146 research outputs found

    Managing Event-Driven Applications in Heterogeneous Fog Infrastructures

    Get PDF
    The steady increase in digitalization propelled by the Internet of Things (IoT) has led to a deluge of generated data at unprecedented pace. Thereby, the promise to realize data-driven decision-making is a major innovation driver in a myriad of industries. Based on the widely used event processing paradigm, event-driven applications allow to analyze data in the form of event streams in order to extract relevant information in a timely manner. Most recently, graphical flow-based approaches in no-code event processing systems have been introduced to significantly lower technological entry barriers. This empowers non-technical citizen technologists to create event-driven applications comprised of multiple interconnected event-driven processing services. Still, today’s event-driven applications are focused on centralized cloud deployments that come with inevitable drawbacks, especially in the context of IoT scenarios that require fast results, are limited by the available bandwidth, or are bound by the regulations in terms of privacy and security. Despite recent advances in the area of fog computing which mitigate these shortcomings by extending the cloud and moving certain processing closer to the event source, these approaches are hardly established in existing systems. Inherent fog computing characteristics, especially the heterogeneity of resources alongside novel application management demands, particularly the aspects of geo-distribution and dynamic adaptation, pose challenges that are currently insufficiently addressed and hinder the transition to a next generation of no-code event processing systems. The contributions of this thesis enable citizen technologists to manage event-driven applications in heterogeneous fog infrastructures along the application life cycle. Therefore, an approach for a holistic application management is proposed which abstracts citizen technologists from underlying technicalities. This allows to evolve present event processing systems and advances the democratization of event-driven application management in fog computing. Individual contributions of this thesis are summarized as follows: 1. A model, manifested in a geo-distributed system architecture, to semantically describe characteristics specific to node resources, event-driven applications and their management to blend application-centric and infrastructure-centric realms. 2. Concepts for geo-distributed deployment and operation of event-driven applications alongside strategies for flexible event stream management. 3. A methodology to support the evolution of event-driven applications including methods to dynamically reconfigure, migrate and offload individual event-driven processing services at run-time. The contributions are introduced, applied and evaluated along two scenarios from the manufacturing and logistics domain

    To Compute or not to Compute? Adaptive Smart Sensing in Resource-Constrained Edge Computing

    Full text link
    We consider a network of smart sensors for edge computing application that sample a signal of interest and send updates to a base station for remote global monitoring. Sensors are equipped with sensing and compute, and can either send raw data or process them on-board before transmission. Limited hardware resources at the edge generate a fundamental latency-accuracy trade-off: raw measurements are inaccurate but timely, whereas accurate processed updates are available after computational delay. Also, if sensor on-board processing entails data compression, latency caused by wireless communication might be higher for raw measurements. Hence, one needs to decide when sensors should transmit raw measurements or rely on local processing to maximize overall network performance. To tackle this sensing design problem, we model an estimation-theoretic optimization framework that embeds computation and communication delays, and propose a Reinforcement Learning-based approach to dynamically allocate computational resources at each sensor. Effectiveness of our proposed approach is validated through numerical simulations with case studies motivated by the Internet of Drones and self-driving vehicles.Comment: 14 pages, 14 figures; submitted to IEEE TNSM; revised versio

    Using Workload Prediction and Federation to Increase Cloud Utilization

    Get PDF
    The wide-spread adoption of cloud computing has changed how large-scale computing infrastructure is built and managed. Infrastructure-as-a-Service (IaaS) clouds consolidate different separate workloads onto a shared platform and provide a consistent quality of service by overprovisioning capacity. This additional capacity, however, remains idle for extended periods of time and represents a drag on system efficiency.The smaller scale of private IaaS clouds compared to public clouds exacerbates overprovisioning inefficiencies as opportunities for workload consolidation in private clouds are limited. Federation and cycle harvesting capabilities from computational grids help to improve efficiency, but to date have seen only limited adoption in the cloud due to a fundamental mismatch between the usage models of grids and clouds. Computational grids provide high throughput of queued batch jobs on a best-effort basis and enforce user priorities through dynamic job preemption, while IaaS clouds provide immediate feedback to user requests and make ahead-of-time guarantees about resource availability.We present a novel method to enable workload federation across IaaS clouds that overcomes this mismatch between grid and cloud usage models and improves system efficiency while also offering availability guarantees. We develop a new method for faster-than-realtime simulation of IaaS clouds to make predictions about system utilization and leverage this method to estimate the future availability of preemptible resources in the cloud. We then use these estimates to perform careful admission control and provide ahead-of-time bounds on the preemption probability of federated jobs executing on preemptible resources. Finally, we build an end-to-end prototype that addresses practical issues of workload federation and evaluate the prototype's efficacy using real-world traces from big data and compute-intensive production workloads

    Demystifying Internet of Things Security

    Get PDF
    Break down the misconceptions of the Internet of Things by examining the different security building blocks available in Intel Architecture (IA) based IoT platforms. This open access book reviews the threat pyramid, secure boot, chain of trust, and the SW stack leading up to defense-in-depth. The IoT presents unique challenges in implementing security and Intel has both CPU and Isolated Security Engine capabilities to simplify it. This book explores the challenges to secure these devices to make them immune to different threats originating from within and outside the network. The requirements and robustness rules to protect the assets vary greatly and there is no single blanket solution approach to implement security. Demystifying Internet of Things Security provides clarity to industry professionals and provides and overview of different security solutions What You'll Learn Secure devices, immunizing them against different threats originating from inside and outside the network Gather an overview of the different security building blocks available in Intel Architecture (IA) based IoT platforms Understand the threat pyramid, secure boot, chain of trust, and the software stack leading up to defense-in-depth Who This Book Is For Strategists, developers, architects, and managers in the embedded and Internet of Things (IoT) space trying to understand and implement the security in the IoT devices/platforms

    Scalable Performance Analysis of Massively Parallel Stochastic Systems

    No full text
    The accurate performance analysis of large-scale computer and communication systems is directly inhibited by an exponential growth in the state-space of the underlying Markovian performance model. This is particularly true when considering massively-parallel architectures such as cloud or grid computing infrastructures. Nevertheless, an ability to extract quantitative performance measures such as passage-time distributions from performance models of these systems is critical for providers of these services. Indeed, without such an ability, they remain unable to offer realistic end-to-end service level agreements (SLAs) which they can have any confidence of honouring. Additionally, this must be possible in a short enough period of time to allow many different parameter combinations in a complex system to be tested. If we can achieve this rapid performance analysis goal, it will enable service providers and engineers to determine the cost-optimal behaviour which satisfies the SLAs. In this thesis, we develop a scalable performance analysis framework for the grouped PEPA stochastic process algebra. Our approach is based on the approximation of key model quantities such as means and variances by tractable systems of ordinary differential equations (ODEs). Crucially, the size of these systems of ODEs is independent of the number of interacting entities within the model, making these analysis techniques extremely scalable. The reliability of our approach is directly supported by convergence results and, in some cases, explicit error bounds. We focus on extracting passage-time measures from performance models since these are very commonly the language in which a service level agreement is phrased. We design scalable analysis techniques which can handle passages defined both in terms of entire component populations as well as individual or tagged members of a large population. A precise and straightforward specification of a passage-time service level agreement is as important to the performance engineering process as its evaluation. This is especially true of large and complex models of industrial-scale systems. To address this, we introduce the unified stochastic probe framework. Unified stochastic probes are used to generate a model augmentation which exposes explicitly the SLA measure of interest to the analysis toolkit. In this thesis, we deploy these probes to define many detailed and derived performance measures that can be automatically and directly analysed using rapid ODE techniques. In this way, we tackle applicable problems at many levels of the performance engineering process: from specification and model representation to efficient and scalable analysis

    Building Computing-As-A-Service Mobile Cloud System

    Get PDF
    The last five years have witnessed the proliferation of smart mobile devices, the explosion of various mobile applications and the rapid adoption of cloud computing in business, governmental and educational IT deployment. There is also a growing trends of combining mobile computing and cloud computing as a new popular computing paradigm nowadays. This thesis envisions the future of mobile computing which is primarily affected by following three trends: First, servers in cloud equipped with high speed multi-core technology have been the main stream today. Meanwhile, ARM processor powered servers is growingly became popular recently and the virtualization on ARM systems is also gaining wide ranges of attentions recently. Second, high-speed internet has been pervasive and highly available. Mobile devices are able to connect to cloud anytime and anywhere. Third, cloud computing is reshaping the way of using computing resources. The classic pay/scale-as-you-go model allows hardware resources to be optimally allocated and well-managed. These three trends lend credence to a new mobile computing model with the combination of resource-rich cloud and less powerful mobile devices. In this model, mobile devices run the core virtualization hypervisor with virtualized phone instances, allowing for pervasive access to more powerful, highly-available virtual phone clones in the cloud. The centralized cloud, powered by rich computing and memory recourses, hosts virtual phone clones and repeatedly synchronize the data changes with virtual phone instances running on mobile devices. Users can flexibly isolate different computing environments. In this dissertation, we explored the opportunity of leveraging cloud resources for mobile computing for the purpose of energy saving, performance augmentation as well as secure computing enviroment isolation. We proposed a framework that allows mo- bile users to seamlessly leverage cloud to augment the computing capability of mobile devices and also makes it simpler for application developers to run their smartphone applications in the cloud without tedious application partitioning. This framework was built with virtualization on both server side and mobile devices. It has three building blocks including agile virtual machine deployment, efficient virtual resource management, and seamless mobile augmentation. We presented the design, imple- mentation and evaluation of these three components and demonstrated the feasibility of the proposed mobile cloud model

    Memory-Aware Scheduling for Fixed Priority Hard Real-Time Computing Systems

    Get PDF
    As a major component of a computing system, memory has been a key performance and power consumption bottleneck in computer system design. While processor speeds have been kept rising dramatically, the overall computing performance improvement of the entire system is limited by how fast the memory can feed instructions/data to processing units (i.e. so-called memory wall problem). The increasing transistor density and surging access demands from a rapidly growing number of processing cores also significantly elevated the power consumption of the memory system. In addition, the interference of memory access from different applications and processing cores significantly degrade the computation predictability, which is essential to ensure timing specifications in real-time system design. The recent IC technologies (such as 3D-IC technology) and emerging data-intensive real-time applications (such as Virtual Reality/Augmented Reality, Artificial Intelligence, Internet of Things) further amplify these challenges. We believe that it is not simply desirable but necessary to adopt a joint CPU/Memory resource management framework to deal with these grave challenges. In this dissertation, we focus on studying how to schedule fixed-priority hard real-time tasks with memory impacts taken into considerations. We target on the fixed-priority real-time scheduling scheme since this is one of the most commonly used strategies for practical real-time applications. Specifically, we first develop an approach that takes into consideration not only the execution time variations with cache allocations but also the task period relationship, showing a significant improvement in the feasibility of the system. We further study the problem of how to guarantee timing constraints for hard real-time systems under CPU and memory thermal constraints. We first study the problem under an architecture model with a single core and its main memory individually packaged. We develop a thermal model that can capture the thermal interaction between the processor and memory, and incorporate the periodic resource sever model into our scheduling framework to guarantee both the timing and thermal constraints. We further extend our research to the multi-core architectures with processing cores and memory devices integrated into a single 3D platform. To our best knowledge, this is the first research that can guarantee hard deadline constraints for real-time tasks under temperature constraints for both processing cores and memory devices. Extensive simulation results demonstrate that our proposed scheduling can improve significantly the feasibility of hard real-time systems under thermal constraints

    Semantics-preserving cosynthesis of cyber-physical systems

    Get PDF
    • …
    corecore