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Abstract

We describe PSurface, a C++ library that allows to store and access

piecewise linear mappings between simplicial surfaces in R
2 and R

3. These

mappings are stored in a graph data structure and can be constructed ex-

plicitly, by projection, or by surface simplification. Piecewise linear maps

can be used, e.g., to construct boundary approximations for finite element

grids, and grid intersections for domain decomposition methods. In com-

puter graphics the mappings allow to build level-of-detail representations

as well as texture- and bump maps. We document the data structures

and algorithms used and show how PSurface is used in the numerical

analysis framework Dune and the visualization software Amira.

1 Introduction

Let S1 and S2 be d-dimensional simplicial surfaces in R
d+1, where d ∈ {1, 2}.

A map Ξ : D ⊆ S1 → S2 will be called piecewise linear, if for each pair of
simplices T1 ∈ S1 and T2 ∈ S2 the restriction of Ξ to T1 ∩ Ξ−1(T2) is an affine
function. We assume that all maps we consider are continuous, injective, and
such that Ξ(S1) is a simplicial subsurface of S2. However, we do not require
that simplices of S1 be mapped onto simplices of S2. If, additionally, S1 and S2

are homeomorphic and Ξ : S1 → S2 is a homeomorphism, we call Ξ a piecewise
linear parametrization of S2 over S1.

It is occasionally useful to be able to handle such piecewise linear maps in a
computer algorithm. In the numerical simulation of two-body contact problems
in linear elasticity, e.g., regions of potential contact on the boundaries of the
objects need to be identified with a homeomorphism. This homeomorphism
needs to be evaluated repeatedly in the course of the simulation [19]. Also, when
a partial differential equation is to be solved on a domain with a curved or highly
detailed boundary, its approximation by a grid may discard important geometric
information. To make this information available at the time of grid refinement,
a parametrization of the domain boundary over the grid boundary is necessary.
In computer graphics, parametrizations can be used, e.g., to generate texture-
and bump maps [6, 17]. Atlas-based methods for the automatic segmentation
of medical image data use parametrizations to make the different models in an
atlas comparable [15].
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Figure 1: Piecewise linear map from a subset D of a one-dimensional simplicial
surface S1 to a second simplicial surface S2.

PSurface is a C++ library to handle continuous piecewise linear maps be-
tween simplicial surfaces. Its core is a data structure that can hold the simplicial
surfaces S1, S2 and a piecewise linear map Ξ : D ⊂ S1 → S2. The surfaces can
be one- or two-dimensional and are expected to be embedded in a Euclidean
space of one dimension higher. S1 and S2 are not assumed to be manifolds but
can, e.g., contain edges with more than two adjacent triangles. The mapping Ξ
itself is stored as a graph G on the simplices of S1. This graph is the image of
the edges of Ξ(S1) ⊂ S2 under Ξ−1. If d = 2 we obtain a planar graph on each
two-dimensional simplex of S1. If d = 1 the graph consists of nodes along the
one-dimensional simplices of S1 and graph edges between them (Figure 1). For
any point x ∈ S1, the image Ξ(x) ∈ S2 can then be evaluated by a point-location
in G and subsequent linear interpolation.

Several ways of constructing mappings Ξ have been implemented. The most
simple way is by direct construction. A special factory class allows to set up
maps by explicitly prescribing how vertices of S1 are mapped onto S2, what
points of S1 are mapped onto the vertices of S2, and how the images of the
edges of S1 cross edges of S2. Given two surfaces, a mapping can also be
generated by projecting S1 onto S2 in the direction of a given vector field on
S1. Finally, a parametrization of a given fine surface S2 over a coarser surface
S1 can be constructed by initially setting S1 = S2, Ξ = Id, and successively
removing points from S1. A valid Ξ : S1 → S2 is kept at each step, and hence
this creates the coarse surface S1 along with the parametrization function Ξ.

To the knowledge of the author, PSurface is the only library for the gen-
eral handling of piecewise linear mappings between simplicial surfaces currently
available. Very similar functionality exists in various places, e.g., the code used
for atlas-based image segmentation in [15] or the LGM domain manager for
piecewise linear boundary descriptions in the UG finite element software [3].
However, these implementations are all hardwired to their respective applica-
tions and cannot be used separately.

This article is intended to describe and document the data structures and
algorithms in PSurface. Information about PSurface has appeared implic-
itly in various publications [13, 14, 18, 19], but this is the first document that
describes PSurface explicitly, exclusively, and exhaustively. It is not a ref-
erence manual. As PSurface is still under development the actual method
names and signatures can still be subject to change, and mention of them here
would outdate quickly. Up-to-date information is available in form of a doxygen-
generated documentation distributed with the library. The library itself is
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Figure 2: Piecewise linear map from a subset of a sphere S1 to another sphere
S2. The preimages of the edges of S2 form a graph on S1.

currently available under a free license at http://numerik.mi.fu-berlin.de/
dune/psurface.

2 The data structure

This section describes the data structure for continuous piecewise linear maps
between simplicial surfaces, which is the heart of PSurface. We concentrate
on the case d = 2, because it is considerably more complicated than d = 1.
Remarks concerning maps between one-dimensional surfaces will be given where
appropriate.

2.1 Simplicial surfaces

To fix ideas and notation we briefly define what we mean by ‘simplicial surface’.

Definition 2.1. A simplicial k-complex K is a set of closed simplices of dimen-

sion less than or equal to k, that satisfies the following conditions:

1. Any face of a simplex from K is also in K.

2. The intersection of any two simplices σ1, σ2 ∈ K is a face of both σ1 and

σ2, or empty.

A simplicial k-complex K is called homogeneous if every simplex of dimension

less than k is the face of some simplex σ ∈ K of dimension exactly k.

We call d-dimensional simplicial surface a homogeneous simplicial d-complex
in a d+1-dimensional Euclidean space. Note that this definition does not restrict
the setting to discrete approximations of manifolds. Indeed, situations like three
triangles meeting at a common edge are easily handled by PSurface.

Let S be a d-dimensional simplicial surface with d ≥ 1. We call the 0-
dimensional simplices of S the vertices, and the 1-dimensional simplices the
edges of S. The d-dimensional simplices are called elements. We denote the set
of vertices by V , the set of edges by E , and the set of elements by T .
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2.2 A data structure for piecewise linear maps

The foundation of the data structure for piecewise linear maps Ξ : D ⊂ S1 → S2

are the data structures for the two surfaces S1 and S2. There are separate
data structures for each surface. These are conceptually very similar, but not
identical, because more functionality is needed for S1. Both data structures
store an array with the vertex positions and, for each k, 1 ≤ k ≤ d, an array of
k + 1-tuples of vertex indices to store the k-dimensional simplices.

Before describing the data structure for piecewise linear maps between sim-
plicial surfaces we define these maps formally.

Definition 2.2. Let S1, S2 be simplicial surfaces. A function Ξ : D ⊂ S1 → S2

is called piecewise linear if for each pair of triangles T1 ∈ S1 and T2 ∈ S2 the

restriction of Ξ to T1 ∩ Ξ−1(T2) is an affine function.

We make the following additional assumption.

Assumption 2.1. For each element T of S2, the set T ∩Ξ(S1) is a simplex of

S2 or empty.

By restricting our attention to a subsurface of S2 we even assume that Ξ
is surjective, i.e., the image surface Ξ(S1) ⊂ S2 is equal to S2. However, this
restriction is not imposed in the implementation.

The following special case will appear frequently.

Definition 2.3. If S1 and S2 are homeomorphic, and Ξ : S1 → S2 is defined

on all of S1 and is a homeomorphism, then Ξ is called a parametrization of S2

over S1.

The edges and vertices of S2 form a graph with a geometric realization, which
is mapped by the inverse function Ξ−1 onto S1. By linearity, it is enough to know
how Ξ acts on this graph image, and this is how PSurface is implemented.
Remember that a graph G is a finite set of vertices V together with a set E
of unordered pairs of vertices which are called edges. A graph can be given a
geometry in R

d by associating each vertex v ∈ V with a position p(v) ∈ R
d, and

each edge e = (v0, v1) with the line segment from p(v0) to p(v1). If d ∈ {1, 2}
and none of these segments intersect except at vertices then the graph together
with the embedding into R

d is called a straight-line plane graph [7]. Each plane
graph divides R

d into a set of d-dimensional regions. If each region except for
the unbounded one is a simplex, G is called a triangulation. More generally we
can define embeddings of graphs into simplicial surfaces.

Definition 2.4. Let G = (V,E) be a graph and S a simplicial surface. With

each vertex v ∈ V associate a position p(v) ∈ S, and with each edge e =
(v0, v1) ∈ E associate a set of open line segments ηe = {(e0, f0), . . . , (ene

, fne
)}

with (ei, fi) ⊂ S for all i = 0 . . . , ne. If

• p(v0) = e0, p(v1) = fne
, fi = ei+1,

• for each (ei, fi) there exists an element T of S such that (ei, fi) ⊂ T ,

• for any two segments (ei, fi) and (e′j , f
′
j) we have (ei, fi) ∩ (e′j , f

′
j) = ∅,

then (p, η) with η = {ηe | e ∈ E} is called a piecewise straight embedding of G in

S. A piecewise straight embedding is called minimal, if for each triangle T ∈ S
and each edge e ∈ E there is at most one segment (ei, fi) ∈ ηe with (ei, fi) ⊂ T .
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Figure 3: Implementation of a piecewise linear mapping Ξ as a graph on S1.
Graph node types are corner ( ), touching (�), intersection (�), ghost (#), and
interior (no symbol).

A graph embedded into a triangulated surface S subdivides S into regions.
In general these regions do not coincide with the triangles of S (Figure 3).

Piecewise linear mappings induce graphs on the domain surface S1. For a
formal statement of this, we first define the preimage.

Definition 2.5. Let Ξ : S1 → S2 be piecewise linear and A ⊆ S2. We define

the preimage of A under Ξ as

Ξ−1(A) = {x ∈ S1 | Ξ(x) ∈ A}.

The vertices V2 and the edges E2 of the surface S2 form the edge graph G2 of
S2. Its preimage GΞ = Ξ−1(G2) under the piecewise linear map Ξ : D ⊂ S1 → S2

is a minimal piecewise straight embedding of G2 in S1 (Figures 1 and 2).

Theorem 2.1. Let S1, S2 be two simplicial surfaces and let Ξ : D ⊂ S1 → S2

be a surjective, continuous, piecewise linear map. Denote by G2 = (V2, E2) the

edge graph of S2. Then Ξ−1(G2) is a minimal piecewise straight embedding of

G2 in S1, with

p(v) = Ξ−1(v)

for all vertices v ∈ V2, and

ηe = {T ∩ Ξ−1(e) | T ∈ T1, T ∩ Ξ−1(e) 6= ∅}

for all edges e ∈ E2.

This graph embedding contains all relevant information about Ξ. Therefore,
the mapping Ξ : D ⊂ S1 → S2 can be stored using a data structure for graphs
on S1. This is the approach taken by PSurface, and we will now describe how
this data structure looks like.

To reduce complexity, the data structure for GΞ on S1 consists of data struc-
tures for plane graphs on each element of S1. Some additional bookkeeping
then allows to reconstruct the complete graph GΞ from its restrictions to the
individual elements. For each element T ∈ T1 we store a set of nodes, each
storing its local position on T , its position on S2, and a list of its neighbors in
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cyclic order. We introduce five different types of graph nodes (Figure 3). The
first three correspond to vertices of S2.

Interior nodes: Nodes in the interior of an element T .

Corner nodes: Nodes on the corners of T

Touching nodes: Nodes on an edge k ⊂ ∂T , but not on a corner of T .

Nodes on edges or corners have copies on all elements that share the common
edge or corner. The same holds for the following two node types which are
needed to make the restriction of GΞ on each element a graph in its own right,
and to allow the evaluation of Ξ on any point of an element without having to
use information from other elements.

Intersection nodes: For any edge e = (v0, v1) ∈ E2, the corresponding preim-
age Ξ−1(e) is generally not contained in a single element of S1. Instead,
from Theorem 2.1 we know that it consists of a sequence of segments
(ei, fi), 0 ≤ i ≤ ne, with each segment (ei, fi) being contained in a single
element. With the exception of e0 and fne

, the points ei, fi do not corre-
spond to vertices of the edge graph G2. Still, the data structure needs to
keep them as vertices anyways, in order to have a consistent graph data
structure on each element of S1. Since, by Theorem 2.1, the embedding
of G2 into S1 is minimal, intersection nodes cannot occur in the interior
of triangles.

Ghost nodes: If a corner c of an element T ∈ T1 does not get mapped onto a
vertex of S2, a ghost node without any neighbors is added at c.

Each node p stores its image Ξ(p) ∈ S2 by storing the index of a triangle
T ∈ T2 with Ξ(p) ∈ T and local coordinates of Ξ(p) with respect to T . Finally,
each triangle T ∈ T1 keeps three arrays containing the nodes on the three
triangle edges in cyclic order, and each node on an edge knows its index in the
corresponding array. That way, corresponding nodes on adjacent triangles are
identified, and it is possible, in a given graph data structure, to efficiently track
preimages of edges of S2 across multiple triangles of S1.

Remark 2.1. While globally Ξ−1(G2) is a triangulation of its domain of def-
inition, its restrictions to individual triangles of T1 need not be (Figure 3).
However, for efficient point-location it is necessary that the graph on each tri-
angle be a triangulation (see [5] and Section 2.3). Therefore, we add additional
graph edges to the data structure such that Ξ−1(G2) is a triangulation on each
T ∈ T1. We call this the triangular closure.

The data structure simplifies considerably if d = 1. Then the elements of
S1 and S2 are simply line segments connecting pairs of vertices in R

2. On each
segment of S1, the graph GΞ is merely a linear sequence of nodes ordered by
local position s ∈ [0, 1] and with adjacent nodes (possibly) connected by a graph
edge. The simpler structure also limits the set of node types that can occur in
G2. As there are no edges in S1, node types that live on edges do not occur.
Only interior, corner, and ghost nodes are needed. For the same reason, the
arrays storing the nodes on surface edges in cyclic order do not appear in the
one-dimensional data structure.

6



2.3 Evaluating a piecewise linear map

Given a consistent data structure as described above and a point p ∈ S1 specified
by a triangle T ∈ T1 and local coordinates ξ on T , the map Ξ can be evaluated
at p in two steps. If p is contained in the domain of Ξ, then it must be contained
in a region r of the graph GΞ = Ξ−1(G2). First, this region r (with corners c(r))
is determined using a point-location algorithm, and the barycentric coordinates
ζc(r) of p with respect to r are computed. If d = 1 the element T is a line
segment, and the graph data structure on T has been prepared for point-location
by sorting the graph nodes in increasing order of their local coordinates. Then
the region r = [vi, vi+1] containing p is found in logarithmic time by a bisection
search.

If d = 2 we need a point location in a two-dimensional plane graph. Re-
member that we added the additional graph edges to make all regions of GΞ|T
triangles (Remark 2.1). For point-location in triangulations we use the random-
ized version of the algorithm presented by Brown and Faigle [5]. It is simple
to implement and its expected run-time is in O(

√
ne), with ne the number of

edges in the triangulation.
After the point-location step we have a triangular region r of GΞ on T with

p ∈ r, barycentric coordinates ζ of p with respect to r and the set of corners c(r)
of r. By construction, the images of all corners of r are on the same element T2

of S2, and their local positions of their images Ξ(c(r)) with respect to T2 are
stored in the node data structure. Hence the local position of Ξ(p) with respect
to T2 can be computed by linear interpolation

Ξ(p) =
∑
c(r)

ζc(r)Ξ(c(r)).

By this algorithm we have proved the following result.

Theorem 2.2. Ξ is completely determined by the presented data structure.

3 Constructing a piecewise linear mapping

There are various ways to set up a piecewise linear mapping, and these are
related to different applications of PSurface. You can either directly construct
a PSurface object by means of certain primitives, construct it by projection of
S1 onto S2; or by starting with two identical surfaces S1 = S2 and the identity
map, and then coarsening S1.

3.1 Direct construction

PSurface allows to set up a map Ξ from scratch by explicitly specifying the
vertices and triangles of S1 and S2, and their relations under Ξ. This can be
used, for example, to read mappings provided in some file format.1 Also, it
provides a clear interface to PSurface creation for those wishing to implement
their own construction algorithms.

1The PSurface library itself provides reading and writing facilities for PSurface objects
in the AmiraMesh format [21]. The precise format is described in a text file distributed with
the source code.
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Direct creation of a PSurface object is implemented by means of a fac-
tory class. The PSurfaceFactory is used internally by all other construction
methods. It accepts the specification of surfaces S1 and S2, and a graph on S1

describing a piecewise linear map. Upon a call to the method createPSurface,
the factory hands back a pointer to the newly created object.

Creating the surfaces S1 and S2 is done by providing positions for the ver-
tices, and d+1-tuples of vertex indices for the elements. Since the data structure
for S2 does not contain information about Ξ it is also possible to build it outside
of the factory. A pointer to S2 is then handed to the PSurfaceFactory. At
this point, the graph on S1 is the empty graph, i.e., there is no mapping defined
anywhere on S1.

The actual mapping is specified in a separate step. In the simplest case,
S2 is a logical refinement of S1 under Ξ, i.e., for each element T2 ∈ S2, the
preimage Ξ−1(T2) is entirely contained in a single element T1 of S1. In this
case, vertices of S1 in the domain D ⊂ S1 of Ξ are mapped to vertices of S2,
and preimages of edges of S2 do not cross edges of S1. Graph nodes of GΞ can
only be of corner, touching, or interior type, and the factory class provides a
method to enter such nodes into the graph data structure on S1. Interior nodes
get entered once for the element they reside on. Corner and touching nodes

get entered automatically on each element that borders the vertex and edge,
respectively, that the node resides on. The method returns a handle to the
newly created set of nodes. A second method allows to insert edges into the
graph. Since, by assumption, an edge of GΞ is contained in a single element it
can be inserted simply by giving the element number and handles to its two
nodes. A convenience method allows to insert elements of S2, which amounts
to inserting their edges, if not already present.

If S2 is not a logical refinement of S1, more information is needed. First of
all, ghost nodes appear at those vertices of S1 in D that do not get mapped to
a vertex of S2. Ghost nodes can be added to the factory by calling the method
insertGhostNode. The arguments are the vertex number on S1, and an element
number and local coordinates on S2. If the vertex of S1 is to be mapped onto an
edge of S2 any one of the adjacent triangles will do. Secondly, an edge e = (p, q)
of S2 may now connect vertices whose preimages are not on the same element
of S1. In this case, all crossings of Ξ−1(e) with edges of S1 need to be specified.
This leads to the insertion of intersection nodes at the triangle boundaries. The
preimage of an edge is inserted using the method insertEdge. Its arguments
are the nodes on S1 corresponding to p and q, an array of the crossed edges of
S1, and local coordinates of the intersection nodes on these edges. If Ξ−1(e)
crosses a vertex of S1 (on one-dimensional surfaces, this is even a certainty for
edges visiting more than a single element of S1), a ghost node is automatically
inserted at the vertex instead of an intersection node, unless that ghost node

has already been inserted previously by hand.
After all nodes and edges have been inserted, a finalization method creates

the actual PSurface object. Among other things it computes the triangular
closure (Remark 2.1), sorts the edges of each node in cyclic order,2 and builds
up the arrays that store the nodes on the element edges.

2For increased robustness this cyclic ordering is not computed by comparing angles. In-
stead, a graph algorithm is used to determine a longest path in the subgraph of all neighbors
of the node.
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Figure 4: Backward normal projection from a point q onto a triangle (left), and
from an edge (q̃0, q̃1) onto an edge (p0, p1) (right).

3.2 Projection

For two given simplicial surfaces S1 and S2 a mapping can also be constructed
algorithmically by projecting S1 onto S2 along a piecewise linear vector field on
S1 given by directions at the vertices of S1. This is an important ingredient,
e.g., of algorithms for computing contact problems in continuum mechanics (see
Section 4.2). Frequently, the projection direction is chosen as a piecewise linear
averaged surface normal of S1, but other sufficiently well-behaved vector fields
on S1 can also be used.

More formally, let ν : V1 → R
d+1 be a set of vectors associated to the

vertices of S1. We extend ν by linear interpolation to a continuous vector field
on S1, which we denote again by ν. Our aim is to construct a set D ⊆ S1 and
a mapping Φ : D → S2 such that D is as large as possible and

Φ(p)− p = µν(p) for all p ∈ D, (1)

with p and Φ(p) interpreted as points in R
d+1 and µ ∈ R

+
0 depending on p.

Assume that surfaces S1 and S2 and the vector field ν are given. The
construction of the set D and the mapping Φ consists of three steps.

1. Computing Φ−1(q) for all vertices q ∈ V2

For each q ∈ V2 we have to find a p ∈ S1 such that

q − p = µν(p). (2)

We can then define Φ−1(q) := p. For each q ∈ V2 and each element T of
S1, (2) is a nonlinear system of equations for the barycentric coordinates
λ = (λ0, . . . , λd+1) of p on T and the distance µ. For d = 2 it reads

0 = p2−q+λ0(p0−p2)+λ1(p1−p2)+µλ0(ν0−ν2)+µλ1(ν1−ν2)+µν2, (3)

where p0, . . . , pd are the corners of T and ν0, . . . ,νd are the directions at
these corners. A point p with (1) exists on T if (3) has a solution with
λ0, λ1, µ ≥ 0 and λ0 + λ1 ≤ 1. This system can be solved conveniently
using a Newton solver.

To find preimages for all vertices of S2 we loop over the elements of S1.
For each element T ∈ T1 we use an octree to efficiently find all vertices of
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Figure 5: In certain cases the edge projection algorithm fails: the edge preimage
may leave S1 (left), or the projection may not be continuous (right).

S2 reachable in the direction of ν from T . A vertex v has a preimage p on
T if (1) has a solution for p in T and there is no other solution (p̃, µ̃) on
an element T̃ with µ̃ < µ. To increase robustness we additionally compare
the normal ν̃ of S2 at q and the segment w = q−p, and accept a preimage
only if 〈w, ν̃〉 < 0.

2. Computing Φ(v) for all vertices v ∈ V1

At this stage all vertices of S2 in the range of Φ appear as nodes in the
graph on S1. We have to add additional ghost nodes at those vertices
of S1 that are not mapped onto vertices of S2. This is comparatively
easy as it does not involve solving nonlinear equations. Given a vertex
v ∈ V1, its image on S2 can be found by considering the ray r in direction
ν(v) beginning in v, and looking for intersections of r with elements of
S2. Potential candidate elements for intersections are produced efficiently
using an octree. If r intersects more than one triangle of S1 the intersection
closest to v is chosen. If no intersection is found then Φ(v) will be left
undefined by modifying D such that v /∈ D. If v is mapped onto a vertex
of S2 then it has already been treated in Step 1 and the data structure
already contains a node for it. Otherwise a ghost node is inserted.

3. Adding the graph edges

In order to enter an edge ẽ = (q̃0, q̃1) of S2 into the graph on S1 we try
to ‘walk’ on S1 along Φ−1(ẽ) from q0 = Φ−1(q̃0) to q1 = Φ−1(q̃1). Since
q0 and q1 will generally not be on the same triangle of S1, we have to find
the points where the path from q0 to q1 crosses edges of S1. Let T ∈ T1
be the current triangle in this walking process. For an edge e = (p0, p1)
of T we have to check whether there are points p ∈ e and q ∈ ẽ with q− p
collinear to ν(p) (Figure 4, right). This can be formulated as a nonlinear
system of equations

p(λ) + µν(λ) = q(η) (4)

for three variables λ, µ, η ∈ R and

p(λ) = p0+λ(p1− p0), ν(λ) = ν0+λ(ν1−ν0), q(η) = q̃0+ η(q̃1− q̃0),

which can be solved with a damped Newton algorithm. We have found
an intersection if (4) has a solution with 0 ≤ λ, η ≤ 1 and 0 ≤ µ. This
intersection is then inserted as an intersection node and the procedure is
continued on the triangle which borders T on e.
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Figure 6: The point-removal primitive

There are various corner cases where this approach fails. For example,
even though Φ−1(ẽ) intersects e, there may not be another triangle that
borders T across e (Figure 5, left). Alternatively, there may be such a
triangle, but it may be hidden from S2 by T (Figure 5, right). In both
cases, the edge insertion algorithm currently simply aborts and does not
insert the edge ẽ at all. For the future one may consider adding smarter
algorithms that can handle the first case. In the second case, the projection
in the direction of ν is not continuous, and hence storing it is beyond the
scope of the PSurface data structure.

Assuming that the Newton solvers for (3) and (4) terminate after a constant
number of iterations and that each edge of S2 crosses only a constant number of
elements from S1, the projection algorithm described above requires an expected
O(Nmax logNmax) time, with Nmax = max(|V1|, |V2|). In the worst case the time
needed is quadratic. This is optimal, because there are configurations where
(almost) every edge of S1 gets mapped onto (almost) every edge of S2, leading
to a quadratic number of intersection nodes.

3.3 Constructing parametrizations by surface simplifica-

tion

In this section we give an algorithm that constructs piecewise linear mappings by
surface simplification. It appeared originally in [18]. Given a not too coarse tri-
angulated surface S2, the result is a coarser surface S1 and a parametrization Ξ
of S2 over S1, i.e., a homeomorphism from S1 to S2. The parametrization should
be of good quality, a criterion to be specified more formally in Section 3.3.2.

Parametrizations of a simplicial surface over a coarser copy of itself are use-
ful for the treatment of domain boundaries in finite element problems. These
boundaries are sometimes given as triangulated surfaces of very high resolu-
tion, and need to be coarsened before being able to serve as input for a mesh
generator [18]. The geometric information lost by coarsening can be regained
later during mesh refinement if a parametrization of the fine boundary over the
coarse boundary is available.

The idea of constructing a parametrization function by surface simplification
originates in computer graphics [16], where it is used for a variety of problems,
such as surface remeshing and texture map generation [17]. Our algorithm
consists of two steps:

1. construct the base domain surface S1 and a parametrization function Ξ :
S1 → S2 by means of a simplification algorithm (Section 3.3.1),

2. smooth Ξ to obtain refined surfaces of optimal quality (Section 3.3.2).
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Figure 7: The polar map: The star of p is first cut along the edge (p, p1)
and flattened out into the complex plane. The conformal map z → za, a =
2π/

∑
i θi, then stretches it out so that it covers one full circle.

We describe the algorithm assuming that S2 is a piecewise linear manifold.
The algorithm also works well in the non-manifold case. See [18] for details.

3.3.1 Surface simplification

Let S2 be a simplicial surface of sufficiently high resolution. We initialize the
algorithm by setting S0

1 = S2 and Ξ0 : S0
1 → S2, Ξ

0 = Id. The algorithm will
construct a sequence of simplicial surfaces Si

1 and functions Ξi : Si
1 → S2 such

that Si
1 contains less elements than Si−1

1 and Ξi(Si
1) = S2 for all 0 ≤ i ≤ N .

A surface simplification algorithm consists of two parts. The first is a geo-
metric operation that allows the controlled local reduction of surface complexity.
We chose point removal since it does not create new vertices and is easily ex-
tendible to non-manifold surfaces. Point removal works by repeatedly removing
a vertex and its neighboring triangles, and retriangulating the resulting hole
(Figure 6).

The second ingredient is a scalar oracle that allows to rank the different
possible simplification steps according to the error they would introduce. Many
different strategies have been described [12, 18]. We combine the following
aspects:

• monitor a modified Hausdorff distance between different simplification
stages to control geometric error,

• favor steps that remove triangles with a high aspect ratio and introduce
triangles with a low aspect ratio, to maintain a high-quality triangulation,

• reject simplification steps that lead to surface intersections,

• penalize long edges, to obtain surfaces of uniform element size.

Let i ∈ N be the current simplification step and assume that vi is the current
best vertex according to the error oracle. We define St vi, the star of vi, as the set
of all edges and elements that contain vi. Speaking first strictly in terms of the
domain surface Si

1, a simplification step consists of removing vi and its star from
Si
1. The resulting hole is then filled by a constrained Delaunay triangulation

with a set of elements Pi. The resulting surface Si+1
1 has one vertex and two

elements less than Si
1.
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Figure 8: The flattened star of a vertex is merged into a single polygon.

+ =

Figure 9: The polygon is cut along the new triangulation.

At the same time we have to make sure that the mapping defined on St vi is
correctly transferred to Pi. This means that the graphs defined on the elements
of St vi must be transferred to the elements of Pi. For this, after having removed
St vi from Si

1, we flatten it out into R
d. This is easy if d = 1. If d = 2 we use

the polar map introduced in [8]. It maps St vi bijectively and conformally onto
a star-shaped polygon in R

2 (Figure 7). We then merge the graphs on the
flattened elements of St vi into a single plane graph on the polygon consisting
of the union of the elements of St vi (Figure 8).

This polygon implements that part of the parametrization function Ξ that
had formerly been implemented by the triangles in St vi. We then repartition the
graph according to the new triangulation Pi obtained by Delaunay triangulation
(Figure 9). In the process, edges are cut and intersection nodes are added, and
interior nodes may turn into touching nodes. The result is a set of graphs for
the triangles that are inserted into the domain surface.

Denoting by n the number of vertices of S2, the surface simplification algo-
rithm needs only O(n log n) steps to remove a constant fraction of the vertices.
However, due to the overhead for maintaining a consistent parametrization at
each step the constant is fairly large. The space requirements remain linear in
the number of surface vertices.

3.3.2 Parametrization smoothing

The mappings constructed by the simplification algorithm are frequently of poor
quality. By this we mean that the maximal relative condition number

κΞ = max
A∈AΞ

‖A‖2‖A−1‖2

can get very large. Here, A is the matrix corresponding to one linear piece
of a piecewise linear map Ξ, and AΞ is the set of all these matrices. As a
consequence, surfaces obtained by refining S1 and using Ξ to place the newly
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Figure 10: The edge relaxation algorithm significantly increases the quality of
the refined mesh. The figure shows a surface constructed by simplification of a
sphere (left) and a refined surface without (center) and with (right) smoothing.

inserted vertices can have large triangle aspect ratios (see Figure 10). In the
context of finite element methods this is very undesirable. We will now shortly
describe an algorithm that considerably improves the quality of the refined grids.

Assume that we have a method that computes high-quality parametrizations
of surface patches over convex polygons. Various algorithms for this have been
proposed in the literature. It follows from Gauß’ Theorema Egregium that
such a parametrization can in general not be isometric, i.e., distortion-free. We
use the shape-preserving parametrization introduced by Floater [9]. Inspired
by planar graph-drawing, it places the vertices in the polygon such that each
vertex is a convex combination of its neighbors. The weights are chosen such
that if there is an affine mapping of the surface onto the polygon, then this
mapping is reproduced by the parametrization algorithm. Floater [9] showed
that such mappings always exist, and that they can be computed by solving a
sparse non-symmetric system of equations. This type of mapping is widely used
in surface parametrization algorithms [10, 11].

We can use this method to recompute the parametrization on each element
of S1, while keeping the values of Ξ on the edges of S1 fixed. This will al-
ready greatly improve the parametrization quality. A further improvement can
be achieved if the domains are enlarged. In PSurface we have implemented
smoothing on quadrilaterals. Let T1, T2 be two triangles of S1 that share a com-
mon edge. Consider them to be separated from the remaining surface. They
can then be ‘folded’ isometrically to lie in a single plane. The common edge is
removed and the graphs on T1 and T2 are merged into a single graph on the
quadrilateral formed by T1 and T2. The Floater parametrization method can
now be applied to this quadrilateral. Afterwards the common edge is reintro-
duced and the graph is cut along this edge. Merging and cutting of graphs was
already a part of the surface simplification algorithm of Section 3.3.1, and the
code can be reused.

To achieve a global improvement of the parametrization quality we now loop
over all edges of S1 with two adjacent triangles. For each such edge we smooth
the quadrilateral formed by the two adjacent triangles. The result after one
iteration is a marked improvement of the parametrization quality. Since the
smoothing across edges introduces a global coupling, it pays to loop several
times over all edges. In practice, a satisfying parametrization quality is reached
in less than ten iterations. See [18] for more information.
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4 Integration in Dune

Several features of PSurface are useful in the context of the numerical analy-
sis of partial differential equations (PDEs). For these cases, PSurface can be
used by the Distributed and Unified Numerics Environment (Dune). Dune is
a set of C++ libraries for grid-based methods for solving PDEs [4]. It has been
designed with flexibility as the main goal, and consists of interface definitions to
core components such as grids, linear algebra, or shape functions. These com-
ponents can then be implemented in various ways, allowing the user to always
choose the most appropriate implementation for the task at hand. PSurface

is currently used by the Dune modules dune-grid and dune-grid-glue. The
dune-grid module provides the interface to finite element grids, together with
various implementations of this interface. dune-grid-glue provides infrastruc-
ture for the coupling of several grids.

4.1 Parametrized boundaries with dune-grid

In the numerical solution of PDEs, the shape of the domain may be given as
a high-resolution triangulated surface. Such a surface may need to be coars-
ened before grid generation is possible. The geometric information lost should
be regained when adaptively refining the grid. For this, the construction and
handling of a mapping from the coarse grid boundary to the original boundary
is necessary. This is provided by the PSurface library.

Several of the Dune grid implementations can handle the refinement of grids
with a parametrized boundary, provided the geometric information is given.
dune-grid contains code that, given that the PSurface and AmiraMesh li-
braries are installed on the system, loads a PSurface from an AmiraMesh

file into a PSurfaceBoundary object. This object then hands out information
about the number of boundary segments, their types and vertices. Most impor-
tantly, for each boundary segment it hands out an object of a class derived from
Dune::BoundarySegment. These objects implement mappings fi : R

db → R
dw ,

with db the dimension of the grid boundary and dw the dimension of the world
space, and can be handed directly to the grid factory class at grid creation time.3

Grid managers that are able to will then honor the geometric information for
grid refinement (see Figure 12).

As a variation of this idea, it is also possible to parametrize the elements
of certain grids themselves. Consider a two-dimensional grid embedded in a
three-dimensional space. As a finite element grid it will be piecewise linear
(or piecewise polynomial at most), but in many cases it will be intended to
approximate a smooth surface. Hence, upon grid refinement one would expect
the grid to approximate the smooth surface better. This is only possible if the
shape of the actual surface is known as a function on the coarsest grid. If the
target surface is not given analytically but by a second triangulated surface,
then this function can be implemented using PSurface. Unlike the previous
case, the parametrizing function is now defined on the entire grid instead of only
on the grid boundary.

3At the time of writing, the actual handling of parametrized boundaries in dune-grid has
not been standardized yet. Therefore the details are still subject to change. Please consult
the dune-grid documentation at www.dune-project.org for up-to-date information.
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Figure 11: Two domains Ω1 and Ω2 that meet at a common interface Γ (left).
The restrictions of the two grids on Γ (center). Together they form the set of
remote intersections GM (right).

4.2 Domain decomposition methods with dune-grid-glue

A different use of PSurface occurs in the treatment of domain decomposition
problems. In the simplest case, a partial differential equation is to be solved on
two subdomains Ω1,Ω2 ⊂ R

d, connected through suitable coupling conditions
on a common interface Γ. This interface is assumed to be a d − 1-dimensional
manifold. Two grids G1, G2 on Ω1 and Ω2, respectively, induce trace grids GΓ,1,
GΓ,2 on Γ, which are not necessarily related to each other in any way. Vari-
ous domain decomposition methods, in particular the popular mortar method,
require the evaluation of integrals of the form

m(v, w) =

∫
Γ

vw dx,

where v and w are finite element functions with respect to GΓ,1 and GΓ,2,
respectively [22]. To compute these integrals exactly, the domain of integration
Γ needs to be split up in intersections Iij ⊂ Γ such that each Iij is the set
intersection of two elements Ti ∈ GΓ,1, Tj ∈ GΓ,2, (Fig. 11). If the grid elements
are convex polyhedra, then each intersection is a convex polyhedron itself and
can be decomposed in simplices. On each such simplex, the product vw is
a polynomial and a quadrature rule is available, hence vw can be integrated
exactly. The total integral is given as the sum of the integrals over the individual
intersections Iij .

In more general cases, the two domains may be separated by a positive gap.
In this case, the coupling boundaries Γ1 ⊂ ∂Ω1 and Γ2 ⊂ ∂Ω2 are identified
through a homeomorphism Φ : Γ1 → Γ2 (Fig. 12, left). The integrals used in
the mortar method take the form

mΦ(v, w) =

∫
Γ1

v(x)w(Φ(x)) dx. (5)

Note that this degenerates to the previous simpler case if Γ1 = Γ2 and Φ = id.
The intersections Iij are now defined as

Iij = Ti ∩ Φ−1(Tj).

In Dune, the task of computing the intersections Iij from the coupling
boundary grids GΓ,1 and GΓ,2 and the function Φ is handled by the module
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dune-grid-glue [2]. The set of intersections can be accessed by stl-style iter-
ators. Each intersection provides information such as its embedding in Ti and
Tj , its embedding in the world space R

d, normal vectors, etc.
The general problem of computing intersections between two grids is too di-

verse to be handled efficiently by a single implementation. A very general imple-
mentation will not be efficient in simple cases, while an efficient implementation
cannot be sufficiently general. The software design of dune-grid-glue there-
fore follows the general Dune philosophy of declaring interfaces and allowing
the user to choose between various implementations of this interface.

One such implementation uses the PSurface library. During setup, the
coupling gridsGΓ,1 and GΓ,2 are extracted and a new PSurface object is created
with S1 = GΓ,1 and S2 = GΓ,2. If GΓ,1 or GΓ,2 contain elements that are not
simplicial, these are triangulated to obtain valid input surfaces for PSurface.
A mapping Φ : S1 → S2 is then constructed using the projection algorithm
of Section 3.2. The default projection direction is the field of surface vertex
normals of S1, but user-specified directions are also possible. Note that this
yields the identity mapping when Γ1 = Γ2. The intersections Iij can then be
read off as the regions of the graph GΞ on S1 implementing Φ. Since PSurface
triangulates all regions of GΞ to facilitate point location queries, all intersections
are simplices. dune-grid-glue then implements the various iterators over the
intersections.

4.3 Example application: two-body contact

The possibilities of PSurface in Dune are demonstrated by the following short
example. Consider a two-body contact problem occurring as part of a biome-
chanical application. We simulate the left distal femur and proximal tibia from
the Visible Human data set [1]. The data was segmented and a high-resolution
boundary surface was extracted. The femur surface consisted of 14 468 trian-
gles, and the tibia surface of 14 902 triangles. They were simplified as described
in Section 3.3 to yield coarse surfaces with 532 triangles for the femur and 444
triangles for the tibia. The Amira [20] grid generator produced two tetrahedral
grids with 1 328 and 1 044 elements, respectively (Figure 12).

We modeled bone with an isotropic, homogeneous, linear elastic material.
The bottom section of the proximal tibia was clamped and a downward displace-
ment of 6mm was prescribed on the upper section of the femur. The parts of
the bones usually covered with articular cartilage were marked as the coupling
boundaries Γ1 and Γ2, but the actual coupling boundary was smaller, because
the normal projection Φ could only be constructed on a part of the prescribed
coupling boundary.

Mutual nonpenetration of the two objects was modeled by a linearized in-
equality constraint. Let ui : Γi → R

3, i = 1, 2, be the traces of the displacement
functions on the contact boundaries. We required

〈u1 − u2 ◦ Φ,n〉 ≤ g, (6)

where n is the outer unit normal on Γ1 and g : Γ1 → R is the normal distance
in the undeformed state. The mortar discretization of (6) is

∫
Γ1

〈u1 − u2 ◦ Φ,n〉µ ds ≤
∫
Γ1

gµ ds (7)
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Figure 12: Two-body contact problem. Note the stress peaks on the condyles
due to the contact, and how the refined grid boundary approximates the smooth
domain boundary.

for a set of test functions µ from a suitable test function space M . Expressing
this algebraically in terms of basis functions leads to terms of the form (5).
See [19] for the details. Figure 12 show a result of the computation after three
steps of adaptive refinement. It can be seen that the refined grid boundary
approaches the original finer boundary. The effect of the weak nonpenetration
condition (7) can be seen by the stress peaks at the condyles.

5 Integration in Amira

Amira is a software for the visualization of scientific data. Originally devel-
oped at the Zuse Institute Berlin (ZIB), Amira is now distributed commer-
cially.4 Amira is written in C++ and has a plug-in infrastructure. Plug-ins
have access to most internal data structures, and visualization and data pro-
cessing algorithms. Conversely, users can control the plug-ins with the Amira

GUI and the tcl scripting language integrated into Amira.
The development of PSurface started when the author was employed at the

visualization department of ZIB. Therefore, the original code consisted entirely
of Amira plug-ins. Later, the core data structures and algorithms were moved
into a generic C++ library which could be compiled and used independently
from Amira. However, some useful functionality still exists in form of Amira

code. It is collected in the plug-in hxpsurface.
The core of the PSurface Amira integration is a class HxPSurface which

encapsulates a PSurface and makes it available as anAmira data object. Using
this wrapper, an Amira viewer module allows to visualize the PSurface. Both
surfaces S1 and S2 are shown as triangulated surfaces, and the mapping is
visualized as the edge graph of S2 on S1 (Figure 2). Such a representation gives
useful insight into the structure and quality of the parametrization, among other
things for debugging purposes. Additionally, the display module can visualize
the graph nodes with a color code according to the node type, and the images

4www.amira.com
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of the edges of S1 under Ξ. The regularity of these edges is another indicator
of the parametrization quality.

Besides the direct visualization of PSurface objects, the Amira plug-in
offers several other useful features. In particular, parts of the surface simplifi-
cation algorithm of Section 3.3 are contained in the plug-in. While PSurface

itself contains the code for removing single vertices, retriangulating the hole and
transferring the preimage graphs, the error criteria and ranking algorithms re-
side in hxpsurface. That way, the simplification can be controlled conveniently
using the Amira GUI. Similarly, the code to smooth a parametrization across
an edge is contained in PSurface, while the global loop and a GUI are in the
plug-in. A general PSurface editor, modeled after the Amira surface editor,
allows to interactively modify the domain surface S1. Among other things it is
possible to delete single vertices, and flip or split edges, while always maintain-
ing a valid parametrization. Also, various quality measures of S1 such as the
triangle aspect ratio can be computed.

Another useful feature is the remesher, which allows to visualize a uniformly
refined S1, where all new vertices have been moved to the positions prescribed by
a parametrization Ξ. For a parametrization intended for use as a finite element
grid boundary, this allows to visually inspect the quality of the resulting mesh
boundary.

As a conclusion, using PSurface as an Amira plug-in offers a simple way to
implement and experiment with computer graphics and visualization algorithms
involving parametrized surfaces. For example, the construction of texture and
bump maps and their visualization would be straightforward. As another ex-
ample, we show the linear morphing of one triangulated surface into another.
This example originally appeared in [18].

5.1 Morphing

Morphing is the continuous deformation of a surface into another one. Given
two homeomorphic surfaces S and S′, we are looking for a one-parameter family
of surfaces S = {S(ρ) | ρ ∈ [0, 1]} with S(0) = S, S(1) = S′ and such that the
map ρ → S(ρ) ∈ S is continuous. The user is usually requested to mark sets
of feature points on the surfaces that will be required to correspond via the
morphing. These points will generally have some geometric significance. For
example, when morphing two heads, one might choose the tip of the nose, the
chin, the corners of the mouth and the like. The algorithm should then construct
a surface family under those constraints.

A basic algorithm looks like this: given two triangulated surfaces S and S′

of identical topological type, and an equal number of feature points on each of
them. On each surface, the points are then connected by paths that triangulate
each surface such that the two triangulations are combinatorially equivalent.
This can be done manually or automatically. From these triangulations coarse
surfaces B and B′ are constructed. The vertices of B and B′ are the fea-
ture points of S and S′, respectively, and two vertices in B (B′) are connected
by an edge if there is a corresponding path in S (S′). The triangulated sur-
faces are then parametrized over these base surfaces B, B′: We map points on
patch boundaries onto base grid edges via an arc-length parametrization and we
use the Floater scheme for all other vertices. The quality of the parametriza-
tion can be improved further by applying the relaxation scheme described in
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Figure 13: Constructing a parametrization of ‘Al’, the cartoon figure, that is
suitable for morphing. i) the surface with marked points and a rough triangu-
lation; ii) the corresponding base grid; iii) the base grid after the application of
edge-relaxation; iv) the original surface showing the relaxed triangulation.

Figure 14: A morphing sequence from the cartoon figure into a dinosaur head
showing five equidistant steps.

Chapter 3.3.2. This sequence of steps is shown for the cartoon figure head in
Figure 13.

Since the two triangulations were required to be equivalent, we now have
the two surfaces S and S′ parametrized over two isomorphic base grids B and
B′ using the respective parametrization functions Ξ and Ξ′. Thus, there exists
a bijection θ from B to B′, which in turn creates a homeomorphism Φ from S
to S′ by

Φ(p) = Ξ′ ◦ θ ◦ Ξ−1(p) ∀p ∈ S.

Any intermediate model can now be generated by linearly interpolating between
corresponding points p and Φ(p) (Figure 14.)
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