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Chapter 1

Introduction

1.1 Training surgeons

Performing surgical operations is traditionally taught in an apprentice/master setting.

The surgeon in training watches accomplished surgeons perform an operation, and

after sufficient experience, he may perform operations under expert guidance. After

much practice, the trainee then becomes an expert in operations.

Although this system of educating surgeons is effective, it has serious drawbacks.

Due to lack of experience, trainees take longer to perform procedures, which increases

costs. They are also less skilled, which subjects patients to extra risks. This is not

a desirable situation, but the alternatives to training within the operating room also

have disadvantages. Books and videos describing operations are not interactive. Test

animals do not always reflect human anatomy, and their use is expensive. Synthetic

phantoms do not reflect mechanic properties of living tissue, and have to be discarded

after dissecting them.

These issues are aggravated by the introduction of laparoscopic or endoscopic surgery.

In this technique, the abdomen can be operated on without major trauma. Instruments,

such as graspers, scissors, and staplers, are introduced in the body through small holes

in the abdomen. These instruments are mounted on long rods, and surgeons can op-

erate them from the outside. The operating site is viewed through a laparoscope, a

tube-like device which contains a camera and a lamp. It also inserted through a small

incision. Compared to open surgery, the trauma caused by the openings is small. This

speeds up patient recovery, and reduces pain and scarring.

For patients, the benefits of laparoscopic surgery are clear. For surgeons however, it

opens up a range of new problems. During an intervention the surgeon cannot directly

see the operating site, but must rely on a coarse 2D video image of the site. Since the

instruments and the camera are introduced through small holes, their movements are

restricted. This makes manipulating them awkward. Elastic response of the tissue is

relayed through wires to the surgeon, thus reducing kinesthetic feedback. Hence, sur-

geons have reduced visual and haptic feedback during laparoscopic surgery, and cannot

rely on traditional hand-eye coordination. Training a new laparoscopic procedure takes

8



1.2 Interactive surgery simulation 9

more practice than learning new traditional surgical procedures.

It has been pointed out [8, 9] that computer-assisted training might offer a solution

to these problems. If apprentices are initially trained on “virtual” patients, simulated

by computers, no costly operating rooms have to be used, and during practice there

is space for making errors without consequences. If the simulation is sufficiently ad-

vanced, it may be more realistic than animals and phantoms. Students can make er-

rors and learn from them, and they can experiment with different surgical techniques.

Moreover, a virtual environment may be used to recreate unusual complications, and

train students for situations that occur only sporadically in practice.

A virtual environment is also conducive to experimentation. Virtual environments

can be used in experiments to determine skills and techniques that are effective for

surgical procedures. This is useful because little is known of the exact nature of surgical

skills [94].

1.2 Interactive surgery simulation

In summary, interactive surgery simulations could be a highly useful tool for training

surgical procedures. Unfortunately, constructing such simulations is a technically chal-

lenging task. Consider such a hypothetical system, consisting of a computer connected

with a fancy display and specialized “joystick” that also renders reaction forces (a force

feedback or haptic device) . Such a system lets the student manipulate virtual organs,

and feel their reactions. When the student uses the joystick to push, cut or otherwise

manipulate simulated organs, the system should respond to these actions with a credible

reaction. The time available for computing these reactions is severely limited. Typically,

the display must be updated within 40 milliseconds, and reaction forces should be re-

layed to the haptic device within 2 milliseconds. Producing a realistic deformation of a

virtual organs in so little time is a hard task, and it is solely this topic that the rest of the

thesis is focused on.

Full-fledged systems for the problem at hand, which include realistic visualization

and simulated surgical instruments, already exist. The most popular technique for

simulating the soft tissue in these systems are mass-spring-damper systems [12, 13, 20,

28, 46, 67, 70, 71, 76, 83, 95]: these consist of mass points connected by a network of

damped springs. Other techniques have also been presented, for example space-filling

spheres [91] and ChainMail [83]. The role of such models is to provide deformations

that look qualitatively convincing: the result should “look good.” The heuristic nature

of these models makes it impossible to go beyond looking good. For example, mass-

spring-damper networks do not account for the volume in between the mass points,

and hence they cannot simulate truly volumetric properties of material, such as volume

preservation.

The lack of quantifiable realism in heuristic deformation models has motivated the

move towards methods that are based on the physics of deformation. Deformations of

an elastic object are described by laws of physics. These laws can be translated into

precise mathematical descriptions in the form of partial differential equations, which

can be discretized and solved. The solutions thus found approximate reality in a quan-

tifiable manner. Such discretization methods include Finite Element [14, 103], Finite
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Difference [64], and Boundary Element Methods [58].

This thesis only considers the Finite Element Method (FEM). The FEM is a well-

studied and highly popular solution method to compute solutions to partial differential

equations defined on irregularly shaped objects. Among others, it can be applied to

problems of heat conduction, elasticity and electromagnetism. The FEM solves such

problems by subdividing the object into a collection of geometric primitives, called

elements. This process is called meshing. These elements, e.g., triangles, tetrahedra or

bricks, can only deform in elementary ways. Physical laws of the material specify how

neighboring elements of a mesh interact. The relation between neighboring elements

can thus be captured in an equation. The aggegrate of all elements together leads to an

enormous system of equations, which can be solved with numerical techniques. The

solution to this discretized system is an approximation to the solution of the continuous

system. A schematic example is shown in Figure 1.1.

meshing

≈

Figure 1.1: In the Finite Element Method, the object simulated (top left) is meshed

(top right). The exact solution (bottom left) is then approximated by the deformation

of the meshed object (bottom right).

The FEM has been applied before to interactive deformation and surgery simula-

tion. We can distinguish two techniques. Linear elasticity simplifies the equations of

elasticity into a linear system. The inverse of this system can be computed beforehand,

so that elastic response to external forces can be computed within a guaranteed amount

of time. This is a desirable property in interactive simulations, and such precomputa-

tion techniques have been used widely in both prototype surgery simulations [18, 37],

and generic deformable object simulations [53]. Unfortunately, the linear approxima-

tion is only valid when deformations are small, an assumption that is questionable for

soft material. In particular, linear elasticity cannot realistically model deformations that

involve rotations; an example of linear and nonlinear elasticity is shown in Figure 1.2.

Accurately describing these deformations requires nonlinear elasticity, which cannot be

used in conjunction with precomputation techniques. Such problems must be solved

iteratively: the configuration is moved from some starting configuration to the solu-

tion in small steps. We also refer to such a method as a relaxation method. The most



1.3 Overview of thesis 11

popular iterative method is explicit dynamic time-stepping, or dynamic relaxation. The

object is considered to have mass and damping, and the evolution of its movements is

described by Newton’s laws of motion, which can be numerically computed. Dynamic

relaxation has been used for computing solutions to nonlinear elasticity problems in

prototype simulation systems [32, 77, 92, 100, 101]. Hybrid systems of static linear

precomputed and time-stepping techniques have also been presented [27, 49]. Time-

stepping is sometimes also used for linear elasticity, since velocity-dependent friction

forces can be integrated in a dynamic model naturally [2].

Figure 1.2: Linear elasticity is accurate for small deformations: on the left, an object

fixed on the left under gravity load. The original is shown in wireframe. These defor-

mations do not scale linearly: in the center, the same object with force scaled by 10 with

linear elasticity. On the right, the same object with a nonlinear elasticity model.

Iterative methods have another advantage over linear elasticity with precomputation.

In a surgery simulation, destructive operations such as cuts and cauterizations, can

change the mesh. Mesh changes invalidate the precomputed structures that are used

in the linear model. By contrast, mesh changes are handled naturally in an iterative

method.

Mesh changes can include both simulated surgical procedures and mesh refine-

ments to increase the precision of the FEM solution. In this thesis we will consider both

cuts and refinements. Cuts have previously been simulated using subdivision methods:

a virtual scalpel slices through an object represented by a mesh, and all elements in con-

tact with the virtual scalpel are subdivided. An example of a subdivision cut in 2D is

given in Figure 1.3. In 3D, subdivision techniques for cutting were pioneered by Bielser

et al. [12]. Their work has been followed by many other researchers [22, 45, 46, 66].

Subdivision methods can represent cuts accurately. Unfortunately, they increase mesh

size substantially.

1.3 Overview of thesis

In this thesis, we will consider nonlinearly deformable objects where the mesh represent-

ing the object can be changed by cuts; hence the title “Cutting in deformable objects.”

More precisely, we will use the FEM for modeling interactive deformation, and solve
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Figure 1.3: A triangle mesh (left), and cut in that mesh produced by a subdivision

method (right). The mesh mirrors the scalpel path (dotted) accurately, but uses many

small and skinny triangles to do so.

the resulting equations with an iterative method, allowing both the use of nonlinear

elasticity models and run-time mesh-changes.

The FEM is a technique traditionally used in engineering: it is a tool to compute

solutions to engineering problems with high accuracy. In these cases the analysis pro-

ceeds in three separate steps. First, the object is meshed. Then, for each element the

local equations are generated and assembled in a large system of equations. Finally, this

system of equations is solved. Typically, these three steps are performed by routines

that communicate via files on disk or matrices stored in memory.

In an interactive simulation, low response times are very important, while accuracy

is not. For quick responses, meshing, equation assembly and system solution should be

tightly integrated; structures such as matrices in memory or files on disk cause unde-

sirable overhead. Hence, at the surface, building a deformation simulation seems like

a problem in program design: the mesh and the deformations should be stored such

that communication between different modules can be done efficiently, while a certain

flexibility in the complete system is maintained.

It is true that complex integrated systems can only be implemented when they are

designed in a modular manner. However, in the case of FEM computations, the mesh

and the solution process must be integrated on a deeper level than program design.

Both the accuracy and speed of solution processes strongly depend on the granularity

and the quality of the mesh: larger meshes slow down computations, as do meshes with

skinny and flat elements. Moreover, flat elements introduce errors in the approximation.

Figure 1.4 illustrates this phenomenon. If the mesh is changed on-line, for example due

to cuts, care must be taken that the changes do not adversely affect the performance of

the total system. So, meshing and deformation are closely coupled, and it is not realistic

to treat both problems separately.

Our first venture into the problem of cuts in deformable objects is described1 in

Chapter 3. Here, both problems were treated separately. This has led to the implemen-

tation of a system that separates deformation and meshing with the highest degree of

1Results from Chapter 3 were presented at the Medical Image Computing and Computer Assisted Inter-

vention (MICCAI) conference 2001 [73] and EuroGraphics 2000 [72]
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Large angle

a

b

c

a

b

c

Volume change:

25 % 50 %

Volume change:

Figure 1.4: Moving a single point of a triangular element. The area of the original

element (solid lines) is equal in all cases. The same movement leads to volume reduc-

tion of 25% on the left, and 50 % on the right. In the case on the right, an innocuous

movement leads to a large volume change, and therefore, large internal forces. The ele-

ment is stiffer than the real material, and using such flat triangles in the Finite Element

discretization yields an inaccurate approximation.

modularity. The system uses linear elasticity using a static iterative relaxation method.

A cutting technique was tried that does not increase mesh size like subdivision does.

The system succeeds in combining static FEM deformation and interactive cuts on rel-

atively large meshes in a stable manner. However, the cutting method also introduces

flat, undesirable elements in the mesh, which must be removed in a separate step.

Chapter 3 uses a static approach: an approach where physical time is not simulated.

Most other work in deformable object modeling uses dynamic relaxation. In Chapter 4,

we take a more in-depth look at static relaxation: this chapter presents a computational

study to determine which method performs best on nonlinear problems. Both methods

are coded in the same framework. They are compared using a standardized test prob-

lem. By timing how long it takes before they reach the final solution, we can determine

which one performs best. The conclusion is that the static method is at least as good as

the dynamic one: with an optimal choice of parameters, dynamic relaxation is as fast as

static relaxation, otherwise it is slower. In this chapter it is also determined how much

computational power is needed for running a simulation. The observation that mesh

quality influences the performance of an iterative method is confirmed for the nonlinear

case as well.

Chapter 3 also proposes a method for cutting in 3D objects represented as tetra-

hedral meshes. During the development of this method, we have encountered many

problems that are not intrinsically three-dimensional, but are partially caused by limita-

tions of both computers and our minds. Computers can only display 2D pictures and

we can only see objects from the outside; visualizing what happens inside an object is

much harder, both mentally and technically. Therefore, in Chapter 5 we take a step

back, and present a method for making cuts in 2D triangle meshes.2 Existing methods

use subdivision, a process that increases the size of the mesh and decreases the qual-

ity of the mesh. Both are undesirable, since they make the relaxation more expensive.

2Chapter 5 was based on a paper accepted for the Fifth International Workshop on Algorithmic Founda-

tions of Robotics (WAFR 2002) [74].
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Our approach uses a recognized technique for making high-quality triangle meshes,

the Delaunay triangulation. The result is a technique that produces meshes that are

measurably better and smaller than those produced with subdivision techniques. The

technique is also generalized to curved 3D surfaces, where one scalpel can cause multi-

ple incisions.

In Chapter 6 we turn to a more specific problem, in which the full generality of

arbitrary cuts in arbitrary objects is not necessary. This problem concerns simulating

how needles are inserted in deforming objects. It has been solved for 2D models with

a linear elastic model [36–38], but the extension of this technique to 3D objects and

nonlinear elasticity has not been addressed yet. In Chapter 6, we investigate techniques

for 2D needle insertion, that might make 3D needle insertion in nonlinear material

more tractable. Unlike the work in the preceding chapters, the focus in this chapter is

more on quantified accuracy than on visual realism. In this case mesh changes take the

form of refinements close to the location of the needle. The resulting simulation has a

performance comparable to the work cited, but can also simulate a number of nonlinear

models, and readily generalizes to 3D.

Figure 1.5: Needle insertion in nonlinear material. The mesh is refined close to the

needle to increase accuracy.

Finally, Chapter 3 to 6 all manipulate triangle and tetrahedron meshes. For effi-

ciency reasons, the connectivity information of these meshes must be stored explicitly,

in the form of pointers that link neighboring triangles and tetrahedra. A side-result of

the implementation work of these chapters is a data structure that separates the low-level

work of maintaining this connectivity information from the rest of the program, thus

making it easy to robustly implement high-level mesh-changes. Chapter 7 describes the

data structure, and gives pseudo-code for the low-level operations.



Chapter 2

Preliminaries

The behavior of deforming objects is the topic of continuum mechanics, a branch of

mathematics that tries to capture physical phenomena of continuous media in precise

mathematical formulations. One branch of continuum mechanics, nonlinear elasticity,

provides the mathematical description of how objects deform. Since deformation is

fundamental to the topic of the thesis, we will review elasticity in Section 2.1, drawing

on the book by Antman [4]. An introduction to the tensor notation used is given in

Appendix A.

Continuum mechanics describes materials in terms of partial differential equations.

Solving such equations will be done by the Finite Element Method, so this broad cate-

gory of solution strategies is discussed in Section 2.2. We will work towards the specific

technique that we shall use: the Rayleigh-Ritz method for variational problems, using

linear interpolation on tetrahedra. This section is loosely based on the introductory

chapters of the books by Zienkiewicz and Taylor [103] and Braess [14] on the subject.

The Finite Element Method (FEM) is a discretization method. It transforms a con-

tinuous, infinite-dimensional problem into systems of equations with a finite number

of variables. For mechanical problems, the FEM discretizes the equations of motion,

hence it delivers a system of ordinary differential equations, i.e., equations where time

still has a role. There are two ways to deal with these systems: compute the evolution

of the system, or try to find the final equilibrium solution directly.

If the final state of the system is all that matters, a static method can be used. By

assuming that velocity and acceleration are null, the system of differential equations

is changed into a normal system of equations. For many mechanical problems, these

equations can be stated in terms of finding minimum energy solutions. Hence, we

will discuss a number of minimization algorithms in Section 2.4. A more extensive

treatment of unconstrained optimization algorithms can be found in the work of No-

cedal [75] and Fletcher [41].

If transient effects do matter, then the evolution of the differential equations must

be calculated using a time-integration method. Section 2.5 discusses a popular time-

integration method for mechanical problems, based on the book by Zienkiewicz and

Taylor [103].

15



16 Preliminaries

Basically, our problems come from the simulation of soft tissue. Although simu-

lating the full mechanical characteristics of soft tissue is not possible in an interactive

setting, it is instructive to study exactly what kind of characteristics are ignored in our

simulations. Section 2.6 briefly discusses a few mechanical properties of living tissue,

drawing on the book by Fung [44].

All sections in this chapter tend towards simplification. This is not surprising: the

constraints of an interactive simulation do not allow for much sophistication. This

chapter also states many results without proving their correctness, and it is in some

parts deliberately vague. Since the subjects are too extensive to fit a full discussion

in this thesis, the reader is referred to the books mentioned above for more detailed

information.

2.1 Continuum mechanics

Continuum mechanics describes the behavior of material objects when they are sub-

jected to loading. The basic assumption is that the objects and their behavior may be

described using continous quantities: bodies occupy a continuous region in 3D space,

and have continuous motions.

We describe a mechanical or material body as being a subset B of R
3. We call this

set B the reference configuration. As time progresses, the body may occupy different

positions in space: every point of B moves to some location, depending on the time t.

Hence we may describe a deformation by a function p : B × R→ R
3.

Such a function p(z, t) must satisfy at least two requirements to represent a valid

motion. First, a body may not penetrate itself: no two points of the body may occupy

the same position when deformed. Second, the body can not be folded inside out. In

other words, the function p(·, t) must preserve orientation for all t. Since the volume

change of the deformed object is measured by det(pz(z, t)), we require that this quan-

tity be positive for all t. We shall encounter the derivative pz much more often, and

therefore we give it a name and a notation: the 2-tensor field pz(z, t) is called the de-

formation gradient, and is denoted by F. It is illustrated for a 2D example in Figure 2.1.

When we talk of deformation, usually we refer to motions p which locally change

the shape of the body. Isometric transformations (rigid movements) do not interest us,

therefore we shall use a measure of shape change which filters out these rigid motions.

Let

C = F∗ · F. (2.1)

This tensor is called the (right Cauchy-)Green deformation tensor, and it is invariant under

rotations. This deformation tensor measures the elongation of a fiber running in a

particular direction: if we have an infinitesimally long fiber with direction running from

z to z + h, then its length after deformation is measured by
√

h · C · h. The length

change of such a fiber attains extremes when h is an eigenvector of C. Since C is

symmetric, it has three orthogonal eigenvectors, called the principal axes of strain. The

tensor C is also visualized in Figure 2.1.

Solid bodies resist movement. This property is called inertia, and inertia is measured

by the mass of a body. We assume that a body B has a density ρ(z) in each point z, and
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Figure 2.1: This figure shows a deformation of a beam in 2D (reference configuration

on the right), with vectors of the deformation gradient (left) and principal axes of strain

(right). The identity mapping is represented in the lower left of each picture. The

motion used is p((x, y)) = −cex+R(−αx)(y+c)ey−βxey, where R(φ) is the mapping

for rotation over angle φ, and e1, e2 is the unit basis in R
2. This corresponds to a

combination of bending, dilation and shearing. The deformation gradient F is really

defined in points of the reference configuration, but we show F in the corresponding

deformed points p(z).

the mass of a some part A of a body is given by the volume integral

∫

A

ρ(z) dv(z). (2.2)

A part A of a body B may be subject to force. Forces take the form of either traction

on the surfaces or body forces, which are applied to the volume of the body. Surface

tractions are denoted by t. Body forces (which can be either electromagnetic or gravity

forces) are denoted by f,

The balance of linear momentum, which is also known as Newton’s law, postulates

that resultant forces equal acceleration. It may be formulated as follows.

∫

A

f(z, t)dv(z) +

∫

∂A

t(z, t; ∂A) da(z)

=
d

dt

∫

A

pt(z, t)ρ(z) dv(z), A ⊂ B.

(2.3)

The left side of the equation represents body force plus boundary tractions. The

right side of the equation is the derivative of linear momentum. This equation holds

for every subset A of the body B. The traction t on a surface ∂A depends only on z

through the surface normal n on ∂A. This relation is linear, so there is a 2-tensor T

defined on the body B, such that

t(z, t; ∂A) = T (z, t) · n, z ∈ ∂A, n ⊥ ∂A. (2.4)
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This theorem is called Cauchy’s stress theorem, and the mapping T is called the first

Piola-Kirchoff stress tensor. The vector n is the outward pointing surface normal of ∂A

at point z in the reference configuration.

Equation (2.3) integrates variables over parts of B, hence it is called weak. If p is

continuously differentiable, then the balance of momentum can be rewritten in a strong,

localized version

div T (z, t) + f(z, t) = ρ(z)ptt(z, t), z ∈ B. (2.5)

The operator div is the divergence of a 2-tensor field. It is defined by div T = ∂T/∂z : I,

where · : · is the inner product for 2-tensors.

The balance of angular momentum asserts that resultant couples equal angular ac-

celeration. If we assume that no electromagnetic effects take place, then resultant cou-

ples are always null, and the tensor T · F∗ is symmetric. This leads us to introduce the

tensor S, called the second Piola-Kirchoff stress tensor, by defining

S = F−1 · T . (2.6)

This tensor is symmetric. If e1 is the normal of a material plane in B, and e2 and

e3 span the plane in B, then the matrix entries of S contain the traction on that plane,

Te1, but expressed in deformed basis vectors {Fe1, Fe2, Fe3}.

Constitutive equations define the relations between stress and deformation. A con-

stitutive equation is given by a function T̂ , such that

T = T̂ (p(·, ·), z, t), z ∈ B. (2.7)

The dependency on p is understood to be causal: the value of T̂ on some time t0 only

depends on values of p before t0. The hat on T̂ stresses the difference between the

tensor field T , a physical quantity that could be measured in physical realizations of the

situations described, and T̂ , a function that expresses the mathematical relation between

two tensor fields (in this case, the field T and p(·, ·)). For the stress tensor S we use the

same convention.

The description in Equation (2.7) is too general to be of practical use, and there-

fore we directly restrict ourselves to simple materials, where the stress at a point z only

depends on the values of p in a neighborhood of z, as measured by the first derivatives

pz. We get

T = T̂ (p(z, ·), pz(z, ·), z, t), (2.8)

for some function T̂ . Again the dependency on p and its derivatives is understood to

be causal.

Constitutive equations should be independent of the choice of a time and coordinate

system. This property is called frame-indifference. For a simple material, this implies that

T̂ (F(z, ·), z) = RT̂ (U(z, ·), z), (2.9)

U(z, ·) =
√

F(z, ·)∗ · F(z, ·), (2.10)

R = F(z, t) · U−1(z, t). (2.11)
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The tensors U and R form the polar decomposition of F: F = R · U, where R is a

rotation, and U is a positive definite symmetric matrix. The dependency on U(z, ·) is

meant to be causal.

By substituting Equation (2.6) into (2.9), we can derive the following description

for a frame indifferent constitutive equation which uses symmetric tensors only:

S(z, t) = Ŝ(C(z, ·), z).

A further simplification can be done if we assume that the material responds to

deformations equally in all directions. Then for all rotation mappings Q we have

Q · Ŝ(C, z) · Q∗ = Ŝ(Q · C · Q∗, z).

Such material is called isotropic or hemitropic. If not, then the material is called aelotropic

or anisotropic. Examples of materials that are aelotropic are those that contain networks

of regularly arranged fibers.

The tensor C is symmetric, and can therefore be characterized up to rotations by

its three eigenvalues, or equivalently, by its three invariants. If λ1, λ2 and λ3 are the

eigenvalues of A, then the invariants ι1, ι2 and ι3 are defined as follows:

ι1(A) = λ1 + λ2 + λ3,

ι2(A) = λ1λ2 + λ2λ3 + λ3λ1,

ι3(A) = λ1λ2λ3.

The invariants can be determined without computing the eigenvalues of A. We have

ι1(A) = trace(A),

ι2(A) =
1

2
((trace A)2 − trace(A∗ · A)),

ι3(A) = det A.

The trace of a matrix H can be defined in terms of the inner product for 2-tensors:

trace(H) = H : I. In a matrix representation, the trace of a matrix is the sum of the

diagonal elements.

The following representation theory should come as no surpise: a hemitropic stress

function Ŝ depends on C only through the invariants ι1, ι2 and ι3 of C. For hyperelastic

media, this means that the energy density W must also be a function of the invariants:

W = Ŵ(ι1, ι2, ι3, z). (2.12)

Some materials have restriction on the ways in which they can deform. The most

important example of this is incompressibility. A material is incompressible if deforma-

tions conserve volume locally. This constraint may be expressed as det C = 1. Consti-

tutive equations describing incompressible material can be derived by a limit process.

This limit process introduces a new variable, the pressure p, that serves to balance any

elastic force that tries to violate the constraint. Examples of incompressible material are

those containing lots of fluid.
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We can distinguish many classes of material by restricting the dependency of T on

p even further. We will restrict ourselves to elastic materials. These are materials where

T depends only on pz, and not on t or p itself. The dependency on pz does not take

the past history of pz into account, but only its value at time t. In other words, this is

material that satisfies

T = T̂ (pz(z, t), z), (2.13)

for some function T̂ . Such a material is also called Cauchy-elastic. An elastic material

is hyperelastic, or Green-elastic, if there is a scalar function W called stored energy

function, such that

T̂ (F, z, t) =
∂W(F, z)

∂F
, (2.14)

or equivalently

Ŝ(C, z, t) = 2
∂W(C, z)

∂C
. (2.15)

If the stress is independent of temperature, or temperature is held constant, then the

equilibrium response of any elastic material is hyperelastic.

These considerations give us some constraints on functions that can be used as T̂

and W, but not all such functions lead to descriptions that realistically describe existing

materials. Mathematical conditions exist that express basic properties of materials, e.g.,

elastic forces should oppose deformations, and extreme deformations should lead to

extreme tensions within the material. This still leaves a lot of freedom in specifying

constitutive equations, i.e. selecting W or T̂ functions. Finding a constitutive equation

for a given material is far from trivial. A variety of theoretical models exist for different

classes of material (e.g. metals and rubbers), but they are usually only validated by

fragmentary experimental results [5].

The equations presented so far are inherently nonlinear: the strain tensor C is non-

linear in p. This ensures that solutions to the equations for p will not be linear in

the given conditions, i.e. the boundary conditions and the body forces. However, a

linear approximation to the elasticity does exist. It has three virtues: it is simpler from

a conceptual point of view, it is computationally simpler, and relatively uncomplicated

proofs of existence and unicity of the solution can be given.

If we assume that deformations are small, then we can assume that the stress strain

relation is linear, or equivalently, W is quadratic in C. This is called the St. Venant-

Kirchoff material model, and it is the simplest material model available. It will be used

in Chapter 4. Since W is quadratic in this model, must have the following form.

W(ι1, ι2) = c0 + c1ι1 + c2ι21 + c3ι2. (2.16)

The choice of c0 is irrelevant, so we set c0 = 0. The constants c1, . . . , c3 are dependent:

the reference configuration should be stress-free, so we can eliminate one constant by

imposing S = 0 when C = I. Two constants remain. We can express the energy density

thus obtained as follows:

W(ι1, ι2) =
1

2

((

−µ −
3λ

2

)

ι1 +

(

λ

4
+

µ

2

)

ι21 − µι2

)

. (2.17)
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The stress tensor is linear in C,

S = µ (C − I) +
1

2
λ(ι1 − 3)I.

Hence the tension in the material is proportional to the deformation, as measured by

C−I, with additional tension caused by volume changes, which are measured by (ι1−3)

for small deformations.

The parameters µ and λ are called Lamé parameters. Material properties are usu-

ally expressed in parameters that have a macroscopically more intuitive definition: the

Young modulus measures the resistance to stretching. Its notation is E, and we have

E = µ
(3λ + 2µ)

λ + µ
. (2.18)

The unit of E is Pascal (N/m2). The Poisson ratio is the ratio between the transverse

contraction and longitudinal stretching. We have

ν =
λ

2(λ + µ)
. (2.19)

Since ν is a ratio, it is dimensionless. For physical reasons, we have 0 ≤ ν < 1/2. If ν

tends to 1/2, then λ → ∞, and the material becomes incompressible. The meaning of

E and ν is illustrated in Figure 2.2.

dilation �����

traction � traction �

contraction �������

Figure 2.2: A uniformly distributed traction leads to uniform stresses and strains. Ma-

terial in the direction of the load expands inversely proportional to the Young modulus

E. The contraction in the transversal direction is ν times the dilation, where ν is the

Poisson ratio.

We introduce the displacement u of a point. The displacement u of z at time t is

defined by

u(z, t) = p(z, t) − z. (2.20)

This expression vanishes in the reference configuration. For rotations, u generally

is nonzero. We write G for ∂u

∂z
. We can linearize both the definition of strain in Equa-

tion (2.1), and the constitutive relations in (2.7). Linearizing the strain tensor is also

called the linear geometry assumption. We have

C = F∗ · F = (I + G)∗ · (I + G) = I + G∗ + G + G∗ · G.



22 Preliminaries

When we assume that G is small, then we can neglect the quadratic term G∗ · G, ob-

taining

C ≈ I + G∗ + G.

Another measure for deformation is the material strain tensor E, which is defined by

E =
1

2
(C − I). (2.21)

The tensor E disappears in the reference configuration. Let E be the linear geometry

approximation of E, then we have

E =
1

2
(G + G∗),

W̃(E) = µ trace(E∗E) +
1

2
λ(trace E)2,

S = 2µE + λI(trace E).

(2.22)

When both strain and material linearizations are combined, stresses are linear in the

displacement. If deformations are small, then ∂u/∂z = O(ε) for some small ε > 0. In

this case O(ε2) terms are neglible and both E and S are also O(ε). It follows that we can

equate S and T since

T = F · S = (I + O(ε)) · S = S + O(ε2). (2.23)

This combination is called linear elasticity. Suppose that the displacements are fixed

on a subset of the boundary with non-zero area, say ∂B0, and tractions are specified on

the rest of the boundary, say ∂B3 and V(B) is the set of functions with square-integrable

derivatives that satisfy the boundary condition on B0, then then the following problem

has a unique solution.

min
u∈V(B)

∫

B

(

W̃(E(u)) − f · u
)

dv(z) +

∫

∂B3

t · u da(z), (2.24)

u = 0, on ∂B0. (2.25)

The solution is weak: the space V(B) consists of functions from B to R
3 with square-

integrable derivatives that satisfy the boundary condition on B0.

2.2 Finite Element Method

Mathematical modeling processes such as the one in the previous section, yield a col-

lection of partial differential equations. The unknown variable in such an equation is a

sufficiently smooth function defined on the domain B of the equation. In the general

case it is not possible to compute a solution in closed form to these problems. There-

fore, approximative schemes are necessary. The Finite Element Method (FEM) is an

approximative scheme, and it is very popular for mechanical analysis. In this section,

we shall briefly explain the essentials of this method, and work towards the simple FEM

scheme that we will use (linear tetrahedral elements).
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Let us suppose, for the moment, that the partial differential equation is mechanical,

set in R
3, and that the equation we wish to solve states that the resultant force r for the

displacement û is zero on a domain B ⊂ R
3. In other words,

find û ∈ V(B), such that r(û) = 0. (2.26)

The set V(B) is a linear space of candidate solution functions with suitable differen-

tiability and boundary conditions. The functions in V(B) represent displacements, so

they take on values from R
3. Equilibrium solutions of the equations of motion in (2.5)

have such a form.

The space V(B) is infinite-dimensional, and to make finding a solution tractable we

search the solution in a smaller, finite-dimensional subspace of V(B). Such subspaces

are typically created by interpolating functions V(B) using points from B spaced at

distance h. Since h is a parameter, the notation for the subspace is Vh(B). We obtain

the following problem.

Find ũ ∈ Vh(B), such that r(ũ) = 0. (2.27)

The space Vh is much smaller than V , so it is unlikely that it contains a solution ũ for

which (2.27) holds exactly. All we can really hope for is that r(ũ) is as small as possible.

To measure this, we weigh r with functions w from a finite-dimensional space Wh, and

state the problem as follows.

find ũ ∈ Vh(B), such that for all w̃ ∈ Wh∫

B

w̃(z) · (r(ũ))(z) dv(z) = 0.
(2.28)

Formulations where the equations are integrated over sets in R
3 are also called weak

formulations. The weak equations of motion only require functions whose derivative is

square integrable on B in the Lesbesgue sense. This explains why a Vh consisting of

piecewise linear functions is sufficient for computing a solution: the derivatives of such

functions are not defined everywhere, but they are square integrable.

Formulations such as Equation (2.26) set a condition that should hold in every point

of the domain B. Equation (2.5) is a second order partial differential equation, which

suggests that candidate solutions should be twice differentiable, i.e. V(B) = C2(B).

Since this is more restrictive than the weak form of the equations, we call such a form

strong.

The space Wh is finite-dimensional, and hence has a basis {w1, . . . , wk} for some

k ∈ N. We may therefore rephrase this equation in terms of wj as

∫

B

wj(z) · (r(ũ))(z) dv(z) = 0, j = 1, . . . , k.

In some types of electromechanical calculations, and in the linear simplifications of

the continuum mechanics of Section 2.1, it may happen that r is affine linear, say

r(u) = L(u) − f.
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Here, L is a differentiation operator. The space Vh(B) is finite-dimensional, and hence

has a basis u1, . . . , ul for some l ∈ N. If we expand ũ in this, then the linearity of r

yields the following set of equations:

ũ =
∑

i

αiui

∑

i

αi

∫

B

wj(z) · (Lũi)(z) dv(z) =

∫

B

wj(z) · f(z) dv(z), 1 ≤ j ≤ k

If we look closely, we see that the above equation simply is a linear system of size l × k.

Let K ∈ R
l×k, and f ∈ R

k be defined by

Kij =

∫

B

wj(z) · (Lui)(z)dv(z), i = 1, . . . , l, j = 1, . . . , k

fj =

∫

B

wj · f dv(z), j = 1, . . . , k,

(2.29)

then the solution with zero weighted residual is given by

ũ =

l∑

i=1

αiui,

Kα = f, α = (α1, . . . , al).

If Wh is large enough then we could find ũ, for example by solving the least-squares

problem

KTKα = KT f.

The matrix K is often called stiffness matrix, especially if the original problem is me-

chanical. This process of finding the solution by weighting the error (“residual”) is

called the weighted residual method, or Petrov-Galerkin process. The functions uj are

called shape functions, and wj are trial functions.

In some applications, the differential operator is self-adjoint: the integral over B

defines an inner product,

(x, y) =

∫

B

x(z) · y(z) dv(z), x, y ∈ V(B).

If the operator L is self-adjoint, i.e., if (w, Lu) = (L∗w, u) = (Lw, u), then we can take

Wh = Vh. The weak problem can be translated into a linear system similar to (2.29).

In this case, the stiffness matrix will be symmetric. This solution process is called the

Bubnov-Galerkin method. Additionally, if L is positive definite, i.e. (Lu, u) ≥ 0 for

all u ∈ V(B), then so will be the matrix K. Both symmetry and positive-definiteness

help in solving the numerical system. For the remainder of this thesis, we assume that

Wh = Vh.

In many formulations, the residual r(u) is related to some virtual work functional

Π(·). For example, the internal energy may equal the work done by the residual force
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plus work done by the boundary tractions:

Π(u) =

∫

B

u · r(u) dv(z) +

∫

∂B

u · t da(z).

In this case, the solution u that we seek minimizes Π(u) over V(B). An approxi-

mation of this minimization problem is found again by seeking it in a smaller, finite-

dimensional space of Vh. If we are given a basis u1, . . . , ul of this space, then the

coefficients α1, . . . , αl can be found by solving

min
α1,...,αl

Π(

l∑

i=1

αiui).

This approach is called the Rayleigh-Ritz method. We can express the problem as a

system of equations by setting the derivative of Π to 0,

∂Π(
∑

i αiui)

∂αi

= 0, i = 1, . . . , l. (2.30)

If Π is a quadratic form, then its derivative is linear, and (2.30) is exactly the linear

system produced by the Bubnov-Galerkin method. Algorithms to solve these systems

are discussed in Section 2.4.

We have discussed a general scheme for going from a problem in a space V(B) with

infinite dimension to an approximation in a subspace Vh. If we select a Vh and a basis

u1, . . . , ul to span Vh, we can assemble a system of equations like (2.29) or (2.30).

The support of a function v ∈ V(B), denoted by supp v, is the subset of B where v

takes on non-zero values. It is advantageous to select shape functions whose supports

are as much as possible disjoint. If u = 0 on a region, then we have Lu = 0 on that

region, so if supp ui and supp uj are disjoint, then (ui, Luj) = 0. In other words,

having disjoint supports promotes sparsity of the stiffness matrix K.

The most popular approach to obtain Vh—the method that is generally called the

‘Finite Element Method’—is to subdivide B into a collection of geometric primitives

such as triangles, quadrilaterals (in 2D) or tetrahedra, hexahedrals or other solids (in

3D). Let the partition be denoted by
⋃

j Ωj, and select an integer p ≥ 1. Every function

from Vh is then taken to be a polynomial of degree at most p on every Ωk. Conditions

are set such that all functions have the continuity over the boundaries of each element

appropriate for the problem being solved.

There is still ample choice of a basis. Recall that we want to make supp uj as small as

possible. One way to enforce this, is to select a set points in the elements, called nodes,

that uniquely determine the value of the polynomial on that element. For example, if

we take the piecewise linear functions defined on mesh of triangles, then these functions

form a finite-dimensional space Vh. The vertices of the triangles form nodes for this

finite element basis. Elements that include higher order polynomials, might also have

nodes located on the midpoints of edges, or in the interior of the elements.

If we are given function values in each node, the piecewise polynomial is uniquely

determined on each element. Since nodes on the boundaries of edges are shared by

adjoining elements, continuity of the functions is ensured by construction. Continuity
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in the derivatives is not required for the weak problem formulation of the elasticity

equations.

By pinpointing nodes in a mesh, we can form a natural basis of Vh, which is called

the nodal basis. It is the collection of functions that take the value 1 on a single node,

and 0 on all other nodes. Such a function is identically zero on all elements that do not

contain the non-zero node. The hat-functions from Figure 2.3 form the nodal basis for

triangles in 2D.

Figure 2.3: Hat functions are a nodal basis for linear triangles

If the derivatives in the differential equation have constant coefficients, i.e. if they

are independent of the spatial coordinate z, then the matrices in Equation (2.29) and

the derivatives in (2.30) be calculated analytically, so numerical integration methods are

not needed.

The relative simplicity of finite elements comes at a price: the difficulty in obtaining

a solution is transferred to the problem of subdividing B. The quality of the FEM

approximation, as well as the speed and quality of a numerical method depends on the

quality of the tessellation of B: subdivision should contain nicely shaped elements. For

example, in a triangle subdivision, the triangles should have neither very small nor very

large angles [87]. In general, FEM approximation can only be successful if we can

generate good meshes for the domain of the problem, and for complex 3D shapes, the

task of generating good meshes is a rich source of interesting problems.

We have been sloppy in discussing the traction boundary conditions on purpose; in

a displacement-based FE formulation, boundary conditions are added as body forces

for boundary nodes, and both can be treated integrally.

2.3 Linear tetrahedra for hyperelastic materials

In the remain of this thesis, we will use linear elements. The displacement function u

is interpolated with a piecewise linear approximation. The interpolation conditions are

put at the vertices of the tetrahedral mesh. In other words, we want to have a linear

function, and it should map zj ∈ R
3 to qj ∈ R

3 for j = 1, . . . , 4. These conditions

uniquely determine a linear affine function. It takes the form

z 7→ A · z + b.
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The following function satisfies our interpolation requirements

z 7→ Q · Z−1 · (z − z4) + q4, (2.31)

Z = (z1 − z4) ⊗ e1 + (z2 − z4) ⊗ e2 + (z3 − z4) ⊗ e3, (2.32)

Q = (q1 − q4) ⊗ e1 + (q2 − q4) ⊗ e2 + (q3 − q4) ⊗ e3. (2.33)

Here, {e1, e2, e3} is taken to be an orthonormal base of R
n.

Where the tensor product a ⊗ b is the 2-tensor defined by (a ⊗ b) · x = a(b · x).

The derivative of this function with respect to z is constant across an element, and is

given by

Q · Z−1. (2.34)

The deformations are given in terms of displacements at every node of the mesh, so

in effect, we use a linear interpolation for the displacements. For such an interpolation,

we can interpret the derivatives of the elastic energy as elastic forces concentrated at

nodes of the mesh. We can view the elastic force in a single node as the compound

result of the elastic forces of individual tetrahedra incident with that node.

We take a hyperelastic model as a starting point for deriving stresses. This means

that we should choose a function W(C), and find its derivative to obtain the stress:

T = F · S = F · ∂W

∂C
. (2.35)

We can formulate weak equations of motion from the strong version presented in

Equation (2.5). Let w be a test function, then in every point of B we have

(div T ) · w + f · w = ρptt · w. (2.36)

Since the divergence satisfies

div(A · b) = A : grad b + div(A) · b, A ∈ Lin, b ∈ R
3,

we can integrate (2.36) over B and obtain

∫

B

div(T · w) dv(z) −

∫

B

T : grad w dv(z) +

∫

B

f · w dv(z) =

∫

B

ρptt · w dv(z).

The first term may be rewritten using Green’s theorem from Equation (A.7), yielding

∫

∂B

t · w dv(z) −

∫

B

T : grad w dv(z) +

∫

B

f · w dv(z) =

∫

B

ρptt · w dv(z). (2.37)

If we discretize the shape functions and test functions with the same finite element

space, then the second term may be computed element by element. For a linearly inter-

polated tetrahedron F (and therefore T) and grad w are constant across a tetrahedron,

so we have ∫

τ

T : grad w dv(z) = v(τ)(T : grad w),

where v(τ) is the volume of τ in the reference configuration.
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Let q be an element of a nodal basis: q = ek in node j of the tetrahedron and 0 in

others. According to (2.34), we have grad q = Q · Z−1. We get

T : grad q = T : QZ−1

= T · Z−∗ : Q

=

{
T · Z−∗ : ek ⊗ ej j ≤ 3

−T · Z−∗ : ek ⊗ (e1 + e2 + e3) j = 4.

Here (Z−1)∗ is denoted with Z−∗. We can interpret this as follows: the elastic forces

f1, . . . , f3 on nodes 1, 2 and 3 are given by the columns of the matrix representation of

−v(τ)(T · Z−∗) (2.38)

with respect to the unit basis. The elastic force on node 4 is −f1 −f2 −f3, which implies

that the tetrahedron is in equilibrium.

When we assume a body made of hyperelastic material in equilibrium, then we can

put ptt = 0. The left hand side of Equation (2.37) is the directional derivative of the

potential energy of the system. If we set Ŵ(z) = W(C(z), z), then that equation is

equivalent to

∂

∂ε

(∫

B

Ŵ(p + εw) dv −

∫

B

(p + εw) · f dv −

∫

∂B

(p + εw) · t dv

)

= 0. (2.39)

In other words, the potential energy (“virtual work”) is stationary in p, since moving

by an infinitesimal motion εw does not change the potential energy of the system.

2.4 Unconstrained optimization

Equation (2.39) describes the solution of a static problem as the stationary point of a

virtual work function. Assuming that these stationary points are stable, it follows that

we can find equilibrium solutions to mechanical problems by finding the minimum of a

virtual work function Π. Inspired by Equation (2.39), we define the potential energy of

the system discretized by a FEM basis u1, . . . , un as follows.

Π(α1, . . . , αn) =

∫

B

Ŵ(ũ) dv −

∫

B

(ũ) · f dv −

∫

∂B

(ũ) · t dv,

where ũ =

n∑

j=1

αjuj.

(2.40)

The static deformation problem may simply by formulated as finding the solution

to

min
x∈Rn

Π(x).

The field of unconstrained optimization studies the algorithms that are used to solve

such systems. In this section we discuss three algorithms. The most basic problem is

a quadratic Π, and the standard algorithm is the Conjugate Gradient algorithm. For

more complex functions, the nonlinear Conjugate Gradient algorithm and Truncated

Newton methods may be used, which are discussed in the following sections.
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2.4.1 Linear Conjugate Gradient method

For linear elasticity problems, the stiffness matrix K is symmetric positive definite, and

for such problems, the most popular optimization method to use is the conjugate gra-

dient method (dubbed CG throughout this thesis). Suppose that we have the following

functional Π : R
n → R,

Π(x) =
1

2
xTKx − bTx, (2.41)

min
x∈Rn

Π(x), (2.42)

where K ∈ R
n×n is a given symmetric positive definite matrix, and b ∈ R

n a given

vector. This corresponds with the potential energy in a linear elastic FEM problem.

The minimum is given by an x for which the gradient ∂Π/∂x = Kx − b vanishes. The

direction of steepest descent is the negative gradient b − Kx, which we call residual. It is

denoted by r.

We define the following inner product and associated norm on R
n. Let H ∈ R

n×n

be a positive definite symmetric matrix, then let

(x, y) = xTy, (x, y)H = (x, Hy), (2.43)

‖x‖ =
√

(x, y), ‖x‖H =
√

(x, y)H. (2.44)

The norm ‖ · ‖K is also called the energy norm.

One basis for an iterative algorithm is the line-search model: starting from some

approximation xk ∈ R
n, we obtain a new solution xk+1 by selecting a search direction

dk ∈ R
n, and searching in that direction, i.e.

xk+1 = xk + αkdk,

The choice for αk more or less follows from the search direction dk chosen, so an

iterative optimization algorithm is characterized by its choice for dk.

The conjugate gradient algorithm is the most popular algorithm for the case that K is

positive definite. It computes the search direction dk as a combination of the last search

direction dk−1 and the current residual. The CG algorithm is given by the following

pseudo code, which assumes that a starting solution x0 is known.

k← 0

r0 ← b − Kx0

while ‖rk‖ too large:

if k = 0:

βk ← 0

else:

βk ← ‖rk‖2/‖rk−1‖2

dk ← rk + βkdk−1

αk ← ‖rk‖2/(dk, Kdk)

xk+1 ← xk + αkdk
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rk+1 ← rk − αkKdk

k← k + 1

Notice that we can find αk and update the residual using only one matrix-vector

product. The vectors are indexed for clarity, but it is not necessary to store the vectors

for each step separately. The CG algorithm can be implemented with four vectors of

storage.

The convergence characteristics of CG is a well-researched [97]. Here, we sketch

the convergence analysis of CG following the exposition by Axelsson and Barker [6].

The sequence of rk, dk and xk generated by this algorithm satisfies the following prop-

erties:

• The residuals are orthogonal: if i 6= j, then (ri, rj) = 0.

• The search directions are K-orthogonal, or K-conjugate: if i 6= j then (di, dj)K = 0.

• The sequence of rk is optimal in the following sense: let

Wk := span
{
K1r0, . . . , Kkr0

}
,

then ‖rk‖K−1 = minr∈r0+Wk
‖r‖K−1 , or equivalently, xk minimizes ‖Kx − b‖K−1

over x ∈ x0 + K−1Wk.

Let x̂ be the exact solution to the problem, then ‖xk − x̂‖K = ‖rk‖K−1 , so CG

minimizes the solution error in the energy norm in each step.

• In exact arithmetic, the algorithm converges in at most n steps, otherwise the set

{r0, . . . , rn} would be a set of n + 1 orthogonal non-zero vectors.

Since Kjr0 is a polynomial of K applied to r0, the space Wk can be written in terms

of polynomials. Let Pl be the space of polynomials of degree at most l, then we have

Wk = { q(K)Kr0 : q ∈ Pk−1 } .

Similarly, we can rephrase the fact that rk is chosen optimally from r0 + Wk as follows:

‖rk‖K−1 = min
r∈r0+Wk

‖r‖K−1 (2.45)

= min
p∈Pk,P(0)=1

‖P(K)r0‖K−1 . (2.46)

The matrix K is symmetric and positive definite, so it has orthonormal eigenvectors

vi for i = 1, . . . , n with eigenvalues 0 < λ1 ≤ λ2 · · · ≤ λn. We can expand r0 in

eigenvectors,

r0 =
∑

i

(vi, r0)vi,

and rewrite (2.46) as

min
p∈Pk,p(0)=1

√∑

i

(vi, r0)2p(λi)2/λi.
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If we can bound |p(λj)| for j = 1, . . . , n, then this minimum is also bounded: suppose

that |p(λj)| ≤ M for j = 1, . . . , n, then

√∑

i

(vi, r0)2p(λi)2/λi ≤ M

√∑

i

(vi, r0)2/λi = M‖r0‖K−1 .

In the general case, the eigenvalues of K are distributed in the interval [λ1, λn], and

Chebychev polynomials give a bound on |p(λ)| for λ ∈ [λ1, λn]. This leads to the

following estimate of ‖rk‖K−1 :

‖rk‖K−1 ≤ 2

(√
κ − 1√
κ + 1

)k

‖r0‖K−1 , κ = λn/λ1.

If we want to improve the starting solution x0 by a factor ε, then the number of steps

necessary is less than
1

2

√
κ ln

2

ε
+ 1, κ = λn/λ1. (2.47)

The number κ is the condition number of the matrix K, which also bounds the

accuracy of a solution computed with finite precision arithmetic. A method to speed

up the CG iteration is preconditioning. This method transforms the iteration so it runs

on the related problem

E−1KE−Ty = c,

c = E−1b,

y = ET x.

The condition number for this problem is cond(E−1KE−T ) = cond((EET )−1K). If

this condition number is lower than cond(K) then solving this problem requires less

iterations. During every step, a system of the form (EET )x = y must be solved, so if

(EET ) has a sufficiently simple form, then this will improve the performance of the CG

algorithm.

If K has less than n eigenvalues, say k < n, then a kth degree polynomial q exists

such that q(λj) = 0. The optimal r will be null, and ‖rk‖K−1 = 0; in other words: the

algorithm will converge within k steps. This observation illustrates that the exact distri-

bution of the eigenvalues of K plays a large role in the convergence behavior. We give

a final example which will become relevant in Chapter 4. Suppose that all eigenvalues

but the m largest of K are bounded by some constant γ, then we have

‖rk‖K−1 ≤ 2

(√
κ ′ − 1√
κ ′ + 1

)k−m

‖r0‖K−1 ,

and where κ ′ = γ/λ1. The number of steps necessary for a factor ε reduction is less

than
1

2

√
κ ′ ln

(

2

ε

)

+ m + 1.

In other words, the magnitude of a few extremely large but isolated eigenvalues does

not affect the performance of CG.
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2.4.2 Non-linear conjugate gradients

The basic iteration of CG consists of three steps: determining a new search direction,

determining the optimal step, and finding the residual in the new point. There is noth-

ing inherently quadratic about the last two steps, so if some search direction is given,

then the CG algorithm can also be performed for non-quadratic Π. We refer to this

algorithm as the nonlinear CG algorithm. It can be expressed as follows.

k← 0

r0 ← − grad Π(x0)

while ‖rk‖ is too large:

select dk

find αk such that Π(xk + αkdk) minimal

xk+1 ← xk + αkdk

rk+1 ← − grad Π(xk+1)

For selecting dk, the conjugate gradient algorithm uses

dk =

{
rk, k = 0,

rk + βkdk−1, k > 0.

For selecting βk in the nonlinear case, a number of different recipes have been pro-

posed: Fletcher-Reeves,

βFR =
‖rk‖2

‖rk−1‖
, (2.48)

and Polak-Ribière

βPR = max{0,
rT
k(rk − rk−1)

‖rk−1‖
}. (2.49)

The convergence theory of linear CG algorithms is fairly complete. In contrast,

little is known on the convergence for non-quadratic Π. Both β-selection strategies

are equivalent with linear CG when applied to a quadratic Π, and they are known to

converge to a stationary point if the line search for αk is sufficiently precise [75]. In

practice, Polak-Ribière is known to perform better than Fletcher-Reeves. This has been

attributed to the fact that an unsuccessful Polak-Ribière step yields βPR ≈ 0, which

in effect resets the search direction to the direction of steepest descent. However, a

convincing explanation of the success of Polak-Ribière is still lacking [42].

2.4.3 Truncated Newton

A function attains an unconstrained optimum at a stationary point, i.e. when ∂Π/∂x =

0. This is a nonlinear system of equations, and root-finding techniques can be used

to solve it. The Newton-Raphson iteration is a classic method for finding roots of

equations [41]. Let K(x) denote the Hessian of the energy function Π in the point

x ∈ R
n, i.e.

K(x) =
∂2Π

∂u2
(x). (2.50)
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The algorithm can then be expressed as follows.

k← 0

rk ← (∂Π/∂x)(x0)

while rk is too large:

solve K(x0)dk = rk (∗)
xk+1 ← xk + dk.

rk+1 ← (∂Π/∂x)(xk+1)

The solution step in (∗) can be done by a linear CG algorithm if K(x0) is a positive

definite matrix. For elasticity problems, this is normally the case around stable equilib-

rium solutions. Newton-Raphson with CG as an inner loop is also called the Truncated

Newton or Truncated Conjugate Gradient method. The precision of the solution for the

inner loop is of minor importance, so low tolerances can be used [42].

The process has a quadratic convergence, i.e. if x̂ is the exact solution to a problem,

then

‖x̂ − xk+1‖ ≤ c‖x̂ − xk‖2,

for some positive constant c: the process converges superlinearly. This is attractive

when high precision of the solution is required: close to a solution, the number of

correct digits doubles at each step. The Newton-Raphson iteration is characteristic of

superlinear convergence: any algorithm that converges superlinearly must have search

directions that approximate Newton search directions [33]. In Chapter 4, the Trun-

cated Newton method will be used to compute solutions with high precision.

2.5 Time integration

Equation (2.37) involves ptt, so it is time-dependent, and u also depends on time.

When an approximation ũ of u is expanded in shape functions wi, for i = 1, . . . , n,

then the coefficients are also time dependent:

ũ(z, t) =
∑

i

ui(t)wi(z).

The Finite Element method transforms the PDE into a system of ordinary differential

equations (ODEs), and the solution process requires us to find the evolution of u over

time:

s(u(·), t) + fex(t) = Mü. (2.51)

The function fex(t) represents body forces and tractions combined, and the R
n×n ma-

trix M is called mass matrix. For shape functions (wj)j, it follows from

Mij =

∫

B

wi · wjρ dv. (2.52)
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The function s in (2.51) represents internal forces within the material. In a general

mechanical formulation these forces may depend on the history of u. This leads to a

viscoelastic problem. In hyperelastic materials internal stresses do not depend on history

of u. Internal forces are elastic forces fel, that depend on u at time t. Energy is generally

dissipated by adding a friction term ffr that depends on u̇, yielding

fel(u(t)) + ffr(u̇(t)) + fex(t) = Mü (2.53)

For the linear case (where both elastic and frictional forces are linear in u), a closed

form analytic solution to (2.53) exists. For large problems or nonlinear problems, com-

puting that solution is not possible or practical. In these cases, numerical methods must

be used. A numerical integration scheme or time integration scheme computes the evolution

of an approximate solution numerically. The process proceeds by advancing the time

variable by an increment ∆t, called the time step. By using Equation (2.51), the config-

uration at time t + ∆t is estimated given the situation at time t. If the recipe specifies

u(t+∆t) and u̇(t+∆t) as an unknown in a system of equations involving fel(u(t+∆t)

then we call the method implicit. An explicit method uses the forces at time t to predict

u(t + ∆t).

Computing the next result in an implicit method involves solving a large system,

which is costly. Advancing a time step in an explicit methods requires much less calcu-

lations. The price paid for this simplicity is conditional stability. If the dynamic system

includes phenomena which evolve quicker than the approximate solution itself, these

will be mistaken for exponentially increasing components of the solution. This is called

instability, and typically results in blow-up of the solution. Conditional stability for

mechanical problems is expressed through the Courant-Friedrichs-Lewy criterion: the

time step must be smaller than the critical time step ∆tcrit:

∆t ≤ ∆tcrit ∼ h/c (2.54)

Here c is the wave speed in the medium, and h the element size. The quantity h/c is the

time that a wave needs to propagate across an element of size h. The proportionality

constant depends on the problem and the integration scheme used.

During the rest of the discussion, we will consider the linearized FEM equations.

These can be specified as

Mü + Cu̇ + Ku − fex = 0, (2.55)

The R
n×n matrix C is the damping matrix. Measuring physically realistic values for C

is hard, therefore C is set often set to a linear combination of M and K. This is called

Rayleigh-damping.

We follow Chapter 17 from Zienkiewicz and Taylor [103] for discussing popular

second order schemes for integrating FEM systems. These are the so-called General-

ized Newmark (GN) methods and the related weighted residual (denoted by SS). Both

approaches expand u in a truncated Taylor series in t, and estimate the highest order

term using the differential equation. Both methods have similar precision and stability

properties, and both can be formulated for j-th order problems, estimating the Taylor

series up to the p-th derivative; the methods are denoted as SSpj (for the weighted

residual form) and GNpj (for the Generalized Newmark).
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The SS22 method is applicable to second order ODEs resulting from a FEM dis-

cretization. It estimates the coefficients of a Taylor series expansion of u up to order

2 around the chosen time t, and the accumulated error in u is O(∆t). It starts with

estimating weighted averages of u and its derivative at time t

ū = u(t) + θ1∆tu̇(t), (2.56)

¯̇u = u̇. (2.57)

The number θ1 is a weighting parameter. The differential equation produces an equa-

tion that estimates the second derivative, weighed by θ2,

(M + θ1∆tC + K
1

2
θ2∆t2) ¯̈u + (C ¯̇u) + Kū + f̄ = 0. (2.58)

The estimated derivatives can then be used to find u(t + ∆t)

u(t + ∆t) = u(t) + ∆tu̇(t) +
1

2
∆t2 ¯̈u, (2.59)

u̇(t + ∆t) = u̇(t) + ∆t ¯̈u. (2.60)

The properties of this method are controlled by the values of θ1 and θ2. If θ2 = 0,

then we call the method explicit. This explicit method is only stable on the condition

that θ1 ≥ 1/2. When θ1 > 1
2

, then the ∆tcrit = O(h2), where h is the shortest edge

length. This is undesirable, since small h values are necessary to obtain an accurate

discretization. If θ1 = 1
2

, then

∆tcrit =
2√
3

h

c
, (2.61)

where c =
√

λ+2µ
ρ

is the wave speed in the medium.

The central difference method of integration has exactly the same stability and error

properties as the explicit SS22 method with θ1 = 1/2. Instead of adding the velocity

as an extra variable, it adds the position at time t − ∆t as a variable: it is a multi-step

method. Derivatives in Equation (2.55) are replaced by explicit differences, yielding

the equation:

M
ui+1 − 2ui + ui−1

∆t2
+ C

ui+1 − ui−1

∆t
+ Kui + fi = 0, (2.62)

where uk ∈ R
n is approximation for the value of u at time t + k∆t. It is less trivial to

change the value of the time-step during a simulation.

Both explicit SS22 and central differences are particularly efficient if M and C are

diagonal. In this case, the mass and damping are redistributed to be concentrated in the

nodes: node j has one quarter of the mass of all the tetrahedrons incident with j. This

process is called mass lumping. If it is applied to the damping matrix, this is called lumped

damping. Mass lumping is not strictly realistic, but it has been shown to yield precise

results, and enlarges the critical time step. The SS22 scheme with lumped masses and

lumped damping for nonlinear elasticity problems is examined in Chapter 4.
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2.6 Mechanics of soft tissue

In the rest of the thesis we wil concentrate on compressible hyperelastic aelotropic ma-

terial models. For living tissue this is a simplification of reality. In this section, we briefly

explain what effects are neglected by this simplification. It is partially based on the book

by Fung [44].

The term soft tissue includes a variety of tissue types in the body. The mechanical

characteristics of this tissue are determined by connective tissue. The materials that

contribute to the mechanics of the tissue include the following: Elastine is a rubbery

biological material. Its loading and unloading cycles are almost equal, meaning that

it is almost perfectly elastic. This material is found in elastic tissues, such as skin,

artery walls, lung tissue. It also helps keep the skin smooth; elastin production stops

after puberty. Collagen is a biological construction material. It forms the load bearing

material in soft and hard tissue. It is a major component of tendons, bone, skin, and

blood vessels. Collagen and elastine can form fibers. If these fibers have some dominant

orientation, the tissue will behave differently in different directions. The material then

is aelotropic or anisotropic. The fibers are suspended together with cells in a watery

gel called ground substance. Since water is incompressible, many tissue types are also

(nearly) incompressible.

The relation between load and deformation (stress and strain) follows the path

shown in Figure 2.4. The stress response of biological tissue can be divided into three

trajectories: at small loads (OA), the stress is exponential in the strain. For larger loads,

the stress is linear in the strain (AB). Finally, in the third trajectory (BC), the tissue is

almost stressed to failure, and reacts nonlinearly. Normal tissue loads fall into the first

region.

O

A

B

C
Load

Deformation

Figure 2.4: Stress response of a rabbit limb tendon, after Fung [44].

When tissue is stretched it offers more resistance than during a following unload.

This phenomenon is called hysteresis, and it is an example of a viscoelastic effect:

stresses in the material depend on the history of the deformation. When tissue is

stressed with a constant load, then after the initial elastic response, the tissue will slowly

distend further. This process is known as creep. A related phenomenon is stress relax-
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ation: when a tissue specimen is loaded and then held at a constant elongation, stresses

within the tissue decrease. This process is rather slow, taking minutes to many hours

before a steady state is reached.

When tissue is loaded and then unloaded, its elastic properties change: the tissue

becomes softer. When this cyclical loading is repeated often enough, the difference

between the cycles disappears, and the deformation converges. The tissue is now said

to be preconditioned. This processes is illustrated in Figure 2.5.

1 2

a b c d

e

Deformation

Load

Figure 2.5: During loading (1), tissue offers more resistance than during unloading

(2). If such a cycle is repeated, tissue will become softer (a, b, c, d) until the response

converges (e).

The first completely 3D description of soft tissue elasticity was given by Veronda

and Westman [98]. They used some simplifications to overcome the difficulties posed

by the complex mechanical behavior of tissue. They have proposed constitutive equa-

tions of soft-tissue on the basis of measurements on cat skin. Anisotropy and viscoelas-

tic effects were handled by measuring only the loading step during a uniaxial stretching

test. This gave sufficient experimental data to derive an isotropic hyperelastic constitu-

tive equation. Material parameters were extracted from the same data set by fitting the

derived stress/strain curves to the data. The Veronda-Westmann material model will be

used in Chapter 4.

A more accurate description is quasi-linear visco-elasticity [44], which accounts for

visco-elastic effects by modeling tissue as a superposition of materials with different

relaxation times. Kauer [57] used this model to measure tissue elasticity of ex-vivo pig

kidney and in- and ex-vivo human uteri. This was done using aspiration experiments:

during surgery, a tube was placed over the tissue to be measured. A partial vacuum was

created which caused a bulge to form inside the tube. The evolution of this bulge was

recorded with a camera, and stored. The conditions of the experiment were repeated in

FEM simulation. Material parameters were determined by searching for those settings

that recreated the experiment accurately.
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Combining FEM and cutting: a

first approach

In this chapter, we discuss our first approach to interactive surgery simulation.1 We

will show how cuts can be applied to an interactively deformable object. More formally

spoken, we will discuss the following problem. Given a tetrahedral mesh of an object,

compute elastic deformations that result from forces applied to it by a user, and modify

the object to reflect cuts where a user has positioned a virtual cutting instrument. The

problem is assumed to come from a simulation of surgical procedures on soft tissue.

The first interactive deformation simulation using a FEM approach was presented

by Bro-Nielsen [17]. His prototype uses linear elasticity on a tetrahedral mesh. The

elasticity equations yield a linear system of equations. The simulation is static: for

a given load, the simulation displays the corresponding equilibrium solution directly.

This is achieved by precomputations: internal nodes of the mesh are normally not

visible to the user, so these can be eliminated from the equations. This is an expensive

preprocessing step that drastically reduces the size of the system. The smaller matrix

is then inverted, so displacements for a given load on the boundary can be computed

efficiently.

James and Pai [53, 54] have also shown an interactive linear elasticity simulation.

Like Bro-Nielsen, they do this by reducing the problem to the boundary. Instead of

removing internal nodes after a discretization, the partial differential equation is trans-

formed to an integral equation on the boundary, before the discretization. Discretizing

the integral equations yields a linear system whose inverse can be calculated off-line.

During a simulation, the response to changing force can be computed within a guar-

anteed time span. Parts of the boundary may be fixed or loosened during a simulation,

and such changes are handled by updating the inverse matrix.

In contrast to static methods, dynamic methods give time a physical meaning. Ob-

jects can have inertia and damping. Given the deformation of an object at some time

t, the system computes the deformation at time t + ∆t. This process is called time-

1The results in this chapter were presented at the Medical Image Computing and Computer Assisted

Intervention (MICCAI) conference 2001 [73] and EuroGraphics 2000 [72].
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integration. In an explicit integration scheme, the deformation at time t + ∆t is computed

from the elastic forces at time t. This is in contrast with an implicit scheme, where the

new deformation is given by predicting elastic forces at time t + ∆t. The deformations

are determined by solving for the displacements given the predicted forces.

Cotin et al. [26] and Picinbono et al. [78] have used time-integration for both linear

and non-linear FEM deformations in the context of endoscopic liver surgery. They

combined a static and dynamic solution method. A part of the mesh is simulated dy-

namically with the method of central differences, an explicit integration scheme dis-

cussed in Section 2.5. This process is very efficient when masses and frictions are

concentrated in the nodes of the mesh (lumping of mass and damping). No precom-

puted structures are stored, so the mesh can easily be modified on the fly. On these

parts of the mesh, simulated surgical procedures may be performed. The responses of

the rest of the mesh are precomputed by inverting the corresponding stiffness matrix.

Zhuang and Canny [101] show a deformable object simulation with dynamic in-

tegration, where the mass and damping are not lumped. This requires precomputed

inverses of linear combinations of the mass and damping matrices.

Székely et al. [92] show a prototype of an endoscopic surgery simulator. This sim-

ulation also uses dynamic FEM for the elastic deformations with an explicit integration

scheme. By selecting very small time steps, instabilities due to contact forces and large

movements are suppressed. Small time steps are expensive, hence they intend to run

this simulation on a massively parallel machine.

Deformable objects are sufficient to simulate inspection procedures. If surgical ma-

nipulations, such as biopsies, cuts, cauterizations, etc., must also be addressed then the

simulator should also include the notion of a virtual tool: a simulated surgical tool that

is under user control through an input device such as a joystick, mouse or a force feed-

back device. A simulated tool can interact in two ways with a deformable model. First,

it can exert force on the model. Second, it can modify the mesh representing the object.

One of the earliest examples of such a virtual tool is the cauterization tool simulated

by Cotin et al. [26] for the liver surgery simulation mentioned previously. This tool

is implemented in a dynamic Finite Element simulation with tetrahedral elements. All

mesh elements colliding with the virtual cauterization tool are removed. Elements are

also removed if their stresses are beyond a certain threshold. This simulates a simple

form of laceration.

Interactive cuts on tetrahedral meshes were first implemented by Bielser et al. [12],

using a subdivision method. In this technique, every tetrahedron that is in contact with

the virtual scalpel is subdivided so the surface swept by the scalpel is represented within

the mesh. The initial implementation uses a generic split, that replaces a single tetrahe-

dron by 17 tetrahedra. In later improvements, the incised tetrahedron is replaced by a

configuration-dependent number: a tetrahedron that is only cut partially, is subdivided

differently from a tetrahedron sliced into two pieces.

Ganovelli et al. [46] embed both cuts and lacerations into a multiresolution frame-

work: both operations are performed on a mesh that is stored at multiple resolutions.

At the finest level of detail, they are represented using subdivision methods.

In this chapter, we also use FEM for deformation modeling, and combine that with

cutting. Cuts modify the mesh, and invalidate precomputed structures such as ma-
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trix inverses. Other systems incorporating cuts use dynamic methods with explicit

time integration [12, 26, 46]. Such systems have a physical notion of time, and in-

clude time-related effects such as friction, damping and inertia. However, if we assume

that surgical procedures are executed with controlled movements, then these effects are

not necessary for a visually realistic simulation, and we can use a static formulation.

Static methods do not have stability problems, and simulate less behavior, suggesting

that they might be more efficient. Cuts have been simulated with subdivision methods

in previous work. These can represent incisions accurately, but unfortunately, they al-

ways increase the number of elements in the mesh. This brings down the performance

of iterative relaxation techniques, such as explicit integration. For this reason, we will

present a cutting method that does not increase the mesh size.

3.1 Linear FEM

We will assume the following deformation problem. The deformable object is given

as a tetrahedral mesh with nodes 1 to m. At each moment in the simulation, external

forces are given for nodes of the mesh. Such forces might include gravity but also

those produced by user-controlled instruments. Some nodes have a fixed position. The

deformation problem is to compute the displacements resulting from the forces applied.

The deformations are governed by linear elasticity: material reacts linearly to stresses,

and stresses are linear in the displacements.

We recall Equations (2.22). In linear elasticity, the gradient of the displacement

function

G =
∂u

∂z
, (3.1)

is O(ε) for some small ε. In this case, the material strain tensor, and first and second

Piola-Kirchoff are also O(ε). The stress-tensor S and T are equal when higher order

terms are neglected. They are given by

T = S = 2µE + λ trace(E)I. (3.2)

Here, E is the linearized material strain tensor, given by

E =
1

2
(G∗ + G) . (3.3)

In a FEM approximation with linear tetrahedra the gradient of the displacement is

constant across a tetrahedron. For a tetrahedron τ, it can be computed by

G = U · Z−1.

The tensor Z transforms coordinates from a unit tetrahedron to τ. If nodes 1 to 4 have

locations z1, . . . , z4, then Z is defined by

Z = (z1 − z4) ⊗ e1 + (z2 − z4) ⊗ e2 + (z3 − z4) ⊗ e3,

and U is defined analogously to Z, i.e.

U = (u1 − u4) ⊗ e1 + (u2 − u4) ⊗ e2 + (u3 − u4) ⊗ e3.
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We recall from (2.38) that the elastic forces fel on nodes 1 to 4 of a tetrahedron τ are

given by

fel
j,τ = −v(τ)(T · Z−∗) · ej, j = 1, 2, 3,

fel
4,τ = −

3∑

j=1

fj,τ.
(3.4)

Here, Z−∗ is the transpose of the inverse of Z.

For a static problem, elastic forces should balance body forces and surface tractions,

which are both condensed into external nodal forces fex. For every node i = 1, . . . , m,

we should have ∑

τ

fel
i,τ(u) + fex

i = 0. (3.5)

Since fel is linear in u, this can be condensed in a linear system by setting

Ku = f, (3.6)

where all elastic force relations are represented in the R
3m×3m matrix K, called primitive

stiffness matrix, and all displacements and forces in the 3m vectors u and f. The quantity

r = f − Ku is called the residual force.

Equation (3.5) determines displacements up to a constant translation and rotation.

Additional conditions are necessary to ensure that a unique solution exists. In the dis-

cussion preceding Equations (2.25), we noted that u should be set on a part of the

boundary with non-zero area. In this chapter, we will assume that each connected

component of the mesh is fixed in at least three non-collinear nodes. In other words,

we assume that there is some set of nodes Nfix that have a fixed displacement, say

uj = ūj for j ∈ Nfix. (3.7)

This introduces c constraints on all displacements, where c = 3|Nfix|. The constrained

variables from Condition (3.7) may be eliminated from Equation (3.5), yielding a re-

duced linear system

K̃ũ = f̃.

We call K̃ ∈ R
(3m−c)×(3m−c) the reduced stiffness matrix, ũ ∈ R

(3m−c) the reduced

displacement vector, and f̃ ∈ R
(3m−c) is the reduced force or load vector.

The standard technique to solve a FEM problem is to assemble the matrix K̃, and

then solve the system using matrix algorithms. In an interactive simulation, the mesh

and boundary conditions can change during a simulation, so neither K nor K̃ are con-

stant. We avoid the hassle of updating K to reflect such changes by using a matrix-free

method. According to Equation (3.5), elastic forces in a node only depend on displace-

ments of neighbor nodes. For a given displacement d, elastic forces for each element

are computed, and then summed into an elastic force vector. In effect, the product Kd

can be formed without forming K explicitly. This is sufficient to run algorithms such as

the Conjugate Gradient algorithm, which is discussed in Subsection 2.4.1. Matrix-free

CG was first proposed by Daniel [30] and Kaniel [56]. It is suited for solving very large

problems on parallel machines [24].
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In this method there is no need to reduce K to K̃. Boundary conditions that fix

nodes are handled by maintaining two vector variables for the residual: the elastic force

is computed as r ′ = −Ku. The constrained residual rk, which is used for running the

CG loop, is found by zeroing the entries of r ′ + f that correspond with a fixed node.

Since dk is a linear combination of rk and dk−1 the displacements of these nodes are

not changed. In effect, this procedure solves Equation (3.6) on a (3m− c)-dimensional

affine subspace of R
3m. For notational convenience, we will not distinguish between

K restricted to this subspace, and matrix K̃ with reduced size. Since fixed nodes are

in equilibrium, we can view the constraints as applying forces that exactly balance the

elastic forces in the corresponding entries of r ′.

3.2 Cuts

In this section we present a method for making cuts in a deformable object; in other

words, we shall change the mesh to produce cuts where a user positioned a virtual

cutting instrument. It is assumed that every movement of the cutting instrument is

represented as a triangle in a surface, and processing the cut involves processing each

of those triangles in the order in which they are generated.

More formally spoken, the assumptions for making cuts are as follows. An object is

given, represented by a tetrahedral mesh. The mesh is part of a deformation simulation,

and the shape of the mesh is available both in reference and deformed configuration.

The user controls a virtual scalpel in the shape of a line-segment. A movement of that

scalpel sweeps a surface called scalpel sweep. We assume that that surface is not strongly

curved, so it can be approximated with a triangulation: the scalpel sweep is assumed to

be already converted to sequence of connected triangles ∆1, . . . , ∆k in a preprocessing

step. We assume that earlier parts of the movement are earlier in the sequence. The tri-

angles ∆1, . . . , ∆k are called sweep triangles. The objective is to approximate the scalpel

sweep by faces of the mesh. Since the sweep triangles are ordered in time, we can

process an entire movement by processing the sequence one triangle at a time. More

formally, given the mesh and the incision resulting from {∆1, . . . , ∆j−1}, modify the

mesh such that ∆j is also approximated by an incision in the deformed configuration of

the mesh. This incision should be connected to the existing incision.

In order to the keep mesh size constant, we will perform cuts along existing faces

of the mesh. This increases the number of nodes, but keeps the number of elements

constant. Cutting along faces involves four separate actions executed in sequence:

1. Faces that will be cut are selected. They form the cut surface.

2. Vertices of these faces are moved such that the cut surface approximates the sur-

face {∆1, . . . , ∆j}.

3. The connectivity of the mesh is changed to reflect the cut. This procedure is

called dissection, and it is further discussed in Chapter 7.

4. Finally, degenerate elements, created as artefacts of the cutting process are re-

moved from the mesh.
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This technique is a variant of a superposition method [96], which has been used

before in offline mesh generation. A regular starting mesh (in our case, the mesh orig-

inally given) is superimposed onto the boundary of the desired object (in our case, the

sweep surface). The grid is then adapted to include the boundary. In our case, we

project mesh nodes onto the sweep surface, and remove degeneracies. Projecting mesh

nodes onto boundaries has been proposed earlier grids [52,93], but was used for mesh-

ing hexahedral off-line. In our case, we use the technique for on-line tetrahedral mesh

modification.

3.2.1 Selecting faces

We use the following approach for selecting faces. The sweep triangle is intersected with

all edges of the mesh. For every edge intersected, we mark the node that is closest to the

intersection point. For a tetrahedron, we can consider the nodes marked from its edges.

These marked nodes form a subset of the tetrahedron, and define a node, edge, face,

or the entire tetrahedron. If the set of closest nodes contains three elements, then we

select the corresponding face for performing a cut. This approach is demonstrated in

Figure 3.1. When processing connected sweep triangles, the sweep/edge intersections

from different sweep triangles are combined when selecting a surface.

The case that all four nodes are selected does not occur often when the scalpel sweep

is a plane; this can only happen if all edges are intersected exactly halfway. To show

this, let the supporting plane of the sweep triangle be given by
{

x ∈ R
3 : x · n = α

}
for

some n ∈ R
3 and α ∈ R. If this plane intersects an edge ab, selecting a, then there is a

λ ≥ 1
2

such that

α = n · (λa + (1 − λ)b).

We have

|α − a · n| = |n · (b − a)(1 − λ)|

≤ |λ(b − a) · n|

= |b · n − α|

If four nodes from a tetrahedron are selected by a sweep plane, then the plane intersects

four edges of the tetrahedron, and we can always label the nodes of the tetrahedron with

a, b, p and q, such that

|α − a · n| ≤ |p · n − α|,

|α − p · n| ≤ |b · n − α|,

|α − b · n| ≤ |q · n − α|,

|α − q · n| ≤ |a · n − α|.

In other words, all distances are equal, and the edges ap, aq, bp, and bq are inter-

sected precisely halfway.

The resulting cut surface will be connected, since adjoining tetrahedra share their

edges and hence their sweep/edge intersections. If a sweep halves an edge, then a con-

sistent choice is made by selecting the node with the lowest index. If two consecutive
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(a) (b) (c)

intersection

selected node

Figure 3.1: Surface selection by closest nodes from edge/sweep intersections. The

sweep is colored grey, and the selected feature is marked by bold lines and dots. In

Picture (a), (b) and (c) a node, an edge and a face are selected respectively.

sweep 1

sweep 2

intersection

selected

Figure 3.2: When processing multiple sweep triangles, intersections from different

sweeps are combined.
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sweep triangles have different orientations, it is possible that the sweep intersects edges

twice, and all nodes of a tetrahedron would be selected. This is prevented artificially by

only considering the first edge/sweep intersection. The cut surface does not necessarily

have the same topology as the scalpel sweep. It is possible that the selection process

leads to a branching cut surface, as is demonstrated in Figure 3.3

Figure 3.3: Cut surfaces may branch, shown in 2D. Selected faces (edges) are shown

bold.

A face can only be selected when three edges of an incident tetrahedron are inter-

sected by the scalpel sweep. This typically happens when the scalpel has already left the

tetrahedron. This means there will be a lag between the faces selected from the mesh

and the position of the scalpel. This is also demonstrated in Figure 3.4.

AA

(a) (b)

(1)

(2)

Figure 3.4: Selected faces (bold edges) lag behind the scalpel sweep, demonstrated in

2D. The bold edge in (b) is selected once intersection (2) has been found. This happens

after the scalpel has left triangle A. Between steps (a) and (b), intersection (1) must be

remembered.

The sweep triangles are processed one by one, so special precautions are needed to

ensure that two connected triangles ∆i and ∆j will produce a connected cut in the mesh.

To this end, the surface selector remembers tetrahedra with incomplete cuts: these are
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tetrahedra that contain the boundary of {∆1, . . . , ∆j−1}. Further sweep triangles may

extend the cut, thus finishing ‘incomplete’ tetrahedra, as shown in Figure 3.1.

The output of surface selection is a set of faces of the mesh. When the mesh is

dissected along these faces, this produces a crude form of cutting, where the incisions

are jagged. A sample from our implementation is shown in Figure 3.5.

3.2.2 Node snapping

A smooth incision in the object is created by repositioning nodes to be on the sweep

surface in the mesh. This is done before dissecting the cut. The deformed location an

internal node on the cut surface is projected orthogonally onto the plane of triangle ∆j,

yielding a point w. If v is on the boundary of the mesh, our choice is more restricted,

since moving boundary nodes changes the shape of the surface. For surface nodes, we

use an approach that does not change the shape of a flat surface. For each boundary

face f incident with v, the location of v is projected orthogonally on the intersection

of ∆j and f, yielding a point wf. If wf lies in f, then that point is considered for the

new location. The wf closest to the original position of v is picked. This approach is

illustrated in Figure 3.6.

Nodes must be repositioned in the reference configuration of the mesh, while the

scalpel surface interacts with the deformed mesh. To translate between these configu-

rations, we find the tetrahedron incident with v that contains w, and use its strain to

transform w back to the reference configuration. If no such tetrahedron is found, then

repositioning node v fails.

3.2.3 Degeneracies

The previous subsection has introduced a recipe for relocating nodes of the mesh to

generate smooth incisions in deformable material. However, changing node positions

alters the shape of mesh elements, a process which affects the deformation computa-

tions. In particular, projecting nodes can lead to flat elements if all nodes of an element

are selected. The element will be flattened by the projection, and adjacent tetrahedra

may be inverted. Examples are shown in Figure 3.7. Flat elements lead to unbounded

condition numbers and unbounded discretization errors [87]. This significantly affects

the speed and the accuracy of the simulation, so these elements have to be removed

before deformation computations can continue.

In this section we present a heuristic approach that collapses flat elements and thus

removes them. This is done in multiple passes. All degeneracies in the mesh are col-

lected in a list, and every element on the list is subjected to the collapse procedure

described below. After this pass, a new list of degeneracies is made. If this list is shorter

than the old one a new pass is made. After the last pass, the remaining degeneracies

are considered incollapsible, and they are removed by cutting them free, and remov-

ing them. These extra cuts can cause spurious incisions (“cracks”) perpendicular to

original incision.

Flatness of elements is quantified by their aspect ratio. We define the aspect ratio

of a tetrahedron by the minimum height divided by the maximum edge length. If the
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Figure 3.5: A cut in a generated object cube without node repositioning. The last and

next sweep triangle are indicated by the two triangles partially penetrating the object.
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Figure 3.6: When repositioning a boundary node v, it can be projected within faces f,

g and h, leading to different points wf, wg and wh. The closest w is selected.

Figure 3.7: Projecting nodes may result in degeneracies, even in 2D. If all nodes of an

element (top) are selected, this leads to degenerate and inverted elements. Selecting a

face almost perpendicular to the scalpel sweep also leads to degenerate elements
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tetrahedron is represented by its set of nodes τ, and the supporting plane of a triangle

σ by plane(σ) then

minp∈τ d(p, plane(τ\{p}))

maxp,q∈τ d(p, q)
.

Flat elements come in different shapes, and they can be classified by their an-

gles [10]. The strategy to collapse an element is determined by its shape, as measured

by the number of large dihedral angles it contains.

• In elements without large angles, so-called needles, the shortest edge is collapsed.

• In elements with a single large angle, so-called spindles, the edge opposite the large

angle is split. Then the shortest edge is collapsed.

• In elements with two large angles, so-called slivers, both edges containing the

large angle are subdivided by introducing a new node. The resulting short edge

is collapsed.

• In elements with three large angles, so-called caps, a new node is introduced in

the face opposite the three angles. The resulting short edge is collapsed.

The shape classification and removal approach are demonstrated in Figure 3.8 and 3.9.

needle spindle

capsliver

Figure 3.8: Degenerate tetrahedra either have flat triangles or short edges, or they have

large dihedral angles.

Edge collapses are substitutions on the simplexes of the mesh. They change the

mesh connectivity, and when either node is on the boundary, they may also change the

topological type of the object [35]. In a mesh of a physical three-dimensional object,



50 Combining FEM and Cutting

Figure 3.9: Collapsing elements by introducing short edges and collapsing them.

all (oriented) triangles should be in exactly one oriented tetrahedron. The result of an

edge collapse does not always satisfy this requirement, and in this case, the edge collapse

fails. An example is given in Figure 3.10.

Figure 3.10: An impossible edge collapse in 2D. The edge marked with ticks is col-

lapsed. This involves the triangles incident with the edge, and merging both nodes of

the edge. In this case, the result of a collapse is no longer a manifold, as the edge marked

in bold is incident with three triangles.

3.3 Results

The techniques discussed have been implemented in a prototype written in C++ [89]

using OpenGL [88] for visualization.

The FEM implementation was validated using a cantilever beam test problem (See

Figure 3.11). A beam is fixed on one end, and loaded with a force F on the other end.

Assuming small deformations, the analytical solution for the deflection y of the loose



3.3 Results 51

end is given by [80]

y =
4F

Ed

(

l

h

)3

.

Here, l, d and h are the dimensions of the beam, E is the Young modulus of the material,

and F the load.

We have run the simulation with l = 1.2 m, h = 0.2 m, d = 0.3 m, E = 106 Pa

and Poisson ratio ν = 0. The total load applied at the loose end is 3N. The analytical

solution for the deflection of the tip is 8.64 · 10−3m. This is small compared to the

dimensions of the body, so both linear elasticity and the analytical beam formulas are

applicable.

We have an exact solution for this problem, so we can calculate the error in the tip

deflection computed by the FEM simulation. Table 3.1 shows how this error depends

on the mesh resolution. Both maximum and average errors for the nodes at the tip

diminish as the mesh becomes finer, which validates our FEM implementation. The

results were computed with a procedurally generated beam (also shown in Figure 3.11),

and stopping criterion ‖r‖2 < 10−8‖fex‖.

d

h

l

y

F

Figure 3.11: The cantilever beam experiment. On the right the result with forces exag-

gerated by a factor 10.

# elements (l × h × d) # nodes iterations avg error (%) max error (%)

16 × 4 × 4 425 377 29.0 29.3

24 × 6 × 6 1225 561 15.1 15.3

32 × 8 × 8 2673 723 8.6 8.8

40 × 10 × 10 4961 882 5.2 5.3

48 × 12 × 12 8181 1044 3.2 3.3

Table 3.1: Errors in the deflection of tip nodes of the cantilever beam experiment. The

FEM deflections were always less than predicted by the analytical solution.

The visualization loop is interleaved with the relaxation loop, so the course of the

CG iteration is visualized during the simulation. It is visible as a quickly damping

vibration in the object. In our subjective view, this vibration did not decrease the visual

realism of the simulation. At every change in forces or boundary conditions, the CG

iteration is restarted.
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All further results have been done with the stopping criterion ‖r‖ < 10−3‖fex‖. The

material has Poisson ratio ν = 1/4. On our platform (PIII 1 Ghz), the object shown

in Figure 3.12, a procedurally generated object with 1728 nodes and 7986 elements

could be smoothly manipulated: the relaxation runs at approximately 55 iterations per

second. For this test object between 100 and 300 iterations are needed to reach the

solution.

Figure 3.12: A generated cube of 7986 elements, with dilating forces applied to the

side.

The cutting simulation places a triangle representing ∆j under control of the user:

its orientation and size can be controlled with the mouse, and a keypress advances the

triangle, creating a cut. When processing a sweep triangle ∆j, the entire boundary of

the mesh is tested for collisions. Starting from these collisions and from incomplete

tetrahedron intersections, neighboring tetrahedra are tested recursively for collisions.

The degenerate case, where all edges are exactly halved by the sweep triangle, is

handled by selecting a random face from the tetrahedron. In practice, we did not ob-

serve many of such cases. In a static deformation problem each body must be fixed.

Since a cut may split the mesh in different components, the mesh is checked for its

connectivity after every cut, and all unfixed components are fixed on an arbitrary face.

Without moving nodes, the cutting results in jagged incisions, as demonstrated in

Figure 3.5. By moving nodes, the cutting proces produces smooth incisions. It also

introduces various degeneracies, which effectively halt the relaxation loop. Figure 3.14

and 3.15 shows a large cut (108 faces dissected) in a generated cube (3072 elements,

729 nodes), which produces 143 degenerate elements. 2439 iterations are needed to

compute the deformation caused by the cut.

The effect of the degeneracy removal process is demonstrated in Figure 3.16. Here

the same cut is made, but flat elements are collapsed before resuming the deformation

computations. In this example, an element is considered degenerate if its aspect ratio
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is less than 0.01 and a dihedral angle is considered large if it exceeds 0.99π. With these

thresholds, 99 edges are collapsed, and 13 incollapsible elements are cut free. The re-

sulting mesh contains 3034 elements and 823 nodes, showing that the removal process

does not increase mesh size significantly. The deformation requires 236 iterations to

converge, a significant reduction. No effort has been spent to optimize the process of

degeneracy removal, and in this particular case, the process takes approximately 0.7

seconds on our platform (Pentium III, 1Ghz).

Figure 3.13: Pie-like cuts in a Delaunay Tetrahedralization of a cylindrical point cloud.

In these generated cubes the frequency of degeneracies strongly correlates with the

angle of the cut. This is not surprising, since this mesh only contains six different

orientations of tetrahedra. A Delaunay tetrahedralization of a cylindrical point cloud

does not have this bias, so for pie-like cuts like those depicted in Figure 3.13, degeneracy

counts do not depend on the orientation of the sweep triangle. After applying three large

pie-like cuts (45 faces) to such an object (4020 elements and 891 vertices), we find that

the number of edge collapses is approximately 5% of the number of the faces dissected

(873 faces). A handful of incollapsible degeneracies are encountered.

The simulation does not model a scalpel, let alone physical interactions between the

deformable object and a scalpel. As a result, when the body moves by a large amount

relative to the next sweep triangle to be processed, due to either external forces or be-

cause of deformations caused by a previous cut, the next incision is no longer connected

to the previous incision. A similar effect happens when the degeneracy removal pro-

cedure changes elements of incomplete cuts: when edges are collapsed, the associated

sweep/edge intersections are invalidated as well. Some of these intersections are needed

to connect the existing incision to the next cut, hence the degeneracy removal may lead

to disconnected incisions. An example of this phenomenon is shown in Figure 3.17.

This effect might be mitigated by repeating the cut for the last sweep triangle.

3.4 Discussion

In this chapter we have presented an interactive FEM deformation, using a CG iteration

in a matrix-free implementation as a static relaxation algorithm. A matrix-free approach
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Figure 3.14: A large diagonal cut in a generated cube with back face fixed and dilating

forces applied to the side faces. This cut generated 143 degeneracies. On the bottom

the mesh is shown in wireframe mode, with only the degenerate tetrahedra filled in.

Repositioning failed for two nodes, which are visible as spikes in the incision surface.
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Figure 3.15: The same cut as Figure 3.14 from a different point of view.



56 Combining FEM and Cutting

Figure 3.16: The same cut as Figure 3.14, but with degeneracies removed. Two arte-

facts of the removal process are circled. At the top we see an inverted element. At

the bottom, an incollapsible degeneracy has lead to spurious subdivision before it was

dissected. The incollapsible degeneracy has also caused a “crack” in the incision, also

visible in the wireframe at the bottom.
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Figure 3.17: The same cut as Figure 3.14, but made in several small steps. Notice how

both sides of the cut remain attached.

uses minimal storage, at the cost of a relatively small computational overhead. The

deformation simulation seems satisfactory for visual inspection, and it does not have

stability problems. This deformation model is the simplest that can be realized in 3D,

so we should investigate to what extent this technique can be applied in a more general

setting. Specifically, the following questions are open.

• To what degree can we consider this method interactive or real-time?

• How do static methods and dynamic methods compare, assuming that dynamic

effects are not strictly necessary?

• Can the approach be extended to nonlinear models?

These questions will be explored in more detail in Chapter 4 and Chapter 6.

We have also presented a cutting method that moves existing mesh faces and per-

forms cuts along these faces. The purpose of this method is to produce cuts without

increasing mesh size. We have succeeded in that goal. Unfortunately, this cutting tech-

nique has a number of disadvantages as well. We do not place any restrictions on the

starting mesh, so the projection technique produces more or less inverted elements and

arbitrary, degenerate element shapes. The inverted elements might be prevented by

simply forbidding node relocations in those cases. The degeneracies pose a more seri-

ous problem. Because of their arbitrary nature, we are forced to use heuristic methods

to remove. In their current form, these heuristics may change the topology of the ob-

ject. They seem to work for most degeneracies that occur, but not for all cases, and

the technique does not address inverted elements. Although heuristics based on local

topological reconfiguration are accepted techniques for offline meshing [43, 55], it is
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not clear whether they can be applied to on-line remeshing, especially when there are

stringent real-time constraints. We performed limited experiments that indicate that

more work is needed to make this scheme practically useful.

The cutting module handles sweep triangles one by one, and remembers sweep/edge

intersections of previous sweep triangles to produce connected incisions. This implies

that it retains references to large parts of the mesh. Each mesh change, due to either

dissection or degeneracy removal, must also be applied to references in the cutting

module. This double administration is wasteful and error prone. Moreover, degeneracy

removal can cause disconnected cuts to appear.

These last problems are symptoms of a fundamental limitation of our cutting ap-

proach. The underlying assumption is that the scalpel sweep may be represented by a

triangulated surface {∆1, . . . , ∆k}, and that we can reduce the cutting problem to pro-

cessing single triangles ∆j incrementally. First, this ignores physical interactions be-

tween material and the scalpel. Second, the speed of computing hardware limits the

resolution of the mesh. Assuming that we have uniform meshes, tetrahedra are likely

to be much larger than the scalpel movements to be represented. Since a mesh face is

scheduled for dissection only when the sweep has sliced through an incident element,

the incision effected in the mesh will always lag with the cut made by the user. This

might be ameliorated by moving mesh nodes to be on the boundary of the scalpel sweep.

However, given the problems that we encountered with moving mesh nodes onto the

plane of the scalpel sweep, this is likely to be fraught with even more degeneracy prob-

lems than the current approach.

In summary, the approach to cutting that we have presented satisfies our initial

desire for small mesh sizes, but does not match the intended application well. It is clear

that the cutting problem should be reconsidered completely. A start of this will be made

in Chapter 5.



Chapter 4

Relaxation algorithms

This chapter is intended as an expansion of the work of Chapter 3, where we have de-

scribed our first steps into interactive deformation modeling. Our first approach is a

completely linear model with an iterative solution based on the Conjugate Gradient al-

gorithm. We have shown how mesh modification and deformation are easily combined

with this method. However, linear elasticity has its limits: it assumes that deformations

remain small. This assumption is questionable for soft material, such as soft tissue.

Other work in deformable objects primarily uses dynamic methods to compute de-

formations. Such methods compute the evolution of deformations over time as they

move to a steady state. They are perhaps easier to understand than iterative static

methods, since all intermediate results have a physical interpretation. Since they com-

pute more physically relevant information, one could also expect that they are more

expensive than a static method.

This chapter addresses both the extension to nonlinear material and convergence

speed in more detail. We will extend the deformation framework of the previous chap-

ter to include nonlinear deformations and a dynamic formulation. Using this frame-

work, we benchmark the convergence speed of a static algorithm by comparing it to a

dynamic method applied to the same problem. The rest of this chapter starts with de-

tailing theoretical convergence of a dynamic method, then it introduces the convergence

experiment, material models, and finally it shows and discusses the results.

4.1 Convergence of dynamic relaxation

The theoretical convergence speed of Conjugate Gradients (CG) has been analyzed

extensively in literature, and was discussed in Section 2.4. In this section, we briefly

analyze the convergence speed of dynamic relaxation in the case of linear elasticity. We

will show how quickly a dynamic method will settle into a steady state, and find that the

convergence speed of the dynamic problem is similar to that of CG.

We recall from (2.55) that the PDE for linear elasticity can be discretized into the

59
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following n-dimensional differential equation for the function u(t) ∈ R
n

Mü + Cu̇ + Ku + fex = 0.

Here fex represents the external force, M ∈ R
n×n is the mass matrix, representing

the inertia of the object, and C ∈ R
n×n the damping matrix, and K ∈ R

n×n the

stiffness matrix. The integration methods in (2.60) and (2.62) require diagonal M and

C matrices for efficient time-stepping, so we use lumped masses. Since C must also

be diagonal, we take C = ηM for some constant η > 0. This is a form of Rayleigh

damping.

This dynamic solution has two parameters: η controls the amount of damping, and

∆t is the time step of the integration scheme. Both parameters influence the speed of

convergence towards the steady state. We want to determine how quickly this dynamic

method reaches the steady state, so that the parameters η and ∆t have to be chosen

optimally. We determine these optimal parameters by analyzing the evolution of the

solution error e over time. We define the error e in a solution u as being the difference

between u and a static solution ustatic. We have Kustatic = fex, so the error e = u−ustatic

satisfies the homogeneous differential equation

Më + ηMė + Ke = 0. (4.1)

Solutions of this equation are expressed in terms of generalized eigenvalues of M and

K, i.e. solutions to

Kw = λMw

Both K and M are symmetric and positive definite, so this generalized eigenvalue prob-

lem has M-orthogonal eigenvectors with positive eigenvalues. There are eigenpairs

(wi, λi) from R
n × R

+, such that Kwi = λiMwi for i = 1, . . . , n. Since K and M

are symmetric, the eigenvectors can be chosen to be M-orthogonal. In addition, the

eigenvectors wj can be normalized, so that we have

(wi, wj)M =

{
0 i 6= j,

1 i = j.

This expression uses the notation from Equation (2.44).

The vectors wi represent normalized undamped vibration modes of the body, and

form an M-orthonormal basis of R
n. Therefore, we can decompose e into the eigen-

vectors wi, writing

e(t) =
∑

j

yj(t)wj, yi(t) = (e(t), wi)M

Since K and M are positive definite, the eigenvalues are positive. We order the eigen-

values, so 0 < λ1 ≤ λ2 ≤ · · · ≤ λn.

Analogous to Subsection 2.4.1, we analyse the error in the energy norm, which is

given by ‖e‖K. Due to the M-orthogonality of the wj, we find

‖e‖K =

√∑

j

yj(t)2λj.
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In other words, the solution error can be decomposed in its modal components. By

taking the M-inner product of (4.1) and a vibration mode wj, we get the following

differential equation for the component yj:

ÿj(t) + ηẏj(t) + λjyj(t) = 0. (4.2)

This is a differential equation with constant coefficients. There are three cases for

the general solution: the vibration is either underdamped, critically damped or over-

damped. Let

µ = −η/2,

ωj =
1

2

√

|4λj − η2|.

If η < 2
√

λj, then the system is underdamped, and solutions take the form of

yj(t) = c1je
µt sin(ωjt + ϕj), c1j, ϕj ∈ R.

If η = 2
√

λj, then the system is critically damped, and solutions take the form of

yj(t) = (c1j + c2jt)e
µt, c1j, c2j ∈ R.

If η > 2
√

λj, then the system is overdamped, and solutions take the form of

yj(t) = c1je
(µ+ωj)t + c2je

(µ−ωj)t, c1j, c2j ∈ R.

Graphs of these three cases are shown in Figure 4.1.
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Figure 4.1: Three types of damping demonstrated for Equation (4.2), with critical

damping, and η = 1/2ηcrit and η = 2ηcrit. Begin values are λj = 4, yj(0) = 1, ẏj(0) = 0.

We see that all modal components of the error diminish over time by e−ηt/2 in

the underdamped and critically damped case. If η is larger than 2
√

λj for any j, then
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that mode is overdamped, and the corresponding error component will diminish by

e−(η/2−ωj)t, which is slower than e−ηt/2. Therefore, the quickest convergence is

attained when η is as large as possible, but no mode is overdamped. This is when

η = 2
√

λ1.

In this case, we have

‖e‖K = e−ηt/2

√∑

j

λjỹ
2
j (t), ỹj(t) = eηt/2yj(t)

The contents of the square root are O(t), so the error is dominated by the exponential

term e−ηt/2. Hence, when the equation is integrated over a time span T , then the

magnitude all modal components decreases by e−ηT/2. For a reduction ε in error, we

have to integrate over a fixed time span

T =
−2 ln ε

η
=

− ln ε√
λ1

.

The stability condition of the SS22 and related explicit second order integration meth-

ods for (4.2) is given by Zienkiewicz [103]: the time step ∆t must satisfy

∆t2 ≤ 4

λj

, j = 1, . . . , n.

The highest frequency mode is given by the largest eigenvalue λn, and this mode must

also be stable, so we have

∆t ≤ 2√
λn

.

If a modal component yj is to decrease by a factor ε, then this takes at least N time

steps, where

N =
T

∆t

≥ − ln(ε)
√

λn

2
√

λ1

=
1

2
ln

(

1

ε

)√
κ, κ = λn/λ1 = cond2(M−1K)

Recalling Equation (2.47), we see that CG and dynamic relaxation offer similar

performance in the linear case: the condition number of K determines the convergence

speed. The effect of the mass matrix M is that of a preconditioner: if M were variable,

and could be selected to decrease cond2(M−1K), then larger time steps could be taken,

leading to more rapid convergence. This “preconditioning” has a physical interpreta-

tion: when a discretisation has both small and large elements, increasing nodal masses

of small elements decreases their vibration frequencies, thus it brings down λn. For a

system with lumped masses, M is diagonal, so if we view M as a preconditioner, then

increasing nodal masses is analogous to preconditioning with a diagonal matrix.
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parameter notation value

gravity g 9.8 m/s2

density ρ 1000 kg/m3

Young modulus E 1.0 · 104Pa

Poisson ratio ν 0.3

Material nonlinearity γ 8

Table 4.1: Material parameters and constants for the experiments.

4.2 Experimental setup

Subsection 2.4.1 and 4.1 show that on theoretical grounds CG and dynamic relaxation

have the same convergence speed. However, the estimate for CG is not tight. More-

over, the linear analysis does not necessarily extend to nonlinear problems. In order to

assess the speed of both algorithms in practice, their convergence in terms of computa-

tional cost has to be measured when applied in a practical situation. In this section we

will discuss the experimental setting and how convergence and computational cost are

measured.

The test object is a horizontal cylinder of very soft material, fixed on one end. At

the start of the experiment, the gravity force is applied, and the object moves to a new

equilibrium state. We measure how quickly it reaches that state. Material parameters

and constants are in Table 4.1. These parameters are in the same order of magnitude

as a very soft tissue [7, 57]. The undeformed configuration of the cylinder is shown in

Figure 4.2. Cantilever beams of soft material easily lead to large deformations, so they

test the performance on nonlinear problems. Moreover elongated structures are also

present in the human body, for example, in skeletal muscles and tendons.

The object is meshed using a Delaunay tetrahedrization [69] of cylindrical point

clouds. We use two meshes, a coarse mesh of 1230 elements and a more fine grained

mesh of 9300 elements. Properties of the meshes used are listed in Table 4.2. The

meshes are very well-shaped: they have no extreme element sizes, and no extreme

angles. It is unlikely that this quality can be maintained for unstructured meshes during

online changes. To assess the impact of mesh quality deterioration, we will examine the

influence of edge lengths on relaxation

The computational cost of the solution process iteration is measured in flops, float-

ing point operations. During the computation, a flop count is maintained. The flop

count per tetrahedron was manually determined for every material model. The result-

ing counts are shown in Table 4.2. During the computation, these numbers are added

in a global variable. This flop count is independent of machine, compiler and timer

resolution, and is not affected by any overhead of measuring the performance. Mul-

tiplications, divisions, sums and differences were counted as one flop, and 1 MFLOP

= 106 flop. Compared to these counts, the exponential function was measured to take

approximately 50 flops. Another instance of the program runs the same experiment

with statistics turned off and maximum optimization settings, to determine the speed

of the program in flops per second. By combining both numbers, the computional cost
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Figure 4.2: The cantilever beam, in undeformed configuration

small mesh large mesh

Mesh type Delaunay idem

Rod length 0.1m idem

Rod radius 0.03m idem

Elements 1230 9300

Nodes 308 1911

Edge lengths 0.05 –0.013m 0.0067 – 0.0025m.

Dihedral angles 20◦ – 140◦ idem

Table 4.2: Geometry of the test input
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can be expressed in seconds of computation time.

The rate of convergence was determined by comparing the approximation with an

“exact” solution, a solution computed with a smaller error tolerance. This solution was

obtained in a two step process first, a nonlinear CG iteration was used to find an approx-

imate solution, such that the residual r satisfies ‖r‖2 ≤ 10−2‖fex‖2. Then a truncated

Newton-Raphson algorithm (discussed in Section 2.4.3) was used to obtain a solution

such that ‖r‖2 ≤ 10−8‖fex‖2 (except for the linear problem, where the tolerance was

set at 10−12).

Suppose that the exact solution of the problem is û ∈ R
n, and at some point, the

error is u − û = e ∈ R
n. Hyperelastic mechanical problems are energy minimization

problems, so we measure the error with the energy difference between the approxima-

tion and the ‘exact’ solution, i.e. the energy error Π(u) − Π(û). When e is small, then

we can rewrite this to

Π(u) − Π(û) = Π(û + e) − Π(û)

= ((∂Π/∂u)(û), e) + (K(û)e, e) + O(‖e‖3)

= (e, e)K(û) + O(‖e‖3).

The first term of the last expression is an approximation of the energy difference. Since

this expression is less susceptible to rounding errors, we will use it for measuring the

convergence.

4.3 Hyperelastic compressible materials

Previous work in soft tissue modeling and deformable object simulation shows a variety

of different models in use, both for off-line and on-line simulation. Therefore we use

a number of different material models, which are discussed in this section. All of these

are compressible, isotropic, hyperelastic models. We recall from Equation (2.12) and

the discussion surrounding it, that hyperelastic models are defined by an energy density

W, which depends on the three invariants ι1, ι2 and ι3 of the Green deformation tensor

C. Some forms of anisotropy can also be added to hyperelastic models, by introducing

other types of dependencies in W [51,78].

We recall from (2.15) that the second Piola-Kirchoff stress tensor S for hyperelastic

materials is given by

S = 2
∂W

∂C
,

and elastic forces for the nodes of a tetrahedron are given in (2.35): they are represented

in the 2-tensor

−T · Z−∗ = −F · S · Z−∗. (4.3)

In this expression Z is the tensor defined in (2.32). It represents the shape of the

tetrahedron.

For Newton-Raphson methods we will also need the derivative of the nodal forces,

relative to the tensor U representing node displacements. The derivative of the nodal

forces can be expressed as a 4-tensor, a linear map that takes 2-tensors to 2-tensors.
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It can be computed from (4.3) by applying the product rule, leading to the following

derivative.

H 7→
(

H · Z−1 · S · +F ·
(

∂S

∂U
: H

))

· Z−∗, H ∈ Lin . (4.4)

The derivative of S is given by

∂S

∂U
=

∂S

∂C
:
∂C

∂U
,

and

∂C

∂U
: H = (H · Z−1)∗ · F + F∗ · (H · Z−1).

Equation (4.4) includes S, so when both the forces from (4.3) and their derivative

from (4.4) are required, the calculations can be combined. Calculating both is only

slightly more expensive than calculating the derivative only.

We assume that the reference configuration of the object is in a stress-free state, so

S = 0 when C = I. The function W represents potential energy, so we arbitrarily set

W = 0 for C = I. We introduce the following models.

• St. Venant-Kirchoff material

• St. Venant-Kirchoff material with the linear geometry approximation

• neo-Hookean material

• Veronda-Westmann

The cost of computing an elastic force from the deformation of a tetrahedron varies

across these models. The costs are listed in Table 4.3.

Model Force Derivative

Linear material/strain 129 129

St. Venant-Kirchoff 235 421

neo-Hookean 277 595

Veronda-Westmann 347 797

Table 4.3: Cost in flops of computing elastic forces and their derivatives in a single

tetrahedron, measured by counting operations in the formulas.

For small deformations, all these models reduce to the second model, which allows

the computations to be verified using the deformation test of Chapter 3. We express

the material parameters for all models using the Lamé constants λ and µ.
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4.3.1 St. Venant-Kirchoff elasticity

St. Venant-Kirchoff elasticity addresses the linear geometry approximation. It was used

by Zhuang and Canny [101] in a dynamic simulation with non-lumped damping, by

Picinbono et al. [78] in a dynamic simulation with lumped mass and damping, and by

Debunne et al. [32] in a dynamic simulation with adaptive mesh resolutions.

We recall Equation (2.17) for the St. Venant-Kirchoff model, discussed in Sec-

tion 2.1.

W(ι1, ι2) =
1

2

((

−µ −
3λ

2

)

ι1 +

(

λ

4
+

µ

2

)

ι21 − µι2

)

,

S = µ (C − I) +
λ

2
(ι1 − 3)I,

∂S/∂C : H =
λ

2
trace(H)I + µH.

(4.5)

The result of applying the St.Venant-Kirchoff model to our test object is shown in

Figure 4.3. The energy function does not have an energy term that prevents material

inversion. This is reflected in the result: elements are inverted near the attachment

point of the rod.

Figure 4.3: St. Venant-Kirchoff elasticity. Elements are inverted where the beam is

fixed at the left.

4.3.2 Linear geometry approximation

If this model is combined with the linear geometry approximation, then we obtain linear

elasticity, which was discussed earlier in Section 3.1. Linear elasticity was prevalent in
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early work in surgery simulation [18,27,49]. It is also used when high update rates are

required. When using the Boundary Element Method [53] or static condensation [18,

36] it is possible to precompute all deformations of an object in advance. With this

technique, the high update rates required for haptic interaction can be achieved.

The linear geometry approximation is shown in Figure 4.4. Evidently, the assump-

tion of small deformations does not hold in this situation.

Figure 4.4: The result of applying the linear model to our standard test. The unde-

formed configuration is shown as a wire frame mesh.

4.3.3 Neo-Hookean elasticity

The compressible neo-Hookean elasticity model is a generalization of the St.Venant-

Kirchoff model, and it is used for describing rubbery materials. It has also been used as

a material model for interactive deformation by Székely et al. [92] and Wu et al. [100].

The energy density function that we use is given by [65,102].

W(ι1, ι3) =
1

2

(

µ (ι1 − 3) − µ ln(ι3) + λ(
√

ι3 − 1)2
)

. (4.6)
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The stress and its derivative are as follows:

S = (µI + (−µ + λ(
√

ι3 − 1)
√

ι3)C−1)

∂S/∂C : H = − (λ (
√

ι3 − 1)
√

ι3 − µ)C−1 · H

+
λ

2
(2
√

ι3 − 1)
√

ι3(C−1 : H)I · C−1

Compression makes ι3 tend to zero, so the logarithm tends to minus infinity: the

material resists inversion, which is visible in the result shown in Figure 4.5.

For small strains, we have C ≈ I, so C − I = O(ε) for some small ε > 0. In a linear

approximation, we have

√
ι3 = 1 + trace(C − I)/2 + O(ε2),

C−1 = I − (C − I) + O(ε2).

For small deformations, this reduces to the stress for linear elasticity in Equation (4.5).

Figure 4.5: Compressible neo-Hookean material.

4.3.4 Veronda-Westmann elasticity

Veronda and Westmann [98] have proposed a three-dimensional constitutive descrip-

tion of soft tissue based on measurements of cat skin. Their work was also discussed

in Section 2.6. This model has been used in offline simulations of soft tissue [51, 79].

Veronda and Westmann propose the following energy density:

W(ι1, ι2, ι3) = c1(eγ(ι1−3) − 1) + c2(ι2 − 3) + g(ι3).
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The function g was not specified further. In the compressible case, we should have

g(ι3) → ∞ if ι3 → 0. For small deformations, we have ι1 ≈ 3, so the exponential term

can be linearized to c1γ(ι1 −3). The effect of the exponential term is to resist stretching

more when strains are large. This is consistent with the stress-strain relations for most

types of soft tissue. The parameter γ measures the amount of nonlinearity.

We assume that the reference state is stress free (S = 0 if C = I). To ensure

consistency with the linear model, we require that for γ → 0, the exponential term

reduces to 2µ(ι1 − 3). The following function fits this template:

W(ι1, ι2, ι3) =
1

2

(

2µ

γ

(

eγ(ι1−3) − 1
)

− µ(ι2 − 3) +
λ

2
(ι3 − 1 − ln(ι3))

)

.

This energy density leads to the following stress tensor

S =
(

2µeγ(ι1−3) − µι1

)

I + µC +
λ

2
(ι3 − 1)C−1. (4.7)

The stress derivative is given by

∂S/∂C : H = µ
(

2eγ(ι1−3)γ − 1
)

trace(H)I + µH

+
λ

2
(ι3(C−1 : H)I − (ι3 − 1)C−1 · H) · C−1.

(4.8)

When the nonlinearity γ tends to 0, and we assume small strains (C = I + O(ε)),

then (4.7) tends to

µ(2 − trace(C − I) − trace(I) + C) +
λ

2
trace(C − I)(I − (C − I)) + O(ε2)

= µ(C − I) + (µ +
λ

2
)(trace(C − I))I + O(ε2).

The trace(C − I) term, corresponding with volume preservation in the linear model, is

not consistent with the linear case. The result of applying Veronda-Westmann to the test

object is shown in Figure 4.6. Due to the exponential term, the object resists stretching

more, and bends less. This results in a smaller tip deflection than the neo-Hookean

material model.

4.4 Relaxation algorithms

The two relaxation algorithms tested are explicit SS22 time-integration with lumped

masses and lumped damping, and the nonlinear CG algorithm. In this section we

discuss how parameters for the dynamic algorithm were chosen, and how the line search

for the CG algorithm was implemented.

4.4.1 Dynamic parameters

The implementation of a dynamic relaxation is straightforward, but running requires

η and ∆t to be set. In the linear case, we can compute the optimal choice for both

parameters. In the nonlinear case, we must resort to a heuristic.
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Figure 4.6: Veronda-Westmann material.

The critical time step can be computed exactly for linear elasticity. Nonlinear ma-

terial can react more strongly to a change in deformation, and requires shorter time

steps. Therefore, the critical time step is found by the following empirical procedure.

A time step is considered stable if an undamped simulation does not blow up within

50 MFLOPs. A simulation is considered blown up if ‖u‖ exceeds 1015. An initial

time step is estimated using the Courant-Friedrichs-Lewy criterion (2.54), and then it

is repeatedly lowered by 15 % until a stable time step is found.

The critical damping was also determined by trial and error. Damping higher than

ηcrit yields smooth and slower convergence, while lower damping yields slower, oscil-

latory convergence. By manually trying out different η values and selecting the value

yielding the fastest convergence, we can find the optimal η, listed in Table 4.4. To ver-

ify that ηcrit is close to optimal, all convergence graphs also show results for damping of

2/3ηcrit and 3/2ηcrit.

material ηcrit

linear 17

St. Venant-Kirchoff 20

neo-Hookean 21

Veronda Westmann 27

Table 4.4: Damping parameters for the experiments discussed
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4.4.2 Line search

The nonlinear CG algorithm is a generalization of the linear CG method. It was dis-

cussed in Section 2.4.2. An implementation of the nonlinear CG algorithm requires a

line search strategy. Such a strategy improves the energy Π(x) of the current solution

x ∈ R
n by taking a step α > 0 in a given direction d ∈ R

n. The optimal step is given

by

min
α∈R+

Π(x + αd).

For a differentiable Π, the steplength follows from g(α) = 0, where

g(α) =

(

∂Π

∂x
(x + αd), d

)

.

This is a one-dimensional equation, which may be solved with a Newton iteration.

The Newton iteration was discussed in Section 2.4.3. In this case, the iteration can be

defined as follows.

α0 ← 0

αn+1 ← αn −

(

dg

dα
(αn)

)−1

g(αn), n ≥ 0

We have
dg

dα
(α) = (d, K(x + αd))

The line search algorithm stops when the if needs more than jmax iterations, or if the

update of α is small enough, as measured by a tolerance εnewton. This leads to the

following algorithm.

j← 0

α0 ← 0

while j < jmax:

rj ← −(∂Π/∂x)(x + αjd)

sj ← −K(x + αjd)d

δj ← (rj, d)/(sj, d)

if j > 0 and |δj| < εnewton|δ0|:

exit loop

αj+1 ← αj − δj

j← j + 1

The update δj is not added to αj if it is too small. Instead, the corresponding residual

rj is used to update the elastic force vectors in the main loop of the iteration.

In this Newton iteration, the result of the last calculation of K(x + αjd)d is never

used, which is wasteful. Therefore we propose a secant method [102]: the derivative g ′

in the Newton scheme is replaced by the finite difference approximation

dg(αn)

dα
≈ g(αn) − g(αn−1)

αn − αn−1

. (4.9)
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This leads to the following pseudo code:

j← 0

α0 ← 0

while j < jmax:

rj ← −(∂Π/∂x)(x + αjd)

γj ← (sj, d)

if j = 0:

sj ← −K(x + αjd)d

δj ← γj/(d, sj)

else δj ← γj(αj − αj−1)/(γj − γj−1)

if j > 0 and |δj| < εnewton|δ0|:

exit loop

αj+1 ← αj − δj

j← j + 1

Since no evaluations of ∂2Π/∂2u are left unused, we can expect that this method is

more efficient. We may further speed up this algorithm by replacing the evaluation of

K(x)d in the first step by the finite difference approximation from (4.9). This introduces

a scale-dependent parameter, since α−1 must be chosen for the problem at hand. We

will refer to this algorithm as the scale-dependent secant algorithm.

4.5 Results

The hyperelastic models discussed were implemented, along with iteration methods for

nonlinear CG and SS22 time-integration. This was done in the framework that we

wrote for the work in Chapter 3. In addition, a truncated Newton algorithm, as dis-

cussed in Subsection 2.4.3, was implemented to compute reference solutions at stricter

tolerances.

4.5.1 Tuning CG

The performance of the three line search algorithms (Newton, secant, scale-dependent

secant) from the previous section is plotted in Figure 4.7. The scale-dependent secant

algorithm is the fastest method. For our test cases, α−1 = −0.001 was sufficient to ob-

tain convergence. The line search algorithms all use a tolerance parameter ε. Figure 4.8

shows how different settings affect the convergence, and is representative of other mod-

els: The iteration converges within a few iterations, so the precise value of ε makes little

difference in the convergence behavior.

There are different strategies for determining β in the nonlinear Conjugate Gradient

algorithm. Both the Fletcher-Reeves strategy from Equations (2.48) and Polak-Ribière

from (2.49) were implemented, but for our test problem there was no difference in

performance. The rest of the experiments were conducted with normal secant line

search, Polak-Ribière β selection and a large tolerance (εnewton = 0.1) for the line search.
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Figure 4.7: The performance of different line searches for the Veronda-Westmann

problem.

4.5.2 Performance

By comparing FLOP count and processor time used, we can also estimate the MFLOP

per second rate, which indicates how efficiently the CPU is used during computations.

These numbers are given in Table 4.5. The baseline for the MFLOP/second rate was

a repeated double vector add, coded in C++. For repeated adds of a 1024-double

vector, the machine, a 1 Ghz Pentium 3, achieved 246 MFLOP/sec. The programs

were compiled with GNU C++ version 3.2, with maximum optimization switched on,

and visualization and convergence statistics turned off.

The dominating cost in computation were computations of the elastic forces, taking

up 99 to 99.5 % of the operations. The MFLOP rates range between 50 and 90 % of

the peak speed, indicating that the implementation performs in the order of magnitude

of the machine peak speed.

4.5.3 Influence of mesh size

In Chapter 3, we have demonstrated that large meshes are needed for accurate results.

Figure 4.9 compares the convergence of the large mesh and the small mesh from Ta-

ble 4.2. The larger mesh leads to slower convergence, but static and dynamic are slowed

down by the same amount, so all other experiments are performed on the small mesh.
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Figure 4.8: Impact of the Newton tolerance in the line search. (Veronda-Westmann

problem, Newton line search). The performance is only slightly affected, but a looser

tolerance is quicker.

material relaxation line search % peak iter/sec MFLOP/iter

Linear elasticity dynamic 49 628 0.2

static 56 708 0.2

St Venant Kirchoff static Newton 48 71 1.7

static Secant 53 113 1.2

dynamic 62 426 0.4

neo-Hookean static Newton 85 109 1.9

static Secant 77 144 1.3

dynamic 54 356 0.4

Veronda-Westmann static Newton 90 91 2.4

static Secant 80 120 1.7

dynamic 61 327 0.5

neo-Hookean static Newton 73 12 14.2

(large mesh) static Secant 66 16 9.9

dynamic 49 41 2.9

Table 4.5: Machine dependent performance numbers for a PIII/1Ghz machine cap-

tured from the first 1.0 seconds that experiments ran. Timings per second are approxi-

mate numbers, and vary by a few percent across runs. The peak MFLOP rate is defined

to be 246 MFLOP/sec: the performance for repeated double vector add of size 1024.



76 Relaxation algorithms

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0  0.5  1  1.5  2  2.5  3

en
er

gy
 d

iff
er

en
ce

seconds

Neo-Hookean material

static CG (secant)
dynamic (underdamped)

dynamic (critically damped)
dynamic (overdamped)

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0  5  10  15  20  25  30  35  40  45  50

en
er

gy
 d

iff
er

en
ce

seconds

Neo-Hookean material, large model

static CG (newton)
dynamic (underdamped)

dynamic (critically damped)
dynamic (overdamped)

Figure 4.9: Cantilever experiment with neo-Hookean elasticity for different mesh sizes.

The small model (top) and the large model (bottom) offer similar convergence.
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4.5.4 Linear elasticity

Figure 4.10 shows the convergence of the linear case. In this case, the CG iteration

outperforms dynamic relaxation, by approximately a factor 5 to 10. For example, an

energy error of less than 10−4 takes 0.10 seconds with linear CG, and 0.89 seconds

with dynamic relaxation.
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Figure 4.10: Convergence speed for the linear model, energy error

4.5.5 Nonlinear material models

For the nonlinear case, the CG iteration is as quick as a dynamic relaxation with optimal

parameters; this is independent of mesh size and material characteristics. This can be

seen in Figures 4.11 and 4.9. For St. Venant Kirchoff elasticity in Figure 4.12, dynamic

relaxation is at a slight advantage. This seems to be caused by the element inversion.

Stiffer material does not lead to element inversion. When the same experiment is re-

peated with E = 2 · 104, both algorithms again have roughly the same speed, shown in

Figure 4.13.

The lack of physical interpretation of the intermediate results of the CG iteration is

evident in Figure 4.14. The static solution itself has a minimal residual force, but during

the iteration the residual decreases erratically, and does not even descend monotonously.

On the other hand, residual forces decrease smoothly during dynamic relaxation.
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Figure 4.11: Convergence speed for exponential Veronda-Westmann
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Figure 4.12: Convergence speed for St. Venant-Kirchoff material
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Figure 4.13: St. Venant-Kirchoff material with stiffer material (E = 2 · 104, η = 27s−1).

4.5.6 Influence of mesh quality

The influence of mesh quality is demonstrated in Figure 4.15. A single short edge was

introduced in the mesh, by inserting a node close to an existing node, using a Delau-

nay incremental flip algorithm [40]. The effect on linear CG is negligable. This can be

attributed to the observation in Subsection 2.4.1 that the magnitude of isolated eigenval-

ues does not affect the performance of linear CG. In a dynamic setting, the critical time

step is inversely proportional to the smallest edge length, hence element shape severely

influences the convergence. The influence on the nonlinear CG iteration is also notice-

able, but has a much smaller impact. In this experiment, the scale-dependent secant

method failed to converge, showing its limited usefulness in practice.

4.6 Discussion

We have compared dynamic relaxation and iterative optimization as methods for finding

the steady state of a solution. Dynamic relaxation has linear convergence for the linear

problem: the number of iterations is proportional to
√

cond2(M−1K), where M is

the lumped mass matrix. For static CG the number of iterations depends on the set of

eigenvalues, and in the worst case, it is bounded by
√

cond2 K. For uniform meshes and

constant mass density, M is almost a multiple of I which suggests that the performance

of both is similar.

There are more similarities: dynamic relaxation can be speeded up by increasing
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mesh, for the Neo-Hookean material model. Top linear CG. In center the CG based
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nodal masses of small elements. Analogously, a Conjugate Gradient iteration could be

speeded up by using diagonal preconditioning. Parallels between time stepping algo-

rithms for differential equations and optimization based solutions have been pointed out

before [50]. In this case, considering the convergence analysis of CG, a direct parallel

does not hold.

In the test-case that we have presented, the difference in performance between static

CG and dynamic relaxation in the linear case is large: a factor 5 to 10. This could be

caused by the symmetry of the test object: this symmetry implies that the stiffness

matrix has duplicated eigenvalues. This favors static iteration, as clustered eigenvalues

accelerate the convergence of linear CG.

For nonlinear models, the experiments indicate that the performance is comparable.

There are qualitative differences between both methods: the physical underpinnings

of relaxation ensure a smooth decrease in residual force, and non-conservative forces,

such as friction to be added to the model. However, for fast convergence, both ∆t and η

must be selected experimentally for the situation at hand, and both parameters directly

influence convergence speed. Moreover, they also depend on mesh characteristics, and

in the nonlinear case the time step also depends on the magnitude of the forces applied.

If a simulation includes online mesh changes or nonlinear elasticity, both parameters

must be adjusted continuously.

Our test situation is inspired by a soft tissue simulation scenario. However, it has

limited use in predicting the applicability of an algorithm in practice. The reason is that

the experiment uses gravity, instantaneously switched on, as a test load. First, gravity is

a load that is distributed over the entire body, while loads in interactive simulations are

typically effected by simulated instruments, which act locally. Such localized loads have

more high-frequency components, and this leads to more high-frequency components

in the error. On the other hand, quick convergence requires choosing η low. In this

case, the high-frequency components of the error will be underdamped and will persist

for a long time. This will be noticeable as a “jelly like” vibrations. Secondly, the load is

switched on instantaneously while the object is far from its resting position. Interactive

simulations run at high update rates, and so loads change slowly between iteration steps.

In practice, a deformation computed in the previous iteration step will be a good starting

solution for the next step.

For the small mesh and the material parameters selected, the critical time-step is

approximately 1 ms and requires an update rate of 1000 Hz. Our machine runs the

dynamic simulation at 300 to 600 Hz, depending on the material model. This is close

to real-time. Yet, it is not clear whether meaningful simulations can be constructed

with meshes as small as these. Moreover, an accurate simulation should simulate me-

chanical properties of soft tissue, which are known to include viscoelastic effects and

incompressibility. Both lead to larger FEM problems. For viscoelasticity, the history of

deformation adds extra degrees of freedom. Incompressible problems introduce pres-

sure as an additional variable to the problem, and require more degrees of freedom for

the displacement functions to ensure existence of solutions.

In summary, the approach presented in this chapter already reaches the limits of

interactive computation, while the material models used do not reflect real tissue be-

havior. We must address these limits for better simulations. We can distinguish three
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limits:

• the cost per iteration step,

• the condition number of the problem,

• the relaxation algorithms used.

A cost of a single iteration is determined by the number of elements and the per-

element cost of the force computations. This implies that mesh change routines should

keep the mesh size low, and only refine meshes where needed. Additional speedups

can be gained by using parallel processing, at the cost of synchronization overhead and

increased hardware costs.

Badly shaped elements increase the condition number of the problem slowing down

the convergence of iterative methods. Explicit dynamic methods are especially sus-

ceptible to instabilities caused by small elements, so small elements require the use of

small time-steps. A way to cope with such instabilities, is to use adaptive time steps

for parts of the mesh [11]: this addresses the problem of instabilities, but introduces

some overhead in keeping track of mesh parts that use different time steps. To a lesser

degree, badly shaped elements also slow down static techniques. Therefore, it seems

worthwhile to prevent such degenerate elements from occuring in the first place.

For FEM discretizations where element sizes are proportional to h, and volumes in-

versely proportional to the element count, the condition number of the stiffness matrix

satisfies cond2(K) ∼ 1
h2 [6]. A larger mesh, needed for a more accurate discretization,

not only has more expensive iteration steps, but also requires a larger number of them.

This is partly caused by the techniques that we have used: they are naive in the sense

that they only use localized displacement/force calculations: applying a force locally

to an object causes it to deform globally. For a global deformation, information must

travel from the location where force is applied through the entire mesh. Both CG and

dynamic relaxation update the location of a node using information from neighboring

elements. The convergence of such an iterative method is therefore bound by the di-

ameter of the mesh, since that determines the speed at which deformations propagate

across the mesh.

This suggests that more advanced techniques should be used for improving the per-

formance of relaxations. Preconditioning reduces the complexity of CG iterations, but

is usually implemented with explicitly stored stiffness matrices. Multigrid methods [14]

can solve FEM problems with n degrees of freedom in O(log(n)) iterations, by run-

ning iteration steps at multiple resolutions. The method requires that the problem is

simulated on meshes with lower resolutions as well. For general unstructured meshes,

computing such coarser grids is a complex task in itself [1], which suggests the use of

structured meshes.

4.7 Conclusion

We have compared nonlinear Conjugate Gradients and dynamic relaxations for a sce-

nario that is inspired by simulation of soft tissue, and found that nonlinear CG offers
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similar convergence as dynamic relaxation with optimal parameters. Therefore, both

methods should be distinguished by their qualitative differences.

Dynamic relaxation offers a physical interpretation of the iteration results, but re-

quires manual selection of simulation parameters, and the process is vulnerable to in-

stabilities. Static iterative methods are more robust, but their intermediate results have

no physical interpretation and are produced at lower frequencies.

Both approaches are affected by mesh quality and mesh size. In other words, better

meshes promote faster convergence per iteration step, and smaller meshes offer cheaper

iteration steps. Therefore, mesh modification algorithms, such as cuts, should keep

mesh size down and mesh quality high. This observation is taken to its consequences

in Chapter 5.

It can be argued that the experiment is limited in its scope, and not directly relevant

to interactive surgery simulations. This suggests that more carefully setup experiments

would give a better appraisals of both techniques. However, given the size of the prob-

lem analyzed and the performance numbers in Table 4.5, it seems more worthwhile to

direct future research towards techniques to speed up either relaxation technique. Even

when using high-quality meshes, both unpreconditioned CG and dynamic relaxation

easily strain current computing hardware beyond its limits. It is therefore necessary to

use more advanced algorithmic techniques to speed up deformation calculations. This

observation will be taken to its consequences in Chapter 6.



Chapter 5

A Delaunay approach to

interactive cutting in

triangulated surfaces

5.1 Introduction

Our approach to deformation is based on the Finite Element Method (FEM). In this

method, mesh size determines the computational requirements of a simulation. Larger

meshes result in more degrees of freedom in the discretized problem, so solutions take

more time to compute. This has motivated our work in Chapter 3, where we have

tried a technique for simulating cuts that does not increase mesh size like subdivision

techniques do. This technique creates flat elements in the mesh as artefacts, and we

have found that they cause a considerable slowdown of the Linear CG algorithm. In

Subsection 4.5.6 we have seen that element shape also affects the nonlinear CG and

dynamic relaxation algorithms. Hence, mesh change operations, such as simulated cuts

or cauterizations, should not only keep mesh size low; they should also keep elements

of the mesh well-shaped. In this chapter1 we address this problem for cutting in tri-

angulations, by presenting a method that keeps mesh size low and keeps mesh quality

high.

A FEM discretization is a form of interpolation: the continuous unknown in the

problem is interpolated, so that the differential equation is transformed into a set of

equations for a finite number of variables. The original problem is a differential equa-

tion, hence it is important that the derivative of the solution is approximated well by the

interpolation. When we look at the influence of element shape on the derivative, we see

that the large angles cause unbounded errors in the derivative. This is illustrated in 2D

in Figure 5.1, and a similar argument also holds in 3D. Therefore, large angles should

always be avoided. The convergence speed of iterative algorithms for linear problems

1This chapter was based on a paper published at the Fifth International Workshop on Algorithmic Foun-

dations of Robotics (WAFR 2002) [74].

85



86 Chapter 5. Delaunay cutting in triangulated surfaces

is related to the condition number of the stiffness matrix, as shown in Sections 4.1

and 2.4. The condition number is the ratio of largest and smallest eigenvalue of the

stiffness matrix, and these eigenvalues can be bounded by eigenvalues of separate ele-

ments: each element can also be seen as a separate elastic object, whose deformations

are also described by linear elasticity, and their elastic behavior can be condensed in a

small element stiffness matrix. Therefore, mesh quality can be optimized by optimizing

the shape of individual elements. In a second-order elliptic partial differential equation

(like linear elasticity), both very large and very small angles, and small elements cause

high condition numbers [87]. Therefore, a mesh with ‘round’ elements, i.e. no angles

close to π and 0, and uniform element sizes is a good general purpose mesh.

� �
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Figure 5.1: The derivative of a linear function with values f(a), f(b) and f(c) in triangle

abc in the plane has directional derivative ∂f/∂y =
f(c)−(f(a)+f(b)/2)

H
. When H → 0,

the derivative tends to infinity.

Simulation of cuts in surgery simulation is related to simulation of other destructive

surgical procedures. The first operation to have been simulated on volumetric meshes

is cauterization. This was done by removing elements in contact with a virtual cauteri-

zation tool [26]. A disadvantage of element removal is that it produces a jagged surface

on the virtual tissue.

For cutting, subdivision methods are the norm [11, 46, 66]: elements that are in

contact with the scalpel are marked active, and subdivided to produce a cut conforming

to the scalpel position. The subdivision moves along with the scalpel during its stay

in an active tetrahedron. When the scalpel leaves an active element, the subdivision

is entered in the mesh permanently. A 2D example of subdivision is in Figure 5.2.

Subdivision methods always increase the size of the mesh. Moreover, these methods

tend to produce degeneracies. This is caused by the use of an active region. Mesh

modification is done only within a fixed region of the mesh, and if the scalpel moves

close to the boundary of that region, poorly-shaped elements are inevitable. Ganovelli

and O’Sullivan [45] try to counter the degeneracies caused by subdivision cutting. They

deal with these degeneracies by collapsing short edges of the mesh. This approach does

improve the quality of the mesh, but this solution does not repair all inconsistencies: not

all edges may be contracted, and flat triangles and tetrahedrons, which do not contain

short edges but are still degenerate, are not dealt with.

In Chapter 3 we have tried an approach where scalpel nodes are snapped to the tra-

jectory swept by the scalpel. The advantage of this method is that the mesh size remains

small, and few short edges are created. However, there are a number of disadvantages:

since no new nodes are created, the resolution of the cut is bounded by the mesh res-

olution. The incision does not reach up to the position of the scalpel, but lags behind

it. A more serious problem is that snapping can result in degenerate elements in the
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Figure 5.2: A cut produced by a subdivision method. The cut produces many small

and flat triangles.

mesh. Such degeneracies are dealt with by subdividing flat elements, and collapsing the

resulting short edges, effectively removing the flat element. Unfortunately, not all edges

can be collapsed. Using existing mesh features as a basis for mesh modification is prob-

lematic: when the scalpel is not especially close to a mesh feature, it may not be possible

to match the mesh topology to the scalpel path without introducing degeneracies.

In summary, producing high quality cuts in tetrahedral meshes is a difficult problem.

For cutting in surfaces, there is an analogous problem, which has the same difficulties as

volumetric cutting approaches. Serby et al. [84] propose a method which also relies on

a form of node snapping: the scalpel is modeled as a line segment, and nodes from the

mesh are projected onto that segment. In a post-processing step, the edge lengths and

element volumes are optimized using a particle system. The result is a good looking

cut, without a decrease in mesh quality and size. However, in reality, the path of a

scalpel is not a large line segment, but a concatenation of several small ones, and their

approach does not seem to address this issue. Bruyns et al. [21] use surface cutting with

subdivision in large-scale simulations of various procedures.

In light of the complications of volumetric cutting, we will take a step back, and

analyze the cutting problem for surface meshes first. In this chapter we will present

a method that produces cuts in a triangulated surface which does not decrease the

mesh quality and keeps the mesh size low. We have analyzed this problem primarily

to gain insight into the cutting problem for 3D tetrahedral meshes. Nevertheless, this

technique could be applied in surgery simulation for membrane-like structures, such as

skin or intestine.

5.2 Cutting in 2D

We state the general mesh cutting problem as follows: given a starting mesh, and posi-

tions of a user-controlled scalpel, modify the mesh at every moment to show an incision

that represents the past trajectory of the scalpel, and ends exactly at the scalpel. The
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challenge in this problem is to produce a well-shaped mesh with few elements. The sim-

plest case is the two-dimensional form. Here the mesh is a triangulation in the plane,

and the virtual scalpel is a point. The challenge is to produce elements that have no

large angles and no short edges.

5.2.1 Delaunay triangulation

Since we are putting emphasis on the quality of the mesh, we briefly review the Delau-

nay Triangulation (DT), a popular technique for generating a well-shaped triangulation

of a given set of points. The DT of a set of points is defined as a triangulation where the

circumcircle of every triangle does not contain any other points from the set. This prop-

erty is also referred to as the empty-circle property. The empty-circle property can also

be defined for edges of the mesh: an edge is called legal or Delaunay when the circum-

circles of its incident triangles do not contain the opposite node of the other triangle.

An example of an illegal edge is in Figure 5.3. Delaunay triangulations and Delaunay

edges are intimately related: a Delaunay triangulation only has Delaunay edges.

Non-Delaunay or illegal edges of a triangulation can always be flipped: the two

triangles incident with the edge always form a convex quadrilateral, and the diagonal

may be switched. The flipped diagonal is always Delaunay, and the minimum angle of

the pair of triangles is always increased, thus improving mesh quality. Flipping illegal

edges only affects a single part of the mesh, so it can be seen as local improvement

strategy. The Delaunay triangulation can be constructed by starting with an arbitrary

triangulation and flipping illegal edges until none are left. The final result maximizes

the minimum element angle. This is called the maxmin-angle property.

There are various ways to measure element quality: for example, minimum angle,

circumradius to shortest edge ratio, circumradius to inscribed radius ratio, etc. In 2D all

these measures are equivalent up to constant factors [63], so the maxmin-angle property

of the DT means that it is a reasonable meshing technique for virtually all element

quality measures. When coupled with algorithms for point insertion it is a basis for

many refinement meshing techniques [10,25,82].

Figure 5.3: An illegal edge has a triangle whose circumcircle contains the opposite

vertex of a neighboring triangle (left). By reconnecting (‘flipping’) the edge, the new

circumcircles only contain the vertices it circumscribes (right).
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5.2.2 Cutting and Delaunay flips

Our problem, cutting in meshes, is different from the standard meshing problem. A

starting mesh is given, and the shape of our domain is variable: as the cut progresses,

the shape of the boundary is changed. The Delaunay Triangulation assumes a given

set of points, and it is always convex. Cuts result in non-convex boundaries, so the

standard DT is not directly usable. Nevertheless, we can retain the idea of using edge

flips to locally improve the mesh.

Our approach works as follows: when cutting, the scalpel is attached to a node, the

active node, so moving the scalpel moves the active node. The active node is always

part of the boundary, so it is incident to two boundary edges, the cut edges. During a

cut, these edges almost coincide geometrically, and form an incision. We call triangles

incident with the active node active triangles. The active node is moved, and after each

movement, local remeshing is applied to the active triangles. The remeshing process

consists of the following actions.

• Edges are flipped to improve the element angles.

• If an internal node is found close to the active node, it is removed.

• The incision is split, thus introducing new nodes to approximate the scalpel path.

The net effect of the last two actions is that nodes are removed in front of the scalpel,

and inserted behind the scalpel. The technique is demonstrated in Figure 5.4; a more

elaborate example is in Figure 5.8.

The Delaunay criterion tends to flip away triangles with angles approaching 180◦,

since these have large circumcircles. Nodes that are close together get connected. Such

triangles have a small angle opposite a short edge. These triangles are also undesirable,

so they are removed by by the second action.

When the scalpel enters the mesh, it is close to the boundary of the mesh, so a

realistic incision would contain very short edges. To prevent these short edges, creation

of incisions is postponed. When the scalpel enters the mesh close to an existing node,

the node is moved and labeled active. If it enters in somewhere else, a new node marked

active is inserted at the entry point. The active node moves along with the scalpel,

creating a temporary dent. When the active node is sufficiently far from the entry

point, it is “fixed up”: nodes are added at the entry point, creating an incision. The

procedure is shown in Figure 5.6. If the scalpel is retracting (moving away from the

object) before this fix-up happens, the dent is left in the mesh permanently.

After the entry fix-up, the cut edges are in almost in the same location. From a

geometric point of view, we can identify both cut edges into a single edge, and check

if this edge satisfies the empty-circle criterion. If it does not, new nodes are inserted,

where the line connecting nodes opposite the cut edges intersect the scalpel path. We

call this procedure a incision split, and it is demonstrated in Figure 5.5. When the

scalpel passed that point previously, close nodes were removed, so the split will not

lead to short edges. The newly inserted nodes are dilated slightly, to prevent numerical

problems when a path self-intersects. The new nodes always lie on a line that connects

two existing mesh nodes, hence the accuracy of the represented trajectory is bounded

by the resolution of the starting mesh.
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remove: flip: incision split:

Figure 5.4: The evolution of a simple 2D cut is depicted from left to right. The key

steps are to flip edges (center), to remove close nodes (left), and to insert nodes behind

the scalpel (right).
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Figure 5.5: During an incision split, nodes are inserted in the cut edges. This happens

when ac, with c = (c1 + c2)/2, fails the empty-circle criterion as diagonal of aco1o2.

The newly inserted nodes c ′

1 and c ′

2 are inserted where o1o2 intersects the scalpel path.
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fixup

entry point

entry

scalpel movement

Figure 5.6: Incisions are postponed when the scalpel enters the mesh.

A similar situation arises when the scalpel exits. In this case, the scalpel comes

arbitrarily close to the boundary of the mesh. To prevent arbitrarily flat elements from

occuring, the exit point is predicted, and the cut is finished before the scalpel actually

hits the boundary. At every step, the movement of the scalpel is extrapolated. When

this extrapolation hits the boundary, and is close to the active node, the cut is finished:

a node is inserted at the extrapolation, and the cut is dissected. This exit procedure still

leaves relatively short edges permanently in the mesh. To rectify this, these edges are

contracted. The procedure is shown in Figure 5.7 The boundary edges that are created

with this exit operation are added to a list of forbidden edges. These edges are not

tested for collisions during ensuing movements. This prevents artifacts when the actual

scalpel movement differs from the predicted movement. If the scalpel is sufficiently far

from the exit point, they are eligible for collision checking again.

5.3 Surface cuts in 3D

Triangulated surfaces in 3D are a common tool in computer graphics. They have

also been used for surgery simulations [19, 22]. In these cases elastic behavior was

simulated with damped mass-spring systems instead of the FEM. Nevertheless, the

concerns for mesh quality continue to hold: flat elements are inverted more easily, and

small elements correspond to short springs with small masses. Their high vibration

frequencies translate into small time steps, which makes time integration expensive.

In the 2D scheme, the scalpel is a point, and it is attached to a single active node.

Triangles are remeshed in the vicinity of the active node. There are two generalizations

of the 2D scheme: first, the remeshing process around an active node can be done for

curved instead of flat surfaces, assuming a line-shaped scalpel. Second, a line-shaped

scalpel can intersect a curved 3D surface in multiple points, so a consistent model of

cutting allows multiple incisions, each with an active node. These active nodes can

interact: incisions may meet, leading to annihilations, or incisions may hit folds, leading

to branches.
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(a) (b)

(c) (d)

Figure 5.7: Exits are predicted: when the extrapolated scalpel movement hits a bound-

ary closeby (a), then a new node is inserted at that location (b). The new edge is

dissected (c) and contracted (d).

We assume that the surface is given as a triangle mesh with a boundary, and that no

further information on the surface shape is known. The virtual scalpel is a line segment,

and its movement is given by sampled positions of its endpoints. The endpoints are

assumed to move with constant velocity between the samples. During a cut, active

nodes are part of the boundary of the surface. The two boundary edges incident with

an active node again are called cut edges, and define an incision.

5.3.1 Single incision

A scalpel movement is handled as follows: the line segment representing the new scalpel

position is intersected with all active triangles. If a single intersection is found, then the

active node is moved to that point. The active triangles are subjected to flipping. The

2D criterion is used to determine whether an edge is flipped: an edge is considered

illegal when the two triangles incident to that edge would be illegal in a 2D triangulation.

Conceptually, we could say that the incident triangles are unfolded to be coplanar, and

then the two-dimensional criterion is used. It is not clear whether this flipping criterion

leads to a terminating algorithm when applied to the edges of an arbitary 3D surface

mesh. In this sense, this technique is now truly a heuristic.

Flipping on 3D surfaces is a delicate operation: some flips are topologically impossi-

ble (as demonstrated in Figure 5.9). This means that the all operations must be checked

for failure cases.

Incisions are split analogously to the 2D case: during a cut, the last path of the

scalpel is stored. When the cut edges violate the 3D empty-circle criterion, new nodes

are inserted where the path is closest to the line connecting the nodes opposite the cut

edges.
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Figure 5.8: Delaunay cutting on a triangle mesh. Both the mesh itself and the boundary

are shown. The scalpel trajectory is indicated with a dotted curve. Notice how strongly

curved path segments are cut short in the realized cut. The starting mesh was regular

and consisted of 722 triangles. The cut increased mesh size by only 57 triangles.
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Figure 5.9: Not all flips in 3D are topologically valid: when flipping the bold edge on

the left, the new edge pair (bold) occurs twice in the resulting complex. The triangles

are displayed in an exploded view for clarity.

Node removal is done in a heuristic manner. Suppose that we want to remove a

node v that is incident with n triangles. We say that two adjacent triangles incident with

v form an ear, if the sum of the angles opposite v is less than π. When removing v, all

ears are flipped until v is incident with only 3 triangles. Then v is removed, and the

involved edges are flipped back if they violate the empty-circle criterion. Ears always

exist: suppose that the triangles incident with v are numbered i = 1, . . . , n, and have

angles αi, βi, γi, where γi is the angle at v (See Figure 5.10). Then there must be an

α(i+1) mod n + βi < π, since nπ =
∑

i(αi + βi + γi) =
∑

i(α(i+1) mod n + βi) +
∑

i γi,

and
∑

i γi > 0.

γ1

α1

β1

γ2

α2

β2

v

w

Figure 5.10: When removing a node, ears are flipped until v is in only 3 triangles. An

ear has α(i+1) mod n + βi < π, so the triangles incident with vw form an ear.

When the scalpel is almost parallel to the surface, small movements of the scalpel

can result in large movements of an active node. For this reason it is necessary to

control large movements. Large movements are subdivided using a maximum distance.

This distance is computed as the minimum for all distances between the line spanned

by the scalpel and lines spanned by the edge opposite the active node, as indicated

in Figure 5.11. If the end-points of the scalpel segment cannot move further than

dmax as indicated in Figure 5.11, then the scalpel will not hit that edge. This can be

shown as follows: suppose that the scalpel position is given by the line segment ht for

some h, t ∈ R
3, and the points corresponding to h and t move by amounts p and

q ∈ R
3 respectively, with ‖p‖, ‖q‖ < dmax. If the movement puts the scalpel on the line

spanned by the edge, then λ(p + h) + (1 − λ)(q + t) is on the edge indicated for some

0 ≤ λ ≤ 1. By the definition of dmax we have

dmax ≤ ‖(λ(p + h) + (1 − λ)(q + t)) − (λh + (1 − λ))t‖
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On the other hand, the latter expression equals ‖(λp + (1 − λ)q‖, which is bounded by

λ‖p‖ + (1 − λ)‖q‖ < dmax. This is a contradiction, so the movement (p, q) can not hit

the edge.

dmax

active node

scalpel

Figure 5.11: The maximum movement dmax for a scalpel and a single triangle. The

total maximum distance is given by the minimum over all triangles incident with the

active node.

5.3.2 Multiple incisions

In 3D, the scalpel can interact with the entire surface, and the scalpel may enter the

mesh in any place. We can distinguish three cases, as demonstrated in Figure 5.12: the

scalpel hits a boundary edge of the mesh, the scalpel tip enters through the surface,

or the scalpel hits an internal edge of the mesh. The first case is handled completely

analogous to the 2D case. The rest of the cases do not occur in 2D.

Figure 5.12: There are three ways for the scalpel to enter: by hitting the boundary,

entering with the tip or hitting an exposed internal edge.

In the second case, a new active node is inserted in the incised triangle. When

the active node is far enough from the entry point, a node is inserted at the original

entry point. The result is an edge that connects the entry node with the active node.

This edge is changed into a real incision, when the split action (shown in Figure 5.5)

is executed. Until that time, the edge is constrained, so it cannot be flipped away. The

third case is when the scalpel hits an exposed edge of the mesh. Then a single active

node is inserted in the edge. During the next movement, the cut will branch into two

incisions.

The scalpel is represented by a line segment, and line segments can interact with

curved surfaces in many places: the scalpel may incise the surface in multiple locations,

and during a cut a single incision may branch into multiple incisions, as is shown in

Figure 5.14. We could apply the 3D remeshing process from Subsection 5.3.1 if we

could rule out any interactions between different incisions. Fortunately, this seems

possible: we can forbid interactions by ensuring that every triangle is incident with at
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most one active node. This is achieved by the following restrictions on the meshing

process.

• Incisions in edges or triangles that already active are rejected.

• Nodes that separate active nodes cannot be removed.

• Edges that separate two active nodes cannot be flipped.

When an active node moves towards a restricted node, an annihilation is performed: all

edges from the restricted node to an active node are dissected. This is demonstrated in

Figure 5.13. When an active node comes close to an edge separating active nodes, then

its movement is extrapolated, and a new node is inserted at the extrapolated point. The

annihilation now proceeds with the newly inserted node. A normal boundary exit is a

special case of an annihilation.

Forbidden to remove

Forbidden to flip

Scalpel

Figure 5.13: Edges that separate incisions may not be flipped, nodes separating inci-

sions may not be removed. Instead, when an active node comes too close to such a

forbidden node or edge, an annihilation is performed (right).

Unfold

Figure 5.14: Folded surfaces may lead to branching cuts (top). In such cases, a move-

ment will cause the scalpel to intersect multiple triangles (bottom; intersection points

are indicated by dots). When this happens, multiple incisions replace the old active

node.

When a scalpel movement is processed, the next position of the active node is de-

termined by intersecting all triangles incident with the new scalpel position. If multiple

active triangles are intersected, as demonstrated in Figure 5.14, then the cut will branch.

New incisions are inserted, the old incision is marked as no longer active, and the edges
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connecting old and new active nodes are dissected. During a branch, the new nodes are

close to the original incision. This leads to short edges and degenerate triangles. When

the scalpel progresses further, these short edges disappear.
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Figure 5.15: Intersecting a line sweep with an edge.

Collisions are computed as scalpel/edge intersections. The procedure for computing

such intersections is as follows. We assume that the scalpel moves from ht to h ′t ′ for

some h, t, h ′, t ′ ∈ R
3, and that we want to compute intersections with the line segment

ab, for a, b ∈ R
3 (See Figure 5.15). In other words, we want to solve

p = γh + (1 − γ)h ′

q = γt + (1 − γ)t ′

λp + (1 − λ)q = µa + (1 − µ)b

λ, γ, µ ∈ [0, 1]

Substituting the first two equations in the last one yields the equation

λγ((h − t) − (h ′ − t ′)) + λ(h ′ − t ′) + µ(b − a) + γ(t − t ′) = b − t ′.

This is may be seen as a linear system in four variables. If we set x = (λγ, λ, γ, µ),

c = (h − t) − (h ′ − t ′) and write the 3 × 3 matrix A for (h ′ − t ′, t − t ′, b − a), then

we can rewrite the equation as

(c|A)x = b − t ′, (5.1)

where x ∈ R
4 is the unknown. When viewed as a linear system, a solution maybe given

as y + αk, where y ∈ R
4 is a particular solution of the system, and k ∈ R

4\{0} is in the

kernel of (c|A). We set k = (1, −A−1c) and y = (0, A−1(b − t ′)). Using these values,

we may derive a quadratic equation for α from Equation (5.1). We thus obtain triples

(λ, γ, µ) that define intersections.
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5.4 Results

The 2D version of this algorithm has been implemented in a small application written in

Python. The mouse controls a virtual scalpel that can perform cuts in uniform meshes

on a square grid. A sample is shown in Figures 5.8 and 5.16.

Fix-up, node removal and exits depend on points being close to or far from the

active node. These notions are expressed in global constant thresholds for the distance.

These thresholds are denoted by εedge for node removal, εentry for entry fixup, and εexit

for predicting exits. They were set to a fraction of the average global edge length h̄.

For Figure 5.8 we used εedge = h̄/3, and for Figure 5.16 we used h̄/3 and h̄/8. The

entry and exit tolerances were set to h̄/6. This choice is somewhat arbitrary, but if

εedge is set larger than h̄/2, mesh complexity will be reduced during a cut. Lower values

set a threshold for edge length. This does not directly control the accuracy of the cut

trajectory represented in the mesh: the example in Figure 5.16 shows that lowering the

threshold can decrease accuracy.

In Figure 5.16 the new cutting scheme for 2D is compared with a subdivision ap-

proach, where each sliced triangle is replaced by three triangles. Element shapes are

much worse in the subdivision mesh, as evidenced by the histograms of minimum and

maximum triangle angle in Figure 5.17. On the other hand, the subdivision cut follows

the scalpel path more closely.

The 3D version of this algorithm has been implemented in a small application writ-

ten in C++. It also uses the mouse to obtain scalpel movements. Samples are shown

in Figures 5.18 and 5.19. The 3D version assumes that all events are strictly ordered

in time, and does not take special precautions for degenerate cases. When the scalpel

enters or exit in a movement parallel to the surface, multiple events happen simultane-

ously, which leads to various failures.

Flips can be implemented in constant time and node removals can be accomplished

in O(d log d), where d is the degree of the node [34]. The expected value of d in surface

meshes is 6, so the total remeshing process for a single movement can be implemented

in constant time, which guarantees that the remeshing process itself is scalable to larger

meshes. However, in the 3D version the scalpel can interact with all parts of the mesh

at every step. In practice, efficient collision detection will be needed for a scalable im-

plementation. Also, the number of events caused by a single scalpel movement depends

on the angle between the surface and the scalpel. However, for small meshes (say,

1000 triangles) response of the 3D version is instantaneous when scalpel is more or less

perpendicular to the surface (on a P3/1Ghz).

5.5 Discussion

We have presented an approach to cutting in triangulations that produces measurably

smaller and better-shaped meshes than subdivision methods. The method is based on a

model of a point-shaped scalpel that moves an active node through a static mesh. Dur-

ing movements, the area around the active node is remeshed. The approach generalizes

curved surfaces in 3D, where the scalpel is line-shaped. The technique bears some re-

semblance to interactive mesh dragging, a technique proposed by Suzuki et al. [90] to
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Figure 5.16: The same cut performed with both subdivision (top) and Delaunay cutting

(center, εedge = h̄/3 and bottom, εedge = h̄/8). The starting mesh contains 50 triangles.

The subdivision cut increases size by 62 triangles, the Delaunay cut in the center by 10,

and at the bottom by 12 triangles. The scalpel trajectory is indicated with a dotted line.

Notice that the mesh in the center picture matches the trajectory better than the mesh

at the bottom, although εedge was smaller.
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Figure 5.17: Histogram of minimum (top) and maximum (bottom) element angle for

the subdivision and h̄/3 Delaunay cut from Figure 5.16. The peaks correspond to

the unaltered triangles (minimum angle π/4, maximum angle π/2). The Delaunay cut

(right bars) yield less extreme element angles than the subdivision cut.

allow dragging operations on triangle surfaces in interactive geometric modelers. It is

possible to generalize the single-incision 3D technique to multiple incisions consistently.

The technique that we have described is heuristic: it employs more or less arbitrary

constant tolerances εedge, εexit and εentry. This implies that it is only usable for meshes

with a uniform resolution, and that suitable values must be computed beforehand. In

retrospect, it might have been wiser to consider an edge too short when the opposite

angle in incident triangles is shorter than some threshold. This criterion is also local but

scale independent.

We have used a static model for mesh cutting. In the context of surgery simulation

and deformable models, this is not realistic. Surgical instruments always interact with

the deformed mesh, and exert force on the tissue that is cut. A full-fledged simulation

would be able to respond to movements with reaction forces, which could be relayed to

a force-feedback device. Deformation could be handled as follows: both the 2D and 3D

algorithm include a step where the new position of the scalpel is intersected with parts of
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Figure 5.18: In principle, our approach also works for a cut branching into three cuts.

The mesh has very sharp angles and a limited resolution, so edge flips produce an odd

end result.

the mesh. When deformation is present, these intersections are done with the deformed

mesh. The deformation of the triangles involved can be used to translate the point back

to the reference situation. Our technique can then proceed as described using reference

locations. However, this does not address a more fundamental limitation: our model

assumes that a more or less uniform mesh is desirable. It can be expected that more

accuracy for the deformations are required close to the scalpel, since this is where forces

are exerted on the material. When accurate deformations are needed, the mesh should

be adaptively refined close to the scalpel incision, and coarsened further away.

Entry and exit are also changed by the presence of deformation: surgical instru-

ments must overcome a threshold in force to puncture membranes covering organs [15,

36]. Cutting requires less force than puncture, so after the instrument enters the tissue,

it will make an incision immediately, ensuring that entry does not lead to arbitrarily

small incision depths. This is a physical variant of our entry-fixup, and it would make

our own entry-control superfluous. A similar observation might also hold for a scalpel

finishing a cut. Removing entry control is attractive, since our approach depends on a

heuristically chosen quantitity εentry, and it is possible to create a deadlock situation: if a

scalpel entry has to be fixed up, the active node is part of the boundary. It is not always

possible to preclude element inversion when moving boundary nodes, so the step-size

control for large movements may halt further movements in some cases.

During a cut, nodes are added and removed; the nodes are added on line segments

connecting existing nodes, which implies that the overall resolution of the mesh does

not increase. Some interactive simulations of deformable objects refine meshes on de-

mand to provide more accurate results in the region of interest [36,76,100]. Delaunay

refinement algorithms [25,82] seem to fit our framework of using Delaunay Triangula-

tions, however more research is needed before this can be used in practice. Refinement

algorithms need input geometries without small angles. Moreover, in 3D a surface tri-

angulation is an approximation of a smooth surface. It is necessary to know the original
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Figure 5.19: Screenshots from the 3D prototype, showing the cuts effected with mouse

movements. The mesh is a 392 triangle surface mesh of a Gaussian bell-curve. The

first 5 images show the evolution of two cut movements. The final image demonstrates

more self-intersecting paths.
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surface for determining where to insert new vertices; existing 3D surface meshing al-

gorithms, such as Chew’s guaranteed quality surface Delaunay refinement [25], also

assume that a such smooth description is available. Hence, a cutting algorithm us-

ing refinement should be redesigned with the assumption that a surface shape itself is

known.

We have demonstrated an extension of our single incision 3D approach to multiple

incisions. The extension is consistent with our model of the scalpel as a moving line

segment. It remains to be seen how branching cuts should be combined with deforma-

tions.

Unfortunately, both the rationale for using Delaunay triangulation and our heuris-

tics do not readily generalize to tetrahedral meshes. Delaunay tetrahedralizations of

well-spaced points admit slivers, tetrahedrons that have four nearly planar and nearly

cocircular vertices (see Figure 5.20). Slivers are flat tetrahedrons and therefore unde-

sirable. Moreover, the higher-dimensional equivalent of edge flipping (face flipping),

does not always work: there exist configurations of non-Delaunay faces which can not

be flipped. This implies that flipping as a local improvement strategy does not al-

ways work. If the tetrahedralization is already Delaunay, then flipping non-Delaunay

faces during insertion or removal of points in a mesh is always possible. Since cuts are

non-convex, this suggests that a tetrahedral generalization must build a constrained or

conforming Delaunay tetrahedralization with a moving boundary. A first step towards

enabling such cuts would be to extend the current 3D surface cutting approach to cuts

of closed surfaces: when cutting a closed surface, surface triangles are added to the

inside of the incision, so the surface remains closed during cuts. This surface could

then be used as a basis for making a tetrahedralization. An additional complication is

that a constrained Delaunay tetrahedralization only exists if edges have no non-incident

nodes close by (the surface should be ridge-protected) [86].

Figure 5.20: Slivers have an excellent circumcircle to shortest-edge ratio, so they can be

present in Delaunay tetrahedralizations of well-spaced point sets. They are degenerate

nevertheless.
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2D needle insertion

Inserting needles into soft tissue is one of the most often performed medical proce-

dures. In some procedures, needles have to be inserted deeply into soft tissue to reach

a target. For example, certain types of biopsies (taking tissue samples from organs)

are performed with needles with a specialized needle tip, designed to extract a tissue

specimen. Another application is brachytherapy, treating cancer by inserting radioac-

tive seeds directly in the tumor. The primary application of brachytherapy is prostate

cancer. In this application the seeds are delivered with a needle [3]. In general, when

a needle is inserted into soft material, such as tissue, the material and the needle inter-

act through friction forces, resulting in deformation of the material. This deformation

makes it harder to reach the desired target and avoid vital organs. Simulations of nee-

dle insertions that take into account this deformation may help train and plan for such

difficult cases.

6.1 Related work

Simulations of needle insertion for training purposes have been implemented earlier

using ad-hoc models, e.g. [15,60], which rely solely on force measurements performed

at the inserting end. The work by DiMaio and Salcudean [36–38] presents a break-

through. They present a planar virtual environment for needle insertion, where the

mechanics of the system are derived from complete 2D measurements of deformation.

These measurements are performed by recording a standardized needle insertion in a

flat square slab of soft material with a camera. The video sequence is used to measure

the deformation of the slab. By comparing the measured deformations with a FEM

simulation of the same material, the friction forces along the needle shaft are estimated.

An interactive simulation is then built, where the same friction profile is used to model

the interaction between tissue and needle. This simulation uses a static linear elasticity

model on a fine 2D grid. During the simulation, only a small portion of nodes is ‘vis-

ible’, i.e. relevant to the system response: the nodes on the boundary are needed for

visualization, and those that interact with the needle are necessary for computing inter-

actions with the tissue. The responses of this subset can be can be condensed into a
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small stiffness matrix, which is inverted and updated on the fly. As the needle advances

into the tissue, more nodes are added to the condensed system. Updates of the inverted

matrix take O(s2) operations, where s is the number of visible nodes. Similarly, the

effect of friction is to change the boundary conditions for nodes on the needle; these

updates can also be done in O(s2). The condensation process requires that the stiffness

matrix corresponding to all the nodes of the mesh is inverted off-line.

Alterovitz et al. [2,3] also simulate needle insertion in FEM meshes. They use a lin-

ear elasticity model on a regular 2D grid, but use an explicit GN22 scheme to dynami-

cally solve these equations. GN22 is similar to the SS22 scheme from Equation (2.60).

The model runs at visual update rates (25 Hz) for a 1250 triangle mesh. They specifi-

cally target brachytherapy for prostate cancer treatment. By varying tissue and friction

parameters in the model, the effect of tissue parameters and needle characteristics on

seed placement accuracy can be predicted.

6.2 Needle insertion in 3D

The needle applies force to the material, and can be considered a part of the boundary

for the boundary value problem. In a two-dimensional setting, the boundary is one-

dimensional, and can be represented accurately by a small set of edges. In 3D, forces

should be distributed over surfaces. In other words, for a physically valid discretization

in 3D, the needle cannot be represented as a set of edges, but must be represented

as a surface. To represent this surface, the mesh must include elements with a size

comparable to the needle diameter.

If we assume that a needle has a diameter of 1 mm, then the mesh should have

elements of that size in the vicinity of the inserted needle. It is clear that there will be

huge disparity between element size and object size. Let us assume that the object is

cube shaped, is 10 cm in length in every axis, and is discretized using a uniformly refined

mesh. The mesh would have approximately 10 cm/1 mm = 100 nodes for each side,

leading to approximately 106 nodes and 3 · 106 degrees of freedom. The dimensions of

the stiffness matrix are 3·106×3·106. Simulations of this size cannot be run interactively

in the forseeable future. For example, condensation of internal nodes requires storing

the inverse of the stiffness matrix. The inverse is dense, and storing a dense 3 · 106

DOF matrix requires approximately 67 terabytes of memory. Moreover, for nonlinear

elasticity, the stiffness matrix depends on the deformations. Since the stiffness matrix

is not constant, precomputing matrix inverses does not make sense.

For large or nonlinear problems, iterative methods have to be used, and these do

not require precomputed structures. If we do not rely on precomputed structures, then

there is no need to start with a fine mesh, but we can refine the mesh where necessary:

this is where the needle is inserted. In this chapter, we will use these observations to

produce a 2D simulation that is functionally equivalent to the one shown by DiMaio and

Salcudean, but uses an iterative solution method and adaptive mesh resolution. With

this method, it is possible to exchange computation time and accuracy. To asses whether

this approach can be called interactive, we assess how quickly our implementation runs

for reasonable accuracy requirements. Before we give these results, we show how the

problem is modeled, and how the simulation is implemented.
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6.3 Physical model

The physical behavior of the system has two major aspects. The mechanical behavior of

the tissue itself is governed by equations for two-dimensional elasticity, so-called plane

stress. The interaction between the needle and the tissue is a form of stick-slip friction.

When the needle moves slowly, material sticks to the needle. At higher speeds the

material slips across the needle. Hence, the needle forms a part of the boundary where

either displacements (stick friction) or tractions (slip friction) are prescribed.

6.3.1 Elasticity

For problems where loads and deformations occur in a plane, one coordinate can be

removed from the 3D elasticity formulation. We will analyze the situation shown in

Figure 6.1. We describe R
3 in matrices with respect to the unit basis e1, e2, e3. The

coordinates are also written as z = (x, y, z). The object that we will analyze is a slab of

material, lying in the xy-plane, symmetrically around z = 0. We assume that deforma-

tions in the z-coordinate are uniform, so we describe the z-coordinate of a motion as

p3(x, y, z) = zq(x, y), for some function q. The motion p, mapping reference points

to deformed locations, is given by

p(x, y, z) =





p1(x, y)

p2(x, y)

zq(x, y)



 ,

for some functions p1, p2 : R
2 → R.

z = 0
x y

z

Figure 6.1: Plane stress. When loading thin slabs of material, the z sides are unloaded.

Without loss of generality we assume that the slab is positioned around the z = 0 plane.

For ease of notation, we leave out the (x, y) dependencies, and denote ∂f/∂x by fx.

The deformation gradient is given by

F =





p1,x p1,y 0

p2,x p2,y 0

zqx zqy q



 .

The strain tensor C can be written as




p2
1,x p2,xp1,y 0

p2,xp1,y p2
2,y 0

0 0 q2



 + z





zp2
1,x zp2,yp2,x qqx

zp2,yp2,x zp2
2,y qqy

qqx qqy 0



 .
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In the z = 0 plane, the right term disappears. Except for the q2 term, the left term is

the exact 2D analogon of C.

The q2 term is eliminated by using the constitutive equations: when we suppose that

no stresses act in the third dimension, then by the definition of the first Piola-Kirchoff

stress tensor, we should have

T · e3 = 0.

The second Piola-Kirchoff stress tensor S is defined by F−1 · T , so we have S · e3 = 0

as well. Since S is symmetric, we conclude that

S =

(

S̃ 0

0 0

)

, (6.1)

where S̃ is the 2D restriction of the second Piola-Kirchoff stress tensor.

We will first analyze the results for the linear material from Equation (2.16),

S = µ(C − I) +
λ

2
trace(C − I)I. (6.2)

It follows from Equation (6.1) and Equation (6.2) that

0 = µ(q2 − 1) +
λ

2
(trace(C̃ − Ĩ) + (q2 − 1)),

where C̃ and Ĩ are the 2D analogons of C and I. Therefore,

q2 − 1 =
2µλ

λ + 2µ
trace(C̃ − Ĩ).

It follows that

S̃ = µ(C − I) +
2µλ

λ + 2µ
trace(C̃ − Ĩ)Ĩ, (6.3)

We see that the reduction from 3D to 2D only impacts the volume-preservation part of

the equations, and can be derived by setting e3 ·S·e3 = 0, and substituting the result for

q2 back into the constitutive equation. More complex constitutive equations give more

complex expressions for q2. However, if we set λ = 0 (or equivalently, ν = 0), then the

material has no volume preservation at all, and the 3D formulas can be translated to 2D

directly. For example, Equation (4.6) specifies that neo-Hookean material satisfies

S = µI + (−µ + λ(
√

ι3 − 1)
√

ι3)C−1.

When λ = 0, then setting e3 · S · e3 = 0 implies q2 = 1, and we can set

S̃ = µ(Ĩ − C̃−1). (6.4)

We see that Equations (6.4) and (6.3) are the direct 2D analogons of 3D equations

in (2.22) and (4.6). The tensors T , S, and E have their familiar meanings, but now

they are located in R
2×2. We use linear triangle elements, so the gradient G of the

deformation is given by U · Z−1. Nodal elastic forces are given by T · Z−∗.

A difference between 2D and 3D is formed by the traction. If the 2D traction (unit

N/m), is denoted by t̃, then the 3D traction t (unit N/m2) is given by

t = t̃/d,

where d is the thickness of the slab of material.
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6.3.2 Stick-slip friction

During a needle insertion, the needle and the material interact, exchanging forces.

These forces are caused by friction. The magnitude of the friction depends on the

relative velocity of the needle, i.e. the difference between the velocity of the needle and

the material.

Stick-slip friction for an elastic system with one degree of freedom, like the one

in Figure 6.2, leads to an ordinary differential equation. In this case, a mass m is

attached to a spring with spring constant k, and the mass is subject to stick-slip friction

ffr applied by a needle moving at velocity vneedle. The friction depends on the relative

velocity vneedle − v. The differential equation describing the movement u and velocity v

of the mass are given by

(

v̇

u̇

)

=

(

1
m

(ku + ffr(vneedle − v))

v

)

. (6.5)

If the relative velocity is nonzero, then the friction force is nonzero and has the opposite

direction. An example of a velocity/friction function is in Figure 6.3. In general, the

right-hand side of differential equation (6.5) is discontinuous. Integrating such systems

requires special precautions, and small time steps [59].

m

needle

ffr

Figure 6.2: A single-degree of freedom stick-slip system
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Figure 6.3: A typical stick-slip friction curve, after [59]. The force has a discontuity at

vneedle − v = 0, causing problems during time integration.
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Figure 6.4: The force distribution used for experiments, for the insertion. Friction force

varies along the shaft of the needle, and this graph shows how. For stick/slip friction,

this distribution is used with deformed coordinates along the x-axis.

Due to these numerical problems, we use a quasi-static formulation. Nodes that lie

on the needle, needle nodes, can have two states: either a node is fixed (sticking), which

means that its location is attached to the user controlled needle and vneedle = v, or its

movement is constrained to be parallel to the needle shaft (slipping). A configuration

of slipping and sticking nodes leads to a single static deformation problem. When the

solution of this problem is found, the elastic reaction forces can be used to rearrange the

boundary conditions. For every needle node, a static and a dynamic friction threshold

is defined. Fixed nodes whose reaction forces exceed the static friction threshold are

loosened, and slipping nodes whose elastic forces are less than the dynamic friction

threshold are fixed again. If any of the conditions on the nodes are changed, then this

rearrangement defines a new static problem, and the procedure is repeated. Once no

further rearrangements are necessary, the final solution has been reached. In effect,

this procedure is an iterative approach. To distinguish this outer-loop iteration from the

relaxation procedure (an inner loop), we shall refer to these iterations as rearrangements.

The magnitude of the friction forces on points along the needle shaft is variable.

DiMaio and Salcudean demonstrated [36] that the force distribution is similar to the

one plotted in Figure 6.4, which is what we will use throughout this chapter. The force

bulge near the tip accounts for the force required to make the needle tip cut into the

material.

6.4 Needle representation

We will discretize the elasticity problem using the Finite Element Method on a triangle

mesh. As we explained above, the needle surface is part of the boundary of the domain.

In a conforming finite element method, the space of shape functions should be a sub-

space of the total solution set of the original equation. In the case of needle insertion,

this implies that the needle should be represented in the mesh by a set of connected
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edges. In previous work, this was achieved by either relocating existing mesh nodes to

be on the needle surface [2, 36], by inserting new nodes [2], or by deforming material

locally to force nodes to be on the needle [38].

In Chapter 3 and Chapter 5 changes to the mesh were driven by visual reasons.

Without subdivision or relocation, cuts will have a jagged appearance which looks unre-

alistic. For needle insertion, the needle itself is not visible. When we look at the solution

accuracy, we observe that in general, the accuracy of a FEM solution is bounded by h,

the size of the element, and p, the smoothness of the basis functions. For a given prob-

lem with solution û, a linear FEM discretization will satisfy the following error bound

for the approximation uh [14]

‖û − uh‖ � = O(h2| log(h)|3/2), h→ 0

‖û − uh‖2 = O(h2), h→ 0.
(6.6)

Neither relocating nodes in the mesh, nor unjudicious use of subdivision decreases h,

so in general, neither will improve the accuracy of the solution.

In Chapter 3 we have seen that node relocation can easily lead to flattened elements,

and in Chapter 5, we have seen that accomodating surface in the mesh by subdividing

intersected elements can easily lead to short edges and a significant increase in mesh

size. These problems motivate us to experiment with a scheme where nodes are not

moved within the mesh.

The needle is assumed to be an inflexible line segment. When the needle tip enters

an element through an edge, the closest node of the edge is marked as a needle node.

The location of the node is decomposed in two components, as shown in Figure 6.5.

The distance along the needle shaft between nodes, dneedle, is used as a basis for friction

computations. The component perpendicular to the needle, dperp, is used to compute

new node positions when the needle is displaced.

�
perp

�
needle

Figure 6.5: When needle nodes are intercepted, their position is decomposed in a com-

ponent dperp perpendicular to the needle, and a component dneedle along the needle.

The component dperp is held fixed during needle movements and dneedle is used for

friction calculations.

6.5 Edge bisection

We will consider a square object that can be meshed with regularly arranged right-

angled triangles, as shown in Figure 6.8. This is not an essential restriction, but it does
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ease the discussion and the implementation. To accomodate the needle, the resolution

of the mesh is locally increased during a simulation. This refinement is done using edge

bisection. In this case, the basis of edge bisection is a simple bisect, splitting an edge which

is the hypotenuse of its two incident triangles. The following pseudo-code demonstrates

the bisection of an edge (p, q), and is illustrated in Figure 6.6.

procedure simple-bisect (p, q):

n←new node halfway between p and q.

let f1, f2 be the faces incident with (p, q)

if f1 6= null:

f ′1 ← f1 with p := n substituted

f ′′1 ← f1 with q := n substituted

if f2 6= null:

f ′2 ← f2 with p := n substituted

f ′′2 ← f2 with q := n substituted

replace {f1, f2} with {f ′1, f ′′1 , f ′2, f ′′2 }.

p

q

f ′′

1
n

f ′

1

f ′′

2

f ′

2

p

q

f1

f2

Figure 6.6: In a simple bisection, the faces {f1, f2} are replaced by {f ′1, f ′′1 , f ′2, f ′′2 }.

The bisected edge must be the hypotenuse of its incident triangles. If this is not

the case, the following recursive procedure first bisects neighbors before it bisects the

specified edge e. It is illustrated in Figure 6.7.

procedure bisect(e):

let f1, f2 be incident with e

if f1 6= null ∧ e 6= hypotenuse(f1):

bisect (hypotenuse (f1))

if f2 6= null ∧ e 6= hypotenuse(f2):

bisect (hypotenuse (f2))

simple-bisect (e)

For a mesh consisting of right-angled triangles, this refinement process is equivalent

to two other techniques. The hypotenuse is always the longest edge in a triangle, and

hence this procedure is equivalent to the so-called longest edge bisection [81]. When
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a

b

(a)

(b) (c)

Figure 6.7: When an edge is bisected that is not the hypotenuse of its incident triangles,

then its neighbors are first bisected: in pictures (a), and (b) neighbors are bisected, in

(c), finally ab is bisected.

bisecting a hypotenuse, the angle opposite the hypotenuse is bisected. Since that angle

is always the newest vertex in a triangle, we have a form of newest node bisection [85].

The bisection technique we described has the following properties.

• It is easy to implement.

• Triangles are naturally ordered in a hierarchy. This hierarchy can be stored in a

binary tree. This tree is in effect a BSP tree, suitable for efficient point-location.

• All triangles are congruent to triangles of the starting mesh, and therefore well

shaped.

• It can be extended to simplexes in arbitrary dimensions, and this extension main-

tains the above properties [62]. The only requirement is that the nodes are or-

dered in some way.

The starting mesh can be refined uniformly by subdividing all hypotenuses in the

mesh repeatedly. The mesh can also be arbitrarily refined in a region, by repeated

bisection. The following procedure refines around the point x until the edge lengths

around x are less than h.

procedure refine-around (x, h)

t← triangle containing x

if |hypotenuse (t)| > h:

bisect(hypotenuse (t))

refine-around (x, h)

Figure 6.8 illustrates this refinement process.
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(a) (b) (c)

(d) (e) (f)

Figure 6.8: Recursive edge bisection, with refinement around the point marked with a

dot. Pictures (a) shows the starting mesh. Picture (b) and (c) show simple bisections.

In Picture (d) neighbors are bisected as well, and in Picture (e), the bisections propagate

even further. Finally, Picture (f) shows the result after 10 refinements.
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6.6 Solution method

We will use the CG method, both in its linear and nonlinear form, to compute solutions

to the FEM problem. Two modifications with respect to the method of Chapter 3 are

necessary. There, we have only considered fixed nodes. In the case of needle insertion,

nodes can also be constrained to move along a line. In effect, both types of constraint

restrict the minimization problem on R
n to a subspace W ⊂ R

n. In other words if u is

a given starting configuration, and W the space of allowed node movements, then the

solution is given by

min
w∈W

Π(u + w).

If PW is the orthogonal projection on W, then we can rewrite this as

min
v∈Rn

Π(u + PWv). (6.7)

The latter is a minimization problem in R
n, and hence we can solve it with the tech-

niques discussed in Section 2.4, using the function in (6.7) as objective In other words,

we take

PW

(

∂Π

∂u
(u + PWv)

)

and PW

(

∂2Π

∂u2
(u + PWv)

)

PW

for the derivative and second derivative. In effect, search directions and second deriva-

tives are first projected onto the constraints before they are used in the algorithms.

A second complication is the stopping criterion. The stopping in Chapters 3 and 4

uses the 2-norm of the residual force vector r, i.e.,

‖r‖2 ≤ ε‖fex‖2, (6.8)

for some relaxation tolerance ε > 0. This criterion does not work when nonzero dis-

placements are prescribed without applying external forces: then the right handside is

0, which is impossible to satisfy due to rounding errors. We do have access to freact, the

reaction forces necessary to keep nodes in their constrained positions; these can also be

regarded as a form of external force. They can be found as

(I − PW)
∂Π

∂u
(u).

Therefore, we propose the following stop criterion for the relaxation loop.

‖r‖2 ≤ ε

√

‖fex‖2
2 + ‖freact‖2

2 +
EdH√

n
εround. (6.9)

In this criterion, εround � 1 is a separate tolerance, H is the diameter of the object, and E

is the Young modulus. In this equation, the first term is the analogon of Equation (6.8)

that also uses reaction forces. The second term of the right hand side becomes signifi-

cant when the first term is almost 0 due to rounding errors. In that case, the first term

may be hard to satisfy due to rounding errors in the evaluation of ‖r‖. The second

term is a rough estimate of the rounding errors in both quantities. The quantity dH is
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a measure of the area of the object, so EdH is a scale-free measure of the force magni-

tude. The factor εround/
√

n, with , is a measure for the roundoff errors that accumulate

during the evalution of ‖r‖ and

√

‖fex‖2
2 + ‖freact‖2

2.

This stopping criterion does not use the linear elasticity assumption in any way, and

may therefore be used for nonlinear iterations as well. For 3D, the term dH should be

changed, for example to H2.

6.7 Implementation

The previous sections provide enough technniques to implement a needle insertion

simulation based on edge bisection and static elasticity. The implementation was based

on the deformation and relaxation framework written in Chapter 4, and the mesh data

structure that will be described in Chapter 7.

In the implementation, the starting mesh is uniformly refined until edge lengths have

a specified length hstart. Then the simulation enters the following interaction loop where

needle movement, friction and refinement are handled.

while true:

move needle

refine mesh down to href around the needle tip

add intercepted nodes to needle

compute solution using CG

rearrange boundary conditions

unconstrain nodes that slid off the needle

When the needle is moved, the locations of all needle nodes are expressed in dperp

and dneedle. Needle nodes are moved by computing dperp and dneedle relative to the old

needle position, and using them as coordinates relative to the new needle position.

6.8 Computational experiments

The question to be answered is whether the simulation is practically useful. As far as the

physical model is concerned, both our scheme and the one of DiMaio and Salcudean

are equivalent, since they use the same elasticity model, and the same friction parame-

ters. Therefore, we can achieve the same result, provided that we may spend as much

computation as necessary to attain the desired accuracy. Therefore, the real question is:

how accurate is the system for a given amount of computation? We will measure accu-

racy in terms of average and maximum errors in the displacement. We set the desired

accuracy at approximately 1 mm, which roughly corresponds to the resolution of CT

scan and MRI scans.

The simulation runs a number of static linear problems in sequence. The question

of accuracy versus speed will be answered by first considering the error in the simula-

tion under static load. This gives us a combination of relaxation tolerance and mesh



116 2D needle insertion

resolution. These settings are used to quantify the buildup of errors during a simula-

tion. This error is considered by running an automated, standardized needle insertion

at various insertion speeds. Timings of the same experiment show to what extent the

simulation is interactive.

Finally, we will consider the error that is introduced by not relocating nodes, the

conformance error. An advantage of our approach, which also allows nonlinear material,

is demonstrated by comparing insertions for nonlinear and linear material.

6.8.1 Test situation

The test object is a slab with dimensions 0.10 × 0.10 × 0.01 m, and material properties

E = 34 kPa, ν = 0.34. We assume that the object is lying in in the xy-plane, with

0 ≤ x ≤ 0.1 m and 0 ≤ y ≤ 0.1 m. Refinements of element size are done by factor 2:

we set hk = 0.1 m · 2−k, and select both href and hstart from h1, . . . , h7. We have used

εround = 10−8 as the tolerance for rounding errors.

Figure 6.9: Experimental load for determining speed/accuracy. The object is fixed

on the right, and a load is applied to the center, symmetrically. This picture shows

hstart = h3, href = h6.

The speed versus accuracy experiments are performed in a symmetric setting: in

the static experiment, forces are applied along a line at y = 0.05 m, while the boundary

at x = 0.1 m is held fixed. This configuration is shown in Figure 6.9. It leads to a

symmetric deformation. The “needle” is represented by edges in the mesh, and hence,

the accuracy assessment is not affected by conformance errors. In the static problem,

load is applied to the center of the object over a length of 70 mm, using the distribution

in Figure 6.4. In the dynamic problem, the needle is inserted to a depth of 70 mm,

with dynamic friction thresholds derived from the given force distribution. The static

friction threshold is set at twice the dynamic threshold.
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6.8.2 Residual tolerance

The stopping criterion in (6.9) is parameterized by a tolerance ε. In Table 6.1 shows

how the the value of the tolerance affects displacement errors, by comparing solutions

of the same problem calculated with different tolerances. We can see that very modest

tolerances already are enough to make displacement errors small.

relaxation tolerance ε average error [mm] maximum [mm]

0.3 0.74 2.98

0.1 0.061 0.18

0.03 0.034 0.083

0.01 0.011 0.022

0.003 0.0038 0.0096

0.001 0.0008 0.0021

Table 6.1: Error dependency on tolerance for the residual force, relative to the solution

computed at ε = 10−8. This has been run on a mesh with href = hstart = h7.

6.8.3 Mesh density

The impact of mesh resolution on the solution error was analyzed by comparing the

results for href = hstart = h7 with results for coarser meshes. These results are given in

Table 6.3. Here, both h values are varied from h1 to h7.

Plots of the displacement error for two combinations of href and hstart are in Fig-

ure 6.10. It is evident that errors are especially present in the vicinity of “interesting”

regions: regions where force varies, or near the corners of the fixed boundary. Hence,

the mesh can be left more coarse outside these regions. This distributes the displace-

ment error all over the object. Moreover, convergence is also quicker, as demonstrated

in Table 6.2.

↓ hstart/href → h3 h4 h5 h6 h7

h1 22 34 45 62 84

h2 27 36 46 64 84

h3 46 49 58 73 93

h4 81 86 96 115

h5 204 208 194

h6 278 285

Table 6.2: CG Iteration counts for different combinations of hstart and href. Reducing

mesh resolution also decreases convergence requirements: information travels faster

over coarser mesh parts, thus speeding up the relaxation.

The accuracy results for varying hstart and href are in Table 6.3. In general, decreas-

ing hstart and decreasing href improves the accuracy. For hstart = h3 and href = h6, we

get an error of 0.44 mm, which is small enough by our standards.
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Figure 6.10: Displacement errors, at the top hstart = h6 and href = h6, on the bottom

hstart = h3, href = h6. Larger errors occur close to varying loads: the corners of the

fixed sides, and close to the needle tip and entry point. Therefore, a finer mesh is only

necessary in these regions. On the bottom, the mesh is coarser away from the needle,

which leads to larger errors in those regions.
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Average error [mm]

↓ hstart/href → h3 h4 h5 h6 h7

h1 0.34 0.33 0.33 0.30 0.28

h2 0.26 0.24 0.24 0.21 0.20

h3 0.15 0.13 0.13 0.10 0.08

h4 0.09 0.08 0.04 0.03

h5 0.07 0.03 0.00

h6 0.02 0.00

Maximum error [mm]

↓ hstart/href → h3 h4 h5 h6 h7

h1 1.01 0.88 0.88 0.87 0.87

h2 0.91 0.68 0.61 0.54 0.53

h3 0.66 0.54 0.51 0.29 0.27

h4 0.45 0.43 0.19 0.14

h5 0.41 0.17 0.06

h6 0.16 0.03

Table 6.3: Displacement errors for different mesh resolutions. These tables list mean

and maximum displacement errors in mm (compared with a uniform mesh with ele-

ment size h7), with hstart vertically, and href horizontally. Half of the table is empty,

since href ≤ hstart. We see that smaller h size leads to smaller errors in general.

6.8.4 Insertion speed

If the needle moves very quickly during an insertion, it will pierce elements without

requiring force. For example, if the needle moves from outside the object to its final

position in one step, no forces will be exchanged between needle and tissue. For this

reason, it can be expected that the insertion speed influences the end result. We assume

that the better solutions are obtained when the speed of the needle is smaller. Hence,

we measure that influence by performing automated insertions at different speeds, and

comparing them to the results for a very slowly inserted needle.

The automated insertion is performed as follows: after each cycle of the interaction

loop, the needle is advanced by a fixed amount, until it reaches the desired penetration

depth. The loop continues until no more rearrangements of needle boundary condi-

tions are needed. The system then has reached an equilibrium situation.

Results of this experiment are in Table 6.4. These results do not show a clear trend.

For insertions speeds smaller than 1.0href per update, we get errors that are in the same

order of magnitude as the discretization error.

6.8.5 Timings

When the experiment of the previous subsection is timed, we can estimate how inter-

active the simulation is. Table 6.5 lists for each insertion speed the amount of CPU

time used, and how many times the interaction loop from Section 6.7 is called. Di-
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speed [ href

rearrangement
] avg error [mm] max error [mm]

3.00 0.62 1.60

1.00 0.68 1.96

0.30 0.15 0.34

0.10 0.18 0.68

0.03 0.36 1.08

0.01 0.07 0.27

Table 6.4: Error introduced by insertion speed, for hstart = h3 and href = h6, compared

to insertion at the speed 0.005href. For this resolution, the discretization error was 0.11

mm average/0.29 mm maximum.

viding both gives an average update rate. We see that low insertion speeds give better

update rates. This is confirmed by the average number of CG iterations necessary to

find a solution. Smaller insertion speeds lead to a higher amount of coherence between

subsequent solutions, thus reducing the average number of CG iterations required. For

the lowest insertion speeds (0.10 href/rearrangement and lower, we obtain update rates

suitable for haptic interaction).

The experiment was done with two different refinement resolutions, href = h6 and

href = h7. The number of rearrangements doubles when going from h6 to h7 (a

decrease of a factor 2), this is consistent with the fact that insertion speed is proportional

to href in this experiment.

The average update rate is better than the worst update rate, which is indicated by

the maximum number of CG iterations required. The maximum is larger than average.

These larger counts are necessary during the beginning of the insertion, when only a

small portion of the needle is in the tissue. Although the mesh is still relatively small at

this stage, it might be necessary to set a fixed bound on the number of CG iterations

when driving a force-feedback device.

6.8.6 Relocation errors

In the following experiment, we assess the magnitude of conformance errors. To this

end, a node repositioning scheme similar to the one in Chapter 3 was introduced. Nodes

selected as needle nodes are projected orthogonally onto the needle. Again, we quantify

errors by applying a static load to the mesh, according to the friction distribution from

Figure 6.4, but now forces are applied over a tilted line, so that the “needle” does not

coincide with mesh edges. The resulting deformation is shown in Figure 6.11. By

measuring the difference between a solution with relocation and without relocation to

the solution a finer mesh, we can estimate the impact of relocation. Table 6.6 shows

that these errors are smaller than the discretization errors, thus validating the approach.

6.8.7 Nonlinearity effects

Our solution method does not exploit the linearity of the problem. Hence we can also

use nonlinear material models. In Chapter 4 we saw that this is necessary when large
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speed CPU time rearrangements updates CG iters (avg) CG (max)
[

href

update

]

[s] [Hz]

hstart = h3, href = h6

3.00 0.80 157 196.25 11.81 41

1.00 0.90 232 257.78 11.52 62

0.30 0.94 308 327.66 10.87 70

0.10 1.07 504 471.03 8.14 61

0.03 2.24 1478 659.82 5.31 57

0.01 5.77 4187 725.65 3.87 51

hstart = h3, href = h7

3.00 2.46 243 98.78 12.67 57

1.00 2.80 401 143.21 10.88 82

0.30 3.15 561 178.10 10.03 66

0.10 3.48 1000 287.36 6.63 67

0.03 6.34 2966 467.82 4.18 53

0.01 15.68 8505 542.41 3.15 48

Table 6.5: Timings for an insertion procedure at different speeds, done with two resolu-

tions. Smaller movements decrease the number of CG iterations necessary, and hence

increase update frequencies. We can see that decreasing href by a factor 2 doubles the

number of boundary condition rearrangements required. Timings were done on a Pen-

tium III/1 Ghz, with visualization switched off. The program was compiled with GCC

3.2 with maximum optimization options switched on.

Figure 6.11: Applying forces along an angled trajectory.
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average error [mm] max error [mm]

with relocation vs. without 0.019 0.23

discretization error with relocation 0.094 0.43

discretization error without relocation 0.095 0.37

Table 6.6: Magnitude of conformance errors for hstart = h3, href = h6. We see that

the difference introduced by node repositioning is smaller than the discretization error,

computed relative to h7 mesh resolution.

deformations are simulated. In Figure 6.12 a scenario is shown that involves large de-

formations. The needle is inserted sideways into a slab of material fixed at the bottom.

In this case, the needle describes a trajectory that is curved, when viewed in the refer-

ence configuration. The material used is neo-Hookean material1 versus linear material,

with E = 34 kPa and ν = 0. The difference between the final location of needle tip in

both experiments is approximately 8 mm.

6.9 Discussion

In this chapter we have presented a novel method for computing simulated needle in-

sertions into 2D elastic material. The method builds on previous work by its use of a

quasi-static model of stick/slip friction with plane-stress elasticity. It is different in that

it uses an iterative (and optionally nonlinear) relaxation algorithm, and adaptive mesh

resolution. The mesh used has a high degree of regularity, and is refined near the in-

serted needle to improve the local accuracy. Nodes are not moved within the mesh, so

the refinement technique, edge bisection, does not cause element shape deterioration.

To assess the cost/accuracy ratio of this method, it was implemented in a prototype and

subjected to a number of computational experiments. On the basis of these experi-

ments, we conclude that accuracies around 1 mm for insertion in linearly elastic objects

of size 10 × 10 cm can be achieved at haptic update rates on a 1 Ghz PC.

The performance of the method is related to coarseness of the mesh, and material

model used. Both factors are related to the accuracy of the end result, so it is possible to

improve response times by sacrificing accuracy. This compromise is controlled with the

parameters ε, the tolerance for the relaxation, href, the amount refinement around the

needle and hstart, the global mesh resolution. For the scenarios analyzed, this proved

to give adequate control. This manual step could be automated by estimating errors

of the FEM discretization automatically, and refining the mesh adaptively during the

simulation [32, 100]. Such estimations would also allow a more rigorous error analysis

than those provided in Section 6.8.

In the current simulation, iteration counts for the CG algorithm are very low both

due to the high spatial coherence between solutions, and due to the limited mesh res-

olution outside the region of interest. When finer meshes are necessary, additional

techniques must be used to decrease iteration counts. Multigrid techniques can solve

1St. Venant-Kirchoff material was also tried, but caused element inversion, which lead to stalling conver-

gence in the nonlinear CG relaxation



6.9 Discussion 123

Linear

neo-Hookean

Figure 6.12: Linear elasticity (top) and neo-Hookean elasticity (bottom) compared,

both in deformed configuration (left), and undeformed configuration (right). This was

done with Poisson ratio ν = 0, and insertion speed 0.01href/update. The distance

between the tip reference locations in both experiments is approximately 8 mm. The

linear experiment took 16 seconds of CPU time; the neo-Hookean experiment took 38

seconds, and ended with a 625 triangle mesh.
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elliptic FEM problems in O(log n) iterations, where n is the number of degrees of free-

dom. Multigrid methods run smoothing relaxations at different resolutions of the same

problem. Refinement by edge bisection naturally produces such hierarchical meshes.

Smoothing techniques, like the Gauss-Seidel iteration, work by traversing the stiffness

matrix row-by-row or column-by-column. This implies that all edges of the mesh

should be tracked across mesh changes. Since these smoothing techniques are also

used as preconditioners for the CG iteration, a first step in this direction is to imple-

ment them as preconditioners.

The extensions mentioned in the previous paragraphs are aimed at improving re-

sponse times for larger and more accurate simulations. In this light, it is instructive to

compare the magnitude of different types of solution errors. From the computational

experiments in Section 6.8 we can deduce that these errors have the following causes

(in order of decreasing impact).

• The tissue model.

• The error buildup during insertion, an aggregrate of the error sources below.

• The discretization error, caused by using a coarse mesh.

• The conformance error, caused by not moving nodes onto the needle.

• The relaxation error, caused by using an iterative algorithm.

We see that a good tissue model is crucial to making accurate predictions of the effect

of tissue deformations. Therefore, research into improvements in computational tech-

niques should be accompanied by a more in-depth analysis of the mechanical properties

of the organs being modeled. A complete analysis should also include sensitivity to nee-

dle flexion (we assume the needle to be rigid) and variation in material parameters.

The deformable object was a square slab of material. This simplifies implementa-

tion, but it is not an essential restriction. The refinement technique is easy to understand

for regular simplicial grids of the square, but its only requirement is that vertices are or-

dered [62]. Moreover, for triangulations in 2D, there is a variety of techniques based

on Delaunay refinement [25, 82] that can naturally accomodate more complex object

geometries. However, this approach has been chosen with the intent of generalizing to

3D insertions easily. In 3D, both generating the Delaunay tetrahedralization for objects

with complex geometrical shapes is much harder [86], and can generate slivers, a type

of badly shaped elements. In contrast, edge bisection generalizes naturally to higher

dimensions [62].

The 3D generalization of this method is work in progress. Figure 6.13 shows edge

bisection in 3D, and Figure 6.14 shows needle insertions in a cube-shaped object. When

we look at the computational aspects of the extension to 3D of our method, then we can

note that the performance of CG is proportional to the root of the condition number of

the stiffness matrix. This quantity is proportional to 1/h, where h is the element size [6].

Since element size does not change when lifting the simulation to 3D, we can expect

that the same number of CG iterations are required. The cost of a single iteration does

change. For representing the needle shape accurately in 3D, more refinement is needed,

and tetrahedralization require more elements per vertex. The fine-grained simulation in
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Figure 6.13: Recursive edge bisection in 3D, with refinement around a single point. On

the top 3 levels of refinement, on the bottom 20 levels.
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linear elasticity, 5 seconds, 2420 elements

neo-Hookean material, 1364 seconds, 29562 elements.

Figure 6.14: Insertions of a needle (radius 1 mm) from the left into a elastic cube

(10 cm × 10 cm × 10 cm) fixed on the bottom. The needle is represented in the mesh

by a jagged surface, which is shown in solid color. The geometry of the needle sur-

face is accounted for in the friction forces. On the top: linear material, with 12 fold

refinement around the needle. On the bottom a detail from a similar insertion into

neo-Hookean material, with 20 fold refinement around the needle (Mesh edges are not

shown). Timings were done on a P3/1Ghz.
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Figure 6.14 corresponds to refinement to h7. The simulation has approximately 30,000

elements, a factor 50 more than the example in Figure 6.12. Matrix operations are also

more expensive in 3D. For example, a matrix/matrix multiply costs 12 flops in 2D and

45 flops in 3D, almost a factor 4. Combining these, we can estimate that each iteration

in 3D is roughly 200 times more expensive. To reach the same update rates as the 2D

simulation, techniques should be used that increase raw computation power: dedicated

hardware and parallel processing.



Chapter 7

Mesh representation

All implementations in the previous chapters also manipulate meshes of triangles and

tetrahedra. Since the focus of our work has been on changing meshes, a data structure

has been developed where change operations are easy to specify and implement. In this

chapter we will discuss the data structure, and explain how other parts of the program

are grouped around it. It only applies to simplicial meshes of any dimension, for exam-

ple, triangle and tetrahedron meshes. The data structure makes a distinction between

how the connectivity of the mesh—objects connected with pointers—is stored, and its

abstract definition—ordered sequences of vertices, so-called simplexes. Such simplexes

are also used to describe triangulations abstractly in the field of algebraic topology [29].

Subdivisions, be them triangulations, tetrahedralizations or more general complexes

of polyhedral cells, are usually represented by objects connected with pointers. Many

such data structures exist for storing subdivisions of the plane, for example the doubly

connected edge list [31], and the quad edge structure [48]. These structures all store

the connectivity in slightly different ways at slightly different memory costs. Memory

usage is an important issue when manipulating large meshes, so Campagna et al. [23]

propose a triangle mesh representation where the choice between computation costs

and memory costs can be made at compile time.

For 3D subdivisions, Dobkin and Laszlo [39] describe a data structure that can

represent general complexes of cells. The cells can have any shape and may be infinite;

the only restriction is that they must meet properly. The central notion of their data

structure is the facet-edge: it represents the combination of a facet (a 2-dimensional

cell) and an edge (a 1-dimensional cell). A cell complex is stored as a set of objects, each

representing a single facet-edge. Every object contains references to the four adjacent

facet-edge objects: the next and previous edge of the same face, and the next and

previous facet that is incident with the same edge. Since neighboring facet-edges are

stored explicitly, it is very easy and efficient to traverse all the facets incident to an edge,

and all edges contained in a facet. Mücke [68] uses a simplified version of the facet-edge

structure for maintaining the connectivity of tetrahedral meshes.

Brisson [16] proposes a generalization of the concept of facet-edge to d dimensions:

mesh features are represented by so-called cell tuples. A cell tuple is a tuple (c0, . . . , cd),

128



7.1 Abstract oriented simplexes 129

where each cj represents a j-dimensional mesh feature, and ci ⊂ ci+1. In 3D, a cell-

tuple represents a vertex as part of a specific edge and a specific face. For k = 0, . . . , d

the switch operator is defined: switchk(t) is the unique cell tuple that agrees with t except

in its kth component. For example, in 3D, the switch3 operator moves from a vertex

of a volumetric cell to the same vertex as part of the same edge and face, but from a

neighboring volumetric cell. Data structures such as the facet-edge structure discussed

above, the edge algebra discussed by Guibas and Stolfi [48] and various other mesh

data structures [61,99] can be expressed in terms of cell tuples.

In summary, meshes are typically represented by objects connected by pointers.

Relations between objects, such as incidence, inclusion and neighborhood, are main-

tained by storing pointers between these objects. This structure allows for efficient

traversal of the mesh: jumping between mesh features is a matter of following pointers.

In this sense, our data structure resembles much of the previous work. However, we

have chosen to make explicit what the mesh connectivity objects represent. This makes

it possible to specify correctness of the data structure, prove algorithms dealing with

meshes correct, and formally specify what change operations should do. Moreover, im-

plementing such operations is easy. Two operations are provided to change the mesh

connectivity, change-elements and replace-elements. These are generic operations, and

can be used to implement high level mesh operations. All code for maintaining mesh

connectivity is concentrated in these two routines, enhancing the modularity of the total

system.

In this chapter we first discuss the underlying abstract mesh representation. This

representation uses abstract oriented simplexes, a basic concept in algebraic topol-

ogy [29]. Then we discuss how connectivity is stored in the program, and how it can be

modified, in other words, how change-elements and replace-elements are implemented.

Finally, we show how the rest of the system interfaces with mesh changes.

7.1 Abstract oriented simplexes

Domains with general shapes in the Finite Element Method are usually represented us-

ing unstructured meshes. These meshes consist of triangles (in 2D) or tetrahedra (in

3D). In conforming Finite Element Methods, shape functions should be admissible as

solutions to the original, continuous problem. In the case of elastic problems, this im-

plies that the functions should be piecewise continuously differentiable. This continuity

condition (also known as compatibility condition), implies that the common interface of

two elements should also be a mesh feature. In other words, mesh elements should be

properly joined.

In a triangulated or tetrahedral mesh, mesh features are formed by convex hulls

of vertices, so-called geometric simplexes. For example, let a1, . . . , a4 be an affinely

independent set of points in R
d, then conv{a1, a2}, the convex hull of a1 and a2, is

an edge, conv{a1, a2, a3} is a triangle, and conv{a1, . . . , a4} is a tetrahedron. Proper

joining of simplexes can be expressed as follows. Let a1, . . . , ak ∈ R
d and b1, . . . , bl ∈

R
d, then conv{a1, . . . , ak} and conv{b1, . . . , bl} are properly joined if

conv{a1, . . . , ak} ∩ conv{b1, . . . , bl} = conv S,
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where S ⊂ {a1, . . . , ak, b1, . . . , bl}. Properly joined simplexes are demonstrated in

Figure 7.1.

Figure 7.1: Properly joined simplexes (left), and improperly joined ones (right)

We can see that properly joined geometric simplexes are characterized by their sets

of vertices. Hence, for reasoning with simplexes, it suffices to consider the discrete set

of their vertices, and disregard the continous nature of convex subsets of R
d. If we

only consider sets of vertices, then the type of the vertices themselves is not relevant.

Therefore, we will assume for the remainder of the chapter that vertices come from

some set V, which is left unspecified.

Simplexes can have orientations. For example, an edge can have two directions, and

a triangle can have a normal pointing in two directions. This orientation is related to

ordering of the vertices: if two vertices in a triangle are swapped, the direction of the

normal is flipped. The orientation of a simplex can also be defined in terms of swaps.

Let a0, . . . , ak ∈ V be a sequence of k + 1 vertices, for k ≥ 1. A permutation π of

these vertices may be decomposed into a number of swaps. If this number is even,

then π is an even permutation, otherwise it is an odd permutation. The positive simplex

〈a0, . . . , ak〉 is formed by the equivalence class of all even permutations of a0, . . . , ak,

i.e.,

〈a0, . . . , ak〉 = {π(a0, . . . , ak) : π is an even permutation } .

Analogously, the equivalence class of uneven permutations forms the other orientation

−〈a0, . . . , ak〉 = {π(a0, . . . , ak) : π is an odd permutation } .

The number k is also called the dimension of the simplex. 1-simplexes correspond to

edges, 2-simplexes to triangles and 3-simplexes to tetrahedra. The above definition

requires k > 0. For simplexes of one vertex, we simply assume that they exist in two

orientations.

Containment of oriented abstract simplexes is defined with help of the subsimplex

operation. This operation is defined as follows.

subsimplexaj
〈a0, . . . , ak〉 = (−1)j〈a0, . . . , ak\aj〉, a0, . . . , ak ∈ V, k ≥ 1.

The notation a0, . . . , ak\v means the sequence a0, . . . , ak with v removed. This defini-

tion is independent of the representative chosen. This operation implies an inclusion re-

lation. We have σ ⊂ τ, if σ = τ or when there is some v ∈ τ such that σ ⊂ subsimplexvτ.
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We call the set of abstract simplexes K an oriented d-dimensional pseudo-manifold,

or a simplicial mesh if the following conditions hold:

1. if τ in K and σ ⊂ τ then σ in K

2. Every σ in K is a subsimplex of some τ ∈ K, where τ has dimension d.

3. if σ ∈ K is a (d − 1)-simplex, then it is subsimplex of only one d-simplex.

Two d-simplexes τ1 and τ2 are neighbors if there is a (d − 1)-simplex ρ ⊂ τ1 such

that −ρ ⊂ τ2. The boundary of a simplicial mesh K, denoted by ∂K is formed by the

set of d − 1 simplexes whose opposite orientation is not part of K. Since all simplexes

in a pseudo-manifold are part of some d-simplex, we can characterize the structure by

its set of d-simplexes.

�

�

�

�

Figure 7.2: A simple 2-dimensional pseudo-manifold. We have T = {abc, bdc}

(leaving out the angled brackets in the notation of simplexes), and K = T ∪
{ab, bc, ca, cb, bd, dc, a, b, c, d, −a, −b, −c, −d}. The boundary of K is formed by

{ab, ca, bd, dc}; the other edges (bc and −bc) form a pair that connect abc and bcd.

The orientation of triangles and edges are indicated with arrows.

7.2 Representing the mesh

The mesh representation discussed in the previous section can be directly implemented.

In the next two sections, we show how this is done, both using class declarations (in

C++ syntax) and pseudo-code. In this pseudo-code, we will refer to simplexes with

the greek letters σ and τ. The variable t always refers to an Element object representing

a d-simplex, and the variable f always refers to a Face object representing a (d − 1)-

simplex. In general variables are denoted by words printed in italic. In the pseudo-code

we will equate maps, search structures that store a value v for some keys k, with a set of

key/value tuples. This is done for the sake of notational convenience. In practice, such

search structures will typically be implemented by balanced trees. We assume that sets

of key/value tuples can be indexed, and that it supports the method keys that returns all

keys in the map, and the method erase, that removes a single (key,value) tuple from the

set. Examples of the use of these maps are given here.
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m← {(k1, v1), (k2, v2)}

m.keys() (∗ returns {k1, k2} ∗)
m[k1] (∗ returns v1 ∗)
m[k1]← w1 (∗ changes the value corresponding to k1 ∗)
m[k3]← v3 (∗ adds the tuple (k3, v3) ∗)
m.erase(k2) (∗ removes (k2, v2) ∗)

If V is totally ordered, then we can define a canonical representation for each sim-

plex. Let a0, . . . , ak ∈ V. We can sort the vertices in a oriented simplex, while count-

ing the number of swaps s, and take (−1)s sort(a0, . . . , ak) as the representative of

〈a0, . . . , ak〉. In effect, this the canonical representation translates a k-simplex in a

k + 2 tuple, consisting of the k + 1 vertices and the value of s. Since the elements of

each tuple can be ordered, the tuples themselves can also be ordered, e.g. by the lexi-

cographic order. This implies that the canonical representation can be used as a key in

a lookup structure. In this way, we can create tables of objects with simplexes as keys.

The canonical representation of a simplex can be used to implement it. Assuming

that there is some type Vertex representing vertices, the data of the Simplex type may

expressed (in C++ syntax) as follows.

class Simplex {

Vertex vertices[MAXDIMENSION+1];

int dimension;

};

Let us assume for the remainder that a Simplex object can be created from a sign

q ∈ {−1, 1} and a sequence of vertices b0, . . . , bk, yielding the canonical representation

p〈a0, . . . , ak〉 with a0 < · · · < ak and p ∈ {−1, 1}. Let σ and τ be Simplex objects, j an

integer from 0, . . . , k, and v and w Vertex objects. Then the following operations can be

defined and implemented for the Simplex type.

• σ.count() returns k + 1, the number of vertices in σ.

• σ.dimension() returns k, the dimension of the simplex.

• σ.index (v) returns j such that aj = v.

• σ.sign () returns p.

• σ.vertex(j) returns aj.

• σ.subn (j) returns (−1)jq〈a0, . . . , ak\aj〉, the jth subset of σ.

• σ.subv (v) returns subsimplexvσ.

• σ.mate() returns −σ.

• σ.substituted (v, w) returns σ with v replaced by w in the vertices of the simplex.

• compare (σ, τ) is a signed comparison of σ and τ. It can be implemented by

lexicographic ordering.
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• σ.sup (v) returns p〈v, a0, , . . . , ak〉, the unique (k+1)-simplex containing both the

vertex v and the simplex σ.

Since a d-dimensional pseudo-manifold is characterized by a set of d-simplexes,

a simplicial mesh can be succinctly specified as a set of Simplex objects of dimension

d. However, traversing the elements of a mesh cannot be done efficiently with this

representation. Therefore, d-simplexes and (d − 1)-simplexes are also represented as

objects, i.e. chunks of memory with a unique identity that can be referenced to by means

of pointers. The base class for both objects is Mesh-feature. It contains the simplex that

it is supposed to represent. One derived class represents d-simplexes, and is called

Element, by analogy with naming of Finite Elements. Objects of the class Face represent

(d − 1)-simplexes.1 The definition of Mesh-feature in C++ notation is as follows.

class Mesh_feature {

Simplex simplex;

};

Each d-simplex contains d + 1 faces, so the Element object has d + 1 pointers to Face

objects.

class Element : public Mesh_feature {

Face * faces[MAXDIMENSION+1];

};

A face of an element is obtained by removing one vertex from its simplex. Faces and

vertices in an element are related. This relation is used in opposite-vertex and opposite-

face methods of Element objects. The method opposite-vertex for an Element object e

takes a face f from e.faces, and returns a vertex from e.simplex such that

f.simplex = e.simplex.subv(e.opposite-vertex(f))

Similarly, the function opposite-face, takes a vertex v from e.simplex, and returns a Face

object from e.faces such that

e.opposite-face(v).simplex = e.simplex.subv(v)

Both functions are also illustrated in Figure 7.3.

The faces variable must contain Face objects. The following invariant specifies in

what order they are stored.

t.faces[i].simplex = t.simplex.subn(i), i = 0, . . . , d. (7.1)

In a pseudo-manifold, each face is in exactly one d-simplex. Hence we may store

pointers from Face objects to Element objects. The Face object also stores a pointer to

its mate, the Face object with the opposite orientation

1This is in contrast with traditional terminology for simplicial complexes, where simplexes of all dimen-

sions are called “faces.”
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σ

f

v

e.opposite-vertex(f)

e.opposite-face(v)

Figure 7.3: The body of the cycle-around algorithm illustrated: an element e is entered

through f (dotted arrow), and left through e.opposite-face (v) (other dotted arrow). In

this case, σ is a 0-simplex, i.e. a vertex. The orientation of the triangle and the edges

are indicated with arrows.

class Face : public Mesh_feature {

Element *element;

Face *mate;

};

The element pointer in a Face object f satisfies the following invariant

f ∈ f.element.faces, (7.2)

where we treat the array faces as a set. The mate field of a Face object f satisfies

f.mate = null ∨ f.mate.simplex = −f.simplex. (7.3)

The connectivity of a simplicial mesh then is a collection of Element and Face objects

such that invariants (7.1) to (7.3) are satisfied, and each d and (d − 1)-simplex is

represented by exactly one Element and Face object respectively, i.e., for all Mesh-feature

objects t, u in the mesh we have

t.simplex = u.simplex =⇒ t = u. (7.4)

This connectivity information is sufficient to traverse the mesh. We give the example

of traversing Element objects incident with one particular (d − 2)-simplex. In 2D, this

routine traverses all triangles incident with a vertex, and in 3D all tetrahedra incident

with an edge. It takes a Face object entry as argument, and a number j ∈ {0, . . . , d −

1}. It returns a set of d-simplexes that contain entry.simplex.subn(j). Termination and

correctness of the algorithm can be proved using the integrity of the data structure, and

properties of the simplicial mesh.

procedure cycle-around (entry: Face, j : {0, . . . , d − 1})

star← ∅
f← entry

v← entry.simplex.vertex(j)

while f 6= null
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e← f.element

exit← e.opposite-face(v)

v← e.opposite-vertex(f)

star.add (e)

f← exit.mate

if f = entry:

f← null

return star

This code is also illustrated in Figure 7.3.

This routine builds a set of Element objects that contain σ = entry.simplex.subn(j).

This can be seen by considering the following loop invariant.

f = null ∨ subsimplexv(f.simplex) = σ.

If f 6= null, then f.simplex = σ.sup(v), and e.simplex = σ.sup(v).sup(w) for some vertex

w. Hence exit.simplex = −σ.sup(w). In the next step, either the loop exits because

exit.mate = null, or f and v are changed such that the invariant holds again.

In addition, we see that the loop adds a sequence of Element objects with d-simplexes

(τ1, τ2, . . .) to star. These d-simplexes are of the form

σ.sup(p1).sup(p2), σ.sup(p2).sup(p3), σ.sup(p3).sup(p4), . . .

for a sequence of vertices (p1, p2, . . .). All simplexes of the sequence are unique. To

see this, suppose that τj = τi for some j ≤ i. In other words

σ.sup(pj).sup(pj+1) = σ.sup(pi).sup(pi+1).

This implies pi = pj and pj+1 = pi+1. Their predecessors in the sequence are τj−1 =

σ.sup(pj−1).sup(pj) and τi−1 = σ.sup(pi−1).sup(pj) respectively. Since τj−1 and τi−1

both contain the face −σ.sup(pj) they must be equal, implying that pj−1 = pi−1. This

argument can be continued inductively, until we have τ1 = τi−j+1 = σ.sup(p1).sup(p2).

The integrity of the data structure implies that entry is the only Face object whose sim-

plex is σ.sup(p1). Therefore, if i < j the if statement would have aborted the loop before

τi is added in the i-th step. Therefore i = j. Since the mesh only contains finitely many

d-simplexes, the loop must terminate.

7.3 Changing the mesh

In this section we show how mesh connectivity objects can changed in a generic fashion.

This is done by two routines, replace-elements and change-elements. First we show how

replace-elements can be implemented. In situations where the number of elements does

not change, a different routine with additional desirable properties can be used. This is

the change-elements routine. Finally, we show how cuts can be expressed with change-

elements.
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Every change in the mesh can be encoded as removing existing elements, expos-

ing more of the boundary of the mesh, and attaching new elements to the boundary.

The actual connectivity information is stored in Face objects, since their mate fields

link neighboring elements. To update these fields properly, it is necessary to store the

boundary of the pseudo-manifold. This is done with the following data structure for

the mesh connectivity.

class Mesh_connectivity {

set<Element*> elements;

map<Simplex, Face*> boundary;

};

This definition uses the generic types set and map. The variable elements is a set of

Element objects. The variable boundary maps simplexes to their Face objects for all

boundary faces.

Let the (d − 1)-simplexes of a set of d-simplexes T be given by

faces(T) = { σ : σ = subsimplexv(τ), v ∈ τ, τ ∈ T } .

Then, the boundary map of a simplicial mesh formed by T may be characterized as

boundary(T) = {(σ, f) : f.simplex = σ, ∧ − σ 6∈ faces(T) ∧ σ ∈ faces(T)} (7.5)

The primary mesh change operation is replacing elements. The simplest way to

implement it is by removing elements one-by-one, and adding new elements one-by-

one. This is achieved by the following procedure.

procedure replace-elements (mesh: Mesh-topology,

old-objects: set of Element, new-simplexes: set of Simplex):

for e in old-objects:

remove-element (mesh, e)

for τ in new-simplexes:

add-element (mesh,τ)

When a single element is added, the connectivity can be maintained by removing

boundary faces that attach to the new element, and adding other new faces of the ele-

ment to the boundary.

procedure add-element (mesh: Mesh-topology, τ: Simplex)

e← new Element(τ)

mesh.elements←mesh.elements ∪ {e}

for j in 0, . . . , d:

σ← τ.subn(j)

f← new Face(σ)

f.element←e
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e.faces[j]←f

if −σ ∈ mesh.boundary.keys():

f.mate←mesh.boundary[−σ]

f.mate.mate←f

mesh.boundary.erase (σ)

else :

mesh.boundary[f.simplex]←f

f.mate← null

Similarly, the boundary can be updated during element removal.

procedure remove-element (mesh, e)

for f in e.faces:

if f.mate:

mesh.boundary[−f.simplex]← f.mate

f.mate.mate← null

f.mate← null

else :

mesh.boundary.erase(f.simplex)

mesh.elements← mesh.elements\{e}

This code maintains mesh connectivity, but is not very efficient and replaces all Face

objects, even the ones that were not changed. The following improvements solve these

problems. First, in some cases, a mesh change modifies elements, but may leave certain

faces in place. In the code shown below, these faces are maintained, so that pointers

to these faces remain valid after the change. It achieves this by remembering old faces,

and reusing those that also occur in the new configuration.

procedure replace-elements (mesh: Mesh-topology, old-objects: set of Element,

new-simplexes: set of Simplex):

oldfacemap← { (f.simplex, f) : f ∈ e.faces, e ∈ old-objects }

newfacemap← {(σ, f) : σ = τ.subn(j), j = 1, . . . , d, τ ∈ new-simplexes,

f = (if σ ∈ oldfacemap.keys()) : oldfacemap[σ] else: null)}

discard← oldfacemap\newfacemap

(*)

for (σ, f) in discard:

(**)

if f.mate:

f.mate.mate← null

f.mate← null

mesh.boundary[f.simplex]← f.mate

else :

boundary.erase (f)

mesh.elements← mesh.elements\old-objects
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for τ in new-simplexes:

e←new Element (τ)

mesh.elements← mesh.elements ∪ {e}

for j in 0, . . . , d:

(σ, f)← newfacemap[τ.subn(j)]

if f = null:

f← new Face(σ)

if −σ ∈ mesh.boundary.keys():

f.mate← mesh.boundary[−σ]

f.mate.mate← f

mesh.boundary.erase (-σ)

else :

mesh.boundary[σ]← f

f.element← e

e.faces[j]← f

a

bc

d a

bc

d

Figure 7.4: An edge flip changes the edge db to ad. This can be encoded as replacing

the 2-simplexes {bcd, abd} by {abc, acd}. The elements on the left contain edges ab,

bc, cd, and da which are also present after the flip.

This code is still not optimal. For example, in the edge flip from Figure 7.4, the

boundary does not change, while orientations of bd and ad are temporarily added to

and removed from the boundary. When the boundary is large, these temporary changes

may be expensive. They can be prevented by adding matched pairs to newfacemap

before processing it. If the following code is added in the place marked with (∗) in the

previous algorithm, then these unnecessary updates are prevented.

for σ in newfacemap.keys ():

if −σ ∈ newfacemap.keys () ∧ σ.sign() = 1 ∧

newfacemap[σ] = null ∧ newfacemap[−σ] = null:

f1 ← new Face(σ)

f2 ← new Face(−σ)

f2.mate← f1

f1.mate← f2

newfacemap[σ]← f1

newfacemap[−σ]← f2
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Similarly, the updates of the boundary, following (∗∗) in the pseudo-code, only have to

be performed when −σ 6∈ discard.keys().

Some types of mesh modifications do not change the number of mesh elements,

only their connectivity. For example, in Figure 7.5, two faces are dissected and two

other are glued together at the same time, leaving the number of faces and elements

invariant. It is possible to implement this operation with replace-elements. However,

there is a one-to-one correspondence for every face and element before and after the

change, and this correspondence is lost when replace-elements is used. Therefore, we

propose a second operation, change-elements that maintains this correspondence. Its

argument is a substitution, that is applied to a number of elements. Abstractly speaking,

a substitution s is a set of (τ, π)-tuples, where τ is a d-simplex, and π : V → V is

a substitution on the vertices. If T is set of d-simplexes in the original mesh, then

applying the substitution s entails forming the mesh

K ′ = { σ : σ ⊂ τ, τ ∈ T ′ } T ′ = { τ ∈ T : τ 6∈ s.keys() } ∪ {π(τ) : (τ, π) ∈ s } .

When implementing this operation, the substitution takes the form of a set of tuples

(t, π), where t is an Element object, and π a vertex substitution.

procedure change-elements (mesh: Mesh-connectivity,

substitution: element/node-substitution map):

oldfaces←{ t.faces[j] : (t, π) ∈ substitution, j = 0, . . . , d }

for f in oldfaces:

if f.mate:

mesh.boundary[f.simplex]← f

f.mate← 0

f.mate.mate← 0

else :

mesh.boundary.erase(f.simplex)

for (e, π) in substitution:

τ← e.simplex

τ ′ ← π(τ)

newfaces←{ (πσ, f) : f = e.face(j), σ = τ.subn(j), j = 0, . . . , d }

e.simplex←τ ′

for j in 0, . . . , d:

σ ′ ← τ ′.subn(j)

f← newfaces[σ ′]

e.faces[j]←f

f.simplex← σ ′

if −σ ∈ mesh.boundary.keys():

f.mate← mesh.boundary[−σ ′]

f.mate.mate← f

mesh.boundary.erase[−σ ′]

else :

mesh.boundary[σ ′]← f
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a

b

cd

e

f

a

b

c

f

e ′

d ′

Figure 7.5: Cutting and stitching can be achieved using replace-triangles. The

operation shown here can be effected as replacing {abd, bcd, cfe, aef} with

{abe ′, ae ′f, d ′cf, bcd ′}. The operation can also be written as a vertex substitution,

e.g. substitute d := d ′ in abd. By specifying the operation like this, objects can be

made persistent. Then bd (left) and be ′ (right) are represented by the same object,

marked in bold.

The primary example of the change-elements operation is the dissect operation, also

discussed in Chapter 3, which produces cuts along faces in a simplicial mesh. We show

how a vertex substitution for a cut along a surface C can be defined. Let us assume that

a simplicial mesh is given as T , a set of oriented d-simplexes, satisfying the conditions

for a simplicial mesh, and K is the complex induced by T , i.e.

K = { σ : σ ⊂ τ, τ ∈ T } .

We assume that the cut is specified by a set of faces C ⊂ faces(T), such that

σ ∈ C =⇒ −σ ∈ C.

In other words, C is a set of face pairs from K. The star of a vertex v is the set of all

elements incident with v, in other words,

star(v) = { τ ∈ T : v ∈ τ } .

Let v be a vertex, and let τ and τ ′ be elements from star(v). We say that τ and τ ′

are (v, C)-connected if there are d-simplexes τ = τ1, . . . , τk = τ ′ in T such that all τi

contain v, and all τi and τi+1 are neighbors for i = 1, . . . , k − 1 and

faces(τi) ∩ (−faces(τi+1)) 6∈ C, i = 1, . . . , k − 1.

In other words, τ1, . . . , τk is a chain of elements containing v that does not cross C.

The notion of (v, C)-connectedness is an equivalence relation on star(v), so for each

vertex v of T , we may partition star(v) into equivalence classes. Assume that these

classes are given by Sv,1, . . . , Sv,l for some l ≥ 1. Let us assume that a unique vertex

wv,i for each equivalence class Sv,i is given. In practice this may be a ‘copy’ of v with a

different number, or perhaps a vertex that is slightly displaced with respect to v. Let τ
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be a d-simplex, then we define for v ∈ τ the node substitution

ϕτ(v) =

{
v if star(v) is the single (v, C)-equivalence class,

wv,i if τ ∈ Sv,i, for some 1 ≤ i ≤ k and l > 1.

By construction, the mapping v 7→ ϕτ,S(v) is injective. We can define a complex K ′

induced by a set of d-simplexes T ′ as follows.

K ′ = { σ : σ ⊂ τ, τ ∈ T ′ } ,

T ′ = { 〈ϕτ(a0), . . . , ϕτ(ak)〉 : τ = 〈a0, . . . , ak〉 ∈ T } .

Since v 7→ ϕτ(v) is injective, all elements of T ′ are d-simplexes, and all (d−1)-simplexes

are unique within faces(T ′). Hence K ′ is a d-dimensional pseudo-manifold.

v
1

2 3

4

5

6

7

wv,1 wv,2

wv,3

Figure 7.6: A dissection can be expressed as a node substitution. In the above example,

the cut surface C (bold) partitions the 2-simplexes incident with v in 3 sets. Elements

5, 6 and 7 are (v, C) connected, but 1 and 7 are not. In the result v is substituted by

three different nodes wv,1, wv,2 and wv,3. Elements 5, 6 and 7 share the node wv,3.

The dissect operation leaves faces that are not in C joined together. If σ ∈ K and

−σ ∈ K but σ 6∈ C, then the d-simplexes τ1 and τ2 containing σ and −σ respectively,

obviously are (v, C)-connected for all vertices v of σ, hence both σ and −σ are mapped

to corresponding faces σ ′ and −σ ′. However, not all faces in C also have to end up on

the boundary of K ′. An example is given in Figure 7.7.

v w

Figure 7.7: Face vw is not dissected by the cut surface marked in bold, since the surface

does not split the elements around v and w into different components.

Finally, the dissect operation implies a connectedness condition. It is reasonable

to assume that for C = ∅, the dissect operation does nothing. This implies that for

every vertex v, star(v) forms a (v, ∅)-connected component. In other words all elements

containing v should be connected to each other via (d − 1)-faces. This is a desirable

property, for star(v) can then be found by traversing the mesh starting from an arbitrary

τ ∈ star(v).
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7.4 Interfacing with mesh connectivity

Both change-elements and replace-elements are characterized by changes to the set of

elements and the boundary. Such changes are signaled to other parts of the simula-

tion by the following mechanism. A Mesh-connectivity object maintains a list of Mesh-

connectivity-watchers. These are objects that to take some special action upon changes

to the connectivity. They can be characterized by a C++ class declaration as follows.

class Mesh_connectivity_watcher {

virtual void process_changed_element (Element*);

virtual void process_changed_boundary (Face*);

virtual void init_elements (set<Element*> const*);

virtual void init_boundary (map<Simplex,Face*> const*);

};

When a Mesh-connectivity-watcher is added to a Mesh-connectivity object, it is ini-

tialized with the current list of all Element and Face objects. After this initialization, the

virtual functions process-changed-boundary and process-changed-element are called for

every change to the mesh boundary and every element removed or added.

An example of a Mesh-connectivity-watcher is the following routine

procedure process-changed-boundary (f):

n← normal of f

if (f.mate = null) ∧ (n · e3 < 0):

for v in f.simplex.vertices:

deformation-constraints.fix-node (v)

This code assures that the deformable object is always fixed on one side. All boundary

faces pointing in e3 direction have their faces fixed.

In our implementation, the set of vertices simply is given by the positive integers,

with natural ordering. For a linear FEM discretization, simplex vertices and nodes

(interpolation conditions) coincide. This fact is exploited by taking vertex numbers as

array indices for nodal quantities. For example, in a mesh with m vertices in 3D, nodal

quantities like force and displacement are vectors from R
3m. Such a vector is stored as

an array of floating point numbers. The entries corresponding to a vertex v ∈ N are

stored at locations 3v to 3v + 2 in the array.

7.5 Discussion

We have presented a data structure for maintaining the connectivity of simplicial meshes

in an arbitrary spatial dimension. The data structure can be specified in terms of abstract

simplexes, ordered sequences of vertices. These simplexes can be represented directly

in the computer, and are also used to specify and implement operations changing the

mesh connectivity. Properties of the mesh and the integrity of the data structure, which

are crucial in proving traversal algorithms correct, can be verified automatically.
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We have discussed two operations to change mesh connectivity, replace-elements

and change-elements, and have shown how to implement them. Unfortunately, neither

change-elements nor replace-elements are guaranteed to deliver valid data structures, un-

less extra conditions are given on their arguments. An example is in Figure 7.8, where

a mesh change is shown that violates Condition (7.4). Catching these mistakes requires

storing more information of the mesh, making change operations more expensive. For-

tunately, Conditions (7.1) to (7.5) can be checked automatically in a validation routine.

Such a validation routine is expensive, but it can help program debugging. Less ex-

pensive checks can also help catching errors. For example, some errors can be caught

by checking that no key occurs twice when forming newfaces in the replace-elements

algorithm.

The algorithms presented do not have optimal performance. For example, the

change-elements contains spurious updates of the boundary. Another source of over-

head are updates of mesh.elements in replace-elements. During invocations of this rou-

tine old Element objects are removed from the mesh, and new ones introduced. The

advantage is that it is easy to catch some programming errors: when an Element or Face

object is discarded, it may be flagged as “invalid”. Bugs caused by using invalid ob-

jects can thus be caught automatically. The disadvantage is that every replace-elements

call—even if it does not change the number of elements—changes mesh.elements, and

will cost O(log(n)) time, where n is the number of elements in the mesh. This overhead

could be eliminated by reusing old Element objects.

�
�

�

Figure 7.8: Not all invalid mesh changes can be caught. When peforming

replace-elements(∅, {abc}) on the mesh shown above, the d-simplex abc and its faces

will represented by two objects.

Only d- and (d − 1)-dimensional mesh features are identified with objects. This

limits its applicability; both for higher order FEM discretizations and for certain relax-

ation techniques it is necessary to also track edges, which are (d − 2)-dimensional for

d = 3, across mesh changes. In a higher order FEM discretization, nodes, i.e. inter-

polation conditions, are also located on edges of the elements. These nodes are shared

by all elements containing that edge, so each edge must be uniquely identified. For a

linear FEM interpolation, most off-diagonal entries of the stiffness matrix correspond

to force/displacement relations of two nodes connected by an edge. Certain relaxation

algorithms exploit matrix structure by traversing the matrix column by column or row

by row, for example the Gauss-Seidel iteration [47]. A matrix-free implementation of

this algorithm must maintain lists of edges incident to each node. It possible to tracking

these edges using a Mesh-topology-watcher instance.
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Conclusions

In this thesis we have studied aspects of simulating interactively deformable objects,

in the context of training systems for surgical procedures. It is said that such training

systems should reproduce mechanical behavior accurately, which motivated our choice

for the Finite Element Method (FEM) as a discretization and modeling technique. The

linear elasticity approximation for mechanical FEM problems is attractive, since part of

the solution can be computed in advance, yielding a guaranteed performance. Unfor-

tunately, this technique cannot be used with more advanced, nonlinear material models

and it is impractical when the mesh is large or is changed online. Motivated by this

observation, we have proposed solution schemes based on static iterative relaxation

methods.

In general, all computational techniques have a tradeoff between accuracy and com-

putational cost. For example, the discretization error in a FEM approximation depends

on the granularity of the mesh. More refined meshes lead to more accurate solutions,

but also have increased costs due to their increased size. This tradeoff holds even more

strongly for iterative solution techniques: their rate of convergence is also decreased by

adverse mesh characteristics.

The influence of mesh characteristics and convergence speed is a common theme

in this thesis. In Chapter 3 we have seen that flat elements significantly slow down

the convergence speed of the CG algorithm, and in Chapter 4, we have seen that this

slowdown is not limited to the linear CG algorithm. In Chapter 6 we have observed that

information travels faster over coarser mesh parts, and that this can lead to improved

convergence. Since size and quality of the mesh influence convergence speed, it is

important to keep quality high, and size low while changing it. Hence, Chapter 5 shows

a method for making cuts in meshes that produces better and smaller meshes than

element subdivision, the most common technique for incorporating cuts in meshes.

In Chapter 6 we showed a simple yet effective technique for locally refining meshes

while maintaining element quality. That chapter also explored the connection between

computational cost and accuracy more deeply. In the scenario of needle insertion, the

accuracy of the solution, and the mesh resolution—and hence the update rates of the

system—are closely coupled. The difference in the update rates can be large.
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In literature on surgery simulations, systems are often described with qualifications

such as “real-time”, or “runs at 25 Hz.” The performance of such systems is hard to

evaluate with these numbers by themselves. In the first place, these numbers measure

computational cost, and this measurement depends on the quality of the implemen-

tation, and the hardware and supporting software used. For this reason, Chapter 4

analyzes the speed of our static relaxation by comparing it to another algorithm coded

within the same framework, and measures the speed of the implementation by com-

paring it to the speed of the machine/compiler combination. In the second place, even

with an accurate indication of computational cost, an indication of accuracy is needed

to evaluate the total cost of a solution. For this reason, Chapter 6 takes into account the

accuracy of the solution when listing computation speeds.

We recall that our original choice for the FEM as a method for surgery simulation

was motivated by its promise of higher realism. In other words, it was driven by the

need for accuracy in the simulation. When we look at possible future extensions, we see

that many other mathematical techniques are available that might improve accuracy or

decrease computional costs. This is not surprising; tissue mechanics are complex, while

an interactive simulation allows only small amounts of computation. There are virtually

infinitely many areas of improvement. For determining which technical improvements

really improve the overall solution, a broader view should be taken. Technical improve-

ments should not only be mathematically justified, but also be tested against the problem

being solved, i.e., simulation of surgical procedures for virtual training environments.
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[84] David Serby, M. Harders, and G. Székely. A new approach to cutting in finite

element models. In Wiro J. Niessen and Max A. Viergever, editors, Medical

Image Computing and Computer Assisted Intervention (MICCAI), number 2208 in

LNCS, pages 425–433. Springer-Verlag, October 2001.

[85] E. G. Sewell. Automatic generation of triangulations for piecewise polynomial ap-

proximation. PhD thesis, Purdue University, West Lafayette, IN, 1972.

[86] Jonathan Richard Shewchuk. A condition guaranteeing the existence of higher-

dimensional constrained Delaunay triangulations. In Annual ACM Symposium on

Computational Geometry, pages 76–85. Association for Computing Machinery,

1998.

[87] Jonathan Richard Shewchuk. What is a good linear element? Interpolation, con-

ditioning and quality measures. In 11th International Meshing Roundtable Confer-

ence, pages 115–126. Sandia National Laboratories, September 2002.

[88] Dave Shreiner and OpenGL Architecture Review Board, editors. OpenGL refer-

ence manual. Addison-Wesley, 1999.



Bibliography 153

[89] Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley, 2000.

[90] Hiromasa Suzuki, Takashi Kanai, Yusuke Sakurai, and Fumihiko Kimura. Inter-

active mesh dragging with an adaptive remeshing technique. volume 16, pages

159–176. Springer-Verlag, 2000.

[91] Naoki Suzuki, Asaki Hattori, Akihiro Takatsu, Takahiro Kumano, Akio Ike-

moto, Yoshitaka Adachi, and Akihiko Uchiyama. Virtual surgery system us-

ing deformable organ models and force feedback system with three fingers. In

William M. Wells, Alan C. F. Colchester, and Scott Delp, editors, Medical Image

Computing and Computer Assisted Intervention (MICCAI), volume 1496, pages

397–403. Springer-Verlag, 1998.
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Appendix A

Tensor calculus

A.1 Tensors

The basis for expressing elastic equations is Euclidian 3-dimensional space, i.e., R
3 with

the Euclidian inner product. Vectors from R
3 are denoted by bold lower case letters,

e.g. a, b, and are also known as first-order tensors, or 1-tensors. We assume that an

inner product on R
3 is given, and that it is denoted by a · b for a and b ∈ R

3.

If we have a basis {a1, a2, a3} for R
3, then we can determine the components of a

vector with regard to that basis using the dual basis. The dual of {a1, a2, a3} is denoted

{a1, a2, a3}. It is determined uniquely by

x =
∑

i

(ai · x)ai, x ∈ R
3

A basis is called orthonormal if it is equal to its own dual.

The set of linear mappings from R
3 to R

3 is a 9-dimensional space, denoted by

Lin(R3, R3), or Lin for short. The elements of Lin are also known as second order

tensors, and are printed in bold upper case, e.g. T and E. The identity tensor is denoted

by I.

When we evaluate a linear mapping A in a point x, we write A · x. The product

A · B of two 2-tensors A and B is the 2-tensor defined by

(A · B) · x = A · (B · x).

The transpose (or adjoint) A∗ of A is the unique tensor satisfying

u · (A · v) = (A∗ · u) · v. (A.1)

For notational convenience, we set v · A := A∗ · v. The transpose is a linear operation

on 2-tensors. A tensor is called symmetric if A∗ = A.

A function taking u to u · A · u is called a quadratic form. If u · A · u > 0 for all

u 6= 0, then the quadratic form is positive definite, and if u ·A ·u ≥ 0, then it is positive

semidefinite. Negative definite and negative semidefinite are defined similarly.
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If a and b are 1-tensors, then we can construct a linear mapping from a and b by

setting

(a ⊗ b)(x) = (b · x)a, a, b ∈ R
3. (A.2)

This mapping is called a dyadic product, dyad or tensor-product. To illustrate the

meaning, when {a1, a2, a3} and {b1, b2, b3} are orthonormal bases, then the dyad

(a2 ⊗ b1) applied to x takes the magnitude of the b1 component of x, and maps that

component to a2. If {a1, a2, a3} and {b1, b2, b3} are bases of R
3, then set of dyads

given by {ai ⊗ bj|i, j = 1, 2, 3} has nine elements, and it forms a basis of the linear

mappings of R
3. Since these dyads form a basis, we may also use Equation (A.2) as

a definition for function application. Higher order tensor products (3-tensors and 4-

tensors) may also defined, to represent mappings between R
3 and Lin and between Lin

and Lin.

We can also express matrix multiplication using dyads. Let A : a⊗b and B := c⊗d,

then we have

(A · B)(x) = (a ⊗ b)c(d · x) = (b · c)(a ⊗ d)(x).

Since the dyads form a base of Lin, we may also define linear operations in Lin in

terms of dyads. For instance, the transpose or adjoint can be defined as

(a ⊗ b)∗ = b ⊗ a.

The trace is a linear functional on Lin: it takes a linear mapping, and returns a

number. It can be defined in terms of dyads

trace(a ⊗ b) = a · b. (A.3)

With the help of the trace operator we can define an inner product on Lin. The inner

product between A and B is denoted by A : B, and is given by

A : B = trace(B∗ · A). (A.4)

We have trace(A) = A : I. When 2-tensors are represented by matrices, then the

trace corresponds to the sum of the diagonal elements. The inner product on Lin

corresponds to the Euclidian inner product on R
3×3.

By use of tensor products, we may extend these inner products to tensor products

between arbitrary dimensions. The inner product of a k and l-tensor product

(a1 ⊗ · · · ⊗ ak) · (b1 ⊗ · · · ⊗ bl) = (ak · b1)(a1 ⊗ · · · ⊗ ak−1) ⊗ (b2 ⊗ · · · ⊗ bl).

Similarly, we may extend the inner product for two tensors to arbitrary dimensions.

(a1⊗· · ·⊗ak) : (b1⊗· · ·⊗bl) = (ak−1 ·b1)(ak ·b2)(a1⊗· · ·⊗ak−2)⊗(b3⊗· · ·⊗bl).

The expression

a · (b × c)

measures the oriented volume of the parallelepiped spanned by a, b and c. It is called

the scalar triple-product of vectors a, b and c. The determinant of a mapping A from



A.2 Tensor calculus 157

Lin measures how the volume of a parallelepiped changes when it transformed through

A. This definition is independent of the parallelepiped used. In other words, given an

arbitrary set of independent vectors a, b, c, then the determinant is uniquely defined

by

det A =
(Aa) · (Ab × (Ac))

a · (b × c)
. (A.5)

The determinant satisfies det(A ·B) = det A det B, and hence det(A−1) = 1/ det A,

if A−1 exists. It follows that det(XAX−1) = det(A): the determinant is invariant under

a change of basis.

A vector v is called an eigenvector of A if there is a number λ, the eigenvalue, such

that

Av = λc.

Eigenvalues are given by the roots of the characteristic polynomial. The characteristic

polynomial of a 2-tensor A is defined as det(A − λI). We can expand this expression

as a polynomial, thus obtaining

det(A − λI) = −λ3 + ι1λ2 − ι2λ + ι3.

The coefficients ι1, ι2 and ι3 in this expansion are called invariants of A. Since the

determinant is invariant under change of basis, the invariants also are. If λ1, λ2 and λ3

are the eigenvalues of A, then we have

ι1(A) = λ1 + λ2 + λ3,

ι2(A) = λ1λ2 + λ2λ3 + λ3λ1,

ι3(A) = λ1λ2λ3.

(A.6)

The invariants can also be determined directly from A. We have

ι1(A) = trace(A),

ι2(A) =
1

2
((trace A)2 − trace(A∗ · A)),

ι3(A) = det A.

A.2 Tensor calculus

A function f : R → R is differentiable in x ∈ R, when there is a number d(x) and a

function r(x, h), such that

f(x + h) = f(x) + d(x)h + r(x, h), r(x, h) = o(h) when h→ 0.

In other words, f is differentiable in x if it may be linearly approximated in a neighbor-

hood of x. The function d(x) is the derivative of f in x, also denoted by df
dx

.

This definition can be generalized to higher dimensions. Let V and W be finite-

dimensional vector spaces. A function F : V → W, is called Fréchet-differentiable in v

if there is a linear mapping L : V→W such that

F(v + h) = F(v) + L(h) + o(h), h ∈ V.
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Since L is a linear mapping, we may write it as some product of some D in the ten-

sor product space of V and W. This representant D of the mapping L is called the

derivative.

For example, if a function f maps vectors from R
3 to numbers, then it is differen-

tiable in x if there exists functions fx and r, such that

f(x + h) = f(x) + fx(x) · h + r(x, h),

and r(x, h) = o(‖h‖). The mapping h 7→ fx(x) · h is a linear mapping. The function

can be represented as an inner product of fx(x) and the argument. Hence, fx(x) is is

called the derivative or gradient of f. It is denoted as ∂f
∂x

. Other notations include grad f

or ∇f.

If f : Lin → R is a differentiable function taking linear mappings to scalars, then

there exists a function r and ∂f/∂A : Lin→ R , such that

f(A + H) = f(A) +
∂f

∂A
: H + r(A, H), A ∈ Lin,

where r(A, H)/‖H‖→ 0 when H→ 0. The derivative
∂f(A)

∂A
is also denoted by fA(A).

Some derivatives of standard functions are given here.

∂ trace(C)

∂C
= I,

∂ det(C)

∂C
= det CC−∗,

∂ι2(C)

∂C
= trace(C)I − C,

The inverse of a 2-tensor is another 2-tensor, so taking inverses is a function from

Lin to Lin. Its derivative is a linear function from Lin to Lin, which may be repre-

sented as a 4-tensor. To avoid the hassle of representing 4-tensors, we simply give the

derivative applied to some H ∈ Lin:

∂C−1

∂C
: H = −C−1 · H · C−1.

We mention one differential operator that we shall encounter further, the divergence.

The divergence of a vector field f : R
3 → R

3 is defined by

div f = trace(∂f/∂x).

The divergence of a tensor field T is defined by

div T = ∂T/∂x : I.

In one dimension, the value of an integral over an interval of a continuous function

is given by the values of its primitive at the boundaries of that interval. A similar the-

orem holds in higher dimensions. If Ψ is a tensor valued function, and continuously
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differentiable on its domain Ω, and continuous on the closure of Ω, then

∫

Ω

∂Ψ/∂x dv(x) =

∫

∂Ω

Ψ ⊗ n(x) da(x),

where n is the outward pointing normal on ∂Ω. This theorem can applied to tensors of

different order, e.g. the divergence theorem. One form that we employ is

∫

B

div T dv(x) =

∫

∂B

T · n dv(x). (A.7)



Samenvatting

Wie kent niet het spelletje Flight Simulator? Gewapend met een joystick kunnen we

tegenwoordig vanachter het buro een (virtueel) vliegtuig de hele wereld rondsturen.

Achter dit ogenschijnlijk onschuldige tijdsverdrijf gaat echter een serieuzere toepassing

schuil. Door vliegtuigen na te bootsen op computers is het mogelijk om piloten te

laten oefenen met vliegen zonder dat dure vliegtuigen de hangar hoeven te verlaten.

Ook rampscenario’s, zoals het uitvallen van een motor, kunnen worden getraind zonder

noemenswaardige risico’s of kosten.

Net als piloten moeten chirurgen in hun werk complexe handelingen uitvoeren,

waarbij het gevolg van een fout ernstig kan zijn. Het is lijkt daarom aantrekkelijk om ook

chirurgen te trainen met behulp van computers. Een dergelijk simulatie systeem bootst

de anatomie van een patient na, en stelt de te onderwijzen student in de gelegenheid

om te experimenteren met snijden, schroeien, hechten, etc. in virtueel lichaamsweef-

sel. De student hanteert een speciale joystick, die de handelingen doorgeeft aan een

computersimulatie. Deze simulatie berekent direct het resultaat van de manipulatie,

bijvoorbeeld een vervorming of snede. Het resultaat wordt direct zichtbaar gemaakt, en

via force-feedback ook voelbaar gemaakt in de joystick.

Een kernprobleem bij het construeren van zulke systemen is simuleren hoe mense-

lijk weefsel vervormt. Enerzijds moet deze vervorming enigszins realistisch zijn, zodat

de simulatie als geheel geloofwaardig is, anderzijds is er voor het berekenen van die ver-

vormingen slechts zeer weinig rekentijd beschikbaar: om goede terugkoppeling voor de

gebruiker te garanderen, moet het antwoord direct getoond moet worden. Tussen deze

twee tegenstrijdige belangen moet dus een compromis gevonden worden.

Realistische simulatie van vervorming is op zich geen nieuw onderzoeksterrein.

Botstests voor auto’s worden bijvoorbeeld al jaren doorgerekend op de computer met

een techniek die bekend staat als de Eindige Elementen Methode (Finite Element Me-

thod, FEM). De kern van deze techniek is dat het te vervormen object wordt opgedeeld

in blokjes (in ons geval driehoeken of tetraeders). Uit de mechanische eigenschappen

van dit collectief van blokjes worden vergelijkingen afgeleid, en daarmee wordt een op-

lossing berekend. De eindige elementen methode is geı̈llustreerd in figuur A.1.

Dit proefschrift onderzoekt aspecten van interactieve vervormings met de Eindige

Elementen Methode, waarbij we de toepassing op chirurgiesimulatie in ons achterhoofd

houden.

Bij het toepassen van eindige elementen op medische simulaties is er een extra com-

plicatie. De opdeling in blokjes (het rooster), kan tijdens de simulatie veranderen. Bij-
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meshing
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Figuur A.1: In de eindige elementen methode wordt het te simuleren object (boven

links) in driehoekjes (“blokjes”) opgedeeld (boven rechts). De exacte oplossing van

een probleem (onder links) wordt dan benaderd door het geroosterde object (onder

rechts).

voorbeeld, als er gesneden wordt in een object, dan verandert de vorm van het object, en

dus ook het rooster. Deze veranderingen hebben invloed op het ontwerp van simulaties,

immers alle informatie die van het rooster afhangt verandert ook, en kunnen we beter

helemaal niet uitrekenen of opslaan. Daarnaast is er een numeriek effect dat minder

voor de hand ligt: de eigenschappen van het rooster zijn van invloed op de snelheid en

de precisie van de berekeningen: mooiere roosters leveren preciezere en snellere bere-

keningen. Als het rooster veranderd wordt (bijvoorbeeld door een gesimuleerde snede),

mag dit de kwaliteit van het rooster dus niet nadelig beı̈nvloeden.

Hoofdstuk 3 beschrijft onze eerste pogingen om een eindige elementen simula-

tie te construeren. De simulatie gebruikt een eenvoudig elasticiteitsmodel (lineaire

elasticiteit), met een statische iteratieve oplossingsmethode: een numeriek proces dat

stapje voor stapje naar de uiteindelijke oplossing toe gaat. Het systeem heeft ook de

mogelijk om te snijden in het gesimuleerde object. Hierbij hebben we een techniek

geı̈ntroduceerd die de grootte van het rooster (het aantal blokjes) constant houdt. Dit is

aantrekkelijk, aangezien dit de rekentijd per stap laag houdt. Figuur A.2 laat een plaatje

zien van het prototype in actie.

Het systeem voldeed aan onze eerste verwachtingen, maar tijdens de implementatie

kwamen we onverwachte problemen tegen. Ten eerste, het lineaire elasticiteitsmodel

is alleen realistisch voor beperkte gevallen, namelijk als de vervormingen relatief klein

zijn. Ten tweede, onze snijtechniek verandert de vorm van de rooster-blokjes zodanig

dat elke stap van het oplossingsproces maar traag naar de oplossing toe gaat: na het

maken van snedes nemen de prestaties van het programma af.

Hoofdstuk 4 onderzoekt de statische iteratieve aanpak voor het doorrekenen van

deformaties nauwkeuriger. De aanpak uit hoofdstuk 3 is hiervoor uitgebreid naar in-

gewikkelder materiaalmodellen. Het verschil tussen deze modellen is geı̈llustreerd in

figuur A.3. Om na te gaan hoe snel onze algoritme werkt, is het vergeleken met de stan-



162 Samenvatting

Figuur A.2: Een lineair elastisch object met een snede. Het object is aan de achterkant

vastgezet, en wordt zijwaarts uitgerekt.

daard methode voor het doorrekenen van elasticiteitsvergelijkingen: dynamische relaxa-

tie met demping. Uit experimenten kunnen we afleiden dat bij verstandige implemen-

tatie onze aanpak altijd minstens even snel is als de dynamische. Uit deze experimenten

blijkt ook nogmaals dat de roosterkwaliteit van grote invloed is op de rekensnelheid, en

dat drie-dimensionale simulaties te rekenintensief zijn voor serieuze interactieve toepas-

sigen.

Figuur A.3: Lineaire elasticiteit is een benadering die geldig is voor kleine vervormingen

(links). Bij grotere belastingen van zacht materiaal leidt het tot onrealistische resultaten

(midden). Een niet-lineair materiaal, zoals neo-Hookeaans materiaal (rechts), geeft

betere resultaten, maar vereist ingewikkeldere algoritmes. Door te testen hoe snel het

object de ruststand bereikt vanaf de beginstand (als wire frame weergegeven), kunnen

we een nagaan hoe snel een bepaalde algoritme is.

Het is moeilijk het inwendige van ruimtelijke objecten te visualiseren en te begrijpen.

Dit maakte het lastig de problemen van de snijtechniek in hoofdstuk 3 te begrijpen. In

hoofdstuk 5 werpen we daarom nogmaals een blik op snijden in roosters, maar doen



163

dat voor platte, twee-dimensionale objecten. We presenteren een techniek om met een

puntvormige scalpel snedes te maken in een rooster opgebouwd uit driehoeken. Om de

kwaliteit van het rooster te waarborgen, gebruiken we daarbij een standaard methode

om goede triangulaties te genereren, de Delaunay-triangulatie. Deze nieuwe snijtech-

niek produceert kleinere roosters met beter gevormde driehoeken, hetgeen ook te zien

is in figuur A.4. We laten ook zien hoe deze aanpak te generaliseren is naar gebogen

oppervlakken in de ruimte, waar één scalpel op meerdere punten tegelijk een incisie kan

maken.

Figuur A.4: Het maken van snedes in roosters kan met behulp van subdivisie: driehoek-

jes worden onderverdeeld om een snede te representeren (links). Het resultaat bevat

echter veel driehoekjes, die overwegend plat zijn, hetgeen ongewenst is uit oogpunt

van de eindige elementen methode. Door Delaunay-triangulaties handig te gebruiken

(rechts), kunnen we hetzelfde pad met minder driehoekjes weergeven, die ook nog min-

der plat zijn.

Zoals gezegd, voor serieuze toepassingen zijn drie-dimensionale modellen te duur

om interactief door te rekenen. In hoofdstuk 6, bekijken we daarom een twee-dimensio-

naal probleem, namelijk simuleren hoe zacht weefsel vervormt als er naalden in worden

gestoken. Dit probleem is al opgelost door anderen, maar daarbij werd een aanpak

gebruikt die fundamenteel beperkt was tot platte objecten, en lineair materiaal. In dit

hoofdstuk presenteren we een aanpak die ook andere modellen kan gebruiken, en bo-

vendien generaliseert naar ruimtelijke problemen. In dit hoofdstuk wordt er niet gesne-

den, maar het rooster wordt wel gewijzigd door verfijningen. Door het rooster alleen

daar te verfijnen waar nodig, kunnen we goedkoop een relatief precieze simulatie doen.

Figuur A.2 geeft een voorbeeld van zo’n simulatie.

Al het werk in de voorgaande hoofdstukken is uitgeprogrammeerd. Bij al deze syste-

men, moet de simulatie bijhouden hoe de blokjes—driehoeken of tetraeders—met elkaar

verbonden zijn. Bij het het implementeren van deze systemen is een datastructuur ont-

wikkeld, die de laag-bij-de-grondse administratie van al die verbindingen onderbrengt

in een aparte programma module. Roosterwijzigingen kunnen daardoor in de rest van

het programma op een abstract nivo gespecificeerd en geprogrammeerd kunnen wor-

den. Hoofdstuk 7 beschrijft deze datastructuur, en geeft algoritmes om de administratie

op orde te houden.

De motivatie van dit onderzoek was hoe vervormingen ten behoeve van medische
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Figuur A.5: Een simulatie van een naald insertie in 2D (links). Door rondom de naald

het rooster te verfijnen, kan tegen geringe kosten een hoge precisie worden behaald.

Door een eenvoudige verfijningstechniek te gebruiken, kan hetzelfde procedé ook in

3D worden toegepast (rechts).

trainingssimulaties realistisch gesimuleerd konden worden. Deze toepassing bracht ons

op een eindige elementen aanpak met veranderende roosters. In hoeverre dit voldoende

is om bruikbare simulaties te bouwen, blijft een open vraag: realisme is niet alleen

een kwalitatief maar ook een kwantitatief begrip. Meer kwantitatief realisme, met an-

dere woorden, een hogere precisie, wordt betaald met intensiever berekeningen en dus

tragere programma’s. De haalbaarheid van zulke simulaties staat of valt dus met de

gewenste precisie, en die kan enkel in de praktijk worden bepaald. Dit geldt ook voor

eventueel verder onderzoek. Er zijn vrijwel oneindig veel technieken om de huidige

aanpak te verbeteren. De mechanica van levend weefsel is immers complex, terwijl een

interactieve simulatie zeer weinig rekentijd toestaat. Om een zinvolle keuze te maken uit

al deze mogelijkheden, is het nodig technieken te toetsen aan praktijktoepassingen.
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