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An ensemble approach to space-time interpolation  

 

Abstract 

There has been much excitement and activity in recent years related to the relatively 

sudden availability of earth-related data and the computational capabilities to visualize and 

analyze these data. Despite the increased ability to collect and store large volumes of data, 

few individual data sets exist that provide both the requisite spatial and temporal 

observational frequency for many urban and/or regional-scale applications. The motivating 

view of this paper, however, is that the relative temporal richness of one data set can be 

leveraged with the relative spatial richness of another to fill in the gaps. We also note that 

any single interpolation technique has advantages and disadvantages. Particularly when 

focusing on the spatial or on the temporal dimension, this means that different techniques 

are more appropriate than others for specific types of data. We therefore propose a space-

time interpolation approach whereby two interpolation methods – one for the temporal and 

one for the spatial dimension – are used in tandem in order to maximize the quality of the 

result.  

 We call our ensemble approach the Space-Time Interpolation Environment (STIE).  

The primary steps within this environment include a spatial interpolator, a time-step 

processor, and a calibration step that enforces phenomenon-related behavioral constraints. 

The specific interpolation techniques used within the STIE can be chosen on the basis of 

suitability for the data and application at hand. In the current paper, we describe STIE 

conceptually including the structure of the data inputs and output, details of the primary 

steps (the STIE processors), and the mechanism for coordinating the data and the 
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processors. We then describe a case study focusing on urban land cover in Phoenix 

Arizona. Our empirical results show that STIE was effective as a space-time interpolator 

for urban land cover with an accuracy of 85.2% and furthermore that it was more effective 

than a single technique.  

 Key words:  space-time interpolation, urban growth, Phoenix, Arizona 

 

1. Introduction 

Better understanding of complex, earth-related processes is being viewed by 

scientists and governments with an increasing level of urgency to address problems such as 

the new global economy, the drivers and consequences of urban growth, and the effects of 

global climate change. Such processes are characterized by the interaction of many factors 

with multiple interconnections and feedbacks that vary over multiple spatial and temporal 

scales. Coincident with this, recent advancements in data availability and computing 

capacity is enabling a new era in the analysis of environmental and social phenomena. We 

can now begin to examine phenomena in both space and time at the appropriate level of 

detail, essential for meeting the challenge of understanding complex systems. 

There has been much activity over the past 10 to 20 years in space-time 

representation for computer analysis (Langran and Chrisman 1988; Peuquet 2002; Yuan et 

al. 2005; Spaccapietra et al. 2006), the extensions of traditional techniques (SenGupta and 

Ugwuowo 2006; Lee and Wentz 2008), and in development of new analytical techniques  

(Laube and Purves 2006).  Nevertheless, such techniques usually require data with 

continuous and consistent resolution in space-time. Despite the growth in data acquisition 

infrastructure, including high-resolution satellite systems, telemetry and radar, as well as 
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the accumulation of archival map data in digital form, few individual data sets are available 

that provide both the needed and/or desired spatial as well as temporal resolution. This is 

particularly true with respect to historical data, which poses a major obstacle for the 

utilization of new space-time analysis capabilities. 

Interpolation is a key technique used to supplement, smooth, and standardize 

observational data. The interpolation process typically involves three primary steps which 

are often used iteratively: exploration, estimation, and validation of observational and 

calculated values. For data exploration, analysts typically utilize multiple techniques in 

tandem to explore data trends and interactions. Multiple statistical and graphical techniques 

are also used for model validation to determine how well the interpolated values 

approximate observed data.  An analyst will use the multifaceted results of data exploration 

and validation to decide upon a single statistical or mathematical interpolation technique 

for estimation (e.g., exponential kriging). We view this as simplistic relative to the complex 

multidimensional interrelationships inherent in space-time data. 

We reason that first, any single interpolation technique has its advantages and 

limitations in terms of the specific patterns of variation that may be present in the data.  

Second, results can be greatly improved by using an ensemble of interpolation techniques 

and utilizing ancillary data to take maximum advantage of space-time interactions. Such an 

approach was impractical until recently because of limitations in both data availability and 

computing capacity.  

One of the opportunities in space-time interpolation is that data available to 

investigators will frequently be of two distinct types; one type with a much greater 

observational density in the temporal dimension than in the spatial dimension, and another 
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with the reverse. An example of the former is air quality data, which may be collected 

hourly but there may be only a few monitoring stations (i.e., observation locations) 

throughout an urban area. An example of the latter is Landsat data, which provide complete 

spatial coverage (at 30m resolution) but these ‘snapshots’ are repeated only once every 

sixteen days. These two types of data represent different sampling approaches and require 

different types of interpolation, but in theory they can be used in tandem to derive 

interpolated space-time data better than can be derived with either type alone. 

Our aim is to utilize these different but complimentary data in an ensemble 

approach to space-time interpolation, to create a fully populated space-time cube for one or 

more variables. Our proposed ensemble method consists of a multi-step and iterative 

process within a coordinated environment, using ancillary data to provide additional 

information for refining primary data in both the spatial and temporal dimensions. We 

name this ensemble method the Space-Time Interpolation Environment (STIE). Multiple 

models are combined to utilize spatial characteristics from one data set to inform the 

temporal dimension of the other, and vice versa. STIE consists of two primary components. 

The core consists of a set of interpolation processors each focusing on interpolation in a 

specific dimension or cross-checking between dimensions. This core is incorporated within 

a management structure that handles the flow of data and estimated values between 

processors.  

The paper begins with a synthesis of recent research in space-time interpolation. We 

then present STIE, starting with a description of the individual processors, followed by how 

they work together within an overall management structure. We demonstrate the 

effectiveness of STIE using the example of interpolating land cover annually in Phoenix, 
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Arizona. Our conclusions highlight the opportunities and challenges associated with this 

approach. 

 

2. Recent research 

Research in space-time interpolation has generally involved refinement of a single 

technique. While it has been acknowledged that many spatial interpolation techniques, 

including inverse distance weighting, splining, kriging and spatial regression can be 

extended to the temporal dimension (Goldstein et al. 2004), efforts have been focused on 

interpolation in either the spatial or the temporal dimension but not both simultaneously, 

even for space-time data. To examine urban growth, for example, Goldstein et al. (2004) 

used Delaunay triangulation to fill-in missing urban/non-urban values for parcel records for 

each year between 1929 and 2001 in Santa Barbara County, California. Values for spatial 

neighbors were used to estimate the value of a given missing parcel value within a given 

time slice.  

One problem with this general approach to space-time interpolation is that it ignores 

possible temporal correlations that could aid in the estimation process. Perhaps the primary 

exception is kriging. Researchers refining and extending space-time kriging have 

recognized the need to correlate the temporal dimension. While many applications of 

space-time kriging can view the spatial and temporal dimensions as equivalent, most who 

are dealing with the geospatial context realize that there are some fundamental and 

essential differences between the spatial and temporal domains (Rouhani and Myers 1990; 

Christakos and Vyas 1998; Kyriakidis and Journel 2001).  Of primary importance with 

respect to space-time interpolation, values for a given variable at a specific location may be 
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influenced by values in any spatial direction, whereas values in time can only be influenced 

by values at a preceding time. Because kriging incorporates global as well as local 

influences for estimating values, the increased dimensionality of time as well as space, and 

the resultant increase in the number of observations causes a dramatic increase in the 

computational requirement. Kerwin and Prince (1999) proposed a recursive solution to the 

data dimensionality problem, coupling kriging with a stochastic state equation. 

A clear improvement to ordinary spatio-temporal kriging includes the use of 

ancillary data to aid in the estimation process, referred to as external drift (Wackernagel 

1998; Chiles and Delfiner 1999). Snepvangers et al. (2003) demonstrated the improvements 

possible in estimating soil water content by using net precipitation as ancillary data. They 

found that spatio-temporal kriging with external drift produced more realistic results than 

spatio-temporal kriging alone. The use of ancillary data has also proven effective in other 

space-time interpolation approaches. Goldstein et al. (2004) were able to better the results 

of the Delaunay triangulation of urban extents by utilizing cellular automata along with 

ancillary data, which included slope and road networks.  

We recognize that any individual interpolation method has advantages and 

disadvantages. Integrating multiple methods has been shown to provide a flexible and 

coherent structure to solve problems with increased complexity (Drecourt et al. 2006; Roy 

2008; Wang and Armstrong 2009). Drecourt et al. (2006) constructed an ensemble 

framework to set up a filter to estimate the parameters of a covariance matrix in a 

groundwater model finding that the framework provided information on uncertainty in the 

model. The approach that we propose below integrates multiple techniques with ancillary 

data to improve overall results for space-time interpolation of earth-related data.  
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3. Ensemble framework for space-time interpolation 

 The STIE uses three processors within an overall management structure that 

handles data flow among these. The three processors are a Spatial Interpolator, a Time-Step 

Processor, and a Calibration Processor. The Spatial Interpolator (SI) uses multiple temporal 

observations at given point locations and interpolates estimated values to all gridded 

locations in the study area. The Time-Step Processor (TSP) takes gridded values at a single 

time slice and estimates gridded values for the subsequent time slice. The Calibration 

Processor (CP) integrates the output from the SI to refine and constrain the output from the 

TSP. The specifics of each of the processors are described below. 

Input to the SI is a set of observational data in ordered time sequences for specific 

x, y points in geographic space: 

  P | p ∈ x, y( )t{ }      (1) 

For each x, y location there is a chronological time-series, t, where t = (t0, t1, t2, … tn)  

While the points, p, are spatially disjoint and irregularly distributed, the temporal interval 

between observations is constant for all points. We note, however, that the starting and 

ending times of the temporal sequence do not need to be the same for each p ∈ P. 

Meteorological stations that record hourly temperature, precipitation, and air pressure are 

examples of this type of temporally rich data. Data collection from two different 

meteorological stations may have started at different times resulting in a different number 

of observations in each time sequence.  
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Inputs to the Time-Step Processor consist of observational values ordered within a 

set, S, of two-dimensional regular grids, Q, each representing a complete coverage of some 

portion of the earth with a regular grid size (dim) at a single, known time (t): 

  { }tQsS dim,| ∈        (2) 

The size and shape of the grids are regular and the spatial extent is constant among all 

grids. The time intervals between successive grids (i.e., successive temporal snapshots), 

however, do not need to be regular. Land cover and surface temperature derived from 

satellite remote sensing are examples of such spatially rich data. 

 The interpolated values are output in the form of a space-time cube: 

  { }tQstST dim,| ∈       (3) 

Where ST is a set of grids with a spatial extent and support (dim) defined by the input set S 

and t is the regular, chronological time-series consistent with the set P.  

           Given these definitions,  the overall process of STIE can be interpreted as refining or 

filling-in the missing values for specific space-time locations within the cube. This 

conceptual cube can be extended into four or more dimensions to accommodate two or 

more variables. Using the inputs from Equations 1 and 2, the SI and the TSP are run in 

parallel to produce estimated values for a single time slice as shown in Figure 1. The CP is 

then used to refine all values in the estimated time slice for that iteration by imposing 

known constraints specific to the local context for the given attribute. The completed 

estimated time slice is then used as input for estimation of the next time slice in the next 

iteration. This process is repeated until the complete space-time cube is constructed.  

Selection of specific estimation techniques for each of these three processors 

depends on specifics of the data and the application at hand.  This means that before any 
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actual estimates are made, the source data must be examined to determine the appropriate 

combination of interpolation and modeling techniques for the given application. This 

typically includes exploratory techniques such as visualizing raw data and calculating 

descriptive statistics for dependent and independent variables. This type of data exploration 

is an essential preliminary step. For example, to select the best geostatistical kriging model 

(if, indeed, kriging was earlier determined to be the best interpolation technique), analysts 

will explore the input data by calculating first and second order statistical moments, 

creating graphical views of autocorrelation of the dependent variables (e.g., histograms, 

variograms), and manipulating and mapping data subsets. Important components of this 

step are to remove trends and to determine data stationarity.  

4. Case Study of STIE 

We demonstrate STIE using a case study on urban growth for the Phoenix 

Metropolitan Area, a region that includes the City of Phoenix and 14 other incorporated 

areas covering approximately 7,650 km2 of central Arizona (Figure 2). An explosion in 

population growth is resulting in unprecedented conversion of natural semiarid desert 

vegetation and historic agricultural land to urban land cover. Questions arise regarding the 

drivers of this type of growth and the environmental and social consequences. 

Recent research investigating urban growth in the Phoenix metropolitan area has 

shown most land transformations are from agricultural to single family residential, and that 

the spatial pattern of development is movement outward from the urban core (Keys et al. 

2007). This study, however, was very basic in its conclusions because the land use data 

used were decadal. Additional land use values at a finer temporal resolution, such as annual 

data, would enhance this study by being able to better understand trajectories of land use 
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change in greater detail as well as macro-scale growth patterns. Extracting this type of 

historical observational data, however, is nearly impossible because of time constraints on 

data development and simply the lack of historical aerial photographs (Wentz et al. 2006). 

Since multiple time periods of detailed historic land use and/or land cover data are needed 

by scientists, urban planners, and other decision-makers in order to understand the impact 

of human activities on the environment (Lopez et al. 2001), the goal for the case study was 

to demonstrate how it is possible to estimate realistic annual land cover values in for the 

years 1985-2005 using ancillary data in an implementation of STIE. 

Our selection of the variables and processors for this implementation of STIE is 

based on a known relationship between surface temperature and land cover type, as 

documented most frequently in the literature on the urban heat island effect (Jenerette et al. 

2007). There are higher surface temperatures associated with impervious surfaces 

compared with undeveloped and vegetated land covers. We use the surface temperature-

land cover relationship to better assign the conversion of land cover from undeveloped to 

developed classes. What this means is that instead of using strictly a spatial process (e.g., 

that a neighboring cell has changed), we incorporate a temporal change of temperature 

(e.g., identifying when the land cover change may have occurred). 

 

4.1 Data 

To generate land cover estimates over a twenty year period (1985- 2005), three 

variables were used. They were average air temperature from 36 meteorological stations as 

well as land cover and surface temperature derived from remotely sensed imagery. 
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Air temperature data were collected from 36 meteorological stations (Selover 

2001), (Figure 2). The meteorological stations were not evenly distributed across the study 

area but rather were concentrated in the urban core on four different land cover types. 

Average air temperature at 10:30 AM (to correspond to the Landsat capture time for 

Phoenix) was calculated by selecting four days in May for all years (1985-2005). The 

selection criteria were four days without recorded precipitation at the Cooperative Observer 

Stations and as close to the middle of the month as possible. Different days were used for 

different years to meet these criteria. These data represent our temporally rich data, set P 

(Eqn. 1) 

Land cover and surface temperature data were derived from Landsat TM images for 

the following dates: May 14, 1985, May 12, 1988, May 18, 1990, May 24, 1998, May 21, 

2000, and March 8, 2005. The middle to late May dates were selected to maintain annual 

consistency in terms of minimal weather extremes, minimal cloud cover, and maximum 

vegetation leafout. For 2005, the only data available to us were for March, which is not a 

significant problem since these data were not used to calibrate the model for subsequent 

years.  

For the land cover, the images were classified into nine categories using the 

Stefanov (2001) knowledge-based classification model. The resulting classes are: 

ACTVEG (irrigated non-residential vegetation), NATVEG (native vegetation), CANAL 

(fluvial and man-made cannels), MESIC (residential with irrigated landscaping), XERIC 

(residential with low-water landscaping), COMM (commercial and industrial), ASPH 

(asphalt including roads and parking lots), UNDEV (undeveloped), and WATER (lakes, 

rivers, and reservoirs). Surface temperature for each image was calculated using the 
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Thermal Band (band 6). Land cover and surface temperature are our two spatially rich data, 

set S (Eqn. 2). 

 

4.2 Model Processors 

Figure 3 shows the management structure for the three processors and data for this 

implementation of STIE. The inputs to the Spatial Interpolator (SI) are land cover, digital 

elevation model, and air temperature. Inputs to the Time Step Processor (TSP) are land 

cover data. The output from these processors are estimated surface temperature and 

estimated land cover respectively for the next time slice. These become the inputs to the 

Calibration Processor (CP), which refines the estimated land cover values using known 

land cover and surface temperature relationships. The estimated time slice showing land 

cover is then used as input for the next iteration. This process is repeated until all values 

within the output space-time cube have been estimated (Figure 4). 

 The SI selected for this case study has two stages. First is the point to grid 

interpolation; second is the estimation of surface temperature based on air temperature. 

Interpolated air temperature was calculated using inverse distance weighting (IDW). While 

kriging would have been preferable because it provides more detailed results (e.g., 

variance, error estimates), the spatial concentration of observation points around the urban 

core made IDW more suitable in this particular case. Regression-based mapping was used 

to calculate surface temperature from air temperature for each land cover type. For each 

land cover type in the study, the dependent variable surface temperature at a specific time 

(Ts(z)) is estimated on the basis of maximum and minimum monthly air temperatures 

(Tamax and Tamin), observed air temperature for that time  (Ta ), z and elevation (EL) as 
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independent variables. Beta (β) denotes the coefficient for each of the independent 

variables (Johnson 1986; Stoll 1990): 

  Ts(z)= a + β1 Tamax + β2 Tamin + β3 Taz+ β4 EL   (4) 

One regression equation was estimated for each of the eight land cover classes, each 

statistically significant at <0.0001. The ninth category (UNDEV) required two different 

equations because of a large air temperature range for the UNDEV category. There are 

UNDEV cells at relatively high elevation (with lower air temperature) and low elevation 

UNDEV cells (with higher air temperature). The ten equations were derived from sample 

values for the surface temperature (dependent variable), elevation, and interpolated air 

temperature values  (independent variables). We selected 100 sample locations per land 

cover class (10 classes total, resulting in n=1000). The sample means were plotted against 

the means from the populations to insure population representation. The R2 values range 

from 0.169 to 0.659.  The independent variables explain approximately 17% to 66% of the 

temperature variance for the specified land cover classes. The land cover classes with the 

lowest R2 are ACTVEG, CANAL, and the lower elevation UNDEV class.  

 The TSP in this study uses a cellular automata model to derive the intermediate 

estimated gridded land cover values for the next time slice (t+1). Cellular automata are 

dynamic models that calculate a new value for a grid cell based on the relationship of the 

current target cell to its neighborhood. We defined the neighborhood with a 3 x 3 matrix of 

eight cells. With a cell size of approximately 30 x 30 m ground resolution, the distance 

from the center of the target cell to the edge of the neighborhood is less than 100 m. This 

resolution allows local microclimate influences to be seen (Hubble 1993) and is also below 

the 120 m resolution of the surface temperature data.  
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 We initiated the cellular automata with land cover derived from the interpreted and 

calibrated satellite data from 1985. From there, we applied rules to govern the transition 

from time t to time t+1 for a target cell (j) relative to the set of eight cells around j, which 

we define as Ωj. 

 As reflected in the discussion in section 4.1, we define all land cover classes in our 

study area that remain temporally stable over time as: 

A = {MESIC, XERIC, CANAL, COMM, WATER, ASPH} 

and the land cover classes that can change over time as; 

B = {UNDEV, NATVEG, ACTVEG} 

therefore the set of all nine land classes in our study data can be expressed as: 

Ci = A B. ∪

We can then express the unique land cover types in the neighborhood Ωj as 

D = , ∀  dI
ji

iC
Ω∈

i ∈D, di ≠ di+1

Then, Ka = {(k, mk) : k ∈D, mk ∈M⊂ : mk ≤ 8 and ma+mb… = 8}. Ka is a multiset 

where each pair (a) represents the land cover type (k) and the number of occurrences (mk) 

of that type in the neighborhood Ωj. For example, we could define Ka = {(UNDEV, 3), 

(CANAL, 3), (NATVEG, 2)}. Finally, we define the integer, max(mk) := mi>mi+1  (k, 

m

∀

k)∈  Ka, is the highest number in the set M and max(mk-1) is the second highest, etc. 

Informally, the rules for the transition for jt to jt+1 are as follows: 

If the target cell is a land cover type that is temporally stable, then the target cell 

remains unchanged. 

Else if there the majority of land cover types is stable in the neighborhood then the 

target cell is assigned the majority neighborhood land cover type.  
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Else the target cell is assigned the next highest majority stable land cover. 

Note that in case of a tie in land cover frequency, the program will simply assign the land 

cover type that is the first in the stored sequence for land cover types in the neighborhood. 

Formally, the rules can be stated as follows: 

If jt ∈  A  ⇒ jt+1 = jt

If jt ∈  B and |D| ≥ 1 and mk = max(mk) : k ∈A ⇒ jt+1= k  

If jt ∈  B and |D| ≥ 1 and k∈B: (k, max(mk)) ⇒ jt+1= k: mk=max(mk-1) and k ∈A 

These rules were developed from other published cellular automata models of land 

use/cover change developed in different settings (Clarke and Hoppen 1997; Meyler et al. 

1998; Ward et al. 2000; Ward, et al. 2000; Jenerette and Wu 2001). We  modified the rules 

from those prior models to reflect specific Phoenix context. In Phoenix, there is rapid urban 

expansion and therefore a greater likelihood that cells with values in set B will change to 

developed types (set A).  

 The CP for this study invokes a set of rules to adjust the land cover values that were 

estimated by the TSP. This is a refinement performed by cross-checking those values with 

the gridded surface temperature at the corresponding cell for the same time slice. The rules 

used, governing the relationship between surface temperature (Ts) and specific land cover 

classes (LC), are based on empirical observations and supported in the literature 

(Quattrochi and Ridd 1994). Some land cover classes are not included in the rules because 

the surface temperature ranges are not narrowly enough defined to be adjusted reliably. 

The CP rules are as follows: 

If LC = ACTVEG &  

Ts > Tmax_ACTVEG then LC = ACTVEG 
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Else If Ts < Tmax_ACTVEG & IN_BOUND = TRUE then LC = MESIC 

Else If LC = NATVEG & 

Ts > Tmean_UNDEV & IN_BOUND = FALSE then LC = UNDEV 

Else If Ts > Tmax_UNDEV & IN_BOUND = TRUE then LC = XERIC 

Else If Ts > Tmean_UNDEV & IN_BOUND = TRUE then LC = MESIC 

Else If LC = MESIC & 

Ts < Tmin_UNDEV & LU = Agriculture & IN_BOUND = TRUE then LC = ACTVEG 

Else If Ts > Tmean_UNDEV & IN_BOUND = FALSE then LC = UNDEV 

Else If LC = COMM & 

IN_BOUND = FALSE then LC = UNDEV 

Else If Ts > Tmax_ACTIVE & LU = Residential then LC = XERIC 

Else If Ts < Tmax_ACTVEG & LU = Residential then LC = MESIC 

Else If LC = ASPH & 

IN_BOUND = FALSE then LC = UNDEV 

Else If LC = UNDEV & 

Ts < Tmean_ACTVEG & LU = Agriculture then LC = ACTVEG 

Else If Ts < Tmin_NATVEG then LC = NATVEG 

Where Tmin, Tmax, and Tmean are the overall minimum, maximum, and mean surface 

temperature values, respectively, for the named land cover types; IN_BOUND is within the 

urban boundary; LU is observed Maricopa Association of Governments land use. 

The three processors are executed 19 times to create a fully populated space-time 

cube of air temperature, surface temperature, and land cover that are represented by a 30 m 

grid over space and annually in time (Figure 4). STIE begins in 1985 with a land cover 
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classified satellite image (calibrated with CP) and spatially interpolated temperature data 

(interpolated with the SP), which are then used as input into the TSP. There are several 

years when observed surface temperature and land cover data are available (1988, 1990, 

2000, and 2005) and were not used for validation (1998). In these years, the observed data 

are used in place of the estimated values. 

 

4.3 Case Study Validation 

 We evaluated our results by answering two fundamental questions: (1) does the 

space-time interpolation procedure we developed using the three processors work 

effectively; and (2) does it work better than an alternative approach. In this section, we 

describe how these two questions were answered. 

To evaluate if the approach estimated land cover corrected, we compared our 

estimated values to observed data from satellite imagery for the year 1998, using standard 

accuracy measures from the remote sensing field (Foody 2002; Congalton and Green 

1999). The measures we used were overall accuracy, Kappa coefficient, and user’s and 

producer’s accuracy.  Overall accuracy is a ratio of the number of pixels assigned to a 

particular class to the number of pixels that actually belong to the class. The Kappa 

coefficient examines the measure of agreement beyond chance with a ratio of the difference 

between the observed and expected accuracy over 1 minus the expected accuracy. The 

user’s measure identifies errors of commission and the producer’s measure identifies errors 

of omission, each for a particular class. A standard for an acceptable classification is least 

85% (Foody 2002).  
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 To assess whether our approach worked better than previous approaches, we 

estimated land cover from 1985 to 2005 with a cellular automata model without the 

ancillary temporal temperature data. We used the same adapted rules for Phoenix as 

described above. We calculated the overall accuracy, Kappa coefficient, and user’s and 

producer’s statistics as described above using the 1998 observed data and estimated values. 

 

5. STIE evaluation 

 Our case study resulted in a conceptual space-time cube of 20 years with ~30 m 

cells containing annual estimates of land cover and surface temperature for the Phoenix 

metropolitan area. The dimension (e.g., size of the study area as well as the time span) and 

the resolution (e.g., ~30 m spatially and annual temporally) used by the STIE can be 

changed depending on the availability of input data.  

The STIE case study above was successful at estimating land cover with an overall 

accuracy of 85.2%, higher than the standard of 85%. The Kappa statistic, another measure 

of agreement, is 82.9.  Both suggest strong agreement between observed land cover from 

satellite imagery and output from STIE. Tables 1 and 2 show the contingency matrix 

reports the producer’s and user’s accuracies for the 1998 land cover data. The land cover 

classes having both a producer’s and user’s accuracy greater than 85% are the ACTVEG, 

CANAL, XERIC, COMM, ASPH, and WATER.  The classes with accuracies lower than 

the standard 85% are the NATVEG, MESIC, and UNDEV.   

 Land cover change from 1985 to 2005 as determined by STIE is similar to other 

reports on urban growth in Phoenix (Jenerette and Wu 2001; Keys et al. 2007). Our efforts 

show a 46.9% increase in the area of urban land covers from 1985 to 2005 with changes to 
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individual categories shown in Figure 5a. In contrast to Figure 5a, which shows the percent 

change from year to year for each land use category, Figure 5b shows these same years 

with observed data alone. While the same trends from beginning and end are included in 

both figures, we are able to use the STIE interpolated values to create graphs, maps, and 

animations of estimated land cover at finer temporal resolutions providing a richer 

examination of space-time trends. 

 We conclude that STIE provides better results than a spatial processor alone. The 

estimated land cover using a cellular automata model  resulted in an overall accuracy for 

1998 is 55.6%. This is lower than the accuracy from the STIE (85.2%) as well as below the 

85.0% accuracy standard. To deepen the comparison between the 1998 land cover 

estimated from STIE and the cellular automata, we calculated and compared user’s and 

producer’s accuracy scores (Table 3). All classes had higher scores with STIE approach 

except for one class in the producer’s (CANAL) and one class in the user’s (COMM). The 

difference between these, however, is relatively small. In the Phoenix area, commercial 

areas (COMM) tend to develop slowly temporally and remain spatially clustered, which is 

well-matched with simple cellular automata. The greatest improvement over the cellular 

automata is reported by the user’s score for UNDEV and XERIC (Table 3). The cellular 

automata performed poorly for UNDEV because a large portion of the study area in 1985 is 

classified as UNDEV. When the cellular automata evaluates a target for the next time slice, 

the value of neighboring cells are examined and used to reassign the value of the target. For 

XERIC, the surface temperature in the calibration processor provided guidance on the type 

of development. With just a cellular automata, there were no rules to account for the 

amount or type of Phoenix’s rapid urbanization (e.g., assigning several cells in a 
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neighborhood) or leapfrog development (new development occurring without adjacency) 

(Morrison 2000). Using STIE with the temporal information can aid in identifying the 

location of these growth trends.  

 As shown in Figures 5a and 5b, the overall trends in all categories remain the same.  

The difference, however, is that for categories with significant year-to-year variability, use 

of the ancillary data to adjust those values reveal significant details in that variability.  In 

our case study, this is particularly evident in land cover categories that are sensitive to 

climate variables (e.g., temperature and precipitation). There is a spike in NATVEG in 

1987 and 1992 (Figure 5b) not visible in the observed data (Figure 5a) but is known via the 

association between vegetation and climate variables. The increased precipitation in these 

specific years increased vegetation, which has the effect of decreasing temperature.  Air 

temperature is our observed ancillary data used in the SI and CP to modify interpolated 

land cover values. ACTVEG is not as sensitive to short-term changes in precipitation 

(reflected in temperature) because it is generally irrigated.  However, there is seemingly a 

lag and modified amplitude effect due to enhanced irrigation in subsequent years.  MESIC 

shows the overall trend of urban growth, but also has some annual sensitivity to climate 

variables revealing possible competition with ACTVEG for irrigation in Figure 5b. 

From both the overall results and the individual class results we conclude that for 

this case study, the ensemble approach improved space-time interpolation over a single 

technique. We attribute this to two distinct advantages of the STIE approach. The first 

advantage is that as hypothesized, STIE provides greater interpretative power. The 

advantage of the ensemble method is increased accuracy that results from integrating 

multiple interpolation methods and using the space-time autocorrelations inherent in 
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different elements of a phenomenon through use of ancillary data. A second advantage of 

the STIE approach is that it can take advantage of parallel processing environments or 

distributed systems for improved performance (Plumejeaud et al. 2008; Wang and 

Armstrong 2009). This makes our approach scalable for dealing with the immense data sets 

becoming available, particularly high-resolution geospatial data sets over long time 

periods.  

 A challenge of STIE is selecting the most suitable technique(s) for each processor 

and assuring that the data relationships have been defined appropriately. While selecting 

the most suitable technique for the specific characteristics of the input data is the normal 

circumstance for selecting any statistical or computational technique to perform a given 

task, the selection task is made more complex in the case of the STIE approach in that 

multiple interpolation techniques and the associated data must work in concert with each 

other. Nevertheless, a range of exploratory and validation tools  have recently become 

available to aid the researcher in this process (Andrienko and Andrienko 2006).  

6. Conclusions 

 Past research on space-time interpolation has relied on a single technique for 

estimating attribute values and often without ancillary data or including space-time 

interdependencies. This research project presented an ensemble style framework for space-

time data interpolation to address these challenges. We demonstrated that a suite of 

techniques can provide interpretive power far beyond what a single method can provide. 

These techniques are selected to include the use of ancillary data.  

Furthermore, the exercise in investigating the space-time interrelationships, 

specifically, to select the appropriate processors may yield unexpected insights.   
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The definition of STIE confirms that high resolution spatial data can be utilized to enhance 

temporal data and vise versa.  

 Based on the case study results, we conclude that an ensemble technique provides 

an improved methodology for interpolating space-time values when there are missing 

spatial and/or temporal data.  Some might argue that the interpolated space-time values do 

not reliably represent true values and therefore results and conclusions drawn can be 

questioned. This argument, however, remains a challenge for any interpolation technique 

and should not be viewed as an excuse to avoid ‘imperfect’ data sets and the virtue of 

estimated values. A better strategy is to recognize that the estimated values should be used 

to evaluate overall macro-scale patterns and trends rather than as a means to determine 

specific values at a exact times and locations (Goldstein et al. 2004). There is also the 

advantage that interpolation methods provide a means to eliminate suspect values as a 

cleaning technique. 

We demonstrated that an ensemble approach improves estimation over a single 

approach. We anticipate that ancillary data and an ensemble of appropriate techniques in 

other applications would yield similar improved results. We propose a generalized 

framework that can be adapted to numerous application contexts. 
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Tables 
 
Table 1. Contingency matrix showing observed (Landsat) versus predicted (STIE) land cover classes for 1998
Class 
Name ACTVEG NATVEG CANAL MESIC XERIC COMM ASPH UNDEV WATER Total
ACTVEG 48 0 0 2 0 0 0 1 0 51
NATVEG 1 13 0 0 1 0 0 0 0 15
CANAL 0 1 43 0 1 0 0 0 0 45
MESIC 3 2 0 36 0 3 2 7 0 53
XERIC 0 3 1 0 59 1 2 3 0 69
COMM 1 1 0 0 1 53 0 3 0 59
ASPH 0 0 0 1 0 0 40 5 0 46
UNDEV 0 2 3 5 4 4 3 81 0 102
WATER 0 1 1 0 0 0 0 0 24 26
Total 53 23 48 44 66 61 47 100 24 466

 

 



 
Table 2. Producer’s and user’s accuracy 
results for observed and STIE estimated 
land cover in 1998 (n=466) 
Land cover  Producer’s User's 
ACTVEG 0.906 0.941 
NATVEG 0.565 0.867 
CANAL 0.896 0.956 
MESIC 0.818 0.679 
XERIC 0.894 0.855 
COMM 0.869 0.898 
ASPH 0.851 0.870 
UNDEV 0.810 0.794 
WATER 1.000 0.923 

 



 
 
Table 3. Producer’s and user’s accuracy results for 1998 interpolated land cover 
from the Spatial Processor (SP) compared with the ensemble space-time 
interpolation environment (STIE) 
 Producer’s   User’s   
 SP  STIE Difference SP STIE Difference
ACTVEG 0.566 0.906 0.340  0.768 0.941 0.173
NATVEG 0.292 0.565 0.273  0.600 0.867 0.267
CANAL 1.000 0.896 -0.104  0.642 0.956 0.314
MESIC 0.667 0.818 0.151  0.275 0.679 0.404
XERIC 0.619 0.894 0.275  0.265 0.855 0.590
COMM 0.403 0.869 0.466  0.899 0.898 -0.001
ASPH 0.830 0.851 0.021  0.565 0.870 0.305
UNDEV 0.100 0.810 0.710  0.080 0.794 0.714
WATER 1.000 1.000 0.000  0.489 0.923 0.434
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Figure Captions 
 
Figure 1. The three model processors of STIE showing the required and possible flow of 
data between them. Solid arrows show required data flow between the processors. Dashed 
arrows illustrate where data flow may exist depending on data relationships in a given 
application. 
 
Figure 2. The spatial extent of the study area in Phoenix Arizona and the locations of the 
meteorological stations used for the climate data. 
 
Figure 3. A single iteration of STIE for this case study showing the three processors and 
input data along with the management structure that supports data flow and the iteration of 
the processors 
 
Figure 4. The sequence of multiple iterations of STIE illustrating the relationship of one 
time slice to the next 
 
Figure 5a. Shows the changes of different land covers over time with observed data alone; 
Figure 5b represents the same land covers over time with the STIE interpolated values 
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