4,789 research outputs found

    Bayesian space-time gap filling for inference on extreme hot-spots: an application to Red Sea surface temperatures

    Full text link
    We develop a method for probabilistic prediction of extreme value hot-spots in a spatio-temporal framework, tailored to big datasets containing important gaps. In this setting, direct calculation of summaries from data, such as the minimum over a space-time domain, is not possible. To obtain predictive distributions for such cluster summaries, we propose a two-step approach. We first model marginal distributions with a focus on accurate modeling of the right tail and then, after transforming the data to a standard Gaussian scale, we estimate a Gaussian space-time dependence model defined locally in the time domain for the space-time subregions where we want to predict. In the first step, we detrend the mean and standard deviation of the data and fit a spatially resolved generalized Pareto distribution to apply a correction of the upper tail. To ensure spatial smoothness of the estimated trends, we either pool data using nearest-neighbor techniques, or apply generalized additive regression modeling. To cope with high space-time resolution of data, the local Gaussian models use a Markov representation of the Mat\'ern correlation function based on the stochastic partial differential equations (SPDE) approach. In the second step, they are fitted in a Bayesian framework through the integrated nested Laplace approximation implemented in R-INLA. Finally, posterior samples are generated to provide statistical inferences through Monte-Carlo estimation. Motivated by the 2019 Extreme Value Analysis data challenge, we illustrate our approach to predict the distribution of local space-time minima in anomalies of Red Sea surface temperatures, using a gridded dataset (11315 days, 16703 pixels) with artificially generated gaps. In particular, we show the improved performance of our two-step approach over a purely Gaussian model without tail transformations

    An Ensemble Approach to Space-Time Interpolation

    Get PDF
    There has been much excitement and activity in recent years related to the relatively sudden availability of earth-related data and the computational capabilities to visualize and analyze these data. Despite the increased ability to collect and store large volumes of data, few individual data sets exist that provide both the requisite spatial and temporal observational frequency for many urban and/or regional-scale applications. The motivating view of this paper, however, is that the relative temporal richness of one data set can be leveraged with the relative spatial richness of another to fill in the gaps. We also note that any single interpolation technique has advantages and disadvantages. Particularly when focusing on the spatial or on the temporal dimension, this means that different techniques are more appropriate than others for specific types of data. We therefore propose a space- time interpolation approach whereby two interpolation methods – one for the temporal and one for the spatial dimension – are used in tandem in order to maximize the quality of the result. We call our ensemble approach the Space-Time Interpolation Environment (STIE). The primary steps within this environment include a spatial interpolator, a time-step processor, and a calibration step that enforces phenomenon-related behavioral constraints. The specific interpolation techniques used within the STIE can be chosen on the basis of suitability for the data and application at hand. In the current paper, we describe STIE conceptually including the structure of the data inputs and output, details of the primary steps (the STIE processors), and the mechanism for coordinating the data and the 1 processors. We then describe a case study focusing on urban land cover in Phoenix Arizona. Our empirical results show that STIE was effective as a space-time interpolator for urban land cover with an accuracy of 85.2% and furthermore that it was more effective than a single technique.

    An Ensemble Approach to Space-Time Interpolation

    Get PDF
    There has been much excitement and activity in recent years related to the relatively sudden availability of earth-related data and the computational capabilities to visualize and analyze these data. Despite the increased ability to collect and store large volumes of data, few individual data sets exist that provide both the requisite spatial and temporal observational frequency for many urban and/or regional-scale applications. The motivating view of this paper, however, is that the relative temporal richness of one data set can be leveraged with the relative spatial richness of another to fill in the gaps. We also note that any single interpolation technique has advantages and disadvantages. Particularly when focusing on the spatial or on the temporal dimension, this means that different techniques are more appropriate than others for specific types of data. We therefore propose a space- time interpolation approach whereby two interpolation methods – one for the temporal and one for the spatial dimension – are used in tandem in order to maximize the quality of the result. We call our ensemble approach the Space-Time Interpolation Environment (STIE). The primary steps within this environment include a spatial interpolator, a time-step processor, and a calibration step that enforces phenomenon-related behavioral constraints. The specific interpolation techniques used within the STIE can be chosen on the basis of suitability for the data and application at hand. In the current paper, we describe STIE conceptually including the structure of the data inputs and output, details of the primary steps (the STIE processors), and the mechanism for coordinating the data and the processors. We then describe a case study focusing on urban land cover in Phoenix, Arizona. Our empirical results show that STIE was effective as a space-time interpolator for urban land cover with an accuracy of 85.2% and furthermore that it was more effective than a single technique.

    CLIMFILL v0.9: a framework for intelligently gap filling Earth observations

    Get PDF
    Remotely sensed Earth observations have many missing values. The abundance and often complex patterns of these missing values can be a barrier for combining different observational datasets and may cause biased estimates of derived statistics. To overcome this, missing values in geoscientific data are regularly infilled with estimates through univariate gap-filling techniques such as spatial or temporal interpolation or by upscaling approaches in which complete donor variables are used to infer missing values. However, these approaches typically do not account for information that may be present in other observed variables that also have missing values. Here we propose CLIMFILL (CLIMate data gap-FILL), a multivariate gap-filling procedure that combines kriging interpolation with a statistical gap-filling method designed to account for the dependence across multiple gappy variables. In a first stage, an initial gap fill is constructed for each variable separately using state-of-the-art spatial interpolation. Subsequently, the initial gap fill for each variable is updated to recover the dependence across variables using an iterative procedure. Estimates for missing values are thus informed by knowledge of neighbouring observations, temporal processes, and dependent observations of other relevant variables. CLIMFILL is tested using gap-free ERA-5 reanalysis data of ground temperature, surface-layer soil moisture, precipitation, and terrestrial water storage to represent central interactions between soil moisture and climate. These variables were matched with corresponding remote sensing observations and masked where the observations have missing values. In this “perfect dataset approach” CLIMFILL can be evaluated against the original, usually not observed part of the data. We show that CLIMFILL successfully recovers the dependence structure among the variables across all land cover types and altitudes, thereby enabling subsequent mechanistic interpretations in the gap-filled dataset. Correlation between original ERA-5 data and gap-filled ERA-5 data is high in many regions, although it shows artefacts of the interpolation procedure in large gaps in high-latitude regions during winter. Bias and noise in gappy satellite-observable data is reduced in most regions. A case study of the European 2003 heatwave shows how CLIMFILL reduces biases in ground temperature and surface-layer soil moisture induced by the missing values. Furthermore, in idealized experiments we see the impact of fraction of missing values and the complexity of missing value patterns to the performance of CLIMFILL, showing that CLIMFILL for most variables operates at the upper limit of what is possible given the high fraction of missing values and the complexity of missingness patterns. Thus, the framework can be a tool for gap filling a large range of remote sensing observations commonly used in climate and environmental research.</p

    Spatial-Temporal Data Mining for Ocean Science: Data, Methodologies, and Opportunities

    Full text link
    With the increasing amount of spatial-temporal~(ST) ocean data, numerous spatial-temporal data mining (STDM) studies have been conducted to address various oceanic issues, e.g., climate forecasting and disaster warning. Compared with typical ST data (e.g., traffic data), ST ocean data is more complicated with some unique characteristics, e.g., diverse regionality and high sparsity. These characteristics make it difficult to design and train STDM models. Unfortunately, an overview of these studies is still missing, hindering computer scientists to identify the research issues in ocean while discouraging researchers in ocean science from applying advanced STDM techniques. To remedy this situation, we provide a comprehensive survey to summarize existing STDM studies in ocean. Concretely, we first summarize the widely-used ST ocean datasets and identify their unique characteristics. Then, typical ST ocean data quality enhancement techniques are discussed. Next, we classify existing STDM studies for ocean into four types of tasks, i.e., prediction, event detection, pattern mining, and anomaly detection, and elaborate the techniques for these tasks. Finally, promising research opportunities are highlighted. This survey will help scientists from the fields of both computer science and ocean science have a better understanding of the fundamental concepts, key techniques, and open challenges of STDM in ocean

    The future of Earth observation in hydrology

    Get PDF
    In just the past 5 years, the field of Earth observation has progressed beyond the offerings of conventional space-agency-based platforms to include a plethora of sensing opportunities afforded by CubeSats, unmanned aerial vehicles (UAVs), and smartphone technologies that are being embraced by both for-profit companies and individual researchers. Over the previous decades, space agency efforts have brought forth well-known and immensely useful satellites such as the Landsat series and the Gravity Research and Climate Experiment (GRACE) system, with costs typically of the order of 1 billion dollars per satellite and with concept-to-launch timelines of the order of 2 decades (for new missions). More recently, the proliferation of smart-phones has helped to miniaturize sensors and energy requirements, facilitating advances in the use of CubeSats that can be launched by the dozens, while providing ultra-high (3-5 m) resolution sensing of the Earth on a daily basis. Start-up companies that did not exist a decade ago now operate more satellites in orbit than any space agency, and at costs that are a mere fraction of traditional satellite missions. With these advances come new space-borne measurements, such as real-time high-definition video for tracking air pollution, storm-cell development, flood propagation, precipitation monitoring, or even for constructing digital surfaces using structure-from-motion techniques. Closer to the surface, measurements from small unmanned drones and tethered balloons have mapped snow depths, floods, and estimated evaporation at sub-metre resolutions, pushing back on spatio-temporal constraints and delivering new process insights. At ground level, precipitation has been measured using signal attenuation between antennae mounted on cell phone towers, while the proliferation of mobile devices has enabled citizen scientists to catalogue photos of environmental conditions, estimate daily average temperatures from battery state, and sense other hydrologically important variables such as channel depths using commercially available wireless devices. Global internet access is being pursued via high-altitude balloons, solar planes, and hundreds of planned satellite launches, providing a means to exploit the "internet of things" as an entirely new measurement domain. Such global access will enable real-time collection of data from billions of smartphones or from remote research platforms. This future will produce petabytes of data that can only be accessed via cloud storage and will require new analytical approaches to interpret. The extent to which today's hydrologic models can usefully ingest such massive data volumes is unclear. Nor is it clear whether this deluge of data will be usefully exploited, either because the measurements are superfluous, inconsistent, not accurate enough, or simply because we lack the capacity to process and analyse them. What is apparent is that the tools and techniques afforded by this array of novel and game-changing sensing platforms present our community with a unique opportunity to develop new insights that advance fundamental aspects of the hydrological sciences. To accomplish this will require more than just an application of the technology: in some cases, it will demand a radical rethink on how we utilize and exploit these new observing systems
    • …
    corecore