39 research outputs found

    Diamond-based models for scientific visualization

    Get PDF
    Hierarchical spatial decompositions are a basic modeling tool in a variety of application domains including scientific visualization, finite element analysis and shape modeling and analysis. A popular class of such approaches is based on the regular simplex bisection operator, which bisects simplices (e.g. line segments, triangles, tetrahedra) along the midpoint of a predetermined edge. Regular simplex bisection produces adaptive simplicial meshes of high geometric quality, while simplifying the extraction of crack-free, or conforming, approximations to the original dataset. Efficient multiresolution representations for such models have been achieved in 2D and 3D by clustering sets of simplices sharing the same bisection edge into structures called diamonds. In this thesis, we introduce several diamond-based approaches for scientific visualization. We first formalize the notion of diamonds in arbitrary dimensions in terms of two related simplicial decompositions of hypercubes. This enables us to enumerate the vertices, simplices, parents and children of a diamond. In particular, we identify the number of simplices involved in conforming updates to be factorial in the dimension and group these into a linear number of subclusters of simplices that are generated simultaneously. The latter form the basis for a compact pointerless representation for conforming meshes generated by regular simplex bisection and for efficiently navigating the topological connectivity of these meshes. Secondly, we introduce the supercube as a high-level primitive on such nested meshes based on the atomic units within the underlying triangulation grid. We propose the use of supercubes to associate information with coherent subsets of the full hierarchy and demonstrate the effectiveness of such a representation for modeling multiresolution terrain and volumetric datasets. Next, we introduce Isodiamond Hierarchies, a general framework for spatial access structures on a hierarchy of diamonds that exploits the implicit hierarchical and geometric relationships of the diamond model. We use an isodiamond hierarchy to encode irregular updates to a multiresolution isosurface or interval volume in terms of regular updates to diamonds. Finally, we consider nested hypercubic meshes, such as quadtrees, octrees and their higher dimensional analogues, through the lens of diamond hierarchies. This allows us to determine the relationships involved in generating balanced hypercubic meshes and to propose a compact pointerless representation of such meshes. We also provide a local diamond-based triangulation algorithm to generate high-quality conforming simplicial meshes

    Spatial Decompositions for Geometric Interpolation and Efficient Rendering

    Get PDF
    Interpolation is fundamental in many applications that are based on multidimensional scalar or vector fields. In such applications, it is possible to sample points from the field, for example, through the numerical solution of some mathematical model. Because point sampling may be computationally intensive, it is desirable to store samples in a data structure and estimate the values of the field at intermediate points through interpolation. We present methods based on building dynamic spatial data structures in which the samples are computed on-demand, and adaptive strategies are used to avoid oversampling. We first show how to apply this approach to accelerate realistic rendering through ray-tracing. Ray-tracing can be formulated as a sampling and reconstruction problem, where rays in 3-space are modeled as points in a 4-dimensional parameter space. Sample rays are associated with various geometric attributes, which are then used in rendering. We collect and store a relatively sparse set of sampled rays, and use inexpensive interpolation methods to approximate the attribute values for other rays. We present two data structures: (1) the <i>ray interpolant tree (RI-tree)</i>, which is based on a kd-tree-like subdivision of space, and (2) the <i>simplex decomposition tree (SD-tree)</i>, which is based on a hierarchical regular simplicial mesh, and improves the functionality of the RI-tree by guaranteeing continuity. For compact storage as well as efficient neighbor computation in the mesh, we present a pointerless representation of the SD-tree. An essential element of this approach is the development of a location code that enables efficient access and navigation of the data structure. For this purpose we introduce a location code, called an LPTcode, that uniquely encodes the geometry of each simplex of the hierarchy. We present rules to compute the neighbors of a given simplex efficiently through the use of this code. We show how to traverse the associated tree and how to answer point location and interpolation queries. Our algorithms work in arbitrary dimensions. We also demonstrate the use of the SD-tree for rendering atmospheric effects. We present empirical evidence that our methods can produce renderings of good quality significantly faster than simple ray-tracing

    Time-varying volume visualization

    Get PDF
    Volume rendering is a very active research field in Computer Graphics because of its wide range of applications in various sciences, from medicine to flow mechanics. In this report, we survey a state-of-the-art on time-varying volume rendering. We state several basic concepts and then we establish several criteria to classify the studied works: IVR versus DVR, 4D versus 3D+time, compression techniques, involved architectures, use of parallelism and image-space versus object-space coherence. We also address other related problems as transfer functions and 2D cross-sections computation of time-varying volume data. All the papers reviewed are classified into several tables based on the mentioned classification and, finally, several conclusions are presented.Preprin

    The PSurface library

    Get PDF
    We describe PSurface, a C++ library that allows to store and access piecewise linear maps between simplicial surfaces in R^2 and R^3. Piecewise linear maps can be used, e.g., to construct boundary approximations for finite element grids, and grid intersections for domain decomposition methods. In computer graphics the maps allow to build level-of-detail representations as well as texture- and bump maps. The PSurface library can be used as the basis for the implementation of a wide range of algorithms that use piecewise linear maps between triangulated surfaces. A few simple examples are given in this work. We document the data structures and algorithms and show how PSurface is used in the numerical analysis framework Dune and the visualization software Amira

    Cutting in deformable objects

    Get PDF
    Virtual reality simulations of surgical procedures allow such procedures to be practiced on computers instead of patients and test-animals. The core of such a system is a soft tissue simulation, that has to react very quickly but be realistic at the same time. This thesis discusses how deformable models can be simulated for this context, using an existing mathematical technique, the Finite Element Method. This method represents the object with a mesh, the material is subdivided in geometric primitives, such as triangles. Both the number of primitives and their shape influence the speed of a simulation. Hence, when the mesh changes, e.g. when simulating a procedure, this has to be done with care. This thesis shows how the interaction of meshing and simulation can be handled in software

    Modelado jerárquico de objetos 3D con superficies de subdivisión

    Get PDF
    Las SSs (Superficies de Subdivisión) son un potente paradigma de modelado de objetos 3D (tridimensionales) que establece un puente entre los dos enfoques tradicionales a la aproximación de superficies, basados en mallas poligonales y de parches alabeados, que conllevan problemas uno y otro. Los esquemas de subdivisión permiten definir una superficie suave (a tramos), como las más frecuentes en la práctica, como el límite de un proceso recursivo de refinamiento de una malla de control burda, que puede ser descrita muy compactamente. Además, la recursividad inherente a las SSs establece naturalmente una relación de anidamiento piramidal entre las mallas / NDs (Niveles de Detalle) generadas/os sucesivamente, por lo que las SSs se prestan extraordinariamente al AMRO (Análisis Multiresolución mediante Ondículas) de superficies, que tiene aplicaciones prácticas inmediatas e interesantísimas, como la codificación y la edición jerárquicas de modelos 3D. Empezamos describiendo los vínculos entre las tres áreas que han servido de base a nuestro trabajo (SSs, extracción automática de NDs y AMRO) para explicar como encajan estas tres piezas del puzzle del modelado jerárquico de objetos de 3D con SSs. El AMRO consiste en descomponer una función en una versión burda suya y un conjunto de refinamientos aditivos anidados jerárquicamente llamados "coeficientes ondiculares". La teoría clásica de ondículas estudia las señales clásicas nD: las definidas sobre dominios paramétricos homeomorfos a R" o (0,1)n como el audio (n=1), las imágenes (n=2) o el vídeo (n=3). En topologías menos triviales, como las variedades 2D) (superficies en el espacio 3D), el AMRO no es tan obvio, pero sigue siendo posible si se enfoca desde la perspectiva de las SSs. Basta con partir de una malla burda que aproxime a un bajo ND la superficie considerada, subdividirla recursivamente y, al hacerlo, ir añadiendo los coeficientes ondiculares, que son los detalles 3D necesarios para obtener aproximaciones más y más finas a la superficie original. Pasamos después a las aplicaciones prácticas que constituyen nuestros principal desarrollo original y, en particular, presentamos una técnica de codificación jerárquica de modelos 3D basada en SSs, que actúa sobre los detalles 3D mencionados: los expresa en un referencial normal loscal; los organiza según una estructura jerárquica basada en facetas; los cuantifica dedicando menos bits a sus componentes tangenciales, menos energéticas, y los "escalariza"; y los codifica dinalmente gracias a una técnica similar al SPIHT (Set Partitioning In Hierarchical Tress) de Said y Pearlman. El resultado es un código completamente embebido y al menos dos veces más compacto, para superficies mayormente suaves, que los obtenidos con técnicas de codificación progresiva de mallas 3D publicadas previamente, en las que además los NDs no están anidados piramidalmente. Finalmente, describimos varios métodos auxiliares que hemos desarrollado, mejorando técnicas previas y creando otras propias, ya que una solución completa al modelado de objetos 3D con SSs requiere resolver otros dos problemas. El primero es la extracción de una malla base (triangular, en nuestro caso) de la superficie original, habitualmente dada por una malla triangular fina con conectividad arbitraria. El segundo es la generación de un remallado recursivo con conectividad de subdivisión de la malla original/objetivo mediante un refinamiento recursivo de la malla base, calculando así los detalles 3D necesarios para corregir las posiciones predichas por la subdivisión para nuevos vértices

    Doctor of Philosophy

    Get PDF
    dissertationWith modern computational resources rapidly advancing towards exascale, large-scale simulations useful for understanding natural and man-made phenomena are becoming in- creasingly accessible. As a result, the size and complexity of data representing such phenom- ena are also increasing, making the role of data analysis to propel science even more integral. This dissertation presents research on addressing some of the contemporary challenges in the analysis of vector fields--an important type of scientific data useful for representing a multitude of physical phenomena, such as wind flow and ocean currents. In particular, new theories and computational frameworks to enable consistent feature extraction from vector fields are presented. One of the most fundamental challenges in the analysis of vector fields is that their features are defined with respect to reference frames. Unfortunately, there is no single ""correct"" reference frame for analysis, and an unsuitable frame may cause features of interest to remain undetected, thus creating serious physical consequences. This work develops new reference frames that enable extraction of localized features that other techniques and frames fail to detect. As a result, these reference frames objectify the notion of ""correctness"" of features for certain goals by revealing the phenomena of importance from the underlying data. An important consequence of using these local frames is that the analysis of unsteady (time-varying) vector fields can be reduced to the analysis of sequences of steady (time- independent) vector fields, which can be performed using simpler and scalable techniques that allow better data management by accessing the data on a per-time-step basis. Nevertheless, the state-of-the-art analysis of steady vector fields is not robust, as most techniques are numerical in nature. The residing numerical errors can violate consistency with the underlying theory by breaching important fundamental laws, which may lead to serious physical consequences. This dissertation considers consistency as the most fundamental characteristic of computational analysis that must always be preserved, and presents a new discrete theory that uses combinatorial representations and algorithms to provide consistency guarantees during vector field analysis along with the uncertainty visualization of unavoidable discretization errors. Together, the two main contributions of this dissertation address two important concerns regarding feature extraction from scientific data: correctness and precision. The work presented here also opens new avenues for further research by exploring more-general reference frames and more-sophisticated domain discretizations
    corecore