9,357 research outputs found

    Assessing and refining mappings to RDF to improve dataset quality

    Get PDF
    RDF dataset quality assessment is currently performed primarily after data is published. However, there is neither a systematic way to incorporate its results into the dataset nor the assessment into the publishing workflow. Adjustments are manually -but rarely- applied. Nevertheless, the root of the violations which often derive from the mappings that specify how the RDF dataset will be generated, is not identified. We suggest an incremental, iterative and uniform validation workflow for RDF datasets stemming originally from (semi-) structured data (e.g., CSV, XML, JSON). In this work, we focus on assessing and improving their mappings. We incorporate (i) a test-driven approach for assessing the mappings instead of the RDF dataset itself, as mappings reflect how the dataset will be formed when generated; and (ii) perform semi-automatic mapping refinements based on the results of the quality assessment. The proposed workflow is applied to diverse cases, e.g., large, crowdsourced datasets such as DBpedia, or newly generated, such as iLastic. Our evaluation indicates the efficiency of our workflow, as it significantly improves the overall quality of an RDF dataset in the observed cases

    Ensuring Cyber-Security in Smart Railway Surveillance with SHIELD

    Get PDF
    Modern railways feature increasingly complex embedded computing systems for surveillance, that are moving towards fully wireless smart-sensors. Those systems are aimed at monitoring system status from a physical-security viewpoint, in order to detect intrusions and other environmental anomalies. However, the same systems used for physical-security surveillance are vulnerable to cyber-security threats, since they feature distributed hardware and software architectures often interconnected by ‘open networks’, like wireless channels and the Internet. In this paper, we show how the integrated approach to Security, Privacy and Dependability (SPD) in embedded systems provided by the SHIELD framework (developed within the EU funded pSHIELD and nSHIELD research projects) can be applied to railway surveillance systems in order to measure and improve their SPD level. SHIELD implements a layered architecture (node, network, middleware and overlay) and orchestrates SPD mechanisms based on ontology models, appropriate metrics and composability. The results of prototypical application to a real-world demonstrator show the effectiveness of SHIELD and justify its practical applicability in industrial settings

    Improving lifecycle query in integrated toolchains using linked data and MQTT-based data warehousing

    Full text link
    The development of increasingly complex IoT systems requires large engineering environments. These environments generally consist of tools from different vendors and are not necessarily integrated well with each other. In order to automate various analyses, queries across resources from multiple tools have to be executed in parallel to the engineering activities. In this paper, we identify the necessary requirements on such a query capability and evaluate different architectures according to these requirements. We propose an improved lifecycle query architecture, which builds upon the existing Tracked Resource Set (TRS) protocol, and complements it with the MQTT messaging protocol in order to allow the data in the warehouse to be kept updated in real-time. As part of the case study focusing on the development of an IoT automated warehouse, this architecture was implemented for a toolchain integrated using RESTful microservices and linked data.Comment: 12 pages, worksho

    Report of the Stanford Linked Data Workshop

    No full text
    The Stanford University Libraries and Academic Information Resources (SULAIR) with the Council on Library and Information Resources (CLIR) conducted at week-long workshop on the prospects for a large scale, multi-national, multi-institutional prototype of a Linked Data environment for discovery of and navigation among the rapidly, chaotically expanding array of academic information resources. As preparation for the workshop, CLIR sponsored a survey by Jerry Persons, Chief Information Architect emeritus of SULAIR that was published originally for workshop participants as background to the workshop and is now publicly available. The original intention of the workshop was to devise a plan for such a prototype. However, such was the diversity of knowledge, experience, and views of the potential of Linked Data approaches that the workshop participants turned to two more fundamental goals: building common understanding and enthusiasm on the one hand and identifying opportunities and challenges to be confronted in the preparation of the intended prototype and its operation on the other. In pursuit of those objectives, the workshop participants produced:1. a value statement addressing the question of why a Linked Data approach is worth prototyping;2. a manifesto for Linked Libraries (and Museums and Archives and 
);3. an outline of the phases in a life cycle of Linked Data approaches;4. a prioritized list of known issues in generating, harvesting & using Linked Data;5. a workflow with notes for converting library bibliographic records and other academic metadata to URIs;6. examples of potential “killer apps” using Linked Data: and7. a list of next steps and potential projects.This report includes a summary of the workshop agenda, a chart showing the use of Linked Data in cultural heritage venues, and short biographies and statements from each of the participants

    Modeling views in the layered view model for XML using UML

    Get PDF
    In data engineering, view formalisms are used to provide flexibility to users and user applications by allowing them to extract and elaborate data from the stored data sources. Conversely, since the introduction of Extensible Markup Language (XML), it is fast emerging as the dominant standard for storing, describing, and interchanging data among various web and heterogeneous data sources. In combination with XML Schema, XML provides rich facilities for defining and constraining user-defined data semantics and properties, a feature that is unique to XML. In this context, it is interesting to investigate traditional database features, such as view models and view design techniques for XML. However, traditional view formalisms are strongly coupled to the data language and its syntax, thus it proves to be a difficult task to support views in the case of semi-structured data models. Therefore, in this paper we propose a Layered View Model (LVM) for XML with conceptual and schemata extensions. Here our work is three-fold; first we propose an approach to separate the implementation and conceptual aspects of the views that provides a clear separation of concerns, thus, allowing analysis and design of views to be separated from their implementation. Secondly, we define representations to express and construct these views at the conceptual level. Thirdly, we define a view transformation methodology for XML views in the LVM, which carries out automated transformation to a view schema and a view query expression in an appropriate query language. Also, to validate and apply the LVM concepts, methods and transformations developed, we propose a view-driven application development framework with the flexibility to develop web and database applications for XML, at varying levels of abstraction
    • 

    corecore