good 3 to C1.
— C1: Buy 3 units of good 3 from P3.

6.1.8 Allocation Value

We calculate the allocation value for the multi-unit case in a similar way to the sthndar
single-unit LBP-based approach. This is shown in Equéfidn 6.1. Wafinsthe product

of the consumption valu¥, of each active consumerin the set of active consumets

and the number of goods obtainedd).. From this, we subtract the sum of the product
of the reserve pricé,, of each active producerin the set of active producer3 and the
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number of goods manufactured py)/,, to produce a final allocation value.

Val =Y VA — Y CpM, (6.1)

ceC peP

6.1.9 Payments

An active producep is paid a fee by each of the buyers of its output good, at a price
equal to the value of E. 8.2.

Fyy = RyMyy, + z\]\% Z Fy; (6.2)
i€SP

Fy, is the fee paid from buyérto producep, R, is p’s reserve price)M,, is the number
of goods manufactured kyfor buyerb, M, is the total number of goods produced by
producer p,F,; is the fee paid by to each suppliei from p’s set of suppliersSP.
Buyers therefore pay’s marginal cost of producing each good they purchase plus a
proportion ofp’s input good costs commensurate with the proportiop'®total output
they purchase. No payments are made to or by the mechanism.

6.2 Experiments

We test LBP and multi-unit implementations of two decentralised auction protaoaots f
Walsh and WellmgH_[;Oj)B] over the complete set of networks presentecjpt&ts. We
extended SAMP-SB and SAMP-SB-D according to the suggestion pedgasWalsh
and Wellman([2003], by using multiple copies of each agent to representusit of a
given producer’s capacity or consumer’s number of desired gddelsause this repre-
sentation does not allow for the use of input good ratios, as well as tkegisgnts with
heterogeneous ratios we also test LBP with all ratios set to a value of 1) wkicefer to
as ratioless LBP. Ratioless LBP is identical to the multi-unit version of LBP vpéa@x
in this chapter with the exception that inputs are converted to outputs on aslsl Bhais
is to allow for fair comparison with the results of the auction protocols. Ratipgese
to constrain the number of positive-valued solutions in the network, whichpresent
the algorithm with a more difficult problem, particularly in loopy networks. Goeely,
the use of ratios greater than 1 also constraints the state space of eatipatgntially
reducing the bandwidth required to form solutions. We perform 100 ofimatioless
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LBP, standard multi-unit LBP, SAMP-SB and SAMP-SB-D for each nekywgarying
input ratios and consumer desired goods (for LBP) as well as produmtists and pro-
duction capacities (for all methods) between each run. We discard rumkiah the
optimal allocation value, determined using mixed integer programming, is nativpos
Production costs are drawn from the distributié(0, 1), production capacities from the
distribution(4 . .. 5), consumer desired goods frg. . . 3), and input good ratios from
(1...2). We use these fairly large values for production capacities and congiener
sired goods and fairly low values for input good ratios to allow for feasibifitiarger
networks; however, as long as a positive-valued solution exists, thapance of LBP
is largely unaffected by the values used. Consumption values are fittezhatiues given
underneath each consumer (C1, C2 and so on) over every run.

6.2.1 Performance Evaluation

We run ratioless and standard multi-unit LBP on each network until a cgemestate
is reached, using the value of the allocations produced as a measureqfatitg of
our solutions. If LBP does not converge before 50 iterations, werdett® result as
a zero-valued allocation, which indicates that no solution was found. @/épLsolve,
a free mixed integer programming solver, in order to provide a benchmairkaial-
location value to compare LBP against. To provide a basis for comparisorotiih
decentralised multi-unit SCF techniques, we also compare the results of tBEhase
produced by multi-unit implementations of the double auction protocols presante
I'LLZDJB], namely SAMP-SB and SAMP-SB-D.

6.3 Results

6.3.1 Efficiency Classes

Table[6.1 shows the distribution of efficiency classes produced by LBRwittatios,
LBP with ratios, and our multi-unit implementations of the SAMP-SB and SAMPESB-
double auction protocols frolMdsLmdﬂeﬂnMOOS]. We see that tferpance
of LBP and SAMP-SB are roughly equivalent on the majority of networ&gardless
of whether ratios are enabled or disabled. Efficiency results producé®P are also
comparable to those of SAMP-SB-D for many networks, despite the latdvansage
of being able to decommit from inefficient solutions. As expected, LBPuresl 100%
optimality on Simple and Many-Cons, both of which acyclic networks. We alsdhsst
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all ratios being set to a value of 1 typically leads to more efficient results Bét, With

what would appear to be one exception - the Huge network. Howevénea®llow-

ing section shows, despite a larger number of optimal results, LBP with ratide &

produces a greater amount of average efficiency for this networkLtB&nwith larger
ratios. The fact that LBP cannot be guaranteed to converge in gvaghsore than a
single loop means that we can offer no definitive reason for why LBP wigetaatios
appears to be able to produce a larger percentage of optimal solutionsBRawith

ratios set to 1 for this network.

We suggest that the overall trend towards slightly better efficiency f&® wh ratios
set to 1 is because the use of larger ratios constrains the number ofgesitied so-
lutions in the network, presenting the algorithm with a slightly more difficult problem.
The presence of larger numbers of suboptimal allocations and fewearernegative
allocations for LBP with ratios set to 1 appears to support this. With redarthe sta-
tistical significance of our results, over 10 sets of 100 runs, the netwitinkthe largest
average standard deviation over all efficiency classes was Two Goh®th ratioless
and standard multi-unit LBP, with standard deviations of 1.61% and 1.69%¢cteely.
These values indicate that LBP offers consistent performance ovef thié networks
tested.
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Table 6.1: Distribution of efficiency classes produced by LBP withoutsatiBP with ratios, SAMP-SB and SAMP-SB-D.
Classes are Negative, Zero, Suboptimal and Optimal.

Ratioless LBP
% of instances

LBP with ratios
% of instances

SAMP-SB
% of instances

SAMP-SB-D
% of instances
Network

G6

Neg Zero Sub Opf

Neg Zero Sub Opf

Neg Zero Sub Op#Zero Sub Opt

Simple

0.0

0.0 0.0 100.

00.0 0.0 0.0 100.

00.0 0.0 1.0 99.

D0.0 1.0 99.0

Unbalanced 0.0

1.0 19.0 80.00.0 10.0 22.0 67.00.0 0.0 12.0 88.

00.0 4.0 96.0

Two-Cons

0.0 0.0 2.0 98.00.0 0.0 2.0 98.Q

6.0 0.0 20.0 74.

00.0 5.0 95.0

Bigger

0.0 3.0 0.0

97.03.0 2.0 1.0 944

0.0 0.0 1.0 99.

00.0 0.0 100.0

Many-Cons 0.0

0.0 0.0 100.

00.0 0.0 0.0 100.

@23.0 0.0 38.0 39.

00.0 4.0 96.0

Greedy-Ba

10.0 4.0 29.0 67.C

00.0 14.0 17.0 69.(

112.0 2.0 12.0 74.

05.0 11.0 84.Q

Harder

41.0 5.0 10.0 44.

p45.0 26.0 2.0 27.(

111.0 0.0 41.0 48.

01.0 29.0 70.Q

Huge

0.0 3.0 91.0 6.0

4.0 22.0 11.0 63.00.0 0.0 11.0 89.

00.0 2.0 98.0




6.3.2 Average Efficiency

Table[6.2 shows the average efficiency produced by each method - miultiBihwith-

out ratios, multi-unit LBP with ratios, and our multi-unit implementations of the SAMP-
SB and SAMP-SB-D auction protocols. In keeping with the results pred@mtée pre-
vious section, we see that the performance of both LBP-based methodglgy equiv-
alent to that of SAMP-SB on most networks, whilst also matching the resulthiped

by SAMP-SB-D on many network instances. The auction-based methguksrfrm the
LBP-based methods on large, loopy networks such as Bigger, Hugelanagr, while
LBP tends to perform better on acyclic networks such as Simple and Mang-Grom
Table[6.8 we see that for most networks our results are consistent, with liladsp

Table 6.2: Average efficiency in each network produced by both multivamit
sions of LBP, and multi-unit implementations of the SAMP-SB and SAMP-SB-D
protocols from Walsh and Wellman [2003]. A result of 1.000 is equal to épe ¢
ture of an average of 100% of available efficiency, while a result oDdi®equal

to an average capture of -100% of available efficiency. Note that whi@01€
the maximum achievable positive value, it is possible to produce negativallove
efficiencies below -1.000.

LBP without ratios| LBP with ratios | SAMP-SB| SAMP-SB-D

average efficiency average efficiency average average

Network efficiency | efficiency
Simple 1.000 1.000 0.999 0.999
Unbalanced 0.962 0.872 0.964 0.998
Two-Cons 0.986 0.983 0.963 0.998
Bigger 0.969 0.813 0.995 1.000
Many-Cons 1.000 1.000 0.425 0.997
Greedy-Bad 0.91 0.839 0.666 0.923
Harder 0.11 -0.058 0.686 0.947
Huge 0.625 0.583 0.989 0.998
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Table 6.3: Median and interquartile range measures of the averagerefjice>
sults produced by LBP without ratios and LBP with ratios.

LBP without ratios| LBP without ratios| LBP with ratios| LBP with ratios

Network median interquartile median interquartile
range range
Simple 1.000 0.000 1.000 0.000
Unbalanced 1.000 0.000 1.000 0.159
Two-Cons 1.000 0.000 1.000 0.000
Bigger 1.000 0.000 1.000 0.000
Many-Cons 1.000 0.000 1.000 0.000
Greedy-Bad 1.000 0.079 1.000 0.297
Harder 0.854 1.648 0.000 1.761
Huge 0.637 0.307 1.000 1.000

Table 6.4: A table showing wins, draws and losses in the multi-unit scenario
between LBP and SAMP-SB. One X in the LBP column means that only ratioless
LBP was able to outperform SAMP-SB. Two Xs means that both ratioless and
LBP with ratios outperformed SAMP-SB, which does not use ratios. A dsawv
result with less than 1% difference between the best-performing LBP matitbd
SAMP-SB and is shown with an X in both columns.

Network | LBP | SAMP-SB

Simple X X
Unbalanced X X
Two-Cons | XX

Bigger X

Many-Cons| XX
Greedy-Bad XX
Harder
Huge X

X

6.3.3 Messages and Bids Before Convergence

From Tabld 6.6 we see that, in most cases, the LBP-based methods tendirte fi@ger
messages to be sent in order to converge to a solution than is required inctima
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based methods, and the total bandwidth required also tends to be smalleruriiber
of bids and price quotes exchanged in SAMP-SB and SAMP-SB-D argiddé- the
only difference between the protocols is a post-allocation decommitment ssagee
do not include values for SAMP-SB-D in this table. It is also clear that iteegpe
differences in average efficiency between LBP with ratios and LBP wittatios, both
methods converge at roughly the same pointin all networks. The diffeiarbandwidth
requirements between the methods is because the use of input good raéites gran
1 constraints the state space. When price quotes are taken into accodrggqtiency
of information exchange in SAMP-SB tends to be orders of magnitude gribaie in
LBP, offsetting the fact LBP messages tend to encode more information asi@ré of
a larger size than bids in SAMP-SB.
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Table 6.5: Average numbers of messages passed before coneeigerach network using multi-unit LBP without and
with ratios compared with the average numbers of bids placed in each ndteforke quiescence in the SAMP-SB protocol

Df

from|Walsh and Wellman [2003].
LBP without ratiosLBP without ratios LBP with ratios |LBP with ratiog =~ SAMP-SB SAMP-SB
Network |average number of  average average number of average |average number gdverage number
messages passed bandwidth messages passed bandwidth bids placed bids placed and
required required price quotes sen
Simple 51.76 315.89 52.96 296.88 210.64 2419.49
Unbalanced 494.96 11849.44 518.42 8795.64 1201.21 21098.79
Two-Cons 106.54 1019.02 108.64 965.29 905.38 12009.91
Bigger 2859.84 386634.6 2964.96 269491.9 2239.43 71276.2
Many-Cons 498.72 3517.91 488.64 2545.52 5797.36 68017.69
Greedy-Bad 118.62 836.64 119.7 789.58 1406.37 18379.73
Harder 16315.68 2413542.0 16748.88 1270947.0 4048.03 180133.4
Huge 4732.8 116968.1 4678.86 96585.71 8803.88 158705.21




6.4 Conclusions

In this chapter, we proposed a framework for the representation of nmiltsupply
chains and presented a novel technique for multi-unit decentralisetysuzin forma-
tion based upon the min-sum loopy belief propagation algorithm. By extendengsk
dependency network representation of supply chain networks pEddms Walsh and
Wellman tZD_Qb] to the multi-unit case, converting these networks into pairwiResyl
and mapping the capabilities of each agent into a set of states, we were alfi®to
agents to exchange beliefs about the optimal structure of the allocation.isTdhise

whilst granting agents only local information about the structure of the mkjvemd
requires our agents to share no more private information about their(bestsuse pro-
duction costs represent an actual cost plus a small, fixed profit margimwbuld be
revealed in an open auction or a series of negotiations. Our LBP-bagbddrger-
formed essentially equivalently to two well-known auction-based appesasperating
under comparable conditions over the networks tested, and continueddacprgood
results for most networks even while operating under more strict cortstr@ur results
also suggest that LBP is able to converge to optimal solutions much more qtockly
most networks than the auction-based methods we tested against. The garatcthe
properties discussed in Sectlon 4.11.5 also hold for the multi-unit case.

In ChaptefY we apply multi-unit LBP to a dynamic decentralised supply chaimefiion
scenario, and test its performance under conditions where participargbla to change
any of their properties or to enter or leave the network while the algorithrmrsmg.
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Chapter 7

Dynamic Supply Chain Formation
using Min-Sum LBP

As discussed in Chapter 1, one of the key benefits of automated computaticima
niques for supply chain formation is their ability to allow organisations to becomre mo
adaptable and responsive to emerging opportunities, and to take advahtagse op-
portunities more efficiently. So far, we have demonstrated the efficac{Bfih static
environments - aside from the dynamic pricing mechanism laid out in Chdptbe5,
properties of potential participants have remained unchanged onceoitesprof sup-
ply chain formation has begun. This means that producers and consamadosked in
to participating once the process is underway, and, conversely, tteattiad additional
participants who might be able to play a part in creating a more efficient allocate
locked out. In order to be able to promise greater adaptability and respoess to
participants, it is desirable for a mechanism to be able to cope with changes pa-th
rameters of the potential supply chain right up until the moment at which thetibods
finalised. This allows for the inclusion of new participants who join as thelgugb@in is
being formed, the ability to deal with the departure of existing participantsaaneans
to take into account changes to the properties of participants such agerpsees and
production capacities. Auction-based protocols are inherently utedféy these issues,
but the nature of LBP as a message-passing algorithm allows for the ibtystiiat the
beliefs of agents may be rendered inaccurate by these changes.

In this chapter we aim to demonstrate that min-sum LBP continues to perfdimnder
a dynamic supply chain formation scenario in which participants are able toarde
leave the market and to change their properties as the supply chain is beimedf
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As we showed in Chaptéi 5, LBP is generally able to cope well with alteratiotigeto
reserve prices of participants while the algorithm is underway. This chppsents a
much more difficult scenario by allowing for a wide variety of potential clesnip the
structure and properties of the original network.

7.1 Model

We implement the reconfiguration scenario in our multi-unit LBP model fronp@&id.
The potential alterations to the network we allow for can be grouped into ¢thtegories
- new entrants, departures and property changes. A full list of desaierations, sorted
by category is shown in Talle 7.1. We explain the details of each of thesecttiegories
in the following subsections.

Table 7.1: A full list of the alterations we allow for, sorted by category.

Category Alteration Type
New Entrant Producer Added
New Entrant Consumer Added

Departure Producer Removed

Departure Consumer Removed

Property Changg Production Cost

Property Change Ratio
Property Change Production capacity

Property Change Consumption value
Property Change Consumer desired goods

7.1.1 New Entrants

In the interest of offering a mechanism capable of rapid response t@ngants into
the market, we allow for the possibility of new producers and consumersrentbe
process at any point before the final allocation is determined.

7.1.2 Departures

If a producer or consumer signals that it wishes to leave the market, it iveginalong
with its edges, from the network. States of neighboring agents which lisefhertbe as
a buyer or seller are also removed. In order to prevent manipulation of tbleamism,
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once a participant has left the process it is not allowed to rejoin. As withtladiro
changes, departures are performbetbreconvergence has been reached. This avoids the
possibility of producers or consumers leaving after they have committed torssil
goods.

7.1.3 Property Changes

We allow for the alteration of each of the following properties: for prodsiceeserve
prices, input-to-output good ratios and production capacities may bgetiafor con-
sumers, the consumption values and desired goods quantities may bedcthange

7.1.4 Convergence

Convergence in our reconfiguration scenario is determined using argamce detector
agent which operates in a similar fashion to the one used in our original atd mu
unit LBP-based supply chain formation models. We briefly restate the guoedor
detecting convergence here; a full explanation is provided in Seciidn @nte the
approximate diameter of the graph has been determined, the convergéecmdagent
activates each agent and the LBP process begins. At each stepgemtheports to the
convergence detector agent as to whether the state which it believesh®loaest cost
has changed since the previous step. If no agent reports a chaddbedotal number of
iterations is greater than the approximate graph diameter, then the coroedgtactor
agent terminates the running of LBP and begins the process of allocation.

The key difference in our reconfiguration scenario is that when amapanges its prop-
erties, or a neighbouring agent enters or leaves the network, it repadines convergence
detector agent, which in turn sets the earliest point at which convergandge called to
s+ d wheres is the current step, andlis the approximate diameter of the graph. This is
to allow enough steps for changes in beliefs as a result of the alteratidiytpriupagate
around the network, and is done every time an alteration is made.

As we explain in Section 4.7, although the convergence detector ageny iswewlved

in commencing and terminating the running of LBP, it could still be claimed that the
presence of such an agent limits the decentralisation of our approaarevelo as with
LBP in a non-reconfiguration setting, a participating “coordinator” agantbe used in
lieu of a convergence detector agent if a fully decentralised approaeised, at a cost

of small increase in the number of messages required to converge. Iftmns @decides
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to leave the process before a convergent state is reached, it passspatssibilities on
to a randomly chosen neighbouring agent.

The procedure for the operation of such an agent in a reconfigusatting is much the
same as is described in Sectlon4.7, except that agents also report ménetiange in

their properties has occurred, and whether any neighbouring agareddit or joined

the network. If such a change has occurred, the coordinator agdatas the earliest
point at which convergence can be called in the same way as is done lyntreggence

detector agent.

7.1.5 Allocation

Allocations and allocation values are determined in the same way as for the mitlti-un
LBP case, as explained in Secti¢ns 6.1.7[and 6.1.8.

7.1.6 Payments

Payments are performed in an identical manner to the multi-unit case. Thidasnexp

in Sectior 6.1.9.

7.2 Experiments

We perform three sets of experiments for each network, testing LBRityab deal
with alterations to the structure of each network and to the properties theigemnt
within to various extremes. For all experiments, initial producer reseigegare drawn
from the distribution/ (0, 1), input good ratios from the intervdl, 2], capacities from
[4, 5] and consumer desired goods from the intef2a3]. Parameters specific to changes
involving new entrants are explained in the following subsections.

7.2.1 New Entrants: Producers

In order to experimentally model the performance of min-sum LBP as perdwenter
the market, we assign a tier value to each good in the original, unaltered ke®amvds
produced by producers with no inputs are tier 1 goods, goods prdduceroducers
which consume tier 1 goods are tier 2 goods, and so on. For the puiddkese experi-
ments, when a new producer enters the market, it is assigned an outdutrg@m from
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a uniform distribution of the set of goods in the network. The producetreis #ssigned
an appropriate set of input goods from the tier below its output good. ntingber of
inputs each producer is assigned is drawn randomly from the intdrva)|, whereT},
is the total number of goods in the appropriate tier. If the producer is assigiier 1
output good, it is given no inputs. We assign input goods in this way inrdodavoid
scenarios where producers are able to bypass multiple echelons oigmalosupply
chain by processing a low-tier good into an output from a much higher tiéghasim-
plifies the problem of determining the optimal allocation, and also to prevedupers
from producing outputs of a lower tier than their input goods, which isaliatec. Pro-
ducers are also assigned a random reserve price, input good radiascapacity, at the
values specified in Sectién 7.2.

7.2.2 New Entrants: Consumers

Consumers are randomly assigned a consumable good from a uniforioudistr of the
goods in the final tier of the original network. Consumption values for newsgmers
are set at a value randomly drawn from a uniform distribution of the vghlies or
minus 10% of the consumption value of consumer C1 in the original networkus#/e
consumption values from this range to try to at least partially preserve tiedygs of
the original network. The number of goods new consumers desire isthet same way
as for consumers present at initialisation. The value used for this pyagser be found

in Sectior 7.P.

7.2.3 Experimental Settings

In the following subsections, we explain the details of each of our threeriemental
settings.

Setting 1In the first set of experiments we run, we test LBP’s ability to cope with a
single incidence of each of the nine possible changes listed in Table 7.1scEmario
tests LBP’s ability to cope with minor alterations to the original network. After the
change has been made, we recompute the optimal value for the alteredknetier
perform 100 runs of LBP on each network for each change. Ineagka random step is
selected between step 1 aAd, the approximate graph diameter, with equal likelihood
for each step, as determined by the convergence detector agent. bBRues to run
until convergence is detected, as is specified in se€fion] 7.1.4, or, if game is not
reached, until the algorithm has run for 250 steps.
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Setting 2In the second set of experiments, we test LBP’s performance undeiea sf
random changes. This allows us to assess LBP’s performance undeichalenging
conditions than in Setting 1. The number of changes for each run is drawnthe
interval [2,5] and is varied between runs. The step at which the first change occurs
follows the same method as in Setting 1. The steps at which each of the seibsequ
changes occur are drawn from the interg),...,, AD], whereC,,., is the step at which
the previous change occured aAd is the approximate graph diameter. These values
are recomputed for every run. After all changes have been madeccmenpute the
optimal value for the altered network. For this and each subsequentegteriments,
once the final change occurs, LBP continues to runs until convesgemmtil 250 steps
have been completed.

Setting 3Finally, the third set of experiments model a scenario similar to experimental
setting 2, but this time allow for the possibility of a larger number of random alter-
ations. This tests LBP’s ability to cope under very challenging conditions, mither-

ous changes being made during the running of the algorithm. In this sepefiments,

the number of changes per run is drawn from the intel\@l, 10), and is varied between
runs. After all changes have been made, we recompute the optimal vathe faltered
network.

7.3 Results

7.3.1 Setting 1: Single Change, Single Type

Tabled7.P anf 713 show the efficiency classes produced by LBP o@eut6 of each
alteration type over each network. Given the absence of a comparatdatddised
supply chain reconfiguration technique in the literature, the main basis ofarsop
with these results is with those of multi-unit LB#th ratios as presented in Chapfér 6.

In the Simple network, for which multi-unit LBP with ratios achieved 100% optimality,
the results of TablE7.2 suggest that the effect of most alterations isnedggaminor,
with at most 4% of these optimal results being converted into zero or negatived
allocations for eight of the nine alterations we tested. The sole exception is tien

a new consumer is added to the network: in this case, 20% of the original bptisnés
are lost to zero or negative-valued allocations. Efficiency loss whemnwaconsumer
added is a common occurence on many of our networks; this is becausiditieraof
new vertices and edges to the original graph often also leads to the creftioe or
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more cycles. As we explain in Sectibn 2]4.2, there are no performancargees for
LBP on graphs with multiple cycles.

For the Unbalanced network, for which multi-unit LBP with ratios producptineal
results 67% of the time in a non-reconfiguration setting with a relatively larggoption
of suboptimal results, we see that reconfiguration actually leads to a sligravermpent
in the proportion of optimal results in several instances. We speculate thatdkon
for this might be that certain changes, such as a producer being remoegdiead
to the removal of cycles or a widening of the difference in efficiency bebtnaptimal
and suboptimal solutions, making it easier for LBP to find optimal solutions. ¥ a
notice that LBP is able to deal with the removal of the sole consumer in the riefndr
consistently produces optimal allocations (of value zero) for this alteratiathie and
all other networks with a single consumer.

Results for all other networks - Two-Cons (98% optimal results in the roonfiguration
multi-unit case), Bigger (94%), Many-Cons (100%), Greedy-Bad«qpBlarder (27%)
and Huge (63%) - follow in a similar vein, with most alterations tending not to signifi
cantly change the proportion of optimal results produced. Certain altesatiopartic-
ular the removal of producers and consumers, appear to consistenttwerthe results
LBP is able to produce for most networks. Others, most notably the additipmoduc-
ers, tend to mean LBP is able to produce slightly fewer optimal allocations. Again
attribute improvements in performance brought about by departuresdfigers to the
removal of cycles leading to less frequent double-counting of messaglesore accu-
rate agent beliefs. Conversely, new producers and consumers jtfir@mgetwork tend
to reduce performance slightly by introducing additional cycles to the nkswor

Average efficiency results for experimental setting 1 are presentedla[Tal, and fol-
low a similar pattern to the efficiency classes results. For all but the Hastemork,
average efficiencies tend to be roughly similar to the values for multi-unit LB ra-
tios in a non-reconfiguration setting, as is shown in TRRIE 6.2. Again, addingducer
seems to have the most pronounced adverse effect, with efficiencyflassumd 25%
for most networks when this alteration is made.
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Table 7.2: Distribution of efficiency classes produced by LBP undegrx@ntal setting 1, where a change of a single type

OCCurs once per

run.

Simple network Unbalanced network Two-Cons network Bigger network

% of instances % of instances % of instances % of instances
Change Neg Zero Sub Opt|Neg Zero Sub Opt| Neg Zero Sub Opt| Neg Zero Sub Opt
Production Cost | 0.0 1.0 0.0 99.0 1.0 12.0 220 650 3.0 0.0 20 950 40 20 00 940
Ratio 1.0 30 00 960 10 6.0 140 79.0 3.0 00 1.0 096.0040 00 1.0 0950
Consumption Value 0.0 0.0 0.0 100.00.0 7.0 230 700 00 0.0 40 96.0 20 0.0 0.0 980
Producer Added | 0.0 4.0 0.0 96.00 40 170 340 450 30 0.0 180 79.0 6.0 150 4.0 750
Consumer Added | 10.0 1.0 80 810 40 0.0 520 44.0011.0 0.0 9.0 80.016.0 0.0 20 820
Producer Removed 0.0 0.0 0.0 100.0 0.0 100 80 82.0 0.0 0.0 0.0 100.0 3.0 0.0 0.0 97.0
Consumer Removed0.0 0.0 0.0 100.00.0 0.0 0.0 100.0 00 0.0 0.0 100000 0.0 0.0 100.0
Production Capacity 0.0 1.0 0.0 99.00 1.0 9.0 180 720 20 1.0 00 97.010 20 00 97.0
Desired Goods | 0.0 0.0 0.0 100.01.0 50 150 79.0 6.0 00 0.0 940 90 00 0.0 91.0
No Changes 00 0.0 0.0 100.00.0 10.0 220 67.0 0.0 0.0 20 98.0 30 20 10 940
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Table 7.3: Distribution of efficiency classes produced by LBP undegmx@ntal setting 1, where a change of a single type

OCCurs once per

run.

Many-Cons network Greedy-Bad network Harder network Huge network

% of instances % of instances % of instances % of instances
Change Neg Zero Sub Opt|Neg Zero Sub Opt| Neg Zero Sub Opt| Neg Zero Sub Opf
Production Cost | 0.0 0.0 0.0 100.0 0.0 14.0 150 71.0440 26.0 2.0 280 40 21.0 120 63.0
Ratio 00 00 0.0 100.00.0 40 180 78.046.0 240 3.0 27.0 7.0 27.0 7.0 59.0
Consumption Valug 0.0 0.0 0.0 100.0 0.0 13.0 100 77.057.0 12.0 1.0 30.0 80 21.0 11.0 60.0
Producer Added | 1.0 4.0 9.0 86.00 0.0 18.0 28.0 54.052.0 250 4.0 19.0 3.0 29.0 9.0 59.0
Consumer Added| 0.0 0.0 0.0 100.00.0 1.0 28.0 71.051.0 17.0 16.0 16.0 3.0 29.0 9.0 59.0
Producer Removed 0.0 0.0 0.0 100.0 0.0 14.0 0.0 86.0038.0 24.0 50 33.010.0 17.0 9.0 64.0
Consumer Removed0.0 0.0 0.0 100.00.0 0.0 0.0 100000 0.0 0.0 1000 1.0 250 1.0 73.0
Production Capacity 0.0 0.0 0.0 100.0 0.0 12.0 20.0 68.050.0 22.0 3.0 25.0 80 23.0 10.0 59.0
Desired Goods | 0.0 0.0 0.0 100.00.0 9.0 140 77.051.0 180 3.0 28.0 1.0 27.0 16.0 56.0
No Changes 0.0 00 0.0 100.00.0 140 17.0 69.045.0 26.0 2.0 27.0 40 22.0 11.0 63.0
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Table 7.4: Average efficiency for each type of change produced®ih experimental setting 1. A result of 1.000 is equal
to the capture of an average of 100% of available efficiency.

Network
Change Simple Unbalanced Two-Cons Bigger Many-Cons Greedy-Bad HardegeH
Production Cost | 0.996 0.868 0.926 | 0.767 1.000 0.863 -0.022| 0.576
Ratio 0.976 0.860 0.93 0.808 1.000 0.930 -0.310| 0.382
Consumption Valug 1.000 0.859 0.973 | 0.904 1.000 0.882 -0.496| 0.413
Producer Added | 0.954 0.709 0.812 | 0.752 0.886 0.824 -0.556 | 0.576
Consumer Added | 0.747 0.720 0.724 | 0.670 1.000 0.917 0.19 | 0.581
Producer Removed 1.000 0.855 1.000 0.857 1.000 0.824 -0.227] 0.308
Consumer Removed 1.000 1.000 1.000 | 1.000 1.000 1.000 1.000 | 0.621
Production Capacity 0.985 0.838 0.966 | 0.932 1.000 0.845 -0.715| 0.425
Desired Goods | 1.000 0.909 0.871 | 0.691 1.000 0.908 -0.466 | 0.592
No Changes 1.000 0.872 0.983 | 0.813 1.000 0.839 -0.058| 0.583




7.3.2 Setting 2: Multiple Changes, Multiple Types

Table[Z.b shows the efficiency classes produced in experimental settimge?e ran-
domly chosen alterations occur between 2 and 5 times per run. Becausé@ngrao
consumer leads to 100% optimality in most networks, and negates the effeicther
shocks, we do not allow this alteration to be chosen as a random shock settiigy
or in experimental setting 3. A set of 100 runs were performed for eatkank. Table
[7.8 shows the average efficiency produced by LBP in this setting. It is frlea these
results that multiple alterations have little effect on LBP’s performance, with\@ry
slight degradations in total optimality for most networks. Tdblé 7.7 shows fhaead
within our results is only slightly greater than for the static multi-unit case.

Table 7.5: Distribution of efficiency classes produced by LBP undegr@xgntal
setting 2, where randomly chosen changes occur between 2 and 5 tinres per
Results from multi-unit LBP with ratios where no changes take place are eatlud
for reference.

Dynamic LBP Static LBP
% of instances % of instances
Network | Neg Zero Sub Opt Neg Zero Sub Opt
Simple 1.0 10 1.0 97.000 0.0 0.0 100.0
Unbalanced 1.0 10.0 28.0 61.0 0.0 10.0 22.0 67.0
TwoCons | 50 0.0 50 90.000 00 20 980
Bigger [13.0 40 20 81030 20 1.0 94.0
Many-Cons| 2.0 2.0 20 94.0 00 0.0 0.0 100.0
Greedy-Bad 0.0 11.0 21.0 68.0 0.0 14.0 17.0 69.9
Harder |53.0 18.0 6.0 23.045.0 26.0 2.0 270
Huge 7.0 16.0 16.0 60.0 4.0 220 11.0 63.0
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Table 7.6: Average efficiency for each type of change produced#yih exper-
imental setting 2. A result of 1.000 is equal to the capture of an averad#és 1
of available efficiency. Results from multi-unit LBP with ratios where no ¢fesn
take place are included for reference.

Network Dynamic LBP Static LBP
average efficiency average efficiency
Setting 2

Simple 0.954 1.000
Unbalanced 0.806 0.872
Two Cons 0.822 0.983
Bigger 0.528 0.813
Many-Cons 0.940 1.000
Greedy-Bad 0.818 0.839
Harder -0.118 -0.058
Huge 0.511 0.583

Table 7.7: Median and interquartile range measures for the averagerefjic
produced in Setting 2.

Setting 2 LBP| Setting 2 LBP

Network median interquartile range
Simple 1.000 0.000
Unbalanced 1.000 0.216
Two-Cons 1.000 0.000
Bigger 1.000 0.000
Many-Cons 1.000 0.000
Greedy-Bad 1.000 0.018
Harder -0.125 1.770
Huge 1.000 1.032

7.3.3 Setting 3: Many Changes, Multiple Types

Table Z.8 shows the efficiency classes produced in experimental settmth setting,
randomly chosen alterations occur between 6 and 10 times per run, simulatipgls
chain formation scenario requiring a great deal of adaptation by the misainaWe al-
low for all of the alterations explained in Section]7.1 with the exception of thartee

112



of consumers. As previously stated, this is because the departure n$ancer reliably
leads to 100% optimality in most networks. When compared to the results ofreeper
tal setting 2, we see that LBP’s performance degrades gracefully witlyer laumber
of changes per run. For some networks, the results appear to imply ttiatnpence

is actually better in this setting. We suggest this is a statistical quirk and woulgenot
borne out if more runs were conducted. Total optimality and averagéeefficare very
slightly worse that experimental setting 2 and, for most networks, ardlpoegmpara-
ble to the results produced when no reconfiguration is performed at alkitAsetting

2, Tabld 7.ID shows relatively little increase in the spread of our resultsnagaced to
the static multi-unit case.

7.3.4 Game Theoretic Properties

In this section, we explain how the game-theoretic properties of our LBBebapproach
are altered by allowing participants to change their properties, or to leaygdbess at
any point before the allocation is determined.

7.3.4.1 Individual Rationality

As with standard single-unit LBR, B F,, and multi-unit LBP, we cannot guarantee indi-
vidual rationality for LBP with reconfiguration. Allowing agents to leave thecgiss at
any point before the allocation is determined grants them greater ability to asgat
tive utility, but we are unable to guarantee non-negative utility for all agiattsdo not
choose to leave the process.

7.3.4.2 Incentive Compatibility

Although we allow producers to update their reserve prices in a similar waysts,,,
margin update steps are not enforced and producers may choos&de ¢hair margins
by any value. Because of this, incentive compatibility cannot be guarxhntee

7.3.4.3 Budget Balance

Our approach continues to involve no payments to or from the mechanisns tuedle-
fore strongly budget balanced.
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Table 7.8: Distribution of efficiency classes produced by LBP undegrix@ntal setting 3, where randomly chosen changes
occur between 6 and 10 times per run. Results from setting 2 and static multiBihere provided for comparison.

Dynamic LBP Dynamic LBP
Setting 3 Setting 2 Static LBP
% of instances % of instances % of instances
Network | Neg Zero Sub Opt Neg Zero Sub OptNeg Zero Sub Opt
Simple 20 00 30 95010 10 10 9700.0 0.0 0.0 100.0
Unbalanced 3.0 11.0 29.0 57.0 1.0 10.0 28.0 61.0 0.0 10.0 22.0 67.0
TwoCons | 40 10 80 87050 00 50 90.000 00 20 98.0
Bigger |[140 50 7.0 74.013.0 40 20 81030 20 1.0 94.0
Many-Cons| 0.0 2.0 20 96.020 20 20 94000 0.0 0.0 100.0
Greedy-Bad 1.0 17.0 13.0 69.0 0.0 11.0 21.0 68.00.0 14.0 17.0 69.0
Harder |55.0 21.0 5.0 19.053.0 18.0 6.0 23.045.0 26.0 2.0 27.0
Huge 20.0 14.0 20.0 46.07.0 16.0 16.0 60.0 4.0 22.0 11.0 63.0




Table 7.9: Average efficiency for each type of change produced#yih exper-
imental setting 3. A result of 1.000 is equal to the capture of an averad#és 1
of available efficiency. A comparison with setting 2 is also shown. Results fro
setting 2 and static multi-unit LBP are provided for comparison.

Network Dynamic LBP Dynamic LBP Static LBP
average efficiency average efficiency average efficiency
Setting 3 Setting 2

Simple 0.911 0.954 1.000
Unbalanced 0.713 0.806 0.872
Two Cons 0.801 0.822 0.983
Bigger 0.520 0.528 0.813
Many-Cons 0.989 0.940 1.000
Greedy-Bad 0.793 0.818 0.839
Harder -0.074 -0.118 -0.058
Huge 0.379 0.511 0.583

7.3.4.4 Allocative Efficiency

The allocative efficiency of LBP in a reconfiguration environment tendetwade grace-
fully as the number of changes occurring in each run increases. Imaestavhere only
one type of change occurs, the degradation from the results of aesonfiguration
multi-unit environment depends on the type of change that occurs.

7.4 Conclusions

In this chapter, we experimentally evaluated LBP’s performance in a settiegewthe
algorithm is forced to adapt to changes in the properties or compositiorrtafipating

agents. We performed three sets of experiments: one in which we meas@rdeht to
which performance is affected by each type of change, a second mmggserformance
when multiple random changes occur in each run, and finally a scenaei@aHarger
number of random changes occur in each run. Our results suggekBiRas capable
of dealing with changes to the properties of participants with almost no efficiess.

Some compositional changes, such as producers and consumersgetttenretwork,
tend to produce a slight loss of efficiency, while producers and consulegving the
network have the opposite effect, with average efficiency tending to irepstwen this
occurs. Our experiments with a series of random changes indicate tharfbemance
of LBP degrades gracefully as the amount of changes increasesjngllos to draw
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Table 7.10: Median and interquartile range measures for the averagjereffi
produced in Setting 3.

Setting 3 LBP| Setting 3 LBP

Network median interquartile range
Simple 1.000 0.000
Unbalanced 1.000 0.000
Two-Cons 1.000 0.000
Bigger 1.000 0.000
Many-Cons 1.000 0.000
Greedy-Bad 1.000 0.000
Harder -0.083 1.556
Huge 0.891 1.222

the conclusion that, as long as it is given sufficient additional time to coey&BP is
generally robust in the face of on-the-fly alterations to the problem sicena
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Chapter 8

Conclusions and Future Work

Automated support for supply chain formation holds many potential benefitsusi-
nesses, including faster and more rational selection of trading parimeneased adapt-
ability and cost savings.

In this thesis, we have made the following contributions to the area of automaiply s
chain formation:

— We developed a novel, non-market-based technique for the decemtrsilipply
chain formation problem based upon the min-sum loopy belief propagation alg
rithm.

— We applied our LBP-based technique to several different classesaldaben-
tralised supply chain formation problem, including two classes, profit maximisa-
tion and dynamic supply chain formation, which have received very little or no
attention in the multi-agent systems literature.

— We presented experimental analysis of our technique, and demonstratexslith
technique equals the existing state-of-the-art decentralised technayubg fma-
jority of problem instances studied, and is often capable of producing lsetie
tions.

In Sectior 8.11, we summarise the contributions made in this thesis in greater detail, a
in Sectior 8,11 we discuss potential directions for future work.
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8.1 Summary of Contributions

We produced a novel technique for the decentralised supply chain iormaroblem
based upon the min-sum loopy belief propagation algorithm. Loopy beligiagetion
and its min-sum variant have been applied successfully to many varyitdeprs in
Al and computer science in general, but have heretofore not sedorusgpply chain
formation, a problem which is typically dealt with using market-based protoddks
argued that min-sum LBP presents a number of advantages over magest{firotocols
and is well-suited as an approach to decentralised supply chain formatiamdér to
apply min-sum LBP to this problem, we describe in Chapier 3 how we convéréed
task dependency network formulation for supply chains presented irxisiing state

of the art decentralised approaJ;h [Walsh and ngirjuan, 12003] into a Madmlom
field formulation which preserves the important features of the originaldepkndency

networks while being suitable for use with the min-sum algorithm.

We applied the min-sum algorithm to a decentralised supply chain formation setting
identical to the scenario investigatedLanA[a.lih_a.ndAALeJi 2003] in Chiaptéhd.
work presented in this section of the thesis was originally published in sHortar
in |3A[Ln§p_eLa.nd_C_l:|Ii|_L2QJl0]. We presented a formalism for representiagtiites of
agents in supply chain networks to allow for compatibility with LBP, and explamed
approach to casting the monetary costs and values of agents typically usedkiet-
based methods into cost values suitable for use with LBP. We experimentadig tag
technique and the two auction protoMlsh@ndAAL&llrban.tZO%] over twlifee
ent problem instances. The first of these auction protocols, SAMRs$BJjecentralised
auction protocol which provided the main basis of comparison to our re3iéssecond,
SAMP-SB-D, is a modification of SAMP-SB that conducts a stage of postaitmn
decommitment by producers committed to unprofitable contracts. This posttalioca
decommitment stage is not allowed for in our model. As such, SAMP-SB-D wulaes
represent a fair point of comparison, but is nevertheless includediasliaation of the

best-case performance of a decentralised auction protocol for thigepro Our tech-
nique was able to match or outperform SAMP-SB for eleven of the twelvielgmoin-
stances studied, and match or outperform the performance of SAMB-@&Bten of the
twelve problem instances. The disparity in results was particularly stropgatem in-
stances where the costs of producers did not permit competitive equilibthmresults
produced by the auction protocols for these problems instances wgrgaoer, while
LBP, as a non-market-based approach, was unaffected. Our mdsloaequired fewer
exchanges of information to produce a solution than the auction protocdisvieneof
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the twelve problem instances tested.

A novel solution goal for supply chain formation, profit maximisation, wasouhiiced
in Chaptef’b. We proposed this goal as a means to provide further ineémtigroduc-
ers to participate in a supply chain formation mechanism. Many approadrastie
literature, includind Walsh and Wellr_rlalﬁ_@O?;], assume that producersoatent to
recoup their costs and participate without making a profit. The differeateden the
prices consumers are willing to pay and the price they are charged focthesumable
good is referred to as the surplus. Our technique for profit maximisaticaupioly chain

formation, LB P, allows producers to convert a proportion of this surplus into profit for
themselves by altering their margins at designated iterations of the algorithra bagts

of the belief values they hold about each of their states. We proposéidm@atanargin
update strategy for use ihBP,, the parameters of which were experimentally tuned
to provide the best possible balance between available surplus anderqulafits. We
conducted a series of experiments to determine the performant® Bf, and our ra-
tional pricing strategy as a means for profit maximisation. Becdusé), is the first
instance of a technique for profit maximisation in supply chain formation, wedaotred

a naive LBP-based profit maximisation technique to serve as a basisrfgracison.
LBP, allowed producers to convert more surplus into profit for all of the twelse
work instances studied, and was able to produce solutions with greailebé/aurplus,

a secondary objective for this solution goal, for ten of twelve network mests. L B P,
required a significantly greater number of information exchanges tharabie method,
but this was expected given the difference in approaches.

In Chaptefb we extended our model to the multi-unit case. This requiredpispose

a framework for the representation of multi-unit supply chains, which tottkancount
multi-unit specific factors including production capacities, input-to-outmatdgratios
and consumer desired goods. It also required extension of the statgerdf to model
quantities of goods. To our knowledge, this work was the first instanadesfhnique for
decentralised multi-unit supply chain formation. Applying our model to the multi-un
case allowed us demonstrate the ability of the LBP algorithm to scale up to more com-
plex supply chain formation problems. It also brought the problem domailestinto
line with the multi-unit scenarios examined using state-of-the-art centraliggdaches.
In order to provide a decentralised point of comparison to our appy@schxtended the
auction protocols df Walsh and Wellan_[;bO?;] to the multi-unit case. Beaaursex-
tension o J]_[ZdOS] did not permit the use of input to outpati g
ratios, we tested two version of multi-unit LBP - one where ratios are setdoh pro-
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ducer to a randomly chosen integer value between 1 and 2, and anatsienve allow
comparison to SAMP-SB in which all ratios are set to 1. Our results sughdsiethe
comparable version of LBP slightly outperformed SAMP-SB, producinggkgr greater
efficiency for five of the eight network instances tested. Results for WBF random
ratios were only slightly less efficient than the version with ratios set to 1. iegRBired
fewer instances of information exchange than the auction protocols bbeéitlzae eight
network instances.

ChaptefY introduced a supply chain reconfiguration scenario whichegt@articipants
the freedom to change their properties or to enter or leave the supply fonaiation
process at any point before the allocation is determined. This scenanigedllos to
investigate the performance of LBP in an environment which grants partisigaeater
autonomy, and again represented the first instance of a decentralfm@@ep to this
problem. We classified the types of changes available to participants into dad bat-
egories: property changes and structural changes. We perforasgia of experiments
investigating the performance of LBP when faced with one instance of ypehof
change per run, when faced with a relatively small number of randomkechchanges,
and when a large number of randomly chosen changes are made in raCluruesults
suggested that LBP’s performance is largely unaffected by propkegges. This is
expected behaviour given the relatively small difference in efficiemtwéen standard
LBP andLBP,, which also allows producers to modify their properties. Performance
degrades slightly from the static multi-unit scenario for structural chawbéesh involve
the entrance of new producers or consumers - these changes ameare difficult prob-
lem for the algorithm. Conversely, departures by producers or consymkich make
the problem easier, allowed LBP to produce better results than in the statiarisce
Performance degraded gracefully when larger numbers of alteratiengsmade in each
run.

8.1.1 Future Work

Our LBP-based models for supply chain formation were able to prodwetlent results
in each of the classes of the supply chain formation problem we applied thérheoe
were, nevertheless, some network instances for which LBP was unabbascstently
reach a convergent state. In these cases, the algorithm tends to oseile¢e several
different solutions, and the actual solution chosen is merely the one in \thechlgo-
rithm rests once it has run for the pre-designated number of stepsriarfce, in terms
of numbers of messages sent, could be improved in this situation if produeszsable
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to report an oscillation in their beliefs to the convergence detector ageith wbuld

call convergence early. This does, however, raise the questioniohwhase of the
oscillation the algorithm should be terminated at, given the convergencdaeigent’s
lack of information about the beliefs and states of participants or the steuaftine net-
work. Such a decision could be made in an informed manner if the conwergetector
agent had more knowledge of the properties of the network, at the timétariucing a
centralised element to the algorithm.

An alternative method for improving efficiency results would be to implementasgh

of post-allocation decommitment similar to that which is employed by the SAMP-SB-
D auction protocol we use as a point of comparison. Post-allocation decommitme
increases the efficiency of allocations in which dead ends are pregatibtving pro-
ducers who were unable to produce or find a buyer for their outpud tmoecommit
from contracts to purchase inputs. This removes the possibility that pnedodght
make a loss by participating, and in doing so ensures the individual rationélitbe
mechanism. However, as discusser in Walsh and Wéllln@[ZOOS], posttadioce-

commitment has several drawbacks. It compromises the utility of participdatdeaf

by decommitments, who may in turn be forced to decommit themselves, and intsoduce
the possibility that producers might choose to decommit even when not fpardead
end if, for example, the amount of profit they would make is not as largesisedi.

It is possible that the efficiency results b3 P, could be improved by allowing for the
possibility of backtracking to global state configurations with greater efiftgi@luring
the running of our algorithm. This would, in particular, potentially improve the ef
ciency results produced kyB P, for the no-CE case of Two-Cons, in which the double
counting of messages frequently leads to zero-valued allocations. ldgviles pursuit
of a more globally efficient allocation raises the possibility of decreasiniif joo some
producers, compromising their self-interest. Future work could includeparimental
analysis of the strategic implications of introducing the ability for producerkeotheir

B values during the running of the algorithm.

The extensions made in Chapters 6and 7 give our model greater fidelitydortbielera-
tions of real-world supply chain formation than existing decentralised tegbsjgvhich
tend to model scenarios in which goods are exchanged in single units fale&srs such
as capacities are not taken into account, and the potential for new endejaistures and
property changes are not modelled. Further extensions have the pdtem@ease the
fidelity of the model to a point where industrial application may become a possibility

We suggest that the most important next steps in enriching the model ansierteto
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take into account scheduling factors such as delivery date commitmentgdsigenal-

ties and storage costs. Implementation of these extensions would bring th fitigne
scenario to a level commensurate with that of the TAC SCM g&me_[Q_Ql[LnfL Emd],zo
which is currently the most realistic decentralised agent-based supplyretaiad sce-
nario. These extensions would require further improvements to the skmemwer of
states, and have the potential to require significant expansion of the nwibiates
required by each agent, slowing the speed of the algorithm. This problelah lse mit-
igated by limiting the time horizons modelled in the states of each agent, and allowing
agents to prune states which specify dates or other constraints whiclcanepatible

with the states of their neighbours.

Finally, this thesis has focused exclusively on the use of techniqued bagkee min-sum
loopy belief propagation algorithm. We believe there exists scope for tHeafm of
alternative algorithms for graphical inference to this problem if issuesrdétg central-
isation and modification of the original network structure can be reconciled.
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Appendix A

Two Cons Network Example

Our linear models are written in accordance with the .Ip file format, the nativesfioof
Ip_solve. We begin each linear model by defining the objective function, tliebka we
wish to maximise. In the Two Cons network, as with all other networks, the tsgec
function is the sum of the values gained by consumers. For a completenvefdioe
Two Cons example model, please see the following section.

1 max: TotalVal;

The value of the objective function produced by MILP is used as the ophierathmark
against which the values produced by LBP are compared.dblge returns a value of 0
for the objective function, there exists no positive-valued solution to thatark given
the supplied values for production costs, capacities, ratios and consiesiezd good
gquantities. In this case, we discard the network instance, compute nevg Vafuihe
aforementioned variables, and run LP again using the new values.

Lines 3-7 of our Two Cons model assign values to variables specifyingrtiduction
capacities of each of the producers in our network. We use Java to wege thalues
directly into the model before every run.

3 Pl1Cap 4,

7 P5Cap

3;

Lines 9-10 specify the number of goods desired by each consumer iretverk in-
stance. Again, these are supplied to the model by Java.
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9 ClDesired = 3;
10 C2Desired = 2;

Lines 12-16 of the Two Cons model specify equalities between the total mahipeods
produced by each producer and the number of goods sold to eachtmfytbes of their
output good. For example, line 12 specifies that producer P1's total tofrfBrod) is
equal to the sum of P1's sales to P3 (P1P3) and P4 (P1P4).

12 P1Prod = P1P3+P1P4;

16 P5Prod P5C1;

Lines 18-22 of the model impose constraints on the total output of eachg@oaccord-
ing to the production capacities defined in lines 3-7.

18 P1Prod<= P1Cap;

22 P5PRod<= P5Cap;

Lines 24-27 encode the relationship between each producer’s sqiuifgnods ratios
and the number of each of these goods they need to consume in ordedtc@tbeir
output good. Line 24 specifies that P3 needs to acquire twice as many olfeitsgut

good, sold by producer P1, as the number of goods it produces dsdcséhe sole
consumer of its output good, C1.

24 2 P3C1

P1P3;

27 3 P5C1

P2P5;

In lines 29-33, we define the relationship between the number of goodghbby each
consumer from each of their possible supplies and the total number dfgaas made
by each consumer.

29 C1lPurchasesFromP3 = P3C1;
33 C2TotalPurchases = C2PurchasesFromP4;

Lines 34-35 specify an upper limit on the total number of purchases madadbycon-
sumer; no consumer may purchase more goods than their desired total.

34 ClTotalPurchases= ClDesired;
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Line 37 assigns a variable to the product of each producers produwsigirand total
number of goods they produce, while line 38 assigns a variable to theqtrofieach
consumer’s consumption value and the number of consumable goods thesea®ro-
duction costs and consumption values are supplied to the model by Java.

37 SumOfPCs = 0.5 P1Prod + 0.6 P2Prod + 0.1 P3Prod +
0.2 P4Prod + 0.3 P5Prod;
38 TotalVal = 1.23 ClTotalPurchases + 2.17 C2TotalPurclsgse

Line 40 defines how the objective function is to be calculated. The value afllihcation
is equal to the sum of the total value obtained by consumers minus the suodatfon
costs incurred by active producers.

40 TotalVal = ConVals— SumOfPCs;
Finally, line 41 imposes an integer value restriction on each the exchantjenshaps

in the network. We impose this restriction due to our assumption that all goeds ar
non-divisible.

41 int P1P3, P1P4, P2P4, P2P5, P3Cl, P4C2, P5C1;

125



Complete Two-Cons .lp formulation

Below is the Two-Cons Network MIP formulation in .Ip format.

max: Total val ;

P1Cap
P2Cap
P3Cap
P4Cap
P5Cap

1
N e e

© 00 N O 0o WODN PP

ClDesired =1
10 C2Desired = 1;

12 P1Prod = P1P3+P1P4;
13 P2Prod = P2P4+P2P5;
14 P3Prod = P3C1;

15 P4Prod = P4C2;

16 P5Prod = P5C1;

17

18 P1Prod <= PlCap

19 P2Prod <= P2Cap

20 P3Prod <= P3Cap

21 P4Prod <= P4Cap

22 P5Prod <= P5Cap

23

24 1 P3Cl1 = P1P3;

25 1 PAC2 = P1P4;

26 1 PAC2 = P2P4;

27 1 P5C1 = P2P5;

28

29 ClPur chasesFronP3 = P3C1;
30 ClPur chasesFronP5 = P5C1;
31 C2Pur chasesFronP4 = P4C2;

32 ClTot al Pur chases Cl1Pur chasesFr onP3+Cl1Pur chasesFr onP5;
33 C2Tot al Purchases = C2Pur chasesFr onP4;
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34
35
36
37

38
39
40
41

ClTot al Purchases <= ClDesired,;
C2Tot al Purchases <= C2Desired;

Sumo>FPCs = 0.5 P1Prod + 0.6 P2Prod + 0.1 P3Prod
0.2 P4Prod + 0.3 P5Prod;
ConVal s = 1.23 ClTot al Purchases + 2.17 C2Tot al Pur chases;

Total Val = ConVals - SuntCf PCs;

i nt

P1P3, P1P4, P2P4, P2P5, P3Cl, P4C2, P5CL;
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Appendix B

Graph Diameter Algorithm

The distributed depth-first search algorithm proceeds as follows: unitadization of

the network, the convergence detector agent designates a randenas¢fee root node.
This agent then randomly picks a neighboring agent and adds it to thielassmgpanning
tree. The updated candidate spanning tree is sent to the chosen adéhis agent then
randomly chooses one of its own neighbours which is not part of thadatedspanning
tree. It then updates the tree and passes control to the chosen agerthenjtiocess
continuing until the chosen agent has no neighbors which are nontyrgart of the

candidate spanning tree. In this situation, the active agent backtraadsing control
back to the agent which originally activated it. This agent then choosdbernaf its

own neighbors which is not part of the candidate spanning tree. Thiegsaontinues
until control is passed back to the root node and the root node hasenplored edges.

With each node aware of who its neighbors are in the final spanning teceseva series
of distributed breadth first searches to find the diameter of the tree. Tivergence
detector designates one agent randomly as the root node. This nadeaseressage to
each of its neighbors in the spanning tree informing them that they are criealgay
from the root. These agents then send a message to each of their ngifjbbowhich
they have not already received a message indicating that they are tv® fieva the
root, and so on. Once an agent has sent messages to each of its nesgitsends a
message back to the agent which activated it, indicating its current level.valuis is
passed backwards through the tree until it reaches the root noderodherode then
sends the maximum of these values, equal to the maximum shortest path b#teieen
root and any other node in the spanning tree, to the convergence detgetd. The
convergence detector agent then assigns another agent as thedepand the process
is repeated until the diameter of the tree is determined.
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Appendix C

Notation
Symbol Meaning
Bp Producep’s buffer zone
Op The maximum increment by which produger
may increase or decrease its margin
p Producep’s margin
A The number of units of goods acquired by consumer
AD The approximate graph diameter
belyr Producep’s belief in its inactive state
bel,a Producep’s belief in its lowest cost active state
bel,(z,,) Agentu’s belief about it's state:,,
C The set of consumers in a supply chain network.
Cx The set of consumers in the optimal allocation
c A consumer inC
Chprev The last step at which a change occured in the supply

chain reconfiguration scenario
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Symbol

Meaning

Fy,

Fy;

fo(2y)

Guv (Tu, Ty)
Mp

My,

Mywy—u (xu)

Ny

T v

*

E S S8xT

The fee paid from buyédrto producemp

The fee paid by producerto each of its suppliers

The unary cost of agentbeing in stater,

The pairwise cost of linked agentsandv being in states:,, andz,,
The total number of units of goods manufactured by prodpcer
The number of units of goods manufactured by prodpder buyerd
A message sent from neighbouring agerib agentu
encodingw’s beliefs about/’s statez,,

The neighbours of agemt

The set of producers in a supply chain network.

The set of producers in the optimal allocation

A producer inP

The reserve price of producer

The total number of goods in tigrf of a supply chain network
The set of agents in a network

An agent inV

The consumption value of consumer

A neighbour inNV
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