810 research outputs found

    Model-driven design, simulation and implementation of service compositions in COSMO

    Get PDF
    The success of software development projects to a large extent depends on the quality of the models that are produced in the development process, which in turn depends on the conceptual and practical support that is available for modelling, design and analysis. This paper focuses on model-driven support for service-oriented software development. In particular, it addresses how services and compositions of services can be designed, simulated and implemented. The support presented is part of a larger framework, called COSMO (COnceptual Service MOdelling). Whereas in previous work we reported on the conceptual support provided by COSMO, in this paper we proceed with a discussion of the practical support that has been developed. We show how reference models (model types) and guidelines (design steps) can be iteratively applied to design service compositions at a platform independent level and discuss what tool support is available for the design and analysis during this phase. Next, we present some techniques to transform a platform independent service composition model to an implementation in terms of BPEL and WSDL. We use the mediation scenario of the SWS challenge (concerning the establishment of a purchase order between two companies) to illustrate our application of the COSMO framework

    On interoperability and conformance assessment in service composition

    Get PDF
    The process of composing a service from other services typically involves multiple models. These models may represent the service from distinct perspectives, e.g., to model the different roles of systems involved in the service, and at distinct abstraction levels, e.g., to model the service’s capability, interface or the orchestration that implements the service. The consistency among these models needs to be maintained in order to guarantee the correctness of the composition process. Two types of consistency relations are distinguished: interoperability, which concerns the ability of different roles to interoperate, and conformance, which concerns the correct implementation of an abstract model by a more concrete model. This paper discusses the need for and use of techniques to assess interoperability and conformance in a service composition process. The paper shows how these consistency relations can be described and analysed using concepts from the COSMO framework. Examples are presented to illustrate how interoperability and conformance can be assessed

    Composable simulation models and their formal validation

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Consistent Data Assimilation of Isotopes: 242Pu and 105Pd

    Get PDF
    In this annual report we illustrate the methodology of the consistent data assimilation that allows to use the information coming from integral experiments for improving the basic nuclear parameters used in cross section evaluation. A series of integral experiments are analyzed using the EMPIRE evaluated files for 242Pu and 105Pd. In particular irradiation experiments (PROFIL-1 and -2, TRAPU-1, -2 and -3) provide information about capture cross sections, and a critical configuration, COSMO, where fission spectral indexes were measured, provides information about fission cross section. The observed discrepancies between calculated and experimental results are used in conjunction with the computed sensitivity coefficients and covariance matrix for nuclear parameters in a consistent data assimilation. The results obtained by the consistent data assimilation indicate that not so large modifications on some key identified nuclear parameters allow to obtain reasonable C/E. However, for some parameters such variations are outside the range of 1 s of their initial standard deviation. This can indicate a possible conflict between differential measurements (used to calculate the initial standard deviations) and the integral measurements used in the statistical data adjustment. Moreover, an inconsistency between the C/E of two sets of irradiation experiments (PROFIL and TRAPU) is observed for 242Pu. This is the end of this project funded by the Nuclear Physics Program of the DOE Office of Science. We can indicate that a proof of principle has been demonstrated for a few isotopes for this innovative methodology. However, we are still far from having explored all the possibilities and made this methodology to be considered proved and robust. In particular many issues are worth further investigation: • Non-linear effects • Flexibility of nuclear parameters in describing cross sections • Multi-isotope consistent assimilation • Consistency between differential and integral experiment

    A SOA-Based Platform-Specific Framework for Context-Aware Mobile Applications

    Get PDF
    Context-aware mobile applications are intelligent applications that can monitor the user’s context and, in case of changes in this context, consequently adapt their behaviour in order to satisfy the user’s current needs or anticipate the user’s intentions. The design of such applications relies on dynamic middleware platforms that consist of a variety of components. These components are distributed in the environment and interoperate by making use of each other’s services. In the A-MUSE project, we defined a design methodology based on MDA principles that relies on a SOA reference architecture for context-aware mobile applications. This paper shows how abstract concepts in the design of such applications can be applied to realize concrete components that guarantee architectural interoperability. We also present a platform-specific framework that uses BPEL, UDDI registry and web services as target technologies to implement our reference architecture

    The implementation of dust mineralogy in COSMO5.05-MUSCAT

    Get PDF
    Mineral dust aerosols are composed of a complex assemblage of various minerals depending on the region in which they originated. Given the different mineral composition of desert dust aerosols, different physicochemical properties and therefore varying climate effects are expected. Despite the known regional variations in mineral composition, chemical transport models typically assume that mineral dust aerosols have uniform composition. This study adds, for the first time, mineralogical information to the mineral dust emission scheme used in the chemical transport model COSMO–MUSCAT. We provide a detailed description of the implementation of the mineralogical database, GMINER (Nickovic et al., 2012), together with a specific set of physical parameterizations in the model's mineral dust emission module, which led to a general improvement of the model performance when comparing the simulated mineral dust aerosols with measurements over the Sahara region for January–February 2022. The simulated mineral dust aerosol vertical distribution is tested by a comparison with aerosol lidar measurements from the lidar system PollyXT, located at Cape Verde. For a lofted mineral dust aerosol layer on 2 February at 05:00 UTC the lidar retrievals yield a dust mass concentration peak of 156 µg m−3, while the model calculates the mineral dust peak at 136 µg m−3. The results highlight the possibility of using the model with resolved mineral dust composition for interpretation of the lidar measurements since a higher absorption in the UV–Vis wavelengths is correlated with particles having a higher hematite content. Additionally, the comparison with in situ mineralogical measurements of dust aerosol particles shows that more of them are needed for model evaluation

    Design and Optimization of the Recovery and Recycling of Fluorinated Working Fluids Using a Multiscale Simulation Approach

    Get PDF
    El canvi climàtic és un fenomen real, indubtablement causat per l'activitat humana i, més notòriament, per les emissions de CO2 i altres gasos d'efecte hivernacle procedents de la crema de combustibles fòssils. Tot i que les emissions de CO2 representen almenys dos terços de les emissions mundials de gasos d'efecte d'hivernacle, altres compostos, com els gasos fluorats (gasos-F), també contribueixen a l'augment d'aquestes emissions. El cas concret dels gasos-F és especialment alarmant, ja que tenen un potencial d'escalfament global fins a 12.400 vegades superior al del CO2, fet que suposa que fins i tot concentracions atmosfèriques relativament baixes poden influir de manera desproporcionada en el canvi climàtic global. Els hidrofluorocarbonis (HFCs) representen la major part d'aquestes emissions de gasos-F i, el 2020, eren unes 5.700 vegades superiors al valor de 1990 a Europa. A banda de l'evident preocupació ambiental, el problema subjacent relacionat amb aquests gasos és la inexistència d'una tecnologia estandarditzada per al seu tractament. Per tant, s'envien a incinerar amb el corresponent cost ambiental quan acaba el seu cicle de vida. L'objectiu general d'aquesta tesi doctoral és dissenyar mètodes ecotecnològics de recuperació i reciclatge dels HFCs per a donar una solució sostenible a l'actual repte ambiental. La recuperació i reutilització dels gasos-F és una estratègia prometedora que prolonga la seva vida útil, a la vegada que redueix la quantitat de nous gasos-F introduïts al mercat i el seu eventual alliberament a l'atmosfera, impulsant així el mercat cap a una economia circular. Amb aquest propòsit, s'estudia la viabilitat de la recuperació dels HFC mitjançant tècniques d'absorció i dissolvents avançats, com diferents famílies de líquids iònics i dissolvents eutèctics profunds, mitjançant una combinació d'eines de modelatge multiescala que proporcionen diferents nivells de resolució i complexitat per a estudiar aquests sistemes, que van des de càlculs químico-quàntics fins als simuladors de processos comercials i l'anàlisi del cicle de vida. En primer lloc, es van construir models moleculars emprant models coarse-grained relativament senzills per a diversos gasos-F i dissolvents avançats per a realitzar un estudi amb la finalitat de modelar la solubilitat i capacitat de recuperació en aquests dissolvents. Els resultats van guiar dos estudis de simulació de processos amb l'objectiu d'estimar els costos energètics i ambientals aproximats del procés de separació i recuperació de les mescles comercials de HFCs. L'últim pas d'aquest treball comprèn l'estudi d'alternatives als HFC emprats actualment, incloent-hi famílies fluorades prometedores com les hidrofluoroolefines i els hidrofluoroèters en una àmplia gamma d'aplicacions. Una vegada més, es combinen diferents eines computacionals per a conèixer el seu comportament termofísic, mitjançant l'ús de simulacions moleculars, o per adreçar la seva capacitat de substituir als actuals HFC en aplicacions específiques a partir d'una completa anàlisi termodinàmica i energètica mitjançant equacions d'estat SAFT. El propòsit final d'aquesta tesi és oferir una varietat de solucions per a abordar el necessari canvi de model d'una economia lineal a una de circular, així com proporcionar un coneixement bàsic de les alternatives d'acord amb la nova legislació a través d'un enfocament multiescala, contribuint a la sostenibilitat del planeta.El cambio climático es un fenómeno real, indudablemente causado por la actividad humana y, más notoriamente, por las emisiones de CO2 y otros gases de efecto invernadero procedentes de la quema de combustibles fósiles. Aunque las emisiones de CO2 representan al menos dos tercios de las emisiones mundiales de gases de efecto invernadero, otros compuestos, como los gases fluorados (gases-F), también contribuyen al aumento de esas emisiones. El caso concreto de los gases-F es especialmente alarmante, ya que tienen un potencial de calentamiento global hasta 12.400 veces superiores al del CO2, lo que significa que incluso concentraciones atmosféricas relativamente bajas pueden influir de forma desproporcionada en el cambio climático global. Los hidrofluorocarbonos (HFCs) representan la mayor parte de estas emisiones de gases-F y, en 2020, eran unas 5.700 veces superiores al valor de 1990 en Europa. Aparte de la evidente preocupación ambiental, el problema subyacente relacionado con estos gases es la inexistencia de una tecnología estandarizada para su tratamiento, enviándose a incinerar con el correspondiente coste ambiental cuando termina su ciclo de vida. El objetivo general de esta tesis doctoral es diseñar métodos ecotecnológicos de recuperación y reciclaje de los HFCs para dar una solución sostenible al actual reto ambiental. La recuperación y reutilización de los gases-F es una estrategia prometedora que prolonga su vida útil, al tiempo que reduce la cantidad de nuevos gases-F introducidos en el mercado y su eventual liberación a la atmósfera, impulsando así el mercado hacia una economía circular. Para ello, se aborda la viabilidad de la recuperación de los HFC mediante técnicas de absorción y disolventes avanzados, como diferentes familias de líquidos iónicos y disolventes eutécticos profundos, mediante una combinación de herramientas de modelado multiescala que proporcionan diferentes niveles de resolución y complejidad para estudiar estos sistemas, que van desde cálculos químico-cuánticos hasta los simuladores de procesos comerciales y la evaluación del ciclo de vida. En primer lugar, se construyeron modelos moleculares empleando modelos coarse-grained relativamente sencillos para varios gases-F y disolventes avanzados para realizar un estudio con el fin de modelar la solubilidad y capacidad de recuperación en estos disolventes. Los resultados guiaron dos estudios de simulación de procesos con el objetivo de estimar los costes energéticos y ambientales aproximados del proceso de separación y recuperación de las mezclas comerciales de HFCs. El último paso de este trabajo comprende el estudio de alternativas a los HFC utilizados actualmente, incluyendo familias fluoradas prometedoras como las hidrofluoroolefinas y los hidrofluoroéteres en una amplia gama de aplicaciones. Una vez más, se combinan diferentes herramientas computacionales para conocer su comportamiento termofísico, mediante el uso de simulaciones moleculares, o para abordar su capacidad de sustituir a los actuales HFC en aplicaciones específicas a partir de un completo análisis termodinámico y energético mediante ecuaciones de estado SAFT. El propósito final de esta tesis es ofrecer una variedad de soluciones para abordar el necesario cambio de modelo de una economía lineal a una circular, así como proporcionar un conocimiento básico de las alternativas de acuerdo con la nueva legislación a través de un enfoque multiescala de técnicas, contribuyendo a la sostenibilidad del planeta.Climate change is a real phenomenon, undoubtedly caused by human activities and, most notably, by the emissions of CO2 and other greenhouse gases from the combustion of fossil fuels. While CO2 emissions account for at least two-thirds of global greenhouse gas emissions, other compounds, like fluorinated gases (F-gases), also contribute to the increase of those emissions. The specific case of F-gases is particularly alarming since they have a global warming potential up to 12,400 times that of CO2, meaning that even relatively low atmospheric concentrations can disproportionately influence global climate change. Hydrofluorocarbons (HFCs) account for the majority of these F-gas emissions and were, in 2020, about 5,700 times higher than in 1990 in Europe. Apart from the obvious environmental concern, the underlying problem related to these gases is the nonexistence of a standardized technology for their treatment. Therefore, they are sent for incineration with the corresponding environmental cost when their life cycle is over. The overall purpose of this Ph.D. thesis is to design recovery and recycling ecotechnological methods for HFCs in order to provide a sustainable solution to the current environmental challenge. The recovery and reuse of F-gases is a promising strategy that extends their lifespan while reducing the amount of new F-gases brought to the market and their eventual release into the atmosphere, thereby pushing the market toward a circular economy. To that end, the feasibility of recovering HFCs using absorption techniques and advanced solvents, like different families of ionic liquids and deep eutectic solvents, is addressed by means of a combination of multiscale modeling tools to provide different levels of resolution and complexity to study these systems, which range from quantum-based calculations to commercial process simulators and life cycle assessment. First, molecular models were built employing relatively simple coarse-grained models for several F-gases and advanced solvents to perform a conductive study modeling the solubility and the recovery capacity in these solvents. The results obtained guided two process simulation studies performed to estimate the approximate energy and environmental costs of the separation and recovery process from commercial HFC blends. The final step of this work comprises the study of sustainable alternatives to currently used HFCs, including promising fluorinated families like hydrofluoroolefins and hydrofluoroethers in a wide range of applications. Once again, different computational tools are combined to gain insight into their thermophysical behavior through the use of molecular simulations or to address its capacity to substitute current HFCs in specific applications from a complete thermodynamic and energy analysis done using SAFT equations of state. The final purpose of this thesis is to offer a variety of solutions to tackle the necessary change of a model from a linear economy to a circular economy, as well as to provide basic knowledge of future alternatives according to the coming restrictive legislation via a multiscale approach of techniques, contributing to the planet's sustainability

    Theory and simulation of solubility and partitioning in polymers: Application of SAFT-γ Mie and molecular dynamics simulations

    Get PDF
    Theory, simulation and experiment were used in this work to study the solubility and partitioning in polymer systems. The recently published SAFT-γ Mie equation of state was implemented into a stand-alone program together with all algorithms for parametrising new models and predicting phase equilibria. An analysis of the transferability of low-molecular weight Mie potential parameters for predicting the miscibility of polymer mixtures and partitioning of oligomers in polymer systems revealed the need for new models optimised for polymers. A systematic overview and analysis of available and typical experimental polymer data concluded that pure component polymer melt densities and cloud point temperatures (liquid–liquid equilibria) are the best and most practical choice for parametrising new SAFT-γ Mie models. New polymer models were developed for a range of pure polymers, several binary mixtures and one ternary polymer mixture. All models showed very good agreement with the experimental data included in the model development. Good agreement was found for predicted properties and conditions not included in the parametrising process. Coarse-grained (CG) force fields were developed with the help of the SAFT-γ Mie equation of state. Excellent agreement was found for the direct translation of Mie potentials to CG force fields for modelling properties of low-molecular weight compounds and densities of polymer melts. Coarse-grained models for molecular dynamics (MD) simulations of polymer phase equilibria are more challenging to develop due to greater computational resource requirements and less perfect agreement between SAFT-γ Mie and MD force fields. The challenges were demonstrated and discussed for a polystyrene solution and a binary mixture of polystyrene and polyisoprene. The synergistic power of SAFT-γ Mie and MD simulations was used for developing coarse grained models for describing the surface of a oligomer/polymer blend. Pure component parameters were optimised within SAFT-γ Mie. The SAFT-γ Mie CG model reproduced experimental partial density surface profiles as a function of blend composition without the need to rescale length scales. Oligomer surface enrichment, wetting transition and wetting layers were correctly predicted with a single model
    corecore