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Abstract

In component-based modeling and simulation, shared models are reused and as-
sembled in various combinations to meet different user requirements, resulting in an
appealing approach to reduce the time and cost of developing complex simulations.
Towards achieving this goal, there are several challenges including the lack of method-
ologies and techniques to support the life-cycle of component-based development, and
the validation of semantic composability among others. This thesis focuses on two main
directions: a new component-based modeling and simulation approach, and a novel se-
mantic composability validation strategy.

The key to our proposed integrated component-based approach is the abstraction and
specification of components as meta-components using semantically sugared attribute
values from a new component-based simulation ontology. This ontology is designed to
capture component behaviors and to support model composition across applications, as
well as the verification and validation of the composed model. Using a component-

connector paradigm, components in a composed model interact only through well-
defined connectors. This allows us to formally specify the composition using EBNF
grammars. The representation of the composed models as production strings simplifies
and facilitates automated syntactic verification and model discovery and selection. An-
other key design decision in our approach is the modeling of real-world basic entities as
base components, and reusable models as model components, to achieve greater reuse
within and across application domains.

In semantic composability, our main design considerations and trade-offs are valida-

tion accuracy and computational cost. Two key observations are: in model validation,
the interactions of component behaviors grow rapidly and lead to the problem of ex-
ponential state-space explosion; and current techniques that focus on checking that a
model is semantically valid are computationally more costly than checking for model
invalidity. Based on these two insights, we propose a new deny validity semantic val-

idation strategy. Firstly, the model is validated for general model properties such as
safety and liveness, which is less costly for identifying invalid models. Models that
pass this test have increased credibility, and are then subjected to a more rigorous but
expensive formal semantic validation. A new time-based semantic validation technique
is proposed. Since semantic validity is not a fixed-point answer, we introduce a new
metric to quantify semantic similarity among different models.
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Our approach is validated using both theoretical and experimental analysis. We
illustrate our component-based approach using three examples: a simple queueing sys-
tem to introduce key concepts, a more complex component-based grid system to illus-
trate model component reuse, and a data-driven military training simulation scenario
to demonstrate composition and validation in a new and more complex application
domain. Theoretical and experimental analysis using our prototype implementation
demonstrates that our approach is appealing as initially envisaged, and our deny valid-
ity semantic validation strategy provides a framework to advance the understanding of
the trade-offs between validation accuracy and computational cost. Lastly, we highlight
a number of new insights and research challenges.
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Chapter 1

Introduction

1.1 Motivation

Modeling and simulation (M&S), the third pillar of science, is widely used in science,

engineering, military training, healthcare, and manufacturing, among others, to make

crucial policy decisions and answer “what-if” scenarios [11]. The fundamental build-

ing block of M&S is the model, an abstraction of the real system that is executed over

time with different inputs in a simulation. Simulations provide the means to analyze

complex systems without physical deployment that can be costly or even dangerous

[11]. However, modeling and simulation is a costly process itself [30]. This is because

simulation models can be large, monolithic artifacts that require expertise and time to

develop and validate. Validation is of paramount importance, especially when models

are employed for critical decisions such as in military exercises or in the evaluation of

financial decisions [47, 51, 72]. For example, the Verification, Validation and Accredi-

tation (VV&A) process for modeling and simulation, used in the US Department of the

Navy, defines seven user roles and thirteen important steps grouped into five categories,

and is a lengthy validation process involving many departments [35].

Since more often than not simulation models abstract real-life systems of intricate

detail, the size and complexity of simulation models is hard to grasp. For example, the

1



Chapter 1: Introduction

core ModSAF simulator contains millions of lines of code (LOC), and took around 250

man-days for development only, without verification or validation [74, 131]. It would

be an incredible loss of brain and money power if every time a large simulator is needed,

its developers would start by writing everything from scratch. This is where simulation

model reuse comes into play, because the reuse of simulation artifacts holds promise to

drastically reduce the development time and cost, and to increase knowledge sharing to

a wider user community. A quick peek at the related field of component-based software

engineering shows that large components, around half a million LOC each, are easily

composed in eight man-days [46]. An approach to reduce the initial costs of simulation

development is to reuse previously developed and validated simulation components,

and to compose them in a new simulation model according to the desired user objec-

tives [61]. This approach, called component-based simulation model development, is

increasingly of interest for developing complex simulations [30, 43, 61, 91].

Simulation composability is defined as “the capability to select and assemble simu-

lation components in various combinations to satisfy user requirements” [88]. Accord-

ingly, models developed using off-the-shelf components in an integrated component-

based framework are appealing [67]. Additionally, there is an increasing trend in using

the Internet as an infrastructure for the discovery and (re)use of shared resources. By

leveraging on Internet technologies such as peer-to-peer and web services, a web-based,

integrated component-oriented simulation framework can advance the knowledge shar-

ing of model components to a wider simulation community.

Bartholet et al. [12] categorize composition into two main levels, namely syntactic

composability and semantic composability. In syntactic composability, the composition

consists of components that are properly connected and must interoperate, i.e., assume

common communication protocols, data formats, as well as a common understanding

of the time management mechanisms employed. In semantic composability, the com-
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posed model produces meaningful behavior that meets user objectives. Furthermore,

the composition execution must be exact or close enough to the real system or its rep-

resentation [88]. This is because simulation models are widely used to make critical

decisions [11]. As such, semantically valid and credible simulation models are neces-

sary [126], and a component-based simulation framework must facilitate and validate

semantic composability [61].

From the perspective of the usability of a component-based simulation framework,

Kasputis and Ng [61] envisaged an integrated component-based simulation system in

which requirements are specified by the user. The system builds the simulation in real

time from a library of simulation models that can be easily combined to produce the

desired functionality. Challenges identified in simulation composability include the

specification of user requirements, module identification based on user requirements,

the organization of a simulation model repository, as well as the selection of the best

simulation component and the validation and verification of the composed model. Davis

et al. [31] identify other issues such as component representation and discovery, the

development of a valid marketplace where simulation components are bought and sold,

as well as the need to decide between general simulation frameworks versus application

domain-oriented frameworks.

Several component-based simulation frameworks for specific application domains

have been developed such as in electronics [33], thermofluid [102], mechatronics [25],

and computer network systems [106]. This approach achieves greater depth in the cov-

erage of a particular application domain, but lacks the scalability and complexity of

simulation models offered by generalized component oriented-frameworks. A key chal-

lenge is the development of a component-based simulation framework that achieves

coverage both in breadth (across many application domains) and in depth (within a

specific application domain) [12, 30, 85, 105], and at the same time allows for the ver-
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ification and validation of component assumptions and constraints [113]. Another key

challenge is to achieve syntactically and semantically valid compositions from hetero-

geneous components [30, 87]. Besides achieving syntactic and semantic composabil-

ity, a component-based simulation framework must also support component discovery

[31, 91, 128], reuse of developed simulation models [12, 31, 61, 89, 94], and inte-

gration with off-the-shelf simulation components. Component reuse is of paramount

importance for a component-based framework to be accepted by the simulation com-

munity [31, 43, 61, 80, 91, 128]. In modeling and simulation, component discov-

ery is required to locate shared simulation components stored at different adminis-

trative domains. To be scalable, component discovery must be achieved in a dis-

tributed context, where component providers and consumers reside in different admin-

istrative domains [31, 43, 61, 80]. Furthermore, the optimal selection of components

based on composition objectives or purposes was shown to be an NP complete problem

[13, 43, 61, 85, 94, 128].

Component-based simulations are inherently software artifacts and the simulation

community can benefit from the advantages of component-based software engineering,

namely, reduced development time, increased reliability, and broader acceptance. From

this perspective data encapsulation, loose coupling, communication protocols etc., may

be of relevance to component-based simulations [12]. On the other hand, the simulation

community has argued that simulations developed from components cannot be consid-

ered simply as ordinary component-based software systems because of their complex,

time-based dynamic structure [31, 61], which is more susceptible to emergent properties

through composition [85]. To understand the differences and similarities, we compare

and contrast component-based simulations with component-based software engineering

focusing on a few important issues and using a selection of component models.

Component models can be distinguished based on three key criteria, namely, compo-
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nent representation, composition, and framework. In component representation, com-

ponents are classified [123] as black-box, where the component provides no details

of its implementation beyond its interface and specification, white-box, where a third

party has access and can modify the component’s implementation, glass-box where the

component’s implementation is available for study but closed for modifications, and

gray-box where only a controlled part of the implementation is open for third party

modification. The latter type of components is considered confusing and is rarely used

[123]. From a simulation perspective, we consider whether components are stateful

and whether the concept of time can be clearly captured in the component representa-

tion. Statefulness and the changes of component behavior over time are two attributes

of paramount importance in simulation models. The component behavior, i.e., how a

component acts both independently and within a composition, has a great impact on the

composed model and must be properly defined.

In a composition, the reuse of developed software components is twofold. The

straightforward form of reuse and the most widely accepted in industry is the reuse

of the standalone component in flat compositions. Typically, components are sold by

their developers in online marketplaces such as ComponentSource [27] or Flashline

[40]. Customers search for and purchase components from these marketplaces and in-

tegrate them in their software program where the purchased components interoperate

with other components. In contrast, in hierarchical composition, components are also

sub-components that are composed and subsequently reused as a single, larger compo-

nent. The reuse of such hierarchical components (hereafter called model components)

further increases the size and diversity of the component repository. Next, we analyze if

components can be composed through the use of connectors, in a component-connector

paradigm, which is a fundamental notion in Architecture Description Languages, where

connectors support component interaction by providing functionality such as message
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delivery, synchronization, and encryption [56]. We discuss the distribution of com-

ponents over the network, an important issue nowadays when the Internet is the center

point of pervasive sharing of resources of all types. Frameworks can be general purpose

or tailored for a specific application domain. From a practical perspective, a framework

must also provide a component marketplace where components can be shared or ac-

quired for reuse.

1.2 Composability in Modeling and Simulation

This section provides a brief overview of component-based modeling and simulation

(CBMS). A more in depth analysis is presented in Chapter 2. Different types of com-

posability can be achieved among simulation components. Tolk [126] proposes a six-

level taxonomy of simulation component composability, namely technical, syntactic,

semantic, pragmatic, dynamic, and conceptual. In technical composability, components

exchange data using a common protocol for communication. Syntactic composability

occurs when components have a common data format that is unambiguously defined.

In semantic composability, the meaning of data is known to all communicating com-

ponents. In pragmatic composability, the use of data by each participating component

is known to the rest of the components in the composition. Dynamic composability

enhances pragmatic composability by requiring components to be fully aware of the

state changes in the entire composition during the simulation execution. Lastly, in con-

ceptual composability, simulation components are composable even at a very abstract

level. While the taxonomy provides precious insight into the mechanics of compos-

ability, its major drawback is the fact that important considerations such as context and

conceptual model are vaguely defined. We adopt an older taxonomy, which considers

two levels of composability: syntactic (or engineering) and semantic [88]. Syntactic

composability refers to component connection and interoperability and assumes com-
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mon communication protocols, data formats, as well as a common understanding of the

time management mechanisms employed. In semantic composability, the composition

produces meaningful behavior according to user objectives. Furthermore, the compo-

sition execution must be exact or close enough to the real system or its representation

[88]. This level encapsulates the levels in the Tolk taxonomy and captures distinctions

such as meaningful component behavior in the composition, composition context, etc.,

which are defined in Chapter 6.

The fundamental building block of a component-based simulation is the simulation

component. A simulation component is defined as [30]:

. . . a self-contained unit that is independently testable and usable in a vari-

ety of contexts. It interacts with its environment only through a well defined

interface of inputs and outputs.

It is important to note that the above definition assumes that each component is an inde-

pendent entity that can be used meaningfully without understanding how it works. This

is true for well-defined and understood components such as a random number genera-

tor or a well-known mathematical function. However, simulation components generally

model specific entities with characteristic behaviors that are abstracted beyond that of

input/output transformations. More importantly, the behavior of these entities varies

with time and is guided by tacit assumptions and rules [113]. We present a more accu-

rate component definition in Chapter 3.

With respect to these semantic concerns, simulation composability is [30]:

. . . the capability to select and assemble components in various combina-

tions to satisfy specific user requirements meaningfully. A defining char-

acteristic of composability is the ability to combine and recombine compo-

nents into different systems for different purposes.
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An important point to highlight is that in addition to composing and recomposing com-

ponents in various ways, the entire composed simulation must also meet the objectives

of the simulation developers and the composition must be valid.

A number of component-based simulation frameworks have been proposed. These

include application-domain oriented frameworks such as electronic systems [33], ther-

mofluid systems [102], mechatronics [25], network [106] and military training [38]

simulations. Among the general-purpose simulation frameworks, we selected three

representative frameworks for discussion in this thesis, namely, the Discrete Event Sys-

tem Specification (DEVS) [134], Open Simulation Architecture (OSA) [29], and Base

Object Model (BOM) [50]. Additionally, we discuss the formal theory of semantic

composability proposed by Petty and Weisel [88].

DEVS [132] is a formalism derived from general system theory and is used to de-

scribe the structure and behavior of a system. In DEVS, a simulation model is a black-

box with states, input and output ports. A DEVS model changes state whenever external

or internal events occur at specified moments in time. To facilitate hierarchical compo-

sition of simulation models using the DEVS formalism, Ziegler et al. [132] introduce

the concept of DEVS coupled systems, which allow for the composition of basic and

other coupled systems to form larger systems. The Open Simulation Architecture [29]

supports discrete-event simulation and is built on top of the ObjectWeb Consortium’s

Fractal [18] component model. The Fractal component model allows for the sharing

of a sub-component between several distinct components, implements the separation of

concerns paradigm [1], is independent of the programming language used, and supports

dynamic models. A BOM is a “piece-part of a conceptual model composed of a group

of interrelated elements, which can be used as a building block in the development and

extension of a federation, individual federate, FOM or SOM” [50]. A BOM contains

static descriptions of items resident in the real world described in terms of conceptual
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entities and conceptual events. Information on how such items relate or interact with

each other in the real world is expressed in terms of patterns of interplay and state ma-

chines. Petty and Weisel pioneered a formal theory for checking the semantic validity

of a composed simulation model [88]. This approach includes formal representations

of simulations and semantic validity that use a representation of a simulation model as

a function over integer domains.

With respect to component representation, the four representative frameworks view

a component as a black-box with a clear specification that describes its behavior. This

is achieved using the DEVS formalism, a XML-based markup language, and a function

over integer domains for DEVS, OSA, and Petty & Weisel’s approaches respectively.

BOM also employs a XML-based markup language. Components are stateful in DEVS,

OSA, and BOM. The concept of time is clearly modeled in the DEVS formalism and

OSA component implementations, but is missing in Petty and Weisel’s theory and in

BOM. The composition of hierarchical components is possible in all approaches. How-

ever, only DEVS, OSA, and BOM consider the reuse of hierarchical compositions.

Furthermore, only DEVS adheres to the component-connector paradigm. Implementa-

tions where components are distributed over the network are possible in DEVS, OSA,

and BOM. From a framework point of view, all proposed solutions are general-purpose

frameworks. However, none of the analyzed frameworks have established any compo-

nent marketplace. Table 1.1 presents a summary.

While simulation composability is appealing, several key issues still remain. Firstly,

component representation is of paramount importance to achieve composability [30, 31,

61, 91, 128]. From a composition perspective, model reuse [12, 31, 61, 80, 89, 91, 94,

128] and the existence of heterogeneous components [12, 30, 85, 105] pose major chal-

lenges. From a process point of view, a component-based framework must facilitate

model discovery [31, 91, 128], syntactic composability [32, 61, 80, 91], semantic com-
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Criteria DEVS OSA BOM Petty
& Weisel

[1997] [2006] [2004] [2000]

Component black-box X X X X

Representation stateful X X X -
time X X - -

Composition
hierarchical components X X X X
component-connector paradigm X - - -
distributed components X X X -

Framework general-purpose X X X X
component marketplace - - - -

Table 1.1: Component-based Simulation Approaches

posability [12, 32, 88], and model validation [30, 32, 61, 80, 81, 89, 113] to increase

the credibility of the composed model. A component-based simulation framework must

also consider implementation issues such as time management [81, 91] in component-

based simulations, and the development of component repositories [31, 43, 61, 80].

Furthermore, component selection is an NP complete problem [13, 43, 61, 85, 94, 128].

We analyze these complex issues in Chapter 2.

A key issue for composability is achieving and validating semantic composability,

preferably through a formal process to increase credibility. However, to date, efforts

towards semantic simulation composability have mostly focused on theoretical aspects,

such as complexity measures of the component selection problem [85], formalizing

DEVS compositions [127], and a formal theory of composability [88, 87]. There is a

lack of a practical validation process of semantic composability. In contrast, simulation

interoperability has seen advanced developments in the past few years, which is one of

the focuses of this thesis. Efforts such as the Distributed Interactive Simulation (DIS)

[55], the Aggregate Level Simulation Protocol (ALSP) [39], and the High Level Ar-

chitecture (HLA) [28], have facilitated the grouping of simulations into interoperable

federations. However, some significant drawbacks remain. Firstly, these efforts only

ensure that simulation components can interoperate, and do not provide any guarantee

on the validity of the composition. As such, there is no insight into whether the com-
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bined computation of the interoperable components serves the objective required by the

simulation developer. Another drawback of simulation model reuse, is that it is not

possible without significant source code modifications. This is because the simulation

components are not designed for reuse in a variety of context or in anticipation of dif-

ferent user objectives. A seamless, transparent reuse process can increase the size of

the component repository and advance knowledge sharing to a wider user community.

1.3 Composability in Software Engineering

In component-based software engineering (CBSE), the development of new software

products by combining shared, purchased or developed components improves software

quality and supports rapid development, leading to reduced cost and time to market

[123], as shown more recently by Garlan’s integration study [46]. A component-based

approach is even more appealing when components are used as fundamental artifacts

in product line approaches, which see the development of software products similar to

assembly lines in car manufacturing plants [26, 58]. Furthermore, the modular design

of the software artifacts reduces maintenance costs when only individual components

need to be modified or replaced. The component-based software industry has seen a

major step forward in the 1990s with the introduction of component models such as the

Object Management Group’s CORBA (1991) [2], Microsoft’s COM (1991) [97], and

IBM’s (and later Sun’s) EJB (1997) [103], as well as academic solutions such as CCA

(2006) [5], Darwin [68], and SOFA (1998) [90]. This interest has resulted in various

software component marketplaces. For example ComponentSource [27] listed 1,098

software components in 2001, out of which 90% are COM and .NET components, 8%

are EJB and JavaBeans components, and 2% are CORBA components [123]. However,

despite the extensive industry and academic research investment, component-based en-

gineering has not been as widely adopted as initially predicted [34]. In 2009, the num-
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ber of components offered by ComponentSource increased to 1,446 components, with

COM and .NET components making up 95% of the products, and EJB and JavaBeans

components the other 5%.

Szyperski [123] defines a software component as:

... a unit of composition with contractually specified interfaces and explicit

context dependencies only. A software component can be deployed inde-

pendently and is subject to composition by third-parties.

Several component characteristics can be drawn from this definition. Firstly, a software

component is a unit of independent deployment, well separated from its environment

and other components. Secondly, a component must be fully deployable, which im-

plies that it must be sufficiently self-contained, with well-defined interfaces and spec-

ifications of the component behavior and requirements. Furthermore, the component

contract describes the component dependencies and interfaces, as well as how the com-

ponent is deployed, instantiated, and how the component interfaces behave. We selected

for discussion four component-based software engineering approaches, namely, the in-

dustry solutions CORBA [2], EJB [103], and the COM [97] component models, and the

academic solution CCA [5].

The Common Object Request Broker Architecture (CORBA) is a standard proposed

by the Object Management Group in 1991 to facilitate interoperability in heterogeneous

computing environments [2]. A CORBA object is an accessible entity that can receive

client requests for its methods. It is described in terms of data structures and method sig-

natures using an Interface Description Language (IDL). The communication between

client and server objects is done through Object Request Brokers (ORB), which is a

middleware that allows the programmers to make program calls and pass object refer-

ences from one computer to another via a computer network. The ORBs communicate

through a well-defined protocol.

12



Chapter 1: Introduction

Enterprise JavaBeans, proposed by IBM and Sun in 1999 defines an architecture for

the development and deployment of server-side, distributed component called enterprise

beans [103]. The beans reside in containers that facilitate the provision of remote ser-

vices for clients distributed throughout the network. Three types of enterprise beans are

defined in the EJB specification, namely, entity, which represent data; session, which

manage interactions between entity and other session beans; and message driven beans,

which handle asynchronous messages. EJB provides a specification that allows for ease

of switching between different EJB Container providers. Furthermore, since most of

the enterprise bean management is left up to the EJB Container, the vendor of the con-

tainer can transparently scale server-side resources to meet with increasing or changing

demand. However, the complex EJB specification leads to high development times

and often results in an overly complex solution. Furthermore, hierarchical composition

between different enterprise beans cannot be achieved.

The Component Object Model (COM) introduced by Microsoft in 1999 is a binary

interface standard for software components that facilitates interprocess communication

and dynamic object creation [97]. In COM, a component expresses its functionality

through one or more interfaces. IUnknown, the standard interface all COM compo-

nents must implement, is responsible for reference counting, lifetime management, and

access to the rest of the component interfaces. In Distributed COM (DCOM), clients

and servers interact across the network, similar to the CORBA model. In the COM

model, component reuse is achieved in two-fold, either by component containment

(one outer component containing a inner component), or by component aggregation,

in which the outer component exposes interfaces from the inner component as if they

belonged to the outer component.

The Common Component Architecture (CCA) is a framework for high performance

scientific computing introduced in 1999 by Sandia National Laboratories [5], focusing

13



Chapter 1: Introduction

towards fast connections among components that perform numerically intensive work

but also towards parallel collective component interactions that use multiple processes

or threads. CCA components are connected using connection ports that adhere to the

provides/uses paradigm, to facilitate both loose coupling for maintainability and adapt-

ability, and tight coupling for increased execution speed. In the provides/uses paradigm,

one port can use methods that are provided by other ports from different components.

A major advantage is that the framework decides how the provides/uses interfaces are

connected, i.e., whether methods are called directly or through interface proxies. How-

ever, the focus of CCA is towards high performance scientific computing where most

components generally perform numerical and algebraic operations. Thus, components

are stateless and there is no support for time and hierarchical composition.

Table 1.2 presents a summary of the four approaches. As shown, all approaches

Criteria CORBA CCA EJB COM
[1991] [1999] [1999] [1999]

Component black-box X X X X

Representation stateful X - - X
time - - - -

Composition
hierarchical components - - - X
component-connector paradigm - X - -
distributed components X X X X

Framework general purpose X - X X
component marketplace X X X X

Table 1.2: Component-based Software Engineering Approaches

represent components as black-boxes, but components are required to expose their pub-

lic interfaces, either through reflection, stubs, or a combination of both. Moreover,

there is no support for describing the behavior of a component. The published public

component interface has a list of methods that the component provides, (i.e., the compo-

nent syntax), but without support to describe what the listed methods actually do, (i.e.,

the semantics). This disadvantage is addressed in academic solutions such as Darwin
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[68] and SOFA [90]. However, academic solutions focus mainly on the design of the

component-based framework and generally lack an implementation [3, 68].

An important point to highlight is that component-based software engineering ap-

proaches focus mainly on the syntactic composability of components. They provide

implementation facilities for components to interoperate, but without provisioning for

the quality and meaning of the information exchanged between components in the con-

text of the entire composition behavior. Lastly, when developing component-based

software, most users notice small “side-effects” which lead to unexpected increases in

development time. These side-effects include architectural mismatches [46] and arise

because of tacit and conflicting component assumptions (data, structure, control, cre-

ation), component connections, and the general structure of the composition. On the

other hand, a different study in which components were designed to work together has

found none of the mismatches the previous study discovered [117]. This has led to

the conclusion that “if components are to be composable, they have to be designed for

it”. However, this advanced level of detail is difficult to achieve in a general purpose

component-based software framework.

1.4 Similarities and Differences

Similarities between component-based software engineering (CBSE) and component-

based modeling and simulation (CBMS) stem from the fact that simulations are inher-

ently software artifacts, and as such the approaches towards component representation,

and composition are similar. More importantly, the concerns that govern research in

both fields include scalability, usability, credibility, and a wider community reach.

However, there are several key differences between CBSE and CBMS. Firstly, in

both domains components are represented independently of the underlying program-

ming language. However, current CBSE approaches describe only the syntax of the

15



Chapter 1: Introduction

component methods to facilitate component connection and composition execution [2,

97, 103]. In contrast, the focus of CBMS approaches is to describe component behavior

to offer a better understanding of how the component affects the simulation execution.

With respect to composition, most software engineering solutions focus on achieving

syntactic composability by providing a stable runtime environment where components

are connected and executed. In contrast, semantic composability is highly desired in

component-based modeling and simulations. However, efforts have focused mainly on

achieving syntactic composability with success stories such as SIMNET [95], ALSP

[39], HLA [28], and OneSAF [131].

A first step towards semantic composability is achieving a common understanding

among components through the use of ontologies [15]. An ontology is an organized

knowledge representation to capture object information in a particular domain [112],

in formats readable by humans and computers alike. Ontologies are conceptual mod-

els that capture and explain the vocabulary used in semantic applications guaranteeing

communication free of ambiguities [17]. In software engineering, ontologies are widely

used to facilitate component discovery [66, 116, 124]. In modeling and simulation, on-

tologies such as DeMO [108, 109] provide a starting point towards achieving semantic

composability by facilitating conversions from application domain specific knowledge

to simulation concepts. To the best of our knowledge, there is a lack of an integrated

framework that supports the development life-cycle of CBMS, including syntactic and

semantic composability, component discovery and selection, repository management,

and composition execution.

Another critical issue in composability is composition validation. In software en-

gineering, validation focuses on the overall program correctness [3]. This includes

validating logical properties such as safety, liveness, and deadlock freedom. Other ap-

proaches focus on ensuring that component methods are executed in the correct order
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according to some protocols [63]. In contrast, a valid simulation model is one that mim-

ics closely the real system that the simulation model abstracts [10]. Here, while overall

program correctness is required, it is very important for the composed simulation model

to produce results that are close enough to the real system that it abstracts. Very often,

this similarity cannot be fully captured by an automated validation process because it

depends on both input/output transformations, i.e., the simulation model must have al-

most the same output as the real system when presented with the same input, as well as

finer points such as overall simulation model state and unified component assumptions

and context [30, 126]. In contrast to software engineering systems where the verifi-

cation process is highly automated, the validation process in modeling and simulation

is often manual, lengthy, and requires the presence of a system expert [10, 11]. This

is also because the simulation model is often used in critical situations where a valid

answer is crucial. For example, the validation of military training simulations [51, 72]

requires a lengthy VV&A process [35] conducted by system experts.

Table 1.3 summarizes the key differences and similarities between component-based

software engineering and component-based modeling and simulation. Differences arise

mainly from the stateful and dynamic nature of simulation components. Next, seman-

tic composability is required for the composed simulation model, whereas in software

engineering it is generally not considered. Furthermore, because simulations are often

used to make critical decisions, a valid composed simulation model is of paramount

importance. In contrast to software engineering where validity refers to program cor-

rectness, in modeling and simulation a valid composed model is one that is close enough

in terms of its execution and output to the real system the composed model abstracts.
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1.5 Objective

Current work on component-based modeling and simulation is generally piecemeal [29]

or application-specific [106], and there is a need for an integrated approach to sup-

port the life-cycle of component-based development [61]. A coherent approach can

be adopted in addressing crosscutting life-cycle issues, with several benefits including

among others reduced development time and cost, and increased scalability and sharing

across application domains.

An important challenge in composability is the semantic validation of component-

based models [30, 88, 126]. In this context, a crucial question is:

Given a simulation model composed using reused components, how can we

systematically validate and measure (or estimate) the semantic validity of

the composed model?

The importance of semantic validity is confirmed by a recent finding of the World

Technology Evaluation Centre (WTEC 2009) [48], which states that “without valida-

tion, computational data are not credible, and hence, are useless” [48], especially

when simulation models are used to support critical decision-making [51, 72]. The def-

inition of semantically valid models encompasses meaningful and useful behavior of

the composed model with respect to the different objectives of the simulation devel-

oper. Studies of semantic composability validation reveal that the validity of a model

is not a fixed point and there are many valid models, with different degrees of validity

[75, 88, 121, 122]. Current approaches to validate composed models are theoretically

elegant, but are still not widely-adopted [88], or are computationally expensive and thus

have limited scalability [75]. The semantic validation of composed models faces many

challenges from the stateful and dynamic nature of the simulation components, as well

as the size and complexity of the composed models among others [30, 88, 121]. Another
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development is that increasingly large simulations can be executed on Internet-based

infrastructures such as Grid [64] or cloud computing [4], where higher computational

capacity will be readily available.

The objective of this thesis is twofold. Firstly, we propose the design of an integrated

approach that addresses the identified key crosscutting life-cycle issues in component-

based simulation development. Our approach aims to support the development of more

complex simulation models where simulation components can be shared within and

across application domains. Secondly, we propose a strategy for the efficient validation

of semantic composability that provides trade-offs between cost and credibility.

Key challenges towards our proposed goals span several areas. Firstly, towards the

composability of simulation models, several crosscutting issues to be addressed are:

a component abstraction that describes a simulation component from various perspec-

tives and the representation of a composed model suitable for discovery, verification,

and validation. Secondly, the cost of model validation is influenced by the degree of

modeling in terms of the number of components and their attributes, and the degree

of component interaction in terms of events. Devising a feasible semantic validation

approach and associated techniques remains a challenge.

1.6 Contributions

The key contributions of this thesis are:

1. Approach for Addressing Crosscutting Life-Cycle Issues [120, 125]

We propose to integrate solutions to crosscutting issues such as component abstrac-

tions, the representation of the composed model, knowledge representations, and

model reuse, to facilitate the component-based simulation development process at

low costs [125].
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(a) Meta-component Abstraction

We propose the abstraction of a simulation component in a meta-component

with semantically-sugared attribute values defined in COSMO, our component-

based simulation ontology [125]. The meta-component describes a simula-

tion component from various perspectives, both externally, with respect to

neighbors in the composition, and internally, as a time-based state machine,

to facilitate the composition of simulation components in a conceptual model

[118, 125].

(b) Representation of a Composed Model

In our proposed black-box component-connector paradigm, a conceptual model

is represented by a connection of black-box entities defined by meta-components.

The composition adheres to several rules that are defined in an EBNF compo-

sition grammar [118]. This composition grammar specifies connection rules

within and across application domains and is employed to verify the correct-

ness of the conceptual model before the components are discovered in model

discovery and selection [120]. In model discovery and selection, a simulation

model can be internally expressed as a production string validated by the com-

position grammar for fast discovery of shared components. Towards meaning-

ful ranking of partial matches, we propose to employ the semantically sugared

meta-component to quantify component similarity [125].

2. Deny Validity Strategy for Semantic Validation [119, 121, 122]

We propose a deny validity approach that promises increasing levels of accuracy

and credibility. Our two-step process incrementally eliminates invalid models, with

increased accuracy and cost.

(a) General Model Properties

Our validation approach first discards invalid models through the validation
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of general model properties, such as safety and liveness for instantaneous and

timed transitions [119, 121]. We cover various perspectives on the definition of

model properties, such as formal, practical, timeless, and timed, among others.

Moreover, we propose a composability index as a measure of the degree of data

alignment in the composition [125].

(b) Time-based Formalism

Models that have passed the first validation step might still be invalid. Fur-

thermore, to increase model credibility, formal guarantees and measures are

required. Towards a formal guarantee of the composed model validity, we per-

form formal validation with respect to a reference model using a novel time-

based formalism [121, 122]. As a certificate of quality of the validity of the

composed model, we introduce the semantic metric relation Vε, which quanti-

fies state similarities based on semantically-sugared components defined in our

component-based ontology.

1.7 Thesis Organization

The outline of this thesis is presented as follows.

Chapter 2 - Related Work. We present a critical analysis of current work in component-

based modeling and simulation. We establish the burning issues in simulation compos-

ability and evaluate current work. Our findings are that current challenges of component-

based modeling and simulations include, among many, the reuse of simulation models

towards large, infinitely scalable compositions, the lack of component representations to

facilitate reuse and automated validation, meaningful model discovery based on a user

query, automated syntactic composability verification, providing for semantic compos-

ability, and the validation of semantic composability.
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Chapter 3 - Proposed Approach. We present an overview of the problem domain

and our strategy. We identify key crosscutting issues in composability and propose

an approach to address these issues in the life-cycle of a component-based simulation

model. Our focus is not only on solving these individual issues, but also towards a

component-based approach that integrates each life-cycle step solution in an efficient

process. We introduce the preliminaries of component representation and organization,

and domain knowledge representation in our proposed component-based simulation on-

tology called COSMO. Our proposed component representation abstracts a component

as a meta-component with behavior and attributes. We organize components into base

components, which are fundamental entities specific to application domains, and model

components, which are composed using base and other model components. Lastly,

we propose a four-step life-cycle in component-based model development: conceptual

model definition, syntactic composability verification, model discovery and selection,

and semantic composability validation. In contrast with current approaches, syntactic

composability is verified before model discovery.

Chapter 4 - Model Composition and Verification. In our proposed framework, a sim-

ulation problem is translated into a conceptual model using a graphical environment by

drag-and-drop icons representing conceptual components and framework connectors.

We present our approach towards the syntactic verification of the conceptual model. In

contrast to current approaches, syntactic composability verification is performed before

the costly model discovery and selection. We describe how this is possible and present

our approach to the formalization of syntactic composability through the use of compo-

sitional grammars.

Chapter 5 - Model Discovery and Selection. With a large repository of simulation
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components from different sources, automated discovery and selection based on a user

query are difficult without means of ranking the components meaningfully. We present

a semantic measure of the similarity between query and repository components using

our proposed component-based ontology. We study the feasibility of our approach on a

component repository with up to two thousand simulation components.

Chapter 6 - Semantic Composability Validation. Our study of semantic composabil-

ity validation shows that in the literature there are various degrees of model validity

and validity is not a yes/no answer. Current approaches to validate composed models

are either theoretically elegant but not implementable, or are computationally expensive

and do not scale. Based on our composability studies, we observe that there are more

invalid than valid models. As such, checking for invalid models is less costly on average

if we employ a dual-step deny validity strategy. Firstly, invalid models are eliminated by

validating general model properties for both instantaneous and timed transitions. If the

model passes this test, formal model execution validation can then be performed. We

divide the validation of semantic composability in two layers, namely the validation of

general model properties, and the formal validation of model execution. We present the

first layer in which desired model properties such as safety and liveness are evaluated

in the context of instantaneous transitions and over time.

Chapter 7 - Formal Validation of Semantic Composability. We present the second

layer of the semantic composability validation process. We propose a new time-based

formalism to facilitate the comparison between the composed model and a reference

perfect model. In contrast to current approaches, in which components are represented

statically as functions over integer domains, we represent a component as a function of

states over time. We formalize composition, simulation and validity. Based on these
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formal definitions, we propose a five-step validation process. To quantify validity, we

propose a semantic similarity metric to evaluate the closeness of the composed model to

a reference model. We present a theoretical and experimental analysis of the validation

process.

Chapter 8 - Prototype and Evaluation. In this chapter, we present the implementation

of our proposed approach and evaluate each life-cycle step theoretically and through

experimental analysis. Throughout this thesis, we have used a component-based single

server queue system as an example. In this chapter, we follow the life-cycle of a more

complex grid simulation system, which is composed using reused base and model com-

ponents. We further show how a new application domain, Military Training Systems,

is added to our proposed CoDES (Composable Discrete-Event scalable Simulation)

framework. Components in the Military Training application domain are data-driven,

complex entities, and the validation of models in this application domain requires a

trade-off between computational cost and validation accuracy. In terms of increased

scale, we evaluate the runtime cost of each life-cycle step for models composed from

up to 1,000 components. Our results show the feasibility of our approach but also high-

light new research challenges.

Chapter 9 - Conclusion. We present a summary of the key contributions of this thesis

and discuss directions of future work, including the reuse of validated model compo-

nents and the evaluation of emergent properties in the composed model.
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Related Work

Although simulation composability is an appealing approach to reduce the time and

cost of developing simulation applications, several issues prevent it from becoming the

silver bullet to modeling and simulation as initially envisaged [12, 61]. These issues

and the state-of-the-art approaches to component-based simulation model development

are discussed in detail in this chapter.

The component-based simulation framework landscape includes specific applica-

tion domain approaches, such as electronic systems [33], mechatronics [25], and com-

puter network [106] simulations, and general-purpose frameworks such as the Discrete

Event System Specification (DEVS) [133], the Open Simulation Architecture (OSA)

[29], the Base Object Model (BOM) [50], and the Component Oriented Simulation

Toolkit (COST) [22]. However, to the best of our knowledge, current frameworks ad-

dress only partially the key aspects of the component-based simulation life-cycle, such

as model discovery and selection, syntactic composability verification, and semantic

composability validation.

Generally, composability is achieved by ad-hoc development and connection of

components in a simulation model that can only be reused “as-is” [29]. This is in

contrast to an ideal setting, where a simulator developed from reusable components

26



Chapter 2: Related Work

can be further reused as a simulation component in various contexts and combinations

[61]. Furthermore, important aspects such as the validation of syntactic and semantic

composability are left for the simulation developer [12, 29, 133]. It can be said that cur-

rent approaches fail to offer an integrated framework for component-based simulation

model development. Such an integrated framework for composability is not merely a

collection of procedures and processes that address the above life-cycle, but rather a

well-oiled ensemble of parts designed to work together to achieve maximum efficiency

at minimum costs [61]. On the other hand, several approaches target singular issues

such as model discovery and reuse [24, 108], and semantic composability validation

[88]. This piecewise approach has the potential to achieve significant breakthrough in

the specific issue, but generally fails because of the lack of support from an integrated

framework. For example, a formal theory of composability [88] relies on an integer

function representation of a simulation component, which does not capture real simula-

tion components.

As discussed in the previous chapter, key issues in component-based modeling

and simulation include model reuse [12, 31, 61, 80, 89, 91, 94, 128], component rep-

resentation [30, 31, 61, 91, 128], model discovery [31, 91, 128], syntactic compos-

ability [32, 61, 80, 91], semantic composability [12, 32, 88], and model validation

[30, 32, 61, 80, 81, 89, 113]. Furthermore, component selection is an NP-Complete

problem [13, 43, 61, 85, 94, 128]. With respect to the execution of the composed

model, several challenges are posed by the heterogeneous nature of the components

[12, 30, 85, 105] with respect to geographical location and different time management

algorithms [81, 91]. Lastly, a component repository in which components are stored

after being developed must be in place [31, 43, 61, 80].

We analyze current status of component-based simulation model development in

two parts. Firstly, we present state-of-the-art approaches to component-based modeling
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and simulation, including the Discrete Event System Specification (DEVS) [132], the

Open Simulation Architecture (OSA) [29], and the Base Object Model (BOM) [50].

Next, we discuss key issues of component-based modeling and simulation, and how

they are addressed in current approaches.

2.1 Current Approaches

2.1.1 Frameworks for Composable Simulations

Discrete Event System Specification

The Discrete Event System Specification (DEVS) [132] is a formalism derived from

general system theory that describes the structure and behavior of a system. Work that

embraces the DEVS formalism for component-based modeling and simulation shows

that the formalism alone is not sufficient for a complete approach to component-based

modeling, composition, and validation [24, 127, 133].

In DEVS, a system is modeled as a black-box with states, input and output ports. A

DEVS model changes state whenever external or internal events occur at specified time

moments. Two types of DEVS models exist, namely, atomic and coupled. An atomic

DEVS is a tuple

M = 〈X,S, Y, δint, δext, ta, λ〉, where

X is the set of input values

S is the set of states

Y is the set of output values

δint : S → S is the internal transition function

δext : Q×X → S is the external transition function, where

Q = {(s, e)|s ∈ S, 0 ≤ e ≤ ta(s)} is the total state set
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e is the time elapsed since the last transition

λ : S → Y is the output function

ta : S → R+
0,∞ is the time advance function, where 0 means that the stay in state s

is so short that no external events can happen (s is thus a transitional state),

and∞ represents the state s in which the system remains until an external event occurs.

The DEVS coupled models facilitate hierarchical composition [132] by allowing for

the composition of basic and other coupled systems to form larger systems. Figure 2.1

shows a DEVS coupled model with two components.

op
C 2

ip
C

1

C
2

C
1

op
C

1

ip
C 2EIC IC

EOC

Coupled Model (CM)

ip
CM

op
CM

Figure 2.1: A DEVS Coupled Model

Recent work on DEVS for component-based modeling and simulation includes the

implementation of DEVSJava [133], a framework for the development of DEVS com-

ponent - based simulations which provides base classes for component development as

well as utility libraries that contain queues, stacks, random number generators, and dis-

tributions. The Java base classes for component development correspond to the DEVS

types of models, namely atomic and coupled, but also contain utility classes for properly

defining coupled models as well as message passing between components. To the best

of our knowledge, syntactic composability is not checked in DEVSJava. However, syn-

tactic composability could be verified if it is assumed that the DEVSJava components

correctly implement the DEVS formalism. Furthermore, model discovery and selection,
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as well as semantic composability validation are not addressed. While the DEVSJava

framework could be enhanced to support the above life-cycle steps, meaningful model

discovery and selection as well as efficient semantic composability validation would

not be possible by employing only the DEVS formalism. This is because the frame-

work would require a component abstraction on top of the DEVS formalism to capture

semantic knowledge about the framework components. Additionally, knowledge repre-

sentation to facilitate reasoning about similarity and validity is needed.

Open Simulation Architecture

The Open Simulation Architecture (OSA) [29] is built on top of the ObjectWeb Con-

sortium’s Fractal component model to support component-based discrete-event simula-

tions. While extensive work has been done towards the OSA implementation, its design

does not consider abstractions to facilitate model discovery and semantic composability

validation, making it difficult to extend to provide for a complete modeling, composi-

tion, and validation process.

The Fractal component model presents some appealing features. To facilitate com-

ponent reuse, it allows for the sharing of a sub-component between several distinct

components, and implements the separation of concerns paradigm [1]. Furthermore, the

Fractal component model is independent of the programming language that is used to

program simulation models and components. In the Fractal specification, a component

is a unit of object-oriented code with server and client external interfaces. Components

may have a hierarchical structure. Hierarchical components consist of a controller part

(also called a membrane), and a content part, which can contain one or more compo-

nents. Since a membrane can contain another component that in turn has an external

interface, it follows that hierarchical components have internal and external interfaces,

both of either type client or server. The internal interfaces are only available to compo-

nents from the content part. A component of the inner part can only bind its interfaces
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to the external interfaces of other inner components (normal binding), or to the inter-

nal interfaces of the surrounding membrane (export and import binding), as shown in

Figure 2.2.

controller

content

export

binding
import binding

normal binding

interface

Figure 2.2: A Fractal Hierarchical Component

Similar to the DEVSJava framework, syntactic composability and verification may

be achieved in the OSA framework by the strict implementation of the Fractal model,

but verification is not currently considered to the best of our knowledge. Moreover,

model discovery and selection, as well as semantic composability validation are not

addressed. Another important point to highlight here is that in OSA there is no high-

level representation of an OSA component, with OSA components represented strictly

by their code. For semantic composability validation to be possible, a meta-component

representation that factors in behavior and meaningful description of attributes is nec-

essary.

Base Object Model

The Base Object Model (BOM) is “a component-based standard describing reusable

piece parts of a simulation or simulation space” [50]. Initially intended as a standard
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description of simulation components in an HLA setting and later adapted for general

component-based simulation, it provides a general component abstraction to facilitate

composability. However, the BOM description does not consider time, an attribute

of paramount importance in simulation. Furthermore, there is a lack of adoption in

an implemented framework that provides a complete composition life-cycle from the

conceptual model to a valid composed model.

Figure 2.3 presents the structure of a BOM. The BOM Model Identification serves

Pattern Description

State Machine

Entity Type

Event Type

Description

Use Limit

Use History

Keyword

POC

Reference

Other

Glyph

Name

Type

Version

Mod Date

Sec Class

Rel Restr

App Domain

Purpose

Model Identification Conceptual Model

Model MappingHLA Object Model

Figure 2.3: BOM Structure

to provide general information about the base object model, such as name, author, etc.

The BOM Conceptual Model contains static descriptions of items resident in the real

world that are described in terms of conceptual entities and events. Information on how

such items relate or interact with each other in the real world is expressed in terms of

patterns of interplay and state machines.

Current work that employs BOM [69, 77] addresses syntactic composability veri-

fication, model discovery, and semantic composability validation 1. Here, components

are discovered based on a detailed user-specified simulation scenario that includes event

1As of late 2010, a new BOM Experimental Schema proposes the composability of BOM events.
However, the applicability of this new proposal for component-based simulation modeling remains to be
studied.
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names and parameters. In BOM Matching and Composition [77], syntactic discovery

(based on event name and parameters) as well as semantic discovery (based on entity

and data types according to an ontology) is performed. After discovery, candidate com-

ponents are composed and their composition is executed. A composition of candidate

components is valid if its execution conforms to the scenario. As such, composition

and semantic validation of the composability of BOM components is done based on

well-specified simulation scenarios with low level details which are costly to define in

practice. Furthermore, the discovery-composition-validation cycle is computationally

expensive because all possible combinations of candidate components are composed

and executed.

2.1.2 Validation of Semantic Composability

Theory of Composability

Petty and Weisel pioneered a formal theory of composability for checking the semantic

validity of a composed simulation model [88] using a static representation. As such,

the approach cannot be applied to real-life simulations with complex connections (i.e.,

fork and join) and where time is an attribute of paramount importance.

A composition is modeled as a mathematical functional composition. A simulation

is a sequence of executions of a model f , where the state of the previous execution

iterationmx is always fed into the next iteration together with some input. Each iteration

produces an output ox, as illustrated in Figure 2.4 (adapted from [88]). All inputs,

outputs and memory values are integer values.

iagrams/simulation.pdf

Figure 2.4: Simulation as a Sequence of Executions of a Model

The simulation of a composition is represented as an Labeled Transition System
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(LTS) [114] where nodes are model states, edges are function executions, and labels

are model inputs. A composition is valid if and only if its simulation is close to the

simulation of a perfect model, depicted by M∗ in Figure 2.5.
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M M M M

d

S2 S3 S4 S5
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*
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* * * * *****
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M M M M1S

*

5d(S , S ) < t5

*
d(S , S ) < t44

*
d(S , S ) < t33

*
d(S , S ) < t22

Figure 2.5: Composability Validation by Comparison with Perfect Model

In this approach, time is not modeled and the function representing a component

assumes an instantaneous transition from input to output. This permits only a static

representation of the composition that does not consider time, an attribute that charac-

terizes most simulation components. Furthermore, the LTS representation considers the

functions strictly in the order they appear in the mathematical composition, which is not

representative for compositions with complex structure such as those with fork and join

connectors.

2.2 Major Design Issues

Key issues in component-based modeling and simulation include model reuse, model

discovery, syntactic composability, component representation, semantic composability,

and model validation. For the execution of the composed model, several challenges are

posed by the heterogeneous nature of the components with respect to geographical lo-

cation and different time management algorithms. In addition, a component repository

in which shared components are stored after being developed must be in place.
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2.2.1 Model Discovery and Reuse

Reuse is defined in software engineering as “the process of building or assembling soft-

ware applications and systems from previously assembled parts designed for reuse”

[70]. The benefits of reuse [44, 80] include shorter development time, as well as lower

maintenance costs and better product quality. A simulation model can be reused as a

standalone simulator or as a model component interoperating with other model compo-

nents in a larger simulation model. A reuse process includes methodologies, techniques

and procedures for defining, selecting, and composing simulation components [89, 94],

as well as for saving the composed model into the component repository. Reuse solu-

tions in software engineering have not proved as successful as envisaged [78], mainly

due to the lack of procedures and techniques for building, maintaining, and querying

a component repository. Another contributing factor is the time-costly component in-

tegration process, which ironically is the exact effect that component reuse aims to

remove. Similarly, in modeling and simulation challenges lie in building reusable sim-

ulation models [61], integrating legacy systems in a meaningful manner [109], and

formally defining scenarios for reuse [89].

A DEVS model can be employed as a standalone simulator, but also as part of

larger DEVS models. The latter is achieved through the coupled DEVS formalism that

includes atomic DEVS models as well as other coupled DEVS models. Component

reuse is achieved in OSA through the implementation of the Fractal component model,

which allows for a component to have sub-components. In frameworks that employ

the Base Object Model [75], BOMs can be reused as they are, as individual entities,

but cannot be part of larger BOMs because the BOM is not hierarchical in this way by

definition. The Petty and Weisel approach does not consider model reuse.

While current approaches such as DEVS and OSA facilitate the reuse of developed

components, there is currently a lack of support for the reuse process. As discussed
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above, model reuse is an integrated process, which includes the discovery of reusable

models, and the execution of the composed model. Meaningful model discovery is

difficult to achieve in DEVS because the DEVS formalism does not fare well when

an ontology is attached. This is because of the functional definition of a DEVS com-

ponent. Similarly, in OSA, the component representation focuses on the component

implementation, which does not facilitate meaningful discovery.

Discovery refers to the process of locating a component from a component reposi-

tory with a specific structure and component representation [31, 61, 91]. With respect

to the way in which the user specifies his query, several types of discovery can be

identified. Firstly, if the user specifies a set of objectives that the composition should

meet, discovery of the entire composition is performed. This process will attempt to

discover a set of components, which meet some objectives themselves, whose compo-

sition meets the desired user objective. However, the composition might result in some

unexpected or emergent behavior. This makes this type of discovery an NP-Complete

problem [13, 85]. Secondly, the user might employ some form of modeling of the com-

posed model, such as drawing or building the composition using drag-and-drop of icons

on a drawing panel [120]. Next, the user specifies individual queries for each compo-

nent. In this case, the query focuses on the individual component characteristics and

the composed model must be validated once the discovery of all the individual compo-

nents has finished. Key issues in component discovery include the response time of the

discovery service, which mandates that components be discovered quickly. Another im-

portant factor that influences the performance of the discovery service is the size of the

component repository, because discovery is based on a comparison between the query

component and each component in the repository in the worst case. Furthermore, it is

rarely the case that exact matches to the query exist. In this case, criteria to identify and

select partial matches are needed. Other factors include the representation of compo-
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nents in the repository [61, 91], and the existence of a component marketplace [31, 80]

in which components are traded.

The DEVS and Petty and Weisel approaches do not consider component or model

discovery. Moreover, meaningful discovery is not possible in Petty and Weisel’s ap-

proach because of the functional component representation that considers only integer

values with no semantic meaning. The OSA component representation allows for the

specification of the name of a dependency component that can be discovered. This is

a very basic form of discovery that cannot be extended to the process described here.

Current work that employs the BOM representation [75] uses a low level scenario to

describe the desired composed simulation. The scenario includes the sequence of com-

ponent execution, as well as events and parameter names for interacting components.

Component discovery is performed based on the specified scenario, considering the

syntax (method parameter) and the semantics (sequence of events) of the components.

A valid composition of discovered components is one in which the sequence of actions

or events is the same as the sequence specified in the scenario. This requires that all

possible compositions of components (since there can be more than one candidate for a

specific component) be executed and compared with the user specified scenario. How-

ever, this is time consuming and computationally expensive. Furthermore, the approach

considers only exact matches.

2.2.2 Component Representation

Component representation [31, 61] refers to the description or abstraction of simulation

components. To facilitate composability, the component representation should contain

information about the component behavior, its connection with other components in the

composition, as well as input and output data. A component representation abstracts

the component implementation to a level that is understandable by all involved in the
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composition process, humans and computers alike. The general view in modeling and

simulation is that a standardized meta-description or a metamodel should accompany

the component implementation, but what it should contain is still subject to debate [61].

This is because the component representation is used in model discovery and selection,

in syntactic composability verification, and in semantic composability validation, which

implies a trade-off between the required levels of detail for each of these steps [30,

31, 61, 91]. Furthermore, the existence of different application domains may result in

various types of behavior information that needs to be captured [30].

The DEVS formalism represents a component through internal and external func-

tions that change state following a well-defined time-advance function. BOM is a meta-

representation in itself covering model description and behavior. However, the repre-

sentation does not consider time, an attribute of paramount importance in simulation.

Petty and Weisel represent a component as a mathematical function over integer do-

mains. This representation simplifies the validation of composed models by reducing it

to functional mathematic composition. However, other parts of the composability pro-

cess, such as meaningful model discovery and syntactic composability verification are

not possible and as such not considered by the approach. Furthermore, the Petty and

Weisel representation cannot be used to describe complex real-life components because

varied component attributes and behaviors are difficult to match to single-coordinate

domains. The OSA component representation focuses only on implementation specific

details such as the component location and the files where component dependencies are

located, and is missing behavior information.

2.2.3 Syntactic Composability and Verification

Components are syntactically composable when their implementation details, such as

parameter passing, external data access, and timing assumptions, are compatible [32,
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88]. This means that components can properly connect and communicate in a common

language. In other words, a component-based framework must ensure that components

communicate at a technical level, i.e., components are correctly interconnected and

the digital output from one component reaches the digital input of the component(s)

to which it is connected [30]. Syntactic composability is closed under composition,

i.e., the composition of two syntactically valid components forms a syntactically valid

composition.

While several state-of-the-art component-based simulation frameworks provide for

the context in which syntactic composability is achieved, very few actually verify the

syntactic composability of the composed model. In the current context where compo-

nents may be implemented by different vendors, it is important for the framework to

independently verify that the composition is syntactically correct. This translates into

verifying that all components are correctly connected and that their data passing mech-

anisms and time assumptions are compatible. Several factors that influence the auto-

mated verification of syntactic composability include the component abstraction and the

composition rules among others. The component abstraction should describe the com-

ponent communication and how it connects with other components in the composition.

This can be achieved at a general level, through a framework-wide specification, or at

a specialized component level. While a specialized component level description allows

each component to describe its communication with outside components (e.g. the num-

ber of communication channels, type of data, etc.), it is more difficult to specialize than

a framework-wide paradigm which imposes a finite number of communication chan-

nels and a standard data description format on all components. Next, a specification

of composition rules to facilitate automated verification of syntactic composability is

needed.

From the frameworks under analysis, both DEVSJava and OSA do not verify syn-
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tactic composability. However, in both cases, syntactic composability could be easily

verified under the assumption that the components implement the specific framework

formalisms, DEVS and Fractal respectively. Current work that employs BOM verifies

syntactic composability by matching between the method parameters in the composition

scenario. This is a different approach as it deals with another meaning of syntax, similar

to method signature [75] in software engineering. Its main disadvantage is that it does

not focus on the actual connections of the components, since only the user specified sce-

nario is employed in the verification without considering the discovered components.

Petty and Weisel assume in their work that syntactic composability is achieved and ver-

ified beforehand [87]. More importantly, syntactic composability and verification is not

possible using the Petty and Weisel formalism alone because the formalism does not

contain any information about component communication and connection.

2.2.4 Semantic Composability and Validation

In Semantic composability, the data exchange between components must be meaning-

ful, components must have the same understanding of the simulation context and of the

underlying model assumptions, and the composed model must be valid in terms of the

desired user objectives [12, 87, 88]. As such, models that are semantically valid are de-

sired and should be produced by component-based frameworks [61, 88]. In simulation,

validation is defined as “the overall process of comparing the model and its behavior

to the real system and its behavior” [11]. Comparison ranges from subjective tests by

system experts to objective tests by comparing the simulator data with data obtained

from the real system. There is a well known distinction between the verification of

a simulation model, in which we ensure that the simulator implements the simulation

model correctly, and validation, in which we ensure that the correct model is developed.

Extrapolating on verification and validation for composable simulations, we could say
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that verification refers to checking syntactic composability because it ensures that the

components (which are the basic building blocks of the composition) are correctly con-

nected, whereas validation refers to ensuring that semantic composability is achieved.

The validation of semantic composability is not a trivial problem [11, 30, 88, 126].

Firstly, semantic composability is not a closed operation, meaning that semantically

valid components do not necessarily form semantically valid compositions [10, 12, 30,

87]. Secondly, the interaction of reused components may result in emergent properties

[49]. Thirdly, several perspectives must be considered when validating the interoper-

ation of simulation components. The composed model can be validated from logical

and temporal perspectives by considering properties such as safety and liveness of the

composition behavior over time. In this context, dynamic component and composition

behavior are difficult to formalize. More importantly, validity is generally not a fixed-

point answer. There is a need to provide a formal measure of the degree of validation, a

so-called “figure of merit” [61] to increase model credibility. From an implementation

perspective, a key issue that influences the performance of semantic composability val-

idation is the size of the composed model, in terms of the number of components and

the number of attributes and states in the component representation, which can cause

state space explosion [30, 121].

Current work on the formal validation of DEVS models represents DEVS mod-

els in the Z specification language [127]. A theorem proving tool based on Z such as

Z/EVES [100] is used to verify the model and determine hidden properties. Ambigui-

ties, conflicts and inconsistencies can be discovered in the specification. However, the Z

specification language lacks time modeling, a most important attribute in DEVS mod-

els. As such, the validation process is incomplete. Validation is not performed in OSA,

since the main focus of this research is on the composition execution. In current work

employing BOM [75], a valid composition of discovered components is one in which
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the sequence of actions or events is the same as or includes the sequence specified in

the scenario. However, the somewhat informal validation process includes the compo-

sition and execution of discovered components in all possible combinations in order to

be compared with the specified scenario. Moreover, a detailed execution scenario might

not be available from the model composer.

As discussed above, the formal theory of composability validation proposed by

Petty and Weisel allows for a composed simulation model to be checked for semantic

validity. They propose a formalism in which a component is modeled as a mathemat-

ical function. The simulation of a composition is represented as a Labeled Transition

System (LTS) [114] where nodes are model states, edges are function executions, and

labels are model inputs. A composition is valid if and only if its simulation is close by

a relation to the simulation of a perfect model. However, time is not modeled, which

permits only a static representation of the composition and is not perfectly suited to

simulation components with dynamic behavior. Furthermore, the LTS representation

cannot consider complex composition with fork/join connectors.

Figure 2.6 summarizes our analysis of state-of-the-art component-based simulation

frameworks and approaches, namely, the Discrete Event System Specification (DEVS),

the Open Simulation Architecture (OSA), the Base Object Model (BOM), and Petty

and Weisel’s formal theory of composability. While most of the above approaches pro-

vide piecewise solutions to important issues of simulation composability, such as the

validation of syntactic and semantic composability, they fail to provide an integrated

framework for component-based simulation development. As discussed above, such

an integrated framework is not simply a collection of individual solutions to impor-

tant steps in the component-based simulation life-cycle, but a well-oiled ensemble in

which all parts are designed to work together to achieve a maximum efficient process.

This implies that all individual parts such as component representation, a process for
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component discovery and selection, and semantic composability validation, have to be

designed and implemented with the other steps in the component-based simulation life-

cycle in mind. For example, an appropriate component representation has to be chosen

with a correct level of abstraction to facilitate syntactic composability verification in

which only a high level of abstraction is needed, and semantic composability valida-

tion, which requires a lower level of abstraction. As such, the studied approaches are

not easily extended towards an integrated framework for component-based simulation

model development. While DEVSJava and OSA are integrated component-based simu-

Integrated Framework

Model Reuse

Component Representation

Syntactic Composability
Verification

Semantic Composability
Validation

Model Discovery

DEVS
(1997)

OSA
(2006)

BOM
(2004)

Petty & Weisel
(2002)

Figure 2.6: Comparison of Component-based Solutions

lation frameworks, model discovery, the verification of syntactic composability, and the

validation of semantic composability are not addressed. On the other hand, approaches

that employ BOM focus on model discovery and the validation of semantic composabil-

ity based on a low-level simulation scenario. Lastly, Petty and Weisel’s formal theory

assumes that an integrated framework in which models are discovered and semantically

composed exists beforehand. As such, the focus of their theory is only on the formal

validation of semantic composability.
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2.3 Summary

In this chapter we have studied four state-of-the-art approaches to component-based

simulation development, namely, the Discrete Event System Specification (DEVS),

the Open Simulation Architecture (OSA), the Base Object Model (BOM), and Petty

and Weisel’s formal theory of composability. We have analyzed the above approaches

from different perspectives. Firstly, we analyzed if the above approaches offer an in-

tegrated framework for component-based simulation development, which takes a com-

posed model from its conceptual stage, through model discovery and selection, the ver-

ification of syntactic composability, and the validation of semantic composability. The

benefits of an integrated approach include increasing efficiency in the composed model

development process, and a transparent user experience that facilitates adoption to a

wider user community. Most of the studied approaches attempt to obtain an integrated

framework but several design decisions prevent them from reaching this goal.

An important desired characteristic of component-based simulation model devel-

opment is to achieve model reuse towards largely scalable models. This is achieved

by most studied approaches, at different levels, such as the reuse of individual com-

ponents or the reuse of components in larger, hierarchical compositions. However,

towards model reuse, meaningful discovery and selection of reusable components is of

paramount importance. This is not achieved at a satisfactory level by any of the stud-

ied approaches. One of the reasons for this drawback is the component representation,

which was not designed with discovery in mind. Lastly, the validation of semantic

composability is of paramount importance to increase model credibility. Of the studied

approaches, Petty and Weisel’s theory is the only one that focuses on semantic compos-

ability validation. However, the proposed Petty and Weisel formalism is theoretically

elegant but cannot be adapted to real simulation components.
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Proposed Approach

Component-based modeling and simulation is a multi-step process in which the com-

posed model follows a complex life-cycle, from a conceptual stage to a validated simu-

lator that is ready for experimentation. On one hand, design decisions such as the level

of component abstraction, the structure of the component repository, the approach to

model discovery and selection, and the strategy employed in semantic composability

validation, have a significant impact on the efficiency of the development life-cycle.

On the other hand, a component-based simulation approach must express desired char-

acteristics such as facilitating the development of large-scale simulations, component

reuse, as well as the sharing of components across application domains. As such, ef-

ficient individual life-cycle step solutions must consider the impact of their associated

design decisions on the overall attributes and context. More importantly, a piecewise

approach, in which separate solutions for each step are integrated without considering

the overall impact will lead to inconsistencies, difficulty in maintenance, and decreased

efficiency. What is needed is an integrated approach for component-based modeling

and simulation where various design decisions and solutions to crosscutting issues are

integrated seamlessly towards an efficient process with reduced development costs and

desired characteristics [61].
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This chapter presents the design overview of CoDES (Composable Discrete-Event

scalable Simulation) [118, 119, 122, 125], our proposed integrated approach for component-

based simulation model development. Two main objectives drive the design of our

proposed integrated approach. Firstly, we propose to support the entire component-

based simulation life-cycle, from conceptual model design to model verification and

validation. Secondly, to increase model credibility, we propose a practical strategy for

semantic validation that includes a rigorous formal approach with higher validation ac-

curacy. To facilitate component sharing and reuse, the proposed approach is designed

for scalable deployment on Internet-based infrastructures such as web services, grids,

and clouds.

We structured our approach and this thesis along the following component-based

modeling and simulation life-cycle, namely, conceptual model definition, model dis-

covery and selection, syntactic composability verification, and semantic composability

validation. This chapter is organized in two parts. Firstly, in the design of the CoDES

framework, we address several issues that crosscut the component-based simulation

modeling life-cycle, such as component abstraction, and domain knowledge represen-

tation among others. Secondly, we present key design problems and their solutions,

such as the speed of model discovery and selection, the problem of partial matches,

and how to increase the shared model credibility through a formal semantic validation

process.

3.1 Crosscutting Design Issues

As discussed above, the life-cycle of a component-based simulation starts with concep-

tual model definition, followed by model discovery and selection, syntactic compos-

ability verification, and semantic composability validation. Figure 3.1 presents several

issues that crosscut these life-cycle steps. These issues are defined as “crosscutting”
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Figure 3.1: Crosscutting Issues in Component-based Simulation Frameworks

because their solution impacts different life-cycle steps in various ways. For example, a

black-box component representation in which the structure and other information about

the component is not accessible to the framework, does not influence the process of

syntactic composability verification, but may decrease the accuracy of model discovery

and selection. The crosscutting issues that we identify include component representa-

tion, data encapsulation, loose coupling, model reuse, the existence of heterogeneous

components, the representation of domain knowledge to facilitate model discovery and

semantic composability validation, as well as the existence of a component repository

organized to support heterogeneous components with respect to application domain and

geographical location. Our approach addresses these issues to provide a solid founda-

tion for seamless component-based simulation model development. Our solutions are

presented and analyzed below.

3.1.1 Component Representation

The building block of a component-based approach is the simulation component. In

CoDES, we define a simulation component as follows.

Definition 1 (Simulation Component). A simulation component is a stateful, reusable,

self-contained unit that meets diverse user requirements in different simulation contexts.

It interacts with other components through well-defined connectors and based on the

received input, its behavior changes over time.
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To facilitate composition and reasoning, simulation components must have a standard

internal representation in the framework, to which all components must adhere [61, 88].

The choice of component representation has major implications on the functionality of

the CoDES modules in Figure 3.5 and as such cannot be treated lightly. The component

representation must be independent from the programming language in which the com-

ponent is developed. Furthermore, it must offer enough details about the component

attributes and functionality without being too complex. A component representation

that is too complex may be unreadable by human users and might hinder the perfor-

mance of computer algorithms that employ it [19]. On the other hand, a very simple

component representation may be too abstract for computers to process meaningfully

and might not meet the specific level of detail required by component users.

The abstraction of simulation components dictates the reusability of model com-

ponents as part of a larger simulation model, as well as the cost of validation. In a

black-box abstraction, component details, such as the hierarchical structure, and at-

tributes and behavior, are not visible, and a simulation component is described only

in terms of input and output data (usually in forms of messages) [123]. In contrast, a

white-box abstraction exposes the component structure and its internal details. While

the black-box abstraction is computationally less expensive than a white-box approach

for both syntactic and semantic validation, our preliminary studies reveal that this may

result in a loss of validation accuracy and model credibility [121]. However, white-box

representation increases validation costs and limits the size and scalability of compos-

able models.

Besides the black-box/white-box trade-off discussed above, another trade-off arises

between the various levels of modeling resolution captured by the component represen-

tation [79]. For example, a detailed and accurate representation of the exact component

behavior in all possible usage contexts is desired for meaningful discovery and accurate
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validation. However, such a representation is very difficult to define and might lead to

overspecification [19].

We propose a meta-component description in terms of the attributes and behavior

of a component. The component attributes are classified into mandatory attributes and

specific attributes. Mandatory attributes are common to all components and include

information such as the component name, author, location, usage history, etc. Specific

attributes include information related to individual components, e. g. “serviceTime”

and “interArrivalTime” for a Server component. The component behavior is represented

in two ways, externally, with respect to the data that the component sends and receives

from other components in the composition, and internally, as a timed state machine.

The component behavior describes the data that it receives and outputs as a set of states.

The transitions between states are defined as a set of triggers expressed in terms of input,

time and conditions. As such, our proposed implementation strikes a balance between

different levels of modeling. For example, neighboring components are interested in

what data the component sends and receives. On the other hand, model discovery and

selection requires component attributes to perform matching, whereas the validation of

semantic composability requires detailed information about the component behavior.

More formally, a meta-component Ci is defined as follows:

Definition 2 (Meta-component). A meta-component represents a simulation compo-

nent Ci as a tuple:

Ci = 〈R,Ai, Bi〉 (3.1)

where R denotes mandatory attributes that are common to all components, Ai denotes

component specific attributes, and Bi represents component behavior. A component

behavior is represented as follows:

[Il]Sp[∆t]
Condn−−−→ St[Ol][Am] (3.2)
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where Il is the set of input data; Sp is the current state; ∆t is the transition duration;

Condn defines the condition(s) for the state transition; St is the next state; Ol is the

set of outputs after the state change; Am is the set of modified attributes after the state

change.

The data that a component sends and receives has to be properly specified in order

to ensure that the framework can establish data compatibility between components in

the composition. We propose to describe the data sent and received by a component us-

ing data constraints which are descriptions of data that are semantically enriched with

descriptions and relations defined as in our proposed COSMO (COmponent Simulation

and Modeling Ontology) ontology. These constraints include the type of data, range

of its values, origin, destination, and a specific time interval. For example, a compo-

nent can only receive/send data of a given type and in a given interval, arriving from a

specific semantically enriched origin, departing to a semantically enriched destination,

or arriving at a specific local time. To describe non-primitive data types, we propose

a general class data constraint. Our proposed data constraints are used in discovery

and selection to identify the components most suitable to a user query, and in semantic

composability validation to flag invalid data passing through the composition according

to user-specified validity points.

As discussed above, the meta-component is an accurate representation of the com-

ponent implementation and is used throughout the CoDES framework. The meta-

component is a description provided by the component developer and is attached to

the implementation when the component is added to the CoDES repository. The terms

“component” and “meta-component” will be used interchangeably in the remainder of

this thesis.

It is important for all simulation components to be represented in a machine read-

able format to which all components in the framework adhere. Towards this issue, we
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propose COML, a markup language for representing CoDES components. COML is de-

scribed in XML Schema. When new components are added to the CoDES framework,

their XML meta-component definition is checked against the COML schema. COML

includes tags such as: mandAtt and specAtt to describe mandatory and component

specific attributes, behavior transitions, input, output to describe the component be-

havior, including states, transitions, constraints on the input, and output, topology to

describe the topology of model components and standalone simulators, prodRule to

describe the standalone simulator’s production rule, etc. Figure 3.2 presents excerpts

from the COML Schema for base components.

To facilitate model discovery and selection, the entities in the COML file are de-

scribed in COSMO, our proposed component-based ontology. As such, the component

representation together with the COSMO ontology provide extensive descriptions with-

out overspecification. COML also provides a schema for representing the input/output

data exchanged between components. This guarantees that communication between

components is performed in a correct and standardized format.

3.1.2 Data Encapsulation and Loose Coupling

Data encapsulation or separation of concerns [36, 93] is the process of breaking a com-

puter program into parts that overlap as little as possible or not at all. In a component-

based context, design decisions and implementation issues that are particular to a com-

ponent do not affect the implementation of other components in the composition. Com-

plex compositions are thus easier to understand, design and maintain. In the context of

component-based simulation in the CoDES framework, we consider a simulation com-

ponent to be a black-box with an input and/or an output communication channel. As

such, the component’s implementation is hidden from other components in the com-

position. The user can change the component execution by modifying component at-
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<element name="component"> <complexType> <sequence>
<element name="mandatoryAttributes" type="spec:mandAtt"/>
<element name="specificAttributes" type="spec:specAtt"/>
<element name="data" type="spec:dataType" maxOccurs="unbounded"/>
<element name="behavior" type="spec:behaviorType"/>

</sequence>
</complexType>
<!−− Restriction− initial & final state name for each transition shld be from the
set of states−−>
<key name="stateName">

<selector xpath="behavior/states/state"/>
<field xpath="@name"/>

</key>
<keyref name="ref1" refer="spec:stateName">

<selector xpath="behavior/transitions/transition/initial"/>
<field xpath="@name"/>

</keyref>
<keyref name="ref2" refer="spec:stateName">

<selector xpath="behavior/transitions/transition/final"/>
<field xpath="@name"/>

</keyref>
...
</element>

<complexType name="mandAtt">
<sequence>

<element name="name" type="string"/>
<element name="type" type="string"/>
<element name="author" type="string"/>
...

</sequence>
</complexType>

<complexType name="specAtt">
<sequence>

<element name="attribute" maxOccurs="unbounded">
<complexType>

<sequence>
<element name="value" type="string"/>
<element name="description" type="string" minOccurs="0"/>
</sequence>
< attribute name="name" type="string"/>

</complexType>
</element>

</sequence>
</complexType>
<complexType name="behaviorType">
<sequence>

<element name="inputs" type="spec:datas" maxOccurs="unbounded"/>
<element name="outputs" type="spec:datas" maxOccurs="unbounded"/>
<element name="states" type="spec:stateType" maxOccurs="unbounded"/>
<element name="durations" type="spec:timeIntType"/>
<element name="attributes" type="spec:modifAtt" maxOccurs="unbounded"/>
<element name="conditions" type="spec:conditionsType"

maxOccurs="unbounded"/>
<element name="transitions" type="spec:transitionsType"/>

</sequence>
</complexType>

Figure 3.2: Component Representation in COML
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tributes, which in turn change the component behavior.

To facilitate loose coupling [111], the CoDES framework proposes a component-

connector paradigm to which all CoDES components must abide [118]. In the component-

connector paradigm, components are interconnected by well-defined connectors. A

connector performs message and data passing among components. As such compo-

nents need only implement communication protocols with standard connectors and not

with other components. Messages leaving components are timestamped and the con-

nector guarantees FIFO delivery of messages to the destination components. As shown

in Figure 3.3, connectors are divided into one-to-one (Connect) for connecting two com-

ponents, many-to-one for joining out-channels of components into one in-channel of the

next component, and one-to-many for demultiplexing the out-channel of a component

into in-channels of more than one component. The component-connector paradigm is

summarized below.

Definition 3 (Black-box Component-Connector Paradigm). CoDES components

view each other as black-boxes with one input and/or output communication channel.

Components are interconnected using framework connectors, which are classified in

one-to-one, fork, and join. Connectors are responsible for data passing between com-

ponents in the form of messages.

���� �� ��������

Sink Model

component

ServerSource

JoinConnect Fork

Figure 3.3: CoDES Components and Connectors
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3.1.3 Component Organization

To achieve knowledge sharing to a wider user community, a component-based simu-

lation approach must consider heterogeneous components. Component heterogeneity

refers mainly to components developed for specific application domains, but may also

refer to the component location. Examples of application domain based simulation

frameworks include electronic systems [33], thermofluid systems [102], mechatronics

[25], and network [106] simulations. While component-based approaches for specific

application domains are perceived to be easier to develop and achieve greater depth into

the coverage of a particular application domain, approaches that generalize and share

components across application domains will increase the level of component reusability,

and facilitate the development of larger and more complex simulations at lower costs.

A main challenge is to achieve component sharing both in breadth (many domains) and

in depth (detailed specific domains), and at the same time allow for facile cross-domain

component integration, and the validation of the heterogeneous composed artifact [61].

The second type of heterogeneity refers to the location of the component imple-

mentations. Component-based simulations can be developed using components from

distributed repositories that can reside in different administrative domains. Moreover,

there is an increasing trend in using the Internet as an infrastructure for the discovery

and (re)use of shared resources, which promises to advance knowledge sharing to a

wider simulation community.

Component sharing within and across application domains leads to expensive model

discovery and semantic composability validation in the absence of a hierarchical com-

ponent organization. This is because the lack of hierarchical component organization

incurs a large number of futile comparisons in model discovery and selection. In se-

mantic composability validation, a hierarchical component organization can reduce the

number of ontology queries and thus decrease the validation runtime [121]. We propose
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a hierarchical component organization as shown in Figure 3.4. The CoDES component
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Model 
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Components

Model 
Components...
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Figure 3.4: Hierarchical Component Organization

repository is organized in three logical categories, base components specific to each ap-

plication domain, model components developed from base components and other model

components, and standalone simulators that can contain both model and base compo-

nents. Our component definitions are presented below.

Definition 4 (Base Component). A base component is a well-defined atomic block

that represents a fundamental entity in an application domain.

Definition 5 (Model Component). A model component is composed from base com-

ponents and other shared model components.

Base components form the basic building block in a conceptual component-based

model and each component is viewed as a black-box with in and/or out communication

channels. Model components, each represented as a black-box with both in and out

communication channels, can be reused across application domains. We discuss in

Section 3.1.4 how model components are created.
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For example, the Queueing Networks application domain has three base compo-

nents, namely, source, server, and sink as shown in Figure 3.3. Source is a base queue-

ing network component but its behavior differs depending on whether the system is an

open or a closed queueing network. For open queueing systems, a source waits for a

sampled interval of time, generates a job, and passes the job through its connector to

the next component. In a closed system, a source waits for the completion of a job it re-

leases into the system before putting the next job into the system. A server component

encapsulates one or more service units and is served by a single queue. Jobs completed

in an open system terminate at the sink.

The major advantage of the separation into base components specific to each ap-

plication domain is that intrinsic knowledge about the application domain is captured

without the necessity of any formalism. However, this somewhat informal knowledge

is not sufficient, in particular in model discovery and selection and in semantic compos-

ability validation. For example, in model discovery and selection, it is rarely the case

that there exist exact matches to the user query, and as such partial matches need to be

computed. This is done by estimating the similarity between the user query attributes

and behavior and the attributes and behavior of the repository components. On the

other hand, in semantic composability validation, the degree of compatibility between

the input and output data of communicating components needs to be computed. Fur-

thermore, when comparing the execution of the composed model with that of the ideal

model desired by the model composer, several degree of closeness appear and need to

be measured. As such, there is a need to express domain and component knowledge in

an unambiguous, standardized format that is accessible to humans and computer pro-

grams.

An ontology is an organized knowledge representation to capture object information

in a particular domain [112], in formats readable by humans and computers alike. On-
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tologies are conceptual models that capture and explain the vocabulary used in semantic

applications guaranteeing communication free of ambiguities [17]. When applied to the

modeling and simulation domain, ontologies facilitate model discovery and integration

and the development of formal methods for simulation and modeling [71, 110]. On-

tologies can be used to express syntax and semantics to facilitate communication and

allow for automated semantic checking. Furthermore, they are employed to express the

resource discovery request and determine whether the discovered model is reusable. We

propose the COSMO ontology to meaningfully represent component-based simulation

knowledge, as well as application domain specific information. We discuss COSMO in

Chapter 5.

3.1.4 Model Reuse

The reuse of simulation models is of paramount importance to decrease the cost of

development of large simulation models [61, 12]. Simulation model reuse requires

methodologies for abstraction, to facilitate storing and retrieving of simulation models

from component repositories, for selection of simulators or model components, and for

the integration of reused model components in new simulators. Towards model reuse,

component repositories have a powerful impact on the acceptance of a component-

based approach [31, 61, 80]. The structure of a component repository must consider

both distributed and local settings, and must facilitate a fast, scalable, discovery ser-

vice. Another important factor in achieving simulation model reuse is the component

abstraction, which facilitates discovery and reasoning about the composed model from

reused components. The abstraction of a component as a meta-component facilitates the

process of discovery, selection, and integration, because it offers an accurate description

of the component implementation.

In the CoDES framework, we propose three levels of model reuse. Firstly, we pro-
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pose and facilitate the reuse of a developed simulation model “as-is”. This implies that

a composed simulator is saved into the repository after it has been developed for it to

be re-executed and re-used at a later time. This is in accordance with current work in

composability which focuses mostly on achieving reuse on an “as-is” basis [29, 69, 77].

While the simulator is saved into a repository for future reuse, there exists no possibility

of inclusion in larger models, or even modification to suit user needs by changing at-

tribute values. While this approach still reaps some of the advantages of model reuse, it

does not facilitate the development of larger models and limits the growth of the repos-

itory to a wider user community. To address this drawback, we secondly propose the

reuse of base components in different compositions. A reused base component can be

part of many compositions. It is stored in a component repository and can be retrieved

whenever is necessary. This type of reuse captures the true philosophy of reuse and

reaps the full advantage of composability, facilitating the development of larger simu-

lation models. On an even wider scale, we propose model components developed from

base and other model components as the third type of model reuse. The three types of

reuse, namely, standalone simulators, base components, and model components, facili-

tate the development of large simulation models at various scales to increase knowledge

sharing, model scalability, and community reach.

As discussed above, the way a component is represented in a meta-component is

highly important for the process of model reuse. As described in Section 3.1.1, the base

components are abstracted as black-boxes, with their behavior described in a meta-

component using state machines and attributes. The abstraction of model components

dictates the reusability of model components as part of a larger simulation model and

the cost of validation. In a black-box abstraction, component details, including their

hierarchical structure, attributes and behavior, are hidden, and a model component is

described only in terms of input and output. In contrast, a white-box abstraction ex-
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poses the model component structure and its internal details. While the black-box ab-

straction is computationally less expensive for both syntactic and semantic validation,

our preliminary studies reveal that this may result in a loss of validation accuracy and

model credibility [121]. However, white-box representation increases validation costs

and limits the size and scalability of composable models.

Currently, a model component is viewed as a black-box with in and out communica-

tion channels. Information about the input and output that can be received/sent through

these communication channels is also stored. In a future work, we intend to study the

trade-off between a black-box and a white-box approach to enhance the reusability of

the information stored in the model components towards faster model discovery and

selection and better reasoning in semantic composability validation.

To facilitate the three types of reuse described above, we distinguish between two

types of information, syntactic, which describes the component in terms of attributes

and structure, and semantic, which describes the component behavior. Both syntactic

and semantic information are employed in model discovery. Semantic information is

also employed in the process of semantic composability validation. Table 3.1 presents

the information content of the meta-component abstractions. For base and model com-

Abstraction Base Component Standalone Simulator Model Component

Syntactic
attributes production string attributes

(name, description, iaTime etc.) topology (name, description, author etc.)

Semantic

behavior
all meta-components

-
external : I/O constraints behavior
internal : state machine

validation information
external : I/O constraints

internal : -

Table 3.1: Abstractions Towards the Reuse of Model Components

ponents, the syntactic information saved in the meta-component refers to the compo-

nent’s mandatory attributes (e.g. name, author), and specific attributes (e.g. “interAr-

rivalTime”). The syntactic information pertaining to a standalone simulator contains the

production string obtained form the composition grammar, and the simulator’s topol-
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ogy. The production string is a linear arrangement of the components’ types according

to their position on the graphical screen, and is accepted by the composition grammar

specific to the simulator’s application domain. The topology describes in detail the con-

nections between the components in the simulator. Since there can be more than one

implementation for the same production string, the production string and the topology

uniquely identify the simulators in the repository. The semantic information encapsu-

lated in the meta-component of a base component refers to the component’s behavior,

both external, as data constraints on the input and/or output data, and internal, as the

base component’s state machine. For a standalone simulator, the semantic information

contains all the meta-component definitions of all composing components. Further-

more, the validity information resulted from the semantic composability validation pro-

cess is also saved. The only semantic information saved for a model component is given

by the input/output data constraints for the components that were at the cut-off points

when the model component was created from a validated simulator as discussed above.

This is in accordance with a black-box view of the component as proposed above.

In the CoDES framework, a model component that is saved into the repository must

have both “in” and “out” communication channels to facilitate its reuse in the maxi-

mum number of compositions. This is obtained by stripping off some components from

a semantically valid standalone simulator, according to some framework or user de-

fined cut-off points, and wrapping the remaining components using a framework wrap-

per. As such, information about all composing components is retained, but only partial

validation information is saved since some of the information might depend on the

components that were stripped off. Furthermore, even though information about the

constraints on the input and the output is saved as external behavior, no information

about the model component’s state machine can be obtained.
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3.2 Design Overview

Figure 3.5 presents a block diagram of the CoDES framework, highlighting the inter-

actions between the user and the framework throughout the life-cycle of the composed

simulation model.
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MODEL COMPOSITION
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Figure 3.5: High-level Overview of the Design of CoDES

We propose a new life-cycle for a component-based simulation study in the CoDES

framework, with the following steps in this order, namely Conceptual Model Defini-

tion, Syntactic Verification, Model Discovery and Selection, and Semantic Validation.

A new simulation model is created using a graphical environment by drag-and-dropping

icons of conceptual components on a drawing panel and linking the components using

connectors. This is a conceptual model because the icons describe the simulation prob-

lem conceptually, and represent entities without an attached implementation. Syntactic

composability is next verified in the Syntactic Verification step. In Model Discovery

and Selection, the Model Locator module queries the model repository for the entire

model or for individual components, resulting in one or more candidate models. The

best candidate model is automatically selected. In Semantic Validation, the user sets the

61



Chapter 3: Proposed Approach

desired attribute values for the components in the selected model, resulting in a can-

didate simulator. The candidate simulator is then semantically validated resulting in a

validated simulator that can be subsequently executed.

3.2.1 Integrated Component-based Approach

We propose an integrated life-cycle for the development of a component-based model in

the CoDES framework, consisting of four key steps as shown in Figure 3.6(b), namely

Conceptual Model Definition, Syntactic Verification, Model Discovery and Selection,

and Semantic Validation. Initially, a simulation problem is translated into a graphi-
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Figure 3.6: Life-cycle of a Simulation Study

cal conceptual model using component icons. The Conceptual Model Definition phase

employs component icons without an attached implementation. The component icons

are dragged and dropped on a drawing panel and subsequently connected using well-

defined framework connectors, such as “join” and “fork”. Next, the syntactic compos-

ability of the conceptual model is verified using our proposed EBNF composition gram-
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mar in the Syntactic Verification stage. If the conceptual model is syntactically correct,

the component implementation can be discovered in the Model Discovery and Selection

step. The discovery service ranks the repository components based on the simulation

developer component query. The repository components are ranked based on semantic

domain knowledge expressed in our proposed COSMO ontology. Lastly, the semantic

composability of the composed model is validated in the Semantic Validation step.

As shown in Figure 3.6, our proposed life-cycle differs slightly from current simu-

lation approaches, where component implementations are first discovered, connected,

and their connection is subsequently verified [61, 133], we verify the syntactic compos-

ability of the conceptual model before model discovery. This ensures that the model is

correct before the costly discovery process is performed. Chapter 8 presents an evalua-

tion of the cost of model discovery and selection. Syntactic composability verification

performed before model discovery is equivalent to the verification performed after dis-

covery and selection in traditional approaches. This is because our proposed approach

guarantees that: (i) the number of communication channels of the component imple-

mentation is equal to the number of channels of the icon representation, and (ii) compo-

nents and their communication are represented consistently by the same schema. From

(i) it follows that the component connection will be the same regardless of whether

the components are only conceptual icons or have attached implementations. Next, (ii)

guarantees that all repository components use the same standardized syntax for com-

munication.

Another component-based simulation life-cycle proposes the specification of com-

ponents in XML, from which component code can be generated [98]. The proposed

process has four important stages, namely the description of a component in XML,

code generation from the XML specification, composition, and simulation execution.

This approach is platform independent and can be added to simulation systems such as
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James II [52]. Moreover, the XML-based specification facilitates syntactic composition.

However, the validation of the composed model is not discussed. The key assumption in

this approach is that a complete specification of the component, probably provided by

the model composer, exists to facilitate the component code generation. This bypasses

one of the recognized advantages of component-based approaches, which is the reuse

of previously developed components to reduce costs. In contrast, we adopt a reverse

view of the composition process, assuming that component implementations exist in a

component repository, and that their behavior and characteristics are captured in a meta-

component described in XML. We propose methods for the discovery and selection of

component implementations. Moreover, we propose solutions for the verification and

validation of the composed model.

3.2.2 Formal Time-based Semantic Validation

Studies of semantic composability validation show that model validity is not a fixed

point answer and there are many valid models but with different degrees of validity

[76, 88, 119, 122]. Current approaches to validate composed models such as the for-

mal theory of composability, are theoretically elegant but not scalable and thus are not

practical to implement [88] or suffer from validation state-space explosion and thus do

not scale [77, 127]. These trade-offs are inherent in the validation of semantic compos-

ability because of the many facets of validation and the ambiguity of the definition of

validity. Moreover, semantic validation is a costly process. Firstly, many aspects can be

considered when discussing semantic validation, such as logical, with respect to safety

and liveness, temporal, with respect to the behavior of the composed model over time,

and formal, with respect to the formal guarantees offered by the validation process to

increase model credibility. Secondly, there exist many definitions of a valid composed

simulation model, which depend on the simulation objective desired by the user. These
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definitions are difficult to specify in a formal, generalized manner that allows for the

implementation of an automated validation process. With this in mind, we propose

a layered approach to validation in which we consider the aspects defined above and

provide definitions of validity from a user and a formal perspective.

Based on our composability studies of reusing base components, we observe that

there are more invalid than valid models. As such, our strategy is to check for invalid

models. This is less costly on average if we employ a dual-step deny validity approach.

Figure 3.7 presents a high-level overview of our proposed validation process.

In the CoDES framework, only models that are syntactically correct reach the model

discovery and selection step. This is facilitated by our proposed life-cycle, which re-

lies on our standard component representation and our proposed component-connector

paradigm. Next, the syntactically correct conceptual model is discovered in model dis-

covery and selection, and the composed model is semantically validated.
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In the validation of semantic composability, invalid models are eliminated by check-

ing general model properties for both instantaneous and timed transitions. However, a

composed model with valid model properties may not be the exact model desired by

the user. While the composed model might have desired semantic properties, it might

not be in accordance with the real or the ideal system desired by the user. As such,

we perform model execution validation by comparing the execution of the composed

model with the execution of a reference model, which stands for an ideal representation

of the real system.

Towards this comparison, we introduce a novel time-based formalism where a sim-

ulation component is represented as a function of its states over time. Based on our

formal definitions of composition, simulation, and validity, we propose a formal vali-

dation process in which the main consideration is a simulation component that evolves

over time by changing its state throughout the composition execution. This is in con-

trast with software engineering approaches where the components are often stateless

artifacts in which time and states are not important. The validation process is presented

in detail in Chapter 6 and Chapter 7.

3.3 Summary

In the design of CoDES, our proposed framework for component-based modeling and

simulation, we focus on two key issues.

Firstly, the reuse of simulation components promises reduced development time and

increased scalability. We propose a component-based approach that facilitates model

reuse through a four-step life-cycle in which all steps are integrated seamlessly with

increased efficiency and runtime cost gains. Our proposed life-cycle is supported by

solutions to several crosscutting issues, including among many: component representa-

tion, data encapsulation, loose coupling, heterogeneous components, representing do-
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main knowledge, and a component repository that facilitates reuse and composition. To

achieve component reuse across many application domains, our novel approach divides

a simulation problem space into different compartmented application domains, which

are subsequently described using composition grammars and ontologies. This new per-

spective reduces the simulation problem search space to achieve greater scalability and

efficiency in syntactic composability verification, ontology reasoning in model discov-

ery and selection, and semantic composability validation. Furthermore, in contrast to

current approaches, we propose a life-cycle in which syntactic composability is per-

formed before the costly model discovery and selection to increase efficiency.

Secondly, our approach focuses on the semantic validation of the composed artifact

to increase model credibility. Since validity is a costly process that does not have fixed

point answer, we propose a novel deny validity approach with incremental accuracy

and cost. Firstly, invalid models are eliminated by checking general model properties

for both instantaneous and timed transitions. This is less costly to identify and discard

invalid models. We propose generalized and user-defined safety and liveness properties

to cover various validation perspectives. If the composed model is not discarded in

this test, model execution validation compares the execution of the composed model

with that of the real system. In this step, we introduce a novel time-based formalism

where a simulation component is represented as a function of its states over time. Using

this formalism, we provide definitions of composition, simulation, and validity. These

form the foundation of our proposed formal validation process that considers dynamic

and stateful behavior, as well as semantically-sugared descriptions, all of which are of

paramount importance for component-based simulations.
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Model Composition and Verification

In the first step of the composition life-cycle, the simulation developer (hereafter re-

ferred to as model composer) specifies the composed model by drawing it using com-

ponent icons. The model is then compiled and executed. For the model to execute

properly, components must interoperate and the data exchanged must be compatible.

This is called syntactic composability [30, 88]. In our proposed life-cycle, this se-

quence of events translates to a conceptual model definition step followed by syntactic

composability verification.

In current approaches to component-based simulation modeling, the simulation de-

veloper first designs a conceptual simulation model that mimics the real system under

study. For example in the Arena simulation software [62], icons that model different

real-world entities are placed on a drawing panel and connected to form a graphical

representation of the conceptual model. The entity parameters are defined and the sim-

ulation model is subsequently executed. The conceptual model is created in the problem

modeling phase of the simulation study. It describes simulation objectives, and consists

of assumptions, objectives, algorithms, relationships and data (without implementa-

tion) that describe how the simulation developer understands what is being represented

by the simulation [84, 96]. In most component-based simulation modeling approaches
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[29, 50], the conceptual model if it explicitly exists, as is the case of OSA [29], trans-

lates into a collection of user-developed components, as well as reused components that

have a hierarchical structure. To reuse components, the simulation developer must per-

form model discovery and selection. This process can be compute-intensive when the

model repository is large, and the discovered components may not be an exact match to

the user requests. Next, if the discovered components turn out to be incompatible or the

composition structure is incorrect, the entire sequence “conceptual model definition -

model discovery and selection - syntactic composability verification” has to be repeated

and becomes iterative and costly.

In this chapter, we propose the verification of syntactic composability before model

discovery and selection to decrease the computation costs. We propose a formalism

based on compositional grammars to guide the definition of the conceptual model and

facilitate syntactic verification. We first present an overview of current approaches to

model composition and verification. Next, we present our proposed approach to model

composition and verification, and exemplify using a composed simulator of a single-

server queue. We perform a theoretical and experimental analysis of syntactic compos-

ability verification to showcase the benefits and scalability of our proposed approach.

4.1 Current Approaches

Figure 4.1 presents current approaches in model composition and verification in component-

based simulations. Informally, syntactic composability verification is the process of

checking that the components in the composed model are connected correctly and can

interoperate. We outline several points of interest towards model composition and ver-

ification, namely data encapsulation, component connection, composition representa-

tion, and automated syntactic composability verification. Data encapsulation is impor-

tant for syntactic composability because it ensures that implementation details pertain-
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ing to each component are hidden from other components in the composition. This

separation ensures that simulation components can be reused in a variety of contexts

with minimum modifications. Component connection analyzes how components are

connected in the composition. Here, a simple approach that guarantees scalability is

desired, but usually cannot be obtained because of framework-wide factors such as the

component model implemented by the framework. The composition representation can

facilitate or hinder the automated verification of syntactic composability, depending on

the level of abstraction. Lastly, the syntactic composability verification analyzes how

verification is performed. In particular, automated syntactic composability verification

is important when components are developed in various locations by different vendors

and a fast, scalable, and repeatable framework-specific guarantee is needed. In the fol-
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Figure 4.1: Approaches to Syntactic Composability

lowing, we focus on four state-of-the-art approaches, namely DEVSJava, COST, JSIM,

and OSA.

Data Encapsulation

All current approaches to syntactic composability separate components in the compo-
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sition. Components are mostly abstracted as black-box with input and output commu-

nication ports. In OSA, components offer a glass-box view of their inner structure by

providing access to the sub-component methods through a membrane. A black-box

view of components is advantageous because it hides inner component details (such as

behavior and structure) from other components with whom the component interacts in

the composition. This prevents overspecification and facilitates automated reasoning

about syntactic composability with decreased costs. However, more details about the

structure of the hierarchical components are needed for more accurate model discovery

and selection and semantic composability validation. These are offered by a glass-box

view of the component, but also incur higher costs in discovery and validation because

of state space explosion caused by a large number of sub-components that are con-

sidered. This is a simple example of a design decision in one life-cycle step that can

influence negatively the performance of other life-cycle steps.

Component Connection

Current approaches propose several methods of component connection, such as direct,

membrane, and through connectors. In direct component interconnection, components

are connected in the simulation code using methods published in their interfaces. A

major disadvantage of this approach is that it incurs on the components the added

overhead of inter-component communication. For example, for the COST framework,

inter-component communication is done by employing specific C++ constructs such as

templates and function pointers. This means that a component implementation must

also be aware of other component implementations in order to properly communicate.

Similarly, component communication in OSA is done through a component membrane

that is part of the component. The membrane provides to the other components the

exact methods that the component can execute, and handles time management within
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the component as well as the communication with the rest of the components in the

composition. Only in JSIM the component inter-connection is done through framework

connectors. Connectors are advantageous because component implementations need

focus only on the communication with standard framework connectors. In contrast, a

non-connector-based approach would require the component implementation to cater

for all possible implementation of the components with which it could communicate.

Composition Representation

The composition representation is of paramount importance towards both the verifica-

tion of syntactic composability and the validation of semantic composability. Ideally, a

formalism of some kind is desired to represent the composition. Such formalism, con-

taining well-defined rules, permits reasoning about the composition, which in turn helps

identify design errors and increases the credibility of the composed model. In our study,

we have encountered several formalisms, namely the Discrete Event System Specifica-

tion (DEVS) discussed in Chapter 2, the Fractal component model, and graph nodes.

Components in DEVSJava implement the DEVS formalism, and the coupled DEVS

formalism represents the entire composition. In JSIM, a component is represented as

a graph node and the composition is a graph. An OSA component is represented as a

Fractal component as discussed in Chapter 2. No formalism guides the composition of

COST components, which is mostly an ad-hoc effort.

Syntactic Composability Verification

Components are syntactically composable if they are correctly connected and their input

and output data is compatible. The verification of syntactic composability refers to

checking that the component connection is correct and that the data exchanged between

components is compatible. Several factors influence the runtime and credibility of the
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syntactic composability verification process. Factors that influence the runtime include

the number of components in the composition, the number and the types of connectors,

and the number of attributes per component method.

The main factor that influences the credibility of the syntactic composability veri-

fication process is the formalism used to guide the verification. Syntactic verification

can be performed either by directly compiling the entire composition source code, or by

verifying the composition formalism to which the composition adheres. On one hand,

the verification of a composition formalism offers greater credibility at the cost of accu-

racy loss through abstraction, since it is difficult to design a composition formalism that

captures all the intrinsic details of a specific application domain. The level of abstrac-

tion is important, especially for a framework that caters for many application domains

with entities with diverse granularities. On the other hand, compiling the composition

source code can result in errors in connection (e.g. null pointer assignments) that are

evident only at runtime. Lastly, the existence of a composition formalism guides the

definition of the conceptual model and aides in its representation for discovery and val-

idation. While to the best of our knowledge syntactic composability verification using

the DEVS formalism is not implemented in DEVSJava, this can be easily done. Another

framework in which syntactic composability is verified using a formalism is JSIM. In

JSIM, a component is represented as a graph node and the composition is syntactically

verified using graph algorithms. OSA implements the Fractal component model but

does not verify syntactic composability. In the case of COST, syntactic composability

verification is reduced to compiling the source code.

4.2 Proposed Syntactic Composability Approach

Syntactic composability is defined as interoperability between components in which

“the digital output from one component can be read as the digital input to the other”
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[30]. Syntactic composability requires that the components be developed in such a way

that their implementation details, such as parameter passing mechanisms, external data

accesses, and timing assumptions are compatible for all of the different configurations

that might be composed. An important point to highlight is that syntactic composability

does not mean a one-time, static effort of component interoperability. The components

must interoperate regardless of the composition structure, allowing various configura-

tions to satisfy different user requirements [30].

Figure 4.2 presents an overview of our proposed approach for syntactic composabil-

ity and verification. The simulation model composer first conceptualizes the simulation

model through a drawing in a Graphical User Interface (GUI), using icons of base and

model components. The icons form the basic building blocks of the conceptual model

and have no attached implementation. To symbolize data exchange in form of mes-

sages, the conceptual icons are connected using several framework-specific connectors.

It is important to highlight that the conceptual model does not have an attached im-

plementation, and represents simply an initial drawing of the model that the composer

wants to develop. Once all icons are connected, the conceptual model is ready for syn-

tactic verification. The framework creates a production string that is constructed by

linear arrangement of icon types and their adjoined connectors. The production string

is then submitted to a composition grammar parser, which can accept or reject it. If the

grammar parser accepts the production string, then the conceptual model is considered

syntactically correct and the next stage, model discovery and selection, can proceed. In

contrast to current approaches, we propose the syntactic verification of the conceptual

model instead of the syntactic verification of the discovered composed model because

the latter is a costly process. This is facilitated by our approach to data encapsulation,

component connection, and the representation of the composed conceptual model.

As discussed above, the main issues towards model composition and verification
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Base_Comp::=  QN_B_Comp
# Reuse Rules
Model_Comp::=  QN_Simulator | MC_Simulator

# Application Domain Composition Rules
 QN_B_Comp::=  Source | Server | Sink
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3. PRODUCTION STRING CREATION
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Model Composer

Model Discovery and Selection

Figure 4.2: Overview of Syntactic Composability and Verification

are data encapsulation, e.g. how components are separated from each other, compo-

nent connection, e.g. how data is exchanged between components, the representa-

tion of the composition, and the verification of syntactic composability. In Chapter

3, we presented how the CoDES framework effortlessly permits component isolation

and loose coupling through the black-box component-connector paradigm [118]. In

the component-connector paradigm, a component is viewed as a black-box with an in-

and/or an out-channel. Components are interconnected by connectors of type one-to-

one (Connect) for connecting two components, many-to-one for joining out-channels of

components into one in-channel of the next component, and one-to-many for demulti-

plexing the out-channel of a component into in-channels of more than one component.

These are shown in Figure 3.3.

Several design considerations have led to the adoption of a component-connector

paradigm, in which communication between components is done only through con-

nectors. Firstly, by using a component-connector paradigm together with a black-box

component representation, heterogeneous components need not consider all possible

connection scenarios with other components. Instead, the focus is on proper com-
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munication with a reduced number of well-specified connectors. Next, to ensure that

components communicate in a standard way, messages that are passed by connectors

between components must adhere to the framework standard COML schema. This

guarantees that all components communicate in a standardized, error-free (with respect

to the language syntax) format that they are able to understand. Lastly, to facilitate easy

re-combination of components, each component must implement its own time manage-

ment mechanism. Regardless of each particular component time management approach,

all inter-component messages are delivered by the CoDES connectors in a timely fash-

ion. The CoDES connectors time-stamp each message with the current framework time

and guarantee FIFO delivery in an unbounded queue to each component. Figure 4.3

illustrates the CoDES component-connector paradigm for a simple single-server queue

example using the base component icons presented in Figure 3.3.
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Figure 4.3: Conceptual Model for a Single-Server Queueing System

4.2.1 Compositional Grammars

As shown in Figure 4.2, we propose to convert a conceptual composed model from a

graphical representation into a production string for automated verification of syntac-

tic composability. The production string is verified by a composition grammar, which

specifies general and specific connection rules of components in the CoDES framework,

within and across application domains. Towards this, we propose to specify model

composition and reuse rules using regular grammars [54]. This formalizes syntactic

composability and supports scalable syntactic verification of the composed conceptual

model because the process translates to fast acceptance verification of the production
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string by a composition grammar parser [37]. Moreover, the production string that de-

scribes the composed model can be further used to formulate search criteria to discover

plausible models and model components. For example, the production string of the

query model can be hashed as a key in a DHT-based overlay network and the discovery

process translated into a fast lookup query [9].

Figure 4.4 shows the CoDES composition and reuse grammar in Extended Backus-

Naur Form (EBNF) [57].

# CoDES Composition Rules
# Across Application Domain
Simulator ::= (Comp Con)+
Con ::= ConO | ConF | ConJ
Comp ::= Base Comp | Model Comp
Base Comp ::= QN B Comp | MS B Comp | ...
# Reuse Rules
Model Comp ::= QN Simulator | MC Simulator

# Application Domain Composition Rules
QN B Comp ::= Source | Server | Sink
. . .

Figure 4.4: CoDES Composition Grammar

The composition grammar is organized in two levels. The first level defines the

rules for the composition of models across application domains in the CoDES frame-

work. The second level defines application-domain specific composition rules that de-

scribe the composition within an application domain. Informally, the CoDES composi-

tion rules specify that components are interconnected through connectors, according to

the component-connector paradigm. A CoDES simulator consists of a set of model

components (Comp) interconnected by connectors (Con). Comp is a base CoDES

component (Base Comp) selected from an application domain such as queueing net-

works (QN B Comp), or a reused component (Model Comp), from the CoDES com-

ponent repository. Components are interconnected by connectors (Con) such as one-

to-one (ConO), fork or one-to-many (ConF) and join or many-to-one (ConJ). Reused

model components can be developed from reused simulators saved in the repository
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as components either containing only components from a specific application domain

(QN Simulator) or from across application domains (MC Simulator). Section 4.3.2

presents an example of the composition grammar for the Queueing Networks applica-

tion domain. The inherent benefit of a composition grammar is that it enhances the

automated verification of syntactic composability as discussed above.

4.2.2 Verification of the Conceptual Simulation Model

Syntactic composability verification is the process of checking that the components

in the composed model interoperate properly and that the composition structure is in

accordance with framework and application domain rules. Proper interoperation refers

to correct connection, compatible data exchange and correct message passing [88, 30].

In current approaches [61, 133], the verification of syntactic composability is mostly

done at source code level. This implies that component discovery must be performed

before syntactic composability verification. However, model discovery and selection

is a costly process, which in this case will be performed regardless of the correctness

of the component connections and their potential incompatibilities. An evaluation of

the cost of model discovery and selection is presented in Chapter 8. We propose to

verify syntactic composability before model discovery and selection. In other words,

we propose to verify the syntactic composability of the conceptual composed model

before the conceptual icons have an attached implementation.

Towards this, the CoDES framework enforces standards for component communica-

tion and connection to facilitate the switch in the order of life-cycle steps. Specifically,

our proposed framework guarantees that: (i) the number of communication channels of

the component implementation is equal to the number of channels of the icon repre-

sentation, and (ii) components and their communication are represented consistently by

the same schema. From (i) it follows that the component connection will be the same
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regardless of whether the components are only conceptual icons or have attached im-

plementations. Next, (ii) guarantees that all repository components use the same stan-

dardized syntax for communication. As such, we guarantee that any implementation

discovered for each of the conceptual icons in the conceptual model will be properly

connected and compatible with the rest of the discovered components, provided that

the conceptual icons are properly connected and the composition structure is correct.

Thus, the process of syntactic composability verification translates to checking that the

components are properly connected and that the composition structure adheres to the

rules specified in the CoDES composition grammar. Chapter 8 presents an evaluation

of the cost of model discovery and selection and highlights the inherent advantages of

our approach.

Figure 4.5 presents the pseudo-code for the syntactic composability verification al-

gorithm. In line 1, the algorithm first verifies that all component icons are properly

boolean syntacticVerification(Composition comp){
1. if (correctlyConnected(comp)){
2. String prodString = constructProductionString(comp);
3. Parser parser = new Parser(getDomainGrammar());
4. return parser.parse(prodString);}
5. return false;
}

Figure 4.5: Pseudo-code for Syntactic Composability Verification

connected. If components are properly connected, a production string that defines

the composition is obtained on line 2. The production string is formed according to

the linear arrangement of the component icons on the drawing panel. A new Earley

parser is created using the composition grammar specific to the application domain on

line 3. Next, if the parser accepts the production string on line 4, the composition is

syntactically correct. Otherwise, the composition is not syntactically correct and the

component-based life-cycle cannot proceed to the model discovery and selection stage.
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4.3 Theoretical and Experimental Analysis

In current approaches, the cost of syntactic composability verification is a function of

the cost of compiling the source code of the composed model, which in turn is a function

of the size of the source code, as well as the compiler and its inner structure. The

size of the source code is a function of the number of components, and the number of

attributes per component, the number of connectors in the composition. In contrast,

the cost of syntactic verification in our proposed approach is a function of the number

of components and the number of connectors, as shown below. This is because in

our proposed approach we do not compile the composition source code, but verify a

production string representing the composition against a composition grammar. We

evaluate this cost using theoretical and experimental analysis.

4.3.1 Theoretical Analysis

In syntactic verification, we employ a grammar parser to determine if the composi-

tion production string is accepted by the CoDES composition grammar. This is imple-

mented using Earley’s parsing algorithm, a top-down dynamic programming algorithm

for parsing context-free languages [37]. The algorithm progressively goes through the

production string and constructs an ordered state set with all possible rules that can be

executed for each symbol in the production string.

The state set contains tuples in the form (X → α • β, i), where (X → αβ) is

the current production rule being matched, • represents the current position in the rule,

and i represents the position in the input where the current matching began (at first

i represents the initial position). Initially, the state set contains S(0) which contains

the top-level rule in the grammar. The parser then iteratively operates in three stages,

namely prediction in which the parser attempts to predict the next rule to be fired,
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scanning, in which the parser adds new rules based on the next symbol in the input

stream, and completion in which the prediction is matched with the input stream.

In the general case, the complexity of the Earley parser is O(l3), where l is the

length of the string submitted for parsing. As such, regardless of the type of each

application domain composition grammar, in the general case the complexity of the

syntactic composability verification step, Osyn is Osyn = O(l3) where l, the length of

the string, depends on the number of components n and the number of connectors c

(and their additional representation, such as the “(“ symbol)): l = n + 3 ∗ c. However,

the number of connectors c is a polynomial of the number of components, and as such

we have:

Osyn = O(l3) = O((n+ 3 ∗ P 1(n))3) = O(n3)

The complexity of the Earley algorithm is greatly improved for different types of

composition grammars. For example, for an unambiguous grammar the complexity

would be O(n2), whereas for most deterministic context-free grammars such as the

queueing networks composition grammar in Figure 4.6, the complexity is O(n) [37].

4.3.2 Experimental Analysis

Example of Queueing Networks Applications

Extended Composition Grammar

An application domain composition grammar contains composition rules using applica-

tion domain-specific base components and is added to the CoDES grammar whenever a

new application domain is added to the framework. As shown in Figure 3.3, base com-

ponents in the Queueing Networks application include source, server and sink. Source

is a base queueing network component but its behavior differs depending on whether
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the system is an open or a closed queueing network. For open queueing systems, a

source waits for a sampled interval of time, generates a job, and passes the job through

its connector to the next component. In a closed system, a source waits for the com-

pletion of a job it releases into the system before putting the next job into the system.

A server component encapsulates one or more service units and is served by a single

queue. Jobs completed in an open system terminate at the sink.

Composition rules specific to the Queueing Network Application Domain define the

connectivity of the basic components to form different queueing network systems using

the three types of CoDES connectors presented in Figure 3.3. Figure 4.6 presents the

queueing networks application domain composition grammar.

# Application Domain Composition Rules
# Queueing Networks (QN)
# Base Components
QN B Comp ::= Source | Server | Sink

# QN Composition Rules
QN Simulator::= Source BlockNT+ Terminal? | Source BlockT+
Terminal ::= ConO Final | ConF ("(" Final ")")+ | ConJ Final
Final ::= Source | Sink
BlockNT ::= ConF ("(" BlackBox BlockNT* (ConJ BlackBox BlockNT*)?")")+

| (ConO BlackBox BlockNT?)+ |
BlockT ::= ConF ("(" BlackBox BlockT* (Terminal

| ConJ BlackBox BlockT*)?")")+ | (ConO BlackBox BlockT?)+ |
BlackBox ::= Server | Model Comp

Figure 4.6: Composition Grammar for Queueing Networks Application Domain

To allow for component reuse, a queueing network simulator can include base com-

ponents such as a server (Server) or model components from the repository (Model Comp).

The composition rules allow for the composition of a plethora of open, closed and hy-

brid queueing networks. The composed simulator can be in turn placed in Model Comp

as a model component for reuse.

Figure 4.7 presents a simple single-server queue example as it was created by the

model composer using the CoDES GUI.

After the model composer draws the conceptual model, syntactic composability is
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C1 C2 C3

Figure 4.7: Simple Single-Server Queue

verified. As discussed in Section 4.2.2, the module first checks that no component port

is left unconnected. Next, a production string is generated to describe the conceptual

model. The production string is a linear arrangement of the component types according

to their position on the graphical screen. The production string for this model is:

Simple QN = Source ConO Server ConO Sink

The model is syntactically verified if the production string is accepted by the Queueing

Networks composition grammar. For this example, the algorithm in Figure 4.5 returns

a positive answer.

As an initial evaluation of our proposed syntactic composability verification pro-

cess, we perform syntactic composability verification on a single-server queue model

with varying number of components (e.g. Server units) and present our results in Table

4.1. We analyze models with 10, 100, 500, 1,000, and 10,000 components, in which

the Server units are connected serially, one after another, and the Source and Sink com-

ponents are connected similarly to Figure 4.7. The experiments are conducted on a

machine with Intel Core 2 Duo CPU E6550 @ 2.33 GHz processor and 4 GB SDRAM,

running Ubuntu Linux 8.04 (64 bit). The results in Table 4.1 represent an average of

50 execution runs. The runtime of the syntactic composability verification algorithm

varies in accordance with the theoretical evaluation, however, the runtime is promis-

ingly small. For example, for a single-server queue model with 500 components, the

runtime is around one tenth of a second on a commodity desktop PC. For 10,000 com-

ponents, the runtime is less than 6 seconds on a commodity PC. These results are en-
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# Components Runtime (s ∗ 10−3)
10 4.60
100 15.82
500 111.94

1,000 802.07
10,000 5,746.45

Table 4.1: Syntactic Composability Verification of a Single-Server Queue Model

couraging and show that our approach for syntactic composability verification is highly

scalable.

Experiment on Automated Model Generation

An important issue that prevents the wide acceptance of component-based develop-

ment paradigms is the lack of a component repository where components can be shared

[31, 61]. One of the major advantages of the CoDES compositional grammar is that

syntactically correct simulators can be easily built in the CoDES framework, using

the grammar to generate correct models of a given size. We generate a repository of

syntactically correct models with up to 10 components using the CoDES composition

grammars. These syntactically correct generated models can be enhanced to become

semantically correct generated models by adding component implementations that are

semantically compatible, as shown in Chapter 6. Using this approach, an initial repos-

itory can be easily developed for each application domain that is added to the CoDES

repository. Furthermore, the CoDES framework can be used straightaway, without the

delay necessary for the component repository to reach useful size and diversity.

Consider the Queueing Networks application domain and a composition grammar

that describes open queueing systems with one Source and one Sink. Using this gram-

mar, we can generate a repository of syntactically valid simulators with only base com-

ponents, with a given number of components. These simulators are syntactically correct

models. The generation process is bounded by the number of components. A recursive
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algorithm parses the grammar rules until the desired number of components is reached

and the rules reach a terminal symbol. Table 4.2 presents the number of syntactically

valid simulators with the total number of components ranging from 4 to 10, and the time

taken to generate the models. The time taken to generate the models is an average of 10

runs. The generation was executed on the same machine as the previous experiment.

# Components # Syntactically Runtime
Correct Models (s ∗ 10−3)

4 2 8.8
5 6 23.0
6 19 63.5
7 57 182.8
8 164 442.0
9 457 1,392.0
10 1,244 4,626.3

Total 1,949 6,738.4

Table 4.2: Number of Generated Models in the Repository

Using a simple composition grammar, we are able to generate 1,949 syntactically

correct models, with a total number of components of up to 10, in less than 7 seconds.

These models can become semantically valid models through the addition of seman-

tically compatible component implementations, as shown in Chapter 6. As such, we

are able to obtain a fairly large initial repository of model components and standalone

simulators at insignificant costs, resulting in a valuable testbed for the validation of the

CoDES framework.

4.4 Summary

Towards model composition, we propose the component-connector paradigm in which

the component implementation is hidden from other components in the framework and

components are linked through framework-specific connectors. The implementation

of the component-connector paradigm, in which components are black-boxes with in
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and/or out communication channels interconnected through connectors, guarantees that

components implement communication stubs only with standardized connectors. The

communication between components is done through messages standardized in our pro-

posed COML format. Thus, components not only interoperate with each other, but they

can be recomposed to form new models to suit specific user needs. This captures the

true meaning of syntactic composability as discussed in [30]. We add a semantic mean-

ing to syntactic composability by describing compositions through production strings

validated by composition grammars. To the best of our knowledge, this is a novel ap-

proach in which the framework itself can provide for various application domains.

In contrast with current approaches, we verify syntactic composability before the

costly model discovery and selection. To facilitate syntactic composability verification,

we describe connection rules within and across application domains using the CoDES

composition grammar expressed in EBNF. This provides a more structured approach to

syntactic verification of composed models and also offers extendability to include new

application domains. To provide for scalability, the composition grammar is organized

in two levels. The first level presents the overall composition rules that characterize the

entire framework. These are an implementation of the component-connector paradigm.

The second layer contains all application domain-specific composition rules, which de-

scribe the application domain base components and their permitted connections. A

composition grammar to describe syntactic composability also facilitates model dis-

covery by providing a linear production string to syntactically describe the composi-

tion. This provides a simple and efficient method of searching plausible models in the

repository to support reuse. Our experiments show that our approach is highly scalable,

with models of 500 components verified in less than one second, and models of 10,000

components verified in less than 6 seconds, on a commodity desktop PC.
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Model Discovery and Selection

Given a syntactically correct composition of conceptual components, component dis-

covery and selection is performed to identify components with an attached implementa-

tion that match the user query or objective. Discovery can be performed in three ways,

namely: (i) the model composer specifies only a composition objective; (ii) the model

composer draws the conceptual model and specifies queries for individual components

or parts of the composition; and (iii) the model composer draws the conceptual model

and the discovery of simulators with the same or similar structure is performed. The

first type of discovery and selection does not require the construction of any conceptual

model or syntactic composability verification. However, it is an NP Complete problem

[13, 85]. Additionally, the composition objective is difficult to specify, and as such

heuristics to by-pass the NP Complete problem are hard to implement in a real system.

Accordingly, we propose the second and third type for model discovery and selection,

namely, the discovery of individual components, and the discovery of entire simulators.

Several factors influence model discovery and selection. Firstly, the component

query and knowledge about components must be represented in an appropriate for-

mat to facilitate meaningful discovery. Towards this, ontologies have been proposed in

software engineering to represent knowledge about components and domains in gen-
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eral [15, 83]. In modeling and simulation, ontologies have been proposed to represent

knowledge about application domains [77, 109], but, to the best of our knowledge, there

does not exist a simulation ontology that captures knowledge about application domains

and components with detailed definitions and implementations. In contrast, component-

based software engineering methods are more detailed and automated, but focus only

on basic programming language constructs such as functions. Secondly, exact matches

between the user query and the repository component are very rare. As such, means to

rank partial matches and select components in the repository based on the user query

are needed [61]. Adequate methods for ranking and selecting are necessary especially

in the context of a large component repository. Thirdly, the size of the component

repository, as well as the number of attributes per component drastically, influences

the performance of the discovery and selection service. In this chapter, we present our

approach to component discovery and selection using our proposed component-based

ontology to meaningfully rank repository components according to a user query. For

ease of reading, we exemplify our approach using a single-server queue example. More

complex and detailed examples are presented in Appendix B and Appendix C.

5.1 Current Approaches

Current work that employs the Base Object Model, presented in Chapter 2, proposes

a layered approach to simulation composition [75]. Relevant to component discovery

and selection is their proposed BOM Matching and Composition phase, which attempts

to discover the appropriate BOMs for a specific simulation scenario. BOM Composi-

tion attempts to find the best composition of discovered BOMs that suits the scenario.

Model discovery is performed based on component syntax, i.e., event signature, and

component semantics, i.e., the input and output of the component. In this stage, partial

matches are not ranked. For each component query there might be a set of candidate
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components that fit the specified scenario. All possible combinations of candidate com-

ponents are executed and compared with the simulation scenario. If the order of event

calls is the same or similar, the discovery process is successful. An important point

to highlight is that this approach requires a low level detailed scenario that might not

be easily available. Furthermore, there is no means to rank the discovered candidate

components, which would reduce the computational complexity of the process.

Recent work that uses the DEVS formalism, CellDEVS++ (CD++) [24], proposes

an online repository of CD DEVS models together with their experimental frames. The

repository stores atomic and coupled DEVS models using a tree structure to describe

model coupling. For each model, the experimental frame contains input data and the

set of experiments that can be performed with the model. Experiment data includes

a textual description of the experiment assumptions and constraints. On top of the

experiment data, the online repository also saves all the experiment results. Model dis-

covery is performed based on data from the experimental frames, including information

about how the model can be used. However, there are no means yet of ranking par-

tial matches based on a query. Furthermore, the search process compares only string

text values without attached semantics and in the absence of linguistic algorithms to

determine similarities.

In general work that looks only at model discovery and selection, Aronson and

Bose [6] describe the simulation model query and selection process with respect to a

user specified simulation scenario. A quality function is proposed as a possible solution

to partially ordering discovered simulation models, but details are not provided and no

follow-up work exists. General work that focuses on the use of ontologies for simula-

tion modeling is that of Silver et al. [109, 108]. The focus of their work is on building

semantically aware simulations based on domain specific ontologies. They propose the

Ontology Driven Simulation (ODS) design tool that maps concepts in the domain on-
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tology (e.g. healthcare) to simulation concepts in their proposed DEMO ontology [71].

The DeMO project proposes a technique for transforming models from various applica-

tion domain ontologies, e.g. glycan biosynthesis, into the DeMO ontology and subse-

quently into an executable simulation. This is an important step in representing simula-

tion domain knowledge in a format readable by computers and humans alike. Another

example is the use of ontologies in agent-based simulations [99]. Here, an ontology is

proposed for the representation of key modeling concepts such as conceptual model,

communicative model, programmed model, and experimental model. Several venues

for automated reasoning are highlighted, including inferring assumptions, inferring pa-

rameters and assumptions, and validation. In this theoretic proposal, the ontology would

be the center of the component-based framework, with all composition and reasoning

performed on it. This would be feasible if the ontology contained complete information

about the composition, components, and application domains, which is rarely the case.

In contrast, in our approach the ontology is a secondary tool in the composition process,

used for domain knowledge representation. Our component abstraction uses meta-data

that is described in our ontology, but also relies on a framework-specific standard. For

syntactic composition, we propose composition grammars, which are better suited to

represent composition structure. Lastly, we propose a well-defined process for model

discovery and selection as well as semantic composability validation, which relies only

partly on the ontology.

In software engineering, Tansalarak and Claypool [124] propose a combination of

different matching techniques to provide a ranked set of highly qualified software com-

ponents from the repository. However, no measure of the correctness of the composition

is discussed. Furthermore, as is generally the case for software engineering, the focus is

on the reuse of program code such as functions, an approach not suited for the discovery

of simulation components.
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5.2 Proposed Approach

Among the three types of model discovery discussed above, we propose the last two.

Specifically, once the conceptual model is drawn and syntactically verified, the model

composer can discover: (i) individual base or model components based on a user query;

(ii) parts of the conceptual model in the form of model components; and (iii) the entire

simulator. The discovery of the entire simulator can be easily implemented as a lookup

query of a hashed production string that describes the simulator over a DHT overlay

with nodes representing all the standalone simulators in the repository. In this chapter,

we focus on the discovery and selection of individual components, namely base com-

ponents. The discovery of individual base components provides the foundations of the

more complex discovery of model components. Model components represent a more

difficult problem because they are composed of other base and/or model components.

Since the discovery of a model component cannot be implemented as the iterative dis-

covery of all its base components, different abstractions must be in place. We propose a

simple solution to this problem in this chapter and discuss several abstraction trade-offs

in Chapter 9 as directions for future work.

Base components are discovered one by one, based on the user query. Once all

base components are discovered, the entire composition is semantically validated. The

pseudo-code for our discovery and selection algorithm is shown in Figure 5.1. For

each component in the repository, if the component is not eliminated based on our

elimination strategy to reduce the search space (line 4), the matching index is calculated

to measure the component similarity between the query component and the repository

component (line 6). The Matching Index is defined in Section 5.2.2. A list containing

the ordered set of repository components and their matching index result is created and

returned.
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void discoveryAndSelection (MetaComponent query,
ArrayList<MetaComponent> repository,
Composition composition, String ontFile){

1. ArrayList<MetaComponent> result = new ArrayList<MetaComponent>();
2. HashMap<double, MetaComponent> aux =

new HashMap<double, MetaComponent>();
3. for (MetaComponent comp : repository){
4. if (eliminated(comp, query, composition)) continue;
5. reasoner = createReasoner(OWL REASONER,ontFile);
6. double MI = calculateMI(query, comp, reasoner);
7. addToHashmap(MI, comp);
8. }
9. sortHashmapOnMI(aux);
}

Figure 5.1: Pseudo-code for Model Discovery and Selection

As we have seen above, adequate knowledge representation is required to describe

the component query and domain information for meaningful discovery. An ontology

provides the best means to represent knowledge and relations between entities in a for-

mat readable by humans and computers alike [15]. We propose COSMO (COmponent

Simulation and Modeling Ontology) to describe component-based simulation within

and across application domains to suit the multi-level application domain perspective

in the CoDES framework [125].

On the other hand, similarity is not an exact answer and as such partial matches

need to be evaluated. We propose the Matching Index to rank partial matches of base

components in the repository, based on component attributes and behavior (line 6). The

Matching Index uses knowledge in the COSMO ontology to calculate the degree of

similarity between the query and repository component attributes and behavior.

Lastly, the size of the component repository and the average number of attributes per

component drastically influence the performance of the discovery and selection service.

We propose simple elimination heuristics that employ the structure of the conceptual

model to discard parts of thse search space (line 4). This is an important elimination,

since, as we have seen in the previous chapter, the start-up size of the CoDES repository

is around 2,000 components.
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5.2.1 Domain Knowledge Representation

COSMO semantically enriches the description of model components to support model

discovery and selection. Using COSMO, information about components and appli-

cation domains can be organized in a structure that facilitates discovery. For exam-

ple, when searching for Server components, a hierarchy such as {SingleUnitServer

subClassOf Server}; {OpenSource subClassOf Source}, will give a higher rank-

ing to components of type SingleUnitServer, than to components of type OpenSource.

The ontology consists of sets of classes to describe simulation components and the

compositions of simulation components. The hierarchies in the COSMO ontology span

two main directions, as shown in Figure 5.2. To achieve generality across applica-
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Figure 5.2: COSMO Ontology Structure

tion domains and at the same time support specific application domain requirements,

we include first an application domain oriented component hierarchy. As discussed

in Chapter 3, the component repository consists of shared components common to all
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application domains termed as model components, and shared fundamental entities spe-

cific to each application domain, termed base components. Thus, an application domain

defines its own specific pool of BaseComponents. Also, composed models are placed

in the component repository as ModelComponents. The second set of classes describes

components with respect to their attributes and behavior. We assume that irrespec-

tive of the simulation component’s implementation and worldview, its behavior can be

represented as a finite state machine initially provided by the component creator. Tran-

sitions in the state machine from an initial to a final state are triggered by an arrival

event or by an elapse in a time interval. The final state can be determined by some

conditions on the component’s attributes and the transition may produce output. The

classes for attribute, behavior, worldview, transition, state, data, condition as well as

simulation concepts such as time, distributions, etc. are defined in the ontology.

The COSMO Ontology is written in OWL DL [83, 8] and has been developed using

Protégé [92], a widely used ontology builder. Figure A.3 presents a snapshot of the

asserted COSMO class structure in Protégé.

5.2.2 Measure of Component Similarity

Model discovery and selection is the process of ranking repository components based

on the simulator developer query, in order to locate implementations for the base and

model components in the conceptual model. In our proposed approach each component

can be discovered individually based on a user specified query. Alternatively, the en-

tire composition can be discovered based on the conceptual model structure and other

user queries. The latter will search for previously validated simulators that have been

saved into the repository for reuse “as-is”. In this chapter, we focus on the discovery

of individual base components. Once all components have been discovered, the com-

position is integrated and semantically validated. If the composition is not valid, then
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a new iteration of component discovery can be performed. In general, there will not

exist an exact match between the query component and the repository components. As

such, a method to rank the repository components and select only relevant candidates

for composition is needed.

We propose the Matching Index (MI) to meaningfully rank the repository compo-

nents based on the developer query. MI encapsulates the syntactic and semantic rele-

vance of the repository components with respect to the query component. In this con-

text, syntactic information refers to component mandatory attributes, production string

and structure (for model components). Semantic information refers to the component

behavior in terms of states and input and output transformations.

The Matching Index considers attribute names and values, as well as component

input and output transformations, as shown in 5.3. The calculation of MI considers

MIa

MIr

MIb

Q = 〈Rq, Aq, Bq〉
Query component

mandatory attributes

specific attributes

behavior

Rq

Aq
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C = 〈Rc, Ac, Bc〉
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mandatory attributes

specific attributes

behavior

Rc

Ac

Bc
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name

I/O

Figure 5.3: Semantic Ranking using Matching Index

attribute values for the mandatory attributes, and attribute names for the specific at-

tributes. Since specific attribute values can be modified before simulation execution, we

are interested in repository components that can be described using the same or simi-

lar specific attributes. On the other hand, for mandatory attributes such as author,

location, etc., that will not be modified by the simulation developer, we are inter-

ested in repository components with similar or identical values.
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Definition 6 (Matching Index). Let Q = 〈Rq, Aq, Bq〉 denote a query component, and

C = 〈Rc, Ac, Bc〉 represent a repository component. The matching index MI(Q,C) is

defined as

MI(Q,C) = wr ∗MIr(Rq, Rc) + wa ∗MIa(Aq, Ac) + wb ∗MIb(Bq, Bc) (5.1)

where MIr,MIa,MIb ∈ [0, 1] are matching indexes for the required attributes,

component attributes and behavior respectively, and wr, wa, wb ∈ [0, 1] are the respec-

tive index weights.

The Matching Index is expressed as the weighted sum of the partial matching in-

dexes between a query component and the repository component. The partial matching

indexes refer to the similarity between the required attributes (MIr), the component

attributes (MIa), and the behavior (MIb) of the two components. The values for MIr,

MIa, and MIb are defined below.

Definition 7 (Required Attributes Matching Index). Let Rq and Rc be the set of

required attributes for the query component Q and the repository component C respec-

tively, where R = {r|r = (name, value)}. The matching index MIr of the required

attributes is defined as

MIr(Rq, Rc) =

∑
rq∈Rq

m(rq, rc)

|Rq| (5.2)

where rc ∈ Rc, with name(rq) = name(rc), and m(rq, rc) is the matching function

between the attributes defined as

m(rq, rc) =


1 if value(rq) = value(rc)

0 otherwise
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The required attribute matching index determines how many of the required at-

tributes of the repository component are the same with the query component’s required

attributes values. Even though the matching function computes exact matches, compo-

nent descriptions can be evaluated for relevant similarities using linguistic algorithms.

Definition 8 (Component Attributes Matching Index). Let Aq and Ac be the set

of component attributes for the query component Q and the repository component C

respectively, where A = {a|a = (name, value)}. The matching index MIa between

the required attributes is defined as

MIa(Aq, Ac) =

∑
aq∈Aq ,ac∈Ac

m(aq, ac)

|Aq| (5.3)

where m(aq, ac) is the matching function between the specific component attributes

defined as

m(aq, ac) =



1 if name(aq) = name(ac)

0.75 if name(aq) = subPropertyOf(name(ac))

0.5 if subPropertyOf(name(aq)) = name(ac)

0 otherwise

In the case of component attributes, it is important to determine if a repository com-

ponent can be described using the same or similar attributes. Thus matching is done

with respect to the name of the attributes and not to the value as previously. The at-

tribute matching index has also a semantic dimension, in which attributes are compared

based on their position in the COSMO ontology. In the case where ac, the repository

component’s attribute, is a subProperty of aq, that is ac is more “specialized” than aq,

then the matching index is less (i.e., 0.5) than when aq is more specialized than ac (i.e.,
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0.75). The latter situation is more desirable than the former, hence the greater value

for m(aq, ac), m(aq, ac) = 0.75, than for the former where m(aq, ac) = 0.5. Table 5.1

presents examples to showcase the different values of m(aq, ac).

Query Component Attribute Repository Component Attribute m(aq, ac) Comments

(interArrivalT ime, 5) (interArrivalT ime, 20) 1
Component attributes have the same name.
Value not important as it can be changed
by the model composer.

(interArrivalT ime, 5) (waitingT ime, 40) 0.75
interArrivalT ime is more specialized
than ‘waitingT ime

(interArrivalT ime, 5) (interArrivalExponentialT ime, 3.4) 0.5
interArrivalExponentialT ime is
too specialized.

(interArrivalT ime, 2.5) (noUnits, 4) 0 No relation.

Table 5.1: Example of Component Attributes Matching Index Calculation

The behavior matching index MIb considers the constraints on the input and output

data of the two components, since this is the basic information the user could provide.

In an ideal situation in which the user is willing to provide more complete information

about the query component, MIb can be extended to include measures of components

state machine similarity, conditions on attributes, etc.

Definition 9 (Behavior Matching Index). Let Bq and Bc be the behavior of the query

component Q and the repository component C respectively. Let ICq, OCq, ICc, and

OCc be the set of constraints on the input and output data for the query and repository

component, where a set of constraints is defined as C = {c = (type, value)|type ∈
{range, origin, destination, class}} is a constraint set. The behavior matching index

MIb is defined as

MIb(Bq, Bc) =

∑
cq∈ICq ,cc∈ICc

m(cq, cc) +
∑

cq∈OCq ,cc∈OCc

m(cq, cc)

|ICq|+ |OCq| (5.4)

where type(cq) = type(cc), and m(cq, cc) is the constraint matching function de-
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fined as

m(cq, cc) =



1 if value(cq) = value(cc) and constraint type(cq) = constraint type(cc)

0.75 if typeOf(value(cc)) = value(cq) and constraint type(cq) = constraint type(cc)

and constraint type(cq) = (origin ∨ destination)

0.75 if value(cc) ⊆ value(cq) and constraint type(cq) = constraint type(cc) = range

0.75 if type(value(cc)) ⊆ value(cq) and constraint type(cq) =

constraint type(cc) = (type ∨ class))

0.5 if typeOf(value(cq)) = value(cc) and constraint type(cq) = type(cc)

and constraint type(cq) = (origin ∨ destination)

0 otherwise

MIb encapsulates semantic information by comparing the relations between the

constraints of type, range, destination, and class. As discussed in detail in Chapter

3, data constraints are used to describe a simulation component from an external per-

spective, with respect to the data it can exchange with its neighbors. When no exact

match is found, MIb helps to identify repository components that can substitute the

query component with respect to input and output data. This is done by evaluating the

value of the typeOf and subClassOf predicates in the COSMO ontology. m(cq, cc) re-

turns a higher value (0.75 or 1) when cq subsumes cc (cc is stricter than cq and C is a

“specialized” version ofQ) and lower values (0 or 0.5) otherwise. For the constraints of

type range, m(cq, cc) returns higher values if the interval of cc is included in the interval

for cq and lower values otherwise. Similarly, the differences in the values for m(cq, cc)

signify that a particular case is more desirable than another. Table 5.2 presents an ex-

ample of the computation of m(cq, cc).
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Query Data Constraint Repository Data Constraint m(cq, cc) Comments
(range, [3.5, 5.9]) (range, [3.5, 5.9]) 1 Identical types and values.

(origin, Server) (origin, SingleUnitServer) 0.75
Identical constraint types, of kind “origin”.
Repository component data is
more specialized.

(range, [3.5, 11.5]) (range, [4.5, 7.0]) 0.75
Identical constraint types, of kind “range”.
Repository component range included
in the query.

(type, Job) (type, CustomerJob) 0.75
Identical constraint type, of kind “class”.
Repository component has a more
specialized data type.

(type, double) (type, int) 0.75
Identical constraint type, of kind “type”.
Repository component has a more
specialized data type.

(destination, SingleUnitServer) (destination, Server) 0.5
Identical constraint type,
of kind “destination”.
Query requires more specialized data.

(destination, SingleUnitServer) (range, [4.5, 7.0]) 0 No relation.

Table 5.2: Example of Behavior Matching Index Calculation

Discovery of Model Components

As discussed in Chapter 3, model components are obtained by stripping off some com-

ponents from a semantically valid standalone simulator at specific cut-off points, such

that the resulting model component has both “in” and “out” communication channels.

For the ranking of such model components based on a user query, we propose to look at

mandatory attributes, and at input/output data that is received/sent by the component(s)

at cut-off points. Then the formula for the matching index for model components be-

comes:

MIm(Q,C) = wr ∗MIr(Rq, Rc) + wb ∗MIb(Bq, Bc)

As it can be seen, the difference between MIm and the proposed MI , is the absence of

the specific attribute matching index. This is because there is no information specific to

the model component that is saved into the repository. The model component informa-

tion that is saved with the model component is also shown in Table 3.1.

Optimizations to Reduce the Search Space

The size of the component repository is an important factor in the runtime of the

discovery service, because the Matching Index is calculated for every query request-
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component pair. We perform several optimizations to reduce the number of repository

components considered in the discovery of both base and model components. In both

cases, the conceptual model represents an additional aid in the discovery process by

providing information about component types and the neighbors with which they can

communicate.

When discovery of base components is performed, we consider only repository com-

ponents of the same type as the base components in the conceptual model. For example,

when discovery is performed for component C2 in Figure 4.7, only components of type

Server (or additional sub-types according to the COSMO ontology) are considered. In

this particular case, the CoDES component repository contains 1,961 base and model

components for the Queueing Networks application domain, from which 1,949 are

model components that contain between 4 and 10 base components connected in dif-

ferent ways, and 9 are base components, 3 each for the types Source, Server, and Sink

respectively. This repository models a real-life scenario where we expect the number of

base components per application domain to be significantly smaller than the number of

developed component-based models. Thus, when a query is performed for component

C2, the number of candidate components is reduced to 3, which represents a decrease

of 99.99%.

When discovery of model components is performed, we reduce the search state

space by considering only the repository model components whose input and output

constraints match (according to the COSMO ontology) those that can be deduced from

the conceptual model. For example, for the model component in Figure 8.10 (b), we

only consider model components that receive input from a Server type base compo-

nent, and send output to a Sink component. An evaluation of the improvements of this

optimization is presented in Chapter 8.

In the current implementation of the discovery service, an ordered set of components
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with non-zero MI is returned for each query. To reduce the size of this set and to

facilitate calculations of precision and recall measures [21], it would be appropriate to

return only the components with a non-zero MI higher than a given threshold. However,

the threshold value depends on the amount and specificity of the query information and

the size and content of the component repository and is not within the scope of our

study.

5.3 Theoretical and Experimental Analysis

The runtime cost of model discovery and selection is a function of the repository size,

i.e., the number of components in the repository, the number of attributes in the query,

and the number of attributes per component in the repository. In this section, we will

show that the ontology and the reasoner employed for querying also influence the dis-

covery cost. The current CoDES repository contains 1961 components, from two ap-

plication domains, namely Queueing Networks and Military Training Simulations. The

Queueing Networks application domain contains 1958 base and model components.

The newly added Military Training simulations application domain contains for now

only three components, two base components and a simulator. We perform two experi-

ments. Firstly, we showcase how the Matching Index is calculated using two repository

components from the Queueing Network application domain. Secondly, we evaluate

the runtime for the two queries. As before, the experiments were executed on a ma-

chine with Intel Core 2 Duo CPU E6550 @ 2.33 GHz processor and 4 GB SDRAM,

running Ubuntu Linux 8.04 (64 bit).

5.3.1 Theoretical Analysis

For each component in the composition, we calculate the matching index MI between

the simulator developer query Q = 〈Rq, Aq, Bq〉, and each component in the repository
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R = 〈Rc, Ac, Bc〉. The process employs the COSMO ontology to determine the sim-

ilarity between component attributes and behavior as discussed above. Thus, the time

complexity of the discovery process, Odisc becomes:

Odisc = n ∗ r ∗ (|Rq| ∗ |Rr|+ |Aq| ∗ |Ar|) ∗Oontology

where n is the number of components in the conceptual model, r is the number of

candidate repository components, |Rq| and |Rr| are the number of mandatory attributes,

|Aq| and |Ar| are the average number of specific attributes for the query and repository

components respectively, andOontology is the time complexity for querying the COSMO

ontology. However, Oontology cannot be calculated accurately because it depends on the

reasoner employed to query the ontology, as well as the ontology structure in terms

of the number or rules and objects in the ontology. In the current implementation we

employ the Jena reasoner [59] in the calculation of MI to query the ontology about

relations between attributes. Jena employs the Rete algorithm [41] for forward chaining

to compile the ontology into rules, and backward chaining to derive new tuples from

the rules, resulting in the worst case complexity being linear in the number of rules

and polynomial in the number of objects, whereas in the best case the complexity is a

constant [41]. However, it is difficult to estimate the value of Oontology because both the

size (in the number of rules) and the content (in the number of objects) of the COSMO

ontology grow with every addition of application domain and components respectively.

5.3.2 Experimental Analysis

COSMO Ontology for Queueing Networks

When a new application domain is added to the CoDES framework, the CoDES compo-

sition grammar and the COSMO ontology are extended with definitions for the new ap-
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plication domain. The addition of a new composition grammar is discussed in Chapter

4. The addition of the queueing networks base components to the CODES repository

is reflected in the COSMO Ontology as shown in Figure 5.4. QNBaseComponent is

Server

BaseComponent

QNBaseComponent

Distribution

ModelComponent

Component

Sink

Policy

Source

serviceTimeMeaninterArrivalTimeMean

is_a is_a

is_a

is_a is_a is_a

has_ArrivalTimeDistr has_ServiceTimeDistr

has_Policyhas_IATime has_SrvTime

...

Figure 5.4: Extended COSMO Ontology for Queueing Networks

added as a new subclass of the BaseComponent class, with Source, Server, and Sink as

its subclasses. Besides having attributes and behavior like their superclass, the Source

component must have an interArrivalTimeMean attribute and an arrival time Distri-

bution, and the Server component a serviceTimeMean attribute, a service time Dis-

tribution, a noServiceUnits attribute, and a service Policy. has IATime, has SrvTime,

and has ArrivalTimeDistr, has ServiceTimeDistr are subproperties of has Attribute and

has Distribution respectively.

Discovery using Matching Index

Consider model discovery for individual base components in the single-server queue

example from Figure 4.3. Table 5.3 presents the query information provided by the

user for component C1, e.g. Source, compared to the component information for two
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repository components. The first repository component, R1, has the highest matching

index and is returned by the discovery service. The second repository component R2,

has a lower matching index. The default weight values are wr = 0.33, wa = 0.33, and

wb = 0.33. However, weight values will be changed proportionally if one of the query

parts is missing, such as specific attributes for C1. Thus, we have for C1:

MI(C1, R1) = 0.5 ∗ 1 + 0.0 ∗ 0 + 0.5 ∗ 0.875 = 0.937.

An initial eliminatory search is performed, discarding base components whose type

does not match the Source type, which is derived from the conceptual model. MIr = 1,

since the type attribute matches exactly and all relevant words in the description of the

query component are found in the repository component. Since no component attributes

are provided, we have MIa = 0. For the output constraints, the destination constraint

matches exactly, and the range = 21:24 of the repository component is included in the

query range range = 10 : 35, hence the term 0.75, with a total behavior matching index

MIb = 0.875.

Query Component Repository Component Matching Index
C1 R1

Mandatory type: Source type: Source
MIr = 1

Attributes description: open source description: open source
Specific

- - MIa = 0
Attributes
Behavior: Input: ∅, Output: O1 Input: ∅, Output: O1

MIb = 0+(1+0.75)
0+2

= 0.875
Input/Output IConstraints = ∅, OConstraints = {O1C1} IConstraints = ∅, OConstraints = {O1R1}
Constraints O1C1 = { destination = Server, range = 10:35 } O1R1 = { type = int, range =21:24,

destination = Server}
MI(C1,R1) = 0.937

C1 R2

Mandatory type: Source type: Source
MIr = 1

Attributes description: open source description: open source, two classes of jobs
Specific

- - MIa = 0
Attributes
Behavior: Input: ∅, Output: O1 Input: ∅, Output: O1, O2

MIb = 0+(1)
0+2

= 0.5Input/Output IConstraints = ∅, OConstraints = {O1C1} IConstraints = ∅, OConstraints = {O1R2 , O2R2}
Constraints O1C1 = { destination = Server, range = 10:35 } O1R2 = { class = IO Intensive, destination = Server}

O2R2 = { class = CPU Intensive, destination = Server}
MI(C1,R2) = 0.75

Table 5.3: Query Information in a Single-Server Queue Model

In the second experiment, we evaluate the runtime cost for a randomly generated

query request on a base component (query Q1), and a query request on a model com-
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ponent, (query Q2), in the Queueing Networks application domain. For example, Q1

could be a query for component C1 as above, and Q2 could be a query for the model

component V O1 in Figure 8.10(b). For each query, we measure the repository size, the

number of repository components considered, the average time taken for the calculation

of the Matching Index, and the time taken for the discovery service to return a candidate

component. Table 5.4 shows an average of 10 runs for this experiment.

Query Repository # Comparisons MI Calculation Total
Size Avg. Runtime (s) Runtime (s)

Q1 (base component - Source) 1958 3 0.02 0.08
Q2 (model component) 1958 1949 0.03 68.21

Table 5.4: Runtime Evaluation of Queries on Base and Model Components

As it can be seen, the average calculation of the Matching Index is similar for both

base and model components. However, overall the discovery service fares much better

in the case of base components than in the case of discovery of model components.

This is a direct consequence of how the elimination strategy performs on this particular

repository structure. In the case of query Q1, the number of base components that have

the same type as the query is significantly smaller (by a thousand factor) than in the case

of query Q2, which considers model components. Further improvements in the elimi-

nation strategy can be obtained by considering a more transparent abstraction of model

components to include the model component inner structure. This implies a trade-off

between a white-box and a black-box meta-component abstraction Other improvements

can be obtained by storing the component repository in a relational database, rather than

as a Java ArrayList as in the current implementation. This is a direction of future re-

search and is discussed in detail in Chapter 9. Next, while the scale of the runtime cost

has increased from milliseconds to seconds from syntactic composability verification

to model discovery and selection, this cost is still feasible in the context of composed

models with a reasonable number of components and a repository of medium size.
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5.4 Summary

Key issues in model discovery and selection include the adequate representation of

application domain and component knowledge, and a procedure to identify and rank

partial matches. In order to meaningfully rank components in the repository based on a

user query, we propose a Matching Index that uses semantically sugared attributes and

behavior described in COSMO, our proposed component-based ontology.

COSMO is our proposed component-oriented ontology in which simulation com-

ponents with attributes and behavior are classified as base components, specific to an

application domain, and model components, which span multiple application domains.

To the best of our knowledge, COSMO is the first component-oriented ontology specif-

ically targeted towards component discovery and the meaningful validation of semantic

composability. To meaningfully rank partial matches for a query component, we pro-

pose the Matching Index as a measure of component similarity. The Matching Index is

derived using syntactic and semantic meta-component information, as a weighted sum

of the three different component characteristics, namely mandatory attributes, specific

component attributes, and component behavior. The similarity indexes are calculated

based on relationships in the COSMO ontology.

Factors that influence the cost of the discovery and selection include the size of

the component repository and the average number of specific attributes per component.

The overhead incurred by the discovery service is small in the case of base components,

but increases to up to one minute for model components. Simple heuristics have been

introduced to reduce this cost, but improvements are still needed.
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Semantic Composability Validation

The previous chapters have seen the composed model evolve from an objective of the

model composer, to a syntactically correct conceptual model in the CoDES framework,

and lastly to a discovered model with attached implementation. Most component-based

simulation and software engineering frameworks will stop here in the component-based

life-cycle. However, the validation of the composed model is key to enhance the cred-

ibility of the composed model. In component-based modeling and simulation, the se-

mantic composability of the composed model must be validated. As such, the validation

process is called semantic composability validation.

In semantic composability, the composition must be meaningful for all components

involved. Furthermore, the composed model must be valid [88]. This is because simu-

lation models are widely used to make critical decisions and to answer “what-if” ques-

tions [11]. In modeling and simulation in general, a valid simulation model is one that

mimics closely the real system that the simulation model abstracts [10]. Here, while

overall program correctness is required, it is very important for the simulation to pro-

duce results that are close to those obtained in the real system it models. Very often,

this similarity cannot be fully captured by an automated validation process because it

refers both to input/output transformations, i. e. the simulation model must have the
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same output as the real system when presented with the same input, as well as finer

points such as overall simulation model state and unified component assumptions and

context [30, 126]. Furthermore, a system expert is required when the simulation model

is used in critical situations where a valid answer is crucial, such as in military training

simulations [51, 72]. For example, the process of Verification, Validation and Accredi-

tation (VV&A) for modeling and simulation in the US Department of the Navy, which

must be performed for all models and simulations [130], defines seven user roles and

thirteen important steps grouped in five categories, namely planning, conceptual model

validation, design verification, implementation verification, and results validation [35].

As such, the main design considerations and trade-offs in semantic composability vali-

dation become accuracy and cost.

The semantic validation of composable simulations is a non-trivial problem [11, 30,

88, 126]. Challenges arise from the fact that composition is not a closed operation with

respect to validation because valid components do not necessary form valid composi-

tions [10]. This means that the validation process must look at the overall semantic

behavior of the entire composed model, and not at the individual semantic validity of

its composing components. Next, reused components are developed for different pur-

poses and when composed may result in emergent properties [49]. This implies that the

overall behavior of the composed model cannot be obtained as a union of the individual

behaviors of its constituents, because the interaction of the components over time results

in properties that are not evident in the individual components. Similarly, the context

in which a reused component was developed and validated might differ from the new

context of the composed model [12, 126]. This means that the new context in which

the components are executing can influence their interaction in unspecified ways. Next,

there exist various validation perspectives on the component interactions over time. The

validation process must address model behavior aspects such as deadlock, safety, and
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liveness, temporal aspects such as the behavior of components and compositions over

time, and formal aspects such as the need to provide a formal measure of the validity of

compositions, also called “figure of merit” [61].

The motivation of our work is twofold. Firstly, simulation model validation is a

lengthy, manual process that can be improved if an automated process that focuses on

the behaviors of individual components as well as of the composed model is applied.

Secondly, well-established software verification techniques, such as model checking,

can be adapted to the simulation validation perspective to increase the credibility of

the validation process. In composable simulations, the main validation techniques in-

clude formal methods such as the DEVS formalism [132], Petty and Weisel’s theory of

composability [88], and component abstractions such as BOM [75].

This chapter starts with an overview of current approaches to the validation of se-

mantic composability of the composed model. We continue with an overview of our

proposed strategy and associated proposed techniques for the validation of semantic

composability. For ease of reading, we present the validation of general model proper-

ties, which makes up the first layer of our validation process, in Section 6.2. The second

layer is presented in detail in Chapter 7.

6.1 Current Approaches

Petty and Weisel pioneered a formal theory of composability validation, which allows

for a composed simulation model to be checked for semantic validity [88]. They pro-

vide definitions for components, simulations, and validity, and establish the basis of a

theory of semantic composability validation. At the heart of the theory lies a component

formalism in which a simulation component is represented as a mathematical function.

Next, composition is modeled as a mathematical functional composition. The simula-

tion of a composition is represented as an LTS where nodes are model states, edges are
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function executions, and labels are model inputs. A composition is valid if and only if

its simulation is close by a relation to the simulation of a perfect model. The fundamen-

tal drawback of this approach is that time is not modeled and the function representing a

component makes an instantaneous transition from input to output. This permits only a

static representation of the composition. Furthermore, the LTS representation considers

the functions strictly in the order they appear in the mathematical composition, which

might not be accurate for complex compositions. For example, an integer functional

representation and a composition formalism that lacks time does not fare well in com-

positions that have “fork” and “join” connectors because the timely passage from one

branch to another branch of the connectors cannot be specified.

Another approach to the validation of semantic composability is to look at the defi-

nition of the term “valid” from a strictly software engineering perspective. In software

engineering, a valid program is one in which the process interaction follows some pro-

tocols or specifications [63]. As such, formal theorem proving tools or model checkers

can be used to verify desired properties of the composed model. For example, in recent

work that proposes to formally validate compositions of DEVS models, formally rep-

resents the DEVS model in the Z specification language [127]. A theorem proving tool

based on Z such as Z/EVES [100] is used to verify the model and discover hidden prop-

erties. Ambiguities, conflicts and inconsistencies can be discovered in the specification.

However, the Z specification language lacks time modeling, a most important attribute

in DEVS models. As such, the validation process is incomplete.

A third approach to composition validation [75] uses the Base Object Model (BOM)

[50] as a component abstraction. A key assumption in this approach is that a valid

composition is represented using a detailed user specified composition scenario. The

scenario includes the sequence of component execution, as well as events and parameter

names for interacting components. Component discovery is performed based on the
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specified scenario. A valid composition of discovered components is one in which the

sequence of actions or events is the same as or includes the sequence specified in the

scenario. However, the somewhat informal validation process includes the composition

and execution of discovered components in all possible combinations in order to be

compared with the specified scenario. Furthermore, a detailed execution scenario might

not be available from the model composer.

6.2 Validation Strategy Overview

We start by providing a definition of semantic composability validity.

Definition 10 (Semantic Composability). We consider a composition to be valid and

its components to be semantically composable if and only if (i) components to be

integrated behave correctly to form a valid composition both externally with respect to

their neighbors, and internally when safety and liveness properties are preserved over

time, and (ii) the resulting composition produces valid output.

This definition considers the validity of the composed model as a whole, as well as

the valid behavior of the individual components while they are interacting with their

neighbors across the simulation time.

As discussed above, the semantic validation of composed models is a compute-

intensive process [10, 30, 88]. This is because of many factors, which include among

many the various validation perspectives, the size of the composition in terms of at-

tributes and behavior, and the difficulty in obtaining a resultant behavior for the com-

position based on the behavior of its components. Next, for a simulation problem, the

population of models that abstract it often includes more invalid than valid models.

These models are invalid either because of incompatibility between communicating

components, or interleaved execution issues such as deadlock or safety and liveness
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issues. Furthermore, the question of validity does not have a simple, clear-cut, yes/no

answer. On the other hand, formal guarantees of the validity of the composed model

are required to increase the credibility of the model.

As such, we propose a two-layered deny validity validation strategy with increasing

accuracy and complexity and incremental cost, as shown in Figure 6.1. Given that the

model population for a simulation problem consists of both valid and invalid models,

our key strategy is to incrementally discard invalid models that do not meet several prop-

erties. Firstly, syntactically incorrect models are discarded by syntactic composability
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Figure 6.1: Composable Model Population

verification in the Model Composition and Verification stage, as discussed in Chapter 4.

What is left is a population of models that has valid models (both syntax and semantics),

and models with valid syntax but invalid semantics. Our approach aims to remove the

models with valid syntax but invalid semantics in two steps. Informally, models with in-

valid semantics include models in which components cannot understand each other, or

models in which components are able to communicate meaningfully, but for which the

interleaved execution of the components over time leads to deadlock or to invalid safety
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and liveness properties. As such, we include in our validation process a layer that aims

to discard models for which these general properties are not met. Another type of mod-

els with invalid semantic composability are those that have valid model properties, but

whose execution is not close to that of the real system the composed model abstracts.

To eliminate such models, we perform formal validation with respect to a reference

perfect model. In contrast to current static perfect model validation, our novel time-

based formalism represents dynamic component behavior. Furthermore, we are able to

quantify the similarity between the composed model execution and the reference model

execution using our defined semantic metric relation.

Our proposed strategy translates into a two-layered validation process as shown in

Figure 6.2. We first validate general model properties, which include semantically cor-

rect component communication, as well as safety and liveness of the interleaved execu-

tion of the components over time. In the first step, Validation of Component Communi-

cation, we discard models for which the component communication is not compatible

[125]. Next, we validate the composed model for general properties including safety

and liveness for instantaneous transitions and over time. Concurrent Process Valida-

tion validates that the component communication is correctly coordinated, regardless

of time considerations or specific computations that the components might perform. If

this is true, we introduce the concept of time in Meta-Simulation Validation (MSV), and

validate safety, liveness and deadlock freedom using sampled time values for the time

attributes [119]. In Formal Validation of Model Execution, we evaluate if the execution

of the composed model is exactly the same to that of a reference model [122]. If this is

not true, we try to establish if the execution of the composed model is close enough to

that of the reference model.

We continue by presenting the first layer of our approach, namely the validation

of general model properties. The formal validation of model execution is presented in
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Chapter 7.

6.3 Model Properties

6.3.1 Component Communication

The first and simplest class of models with invalid properties is that in which the compo-

nents cannot communicate properly. This can happen despite the components exchang-

ing messages using the same syntax (validated by syntactic composability verification).

We validate therefore semantic compatibility between any two neighboring components

is correct, i.e., that the data that the component on the sending end sends is consistent

with the data that the component on the receiving end expects. The notion of “con-

sistent” here refers to consistency with respect to data types defined in the COSMO

ontology. It is important to highlight here that in this first validation step we are not yet
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considering time. As such it might be the case that a semantically correct communica-

tion, validated in this first step, becomes invalid when the timed arrival or departure of

messages is considered.

A subtle difference between this step and syntactic composability verification is

worth highlighting. In syntactic composability, by ensuring that components are rep-

resented and connected using the standard COML format, we ensure that components

communicate using the same syntax. In contrast, in this step we validate whether the

component communication is meaningful. In other words, syntactic composability ver-

ification ensured that components speak the same language, whereas the validation of

component communication ensures that components understand each other.

We propose a Composability Index (CI) to measure semantic compatibility with re-

spect to communicating components. As shown in the pseudo-code from Figure 6.3,

the composability index of the composition is calculated using local composability in-

dices for each pair of neighboring components. As shown in line 6, for each connected

1. double calculateLocalCI(Component a, Component b){
2. return CI(a.output, b.input, COSMO); }
3.
4. double constraintValidation(Composition model){
5. foreach(ConnectedComponentPair pair){
6. ci += calculateLocalCI(pair.a, pair.b);
7. }
8. return ci/sumConstraints;
9. }

Figure 6.3: Validation of Component Communication

pairs of components, we calculate a semantic composability index, which is a measure

of how well the components can communicate. A global composability index is calcu-

lated as the sum of the local composability indexes over the total number of constraints,

as explained in Definition 11. If CI = 1, then the semantic composability validation

process can continue as shown in Figure 6.2.

Definition 11 (Composability Index). LetComp = {(Ci, Cj)|Ci = 〈RCi
, ACi

, BCi
〉, Cj =
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〈RCj
, ACj

, BCj
〉} be the composition of connected components (Ci, Cj), with the out-

put of Ci transformed into the input of Cj . Let OCCi
be the constraint set on the output

data for component Ci, and ICCj
be the constraint set on the input data for component

Cj . The composability index CI of the composition Comp is defined as

CI(Comp) =

∑
ic∈ICCj

SAT (ic, OCCi
)

∑
(Ci,Cj)∈Comp

|ICCj
| ,

where (Ci, Cj) ∈ Comp, and

SAT (ic, OCCi
) =


1 ∃ oc ∈ OCCi

such that type(oc) = type(ic),

and oc satisfies ic

0 otherwise

(6.1)

For each pair of connected components (Ci, Cj), we measure the number of con-

straints on the input of Cj that are satisfied by the output of Ci.

The composability index is calculated as a fraction of the satisfied constraints of all

connected components from all the constraints between connected components. How-

ever, the constraints that do not have a corresponding constraint type in the neighboring

components cannot be verified but might contribute to the semantic validity of the com-

position. For now unsatisfiable constraints are ignored but the simulator developer can

be involved in establishing their relevancy. Additionally, the composability index for-

mula measures the number of satisfied constraints on input/output data for all connected

component pairs, but more complex formulae can be devised.

The component with the highest MI for a given query is automatically selected in

individual component discovery. However, this may not result in a composition with

CI = 1. If a CI 6= 1, candidates with lower MI are selected and the composition
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is verified again for data compatibility. This facilitates the evalation of the suitability

of different compositions for the same query. Moreover, all validation steps to follow

will assume that the component communication is semantically correct. As we will see

in Section 6.4.1, this assumption helps to reduce the time complexity of the following

validation steps.

6.3.2 Concurrent Process Validation

In Concurrent Process Validation, the logical correctness of component coordination is

validated. This layer guarantees that safety and liveness properties hold for any pos-

sible interleaved execution of the concurrent processes. Furthermore, we check that

the composed model is deadlock free in the context of instantaneous transitions. By

safety we mean that the component does not invalidate some logical properties, and

liveness guarantees the component reaches a specific pre-defined state in all execution

traces. However, in application domains such as open queueing networks, deadlock is

not inherent and as such need not be validated. We employ model checking techniques

to perform our desired validation. A composed model is invalid if it is found to be

deadlocked, or if any of the components invalidate their safety or liveness properties.

Model checking is employed because it is timeless, automatically performs deadlock

verification, and considers all interleaved execution traces.

As shown in Figure 6.4, the behavior of each meta-component modeled as a state

machine is translated into a logical specification using a logic converter module. Dif-

ferent converters can be developed for each application domain and targeting various

logical properties. The converter takes as inputs the meta-components and the compo-

sition topology. The result is a specification describing the composition together with

an expression of the safety and liveness properties. To prevent state explosion, each

component’s state machine is reduced by considering only communication states and
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attributes that influence state transitions. We discuss state explosion in model checking

in Chapter 8. The actions of non-communicating states are abstracted as a single atomic

operation. Similarly, time is not modeled and transitions are considered instantaneous.

This layer assumes that the communication between states is meaningful and correct.

This allows for the abstraction of data sent through communication channels to a single

type of message1.
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Figure 6.4: Concurrent Process Validation

The resulting specification is then verified using a model checker. For example, a

Promela Converter can be used to translate the topology into a Promela specification

[53], and the Promela specification can be validated using the SPIN model checker

[14]. However, other model checkers such as UPPAAL [65] can be employed. In

model checking, the entire state space containing all possible interleaved executions of

all concurrent processes is analyzed exhaustively for deadlock, safety, and liveness. For

example, in the Promela language we specify various safety properties using simple

assert statements. Liveness properties (e.g. a component outputs at least one message)

are specified using progress labels. In the validation process, if the assert statement is

not verified in any of the states, the model checker issues a safety error. Furthermore, if

there exists a cycle that does not visit the progress label infinitely often, then a liveness

error is issued. An important observation is that discrete time modeling is possible in
1This has the advantage of reducing state explosion.
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some specification languages [16]. Unfortunately, these solutions are somewhat obso-

lete and work only for small systems and toy examples. A simpler way to model time is

by attaching an additional counter process to each main process. However, our results

show that the state space explodes even for systems with as few as three components.

As such, we integrate counter processes only for components that inject jobs into the

system, i.e., for components with only output channels. Additionally, symbolic exe-

cution can be used to further reduce the state space, while at the same time enhance

expressivity [107]. We leave symbolic execution of composed simulation models as

part of our future work.

The model checker validates that safety, liveness, and deadlock-free properties hold

for the abstracted composition. Constraints such as non-floating point types and un-

bounded queues limit the computational expressivity of the specification but do not

hinder the validation of the component coordination. However, state explosion is an

important issue. We limit state explosion by considering only important attributes and

a limited number of counter processes. Furthermore, artificial termination conditions,

such as allowing components to process a limited number of messages, can be added.

6.3.3 Meta-Simulation Validation

Concurrent process validation establishes that all instantaneous interleaved traces of the

composition execution are correct. However, it does not consider time and other com-

ponent attributes that might influence the composition run. This stage validates that the

logical properties demonstrated in the previous layer hold throughout the simulation

run. State machines of meta-components together with all time delay mechanisms and

other participating attributes ignored in the previous layer are executed concurrently in

a meta-simulation to validate properties such as safety and liveness. Time attributes

that model time delaying mechanisms (e.g. inter-arrival time, service time) are sam-

120



Chapter 6: Semantic Composability Validation

pled, if necessary, from specific distributions detailed in the meta-component. Since

this method is inherently based on sampling, more than one meta-simulation run is

performed with various time attribute values.

Safety properties are specified through validity points provided by the user. A valid-

ity point is a connection point in the topology through which a certain type of data must

pass. Safety errors are issued if incompatible data flows through the validity points at

any point during the meta-simulation run. Liveness is validated by assigning a transient

predicate to each component. A component specific transient predicate guarantees that

if it becomes true during the meta-simulation, then it will become false before a timeout

elapses. The transient predicate is defined such that a change in its truth value signifies

a change in the component state or attributes. The value of the transient predicate is ide-

ally given by the component creator in the meta-component, but it can also be deduced

from the state machine. The timeout interval can be characteristic to the composition

or specific to each component.

The state machine specified in the meta-component, including attributes and transi-

tions ignored in the previous layer, are translated into a class hierarchy and subsequently

run. Time attributes that model time delaying mechanisms (e.g. inter-arrival time,

service time) are also considered. All time attributes are sampled, if necessary, from

specific distributions. The distribution type, as well as its mean value, are also attribute

values in the meta-component. Since this method is inherently based on sampling, more

than one meta-simulation run is performed with various time attribute values. If any of

the meta-simulation returns an error, then the composition is considered invalid.

Figure 6.5 presents the pseudo-code for the Meta-Simulation validation process im-

plemented in Java. In the init stage, each COML component is transformed into a

Java Component class as shown on line 4. Its attributes as well as its behavior modeled

as a state machine are also set. Next, a liveness observer is created using the compo-
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1 init (COMLComponentList compList, ConnectorList connList){
2 foreach (COMLComponent comp in compList){
3 //create new component class
4 c = new Component(comp); //create attributes and behavior
5 c . setTransient (comp. getTransient ());
6 //add liveness observer
7 c .addLivenessObserver(new LivenessObserver(c . getTransient ()));
8 //add the component to the component list
9 componentList .add(c );}

10 foreach (Connector conn in connList ){
11 //add & link components on the right and left side
12 addRightComponents(conn.getRightComps(componentList));
13 addLeftComponents(conn.getLeftComps(componentList));
14 //add validity point observer
15 foreach ( ValidityPoint vp in conn.getVP()){
16 addVPObserver(new VPObserver(vp));}}
17 }

19 run(ComponentList compList, ConnectorList connList){
20 foreach(Component comp in compList)
21 start thread (comp)
22 foreach(Connector conn in connList )
23 start thread (comp)
24 }

Figure 6.5: Meta-Simulation Pseudo-code

nent’s transient predicate on line 7. Validity points observers are added if the connector

has any validity points set. In the run stage, the components and connectors are started

on individual threads and their assigned observers collect relevant safety and liveness

information.

6.4 Theoretical and Experimental Analysis

6.4.1 Theoretical Analysis

We analyze the time complexities of Concurrent Process Validation (OCP ) and Meta-

Simulation Validation (OMS) validation. Let n be the total number of components and

c the total number of connector branches in the composed model.
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Time Complexity of Concurrent Process Validation

In Concurrent Process Validation, the entire state space of the composition is exhaus-

tively verified. Thus, the time complexity directly depends on the size of the state

space, OCP = O(S), where S is the size of the state space. The state space can be di-

vided into two main parts, the components and communication channels that link them.

We consider the communication channels separately because they are important entities

on which the component synchronization is done. Thus we have

S = Scomp × Schan

where Scomp is the size of the state space of the components, and Schan is the size of

the state space of the communication channels. Considering that each component i

has Ti different simulation states (where simulation state means the collection of all

component attributes and their values at a particular observation moment), the value for

Scomp is:

Scomp =
n∏
i=1

Ti

In the calculation of Schan we consider that the q communication channels are bounded,

allowing a maximum number s of messages, and that in each communication channel

there can be m different types of messages. Thus,

Schan =
q∏
i=1

s∑
j=0

mj = (
s∑
i=0

mi)q

Therefore, the size of the state space becomes:

S =
n∏
i=1

Ti × (
s∑
i=0

mi)q

The component communication is already validated by the Constraint Validation pro-
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cess. Therefore, irrespective of the specification language and model checker used, m

can be reduced to a single type of message, i.e., m = 1. Considering the worst case

where q = 2 ∗ c, and the trivial observation that the number of connectors is a polyno-

mial of grade 1 of the number of components, c = P 1(n), then

OCP = O(s2P 1(n) ×
n∏
i=1

Ti) (6.2)

The right-hand side product depends on the type of abstractions employed when

the COML component specification is translated into the model checker specification.

Regardless, Concurrent Process Validation is exponential in the number of components

in the composition.

Time Complexity of Meta-Simulation Validation

Intuitively, in the average case the complexity of the Meta-Simulation layer is by design

much smaller than OCP . This is because the state space is not exhaustively parsed since

the simulation is run for a limited amount of time and transitions between states are

not instantaneous. Furthermore, when considering the liveness of a component, the

Meta-Simulation approach considers only the two possible truth values of the transient

predicate. As such, we have:

Scomp =
n∏
i=1

2 = 2n

Next, when we validate that components do not stall during their run, the different types

of messages that could be in the communication channels are not important. The only

significant information about the communication channels is whether they are empty.

Therefore,

Schan = 2c
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Thus the complexity of Meta-Simulation Validation becomes:

OMS = O(2n×c) = O(2n×P
1(n)) (6.3)

6.4.2 Experimental Analysis

We demonstrate our approach using a simple single-server queue example presented in

Figure 4.7. Key meta-component information for each component is shown in Table

6.1. To focus on our approach, we consider only simplified component state machines.

C1 C2 C3

Attribute

noJobsGenerated = 0 noJobsServiced = 0 noJobsPrinted = 0
timeout = 20 timeout = 20 timeout = 20
time = 200 time = 200 time = 200

timeScale = 1 timeScale = 1 timeScale = 1/5
interArrivalTime: exponential(3) serviceTime : exponential(6) ∆printingT ime = 1

busy = false
transient(C1) : (noJobsGenerated == 1) transient(C2) : (busy == true) transient(C3) : (noJobsPrinted == 1)

Input
-

I1, constraints: I1, constraints:
origin = Source|Server origin = Server

range = 10; 35
type = double

Output

O1, constraints: O1, constraints:

-
destination = Server destination = Server|Sink

range = 11; 15 range = 10; 20
type = int type = double

State Machine

S1(∆interArrivalT ime)→ S2 I1S1 → S2[A1;A3] I1S1 → S2

S2 → S1O1[A1] S2(∆serviceT ime)→ S1O1[A2] S2(∆printingT ime)→ S1[A1]

[A1] = noJobsGenerated+ +;
[A1] = (busy = true);

[A1] = noJobsPrinted+ +;[A2] = (busy = false);
[A3] = noJobsServiced+ +;

Table 6.1: Meta-component Information

Component Communication

To validate the semantic correctness of component communication, we calculate the

composability index CI for the composed model in Figure 4.7 according to Definition

11 as follows:

CI(Comp) =
SAT (ic2, OCC1) + SAT (ic3, OCC2)

2
=

1 + 1

2
= 1
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The component communication is validated and as such the validation process can con-

tinue with the validation of component coordination in concurrent process validation.

Concurrent Process Validation

In Concurrent Process Validation, a Promela Converter can be used to translate the

topology into a Promela specification, and the Promela specification can be validated

using the SPIN model checker [14]. Figure 6.6 shows the state machine of every com-

ponent in the single-server queue example translated into a Promela specification.

1 mtype {Job}; chan to1 = [10] of {mtype}; chan to2 = [10] of {mtype}; ...
2 hidden byte sourceIAMax = 10; byte sourceIATime; byte noJobsSource = 0;
3 proctype CON ONE TO ONE(chan in, out){
4 do :: in ? Job -> out ! Job; od}
5
6 proctype SOURCE(int id, noJobsMax; chan out){
7 do :: (sourceIATime == sourceIAMax) -> sourceIATime =0;
8 if :: out ! Job -> progress: printf(”[Source] Job sent”); fi od } ...
9 active proctype monitor(){assert (noJobsSource < noJobsMax);}
10
11 proctype SINK(){...}
12
13 proctype SERVER(int id; chan in, out){
14 S1: {if :: in ? Job -> printf(”[Server] Job received!”); busy=1;goto S2; fi}
15 S2: {if :: out ! Job -> progress: printf(”[Server] Job sent! ”); busy=0; goto S1;}}
16
17 init{
18 run SourceCounter(); ...
19 run SOURCE(1, from1);
20 run CON ONE TO ONE(from1, to2);
21 run CON ONE TO ONE(from2, to3);}

Figure 6.6: Single-Server Queue Model in Promela

Each state is transformed into a Promela label, which includes conditions and in-

put and/or output actions as specified by the meta-component behavior. Transitions

between states are assumed to be instantaneous. Nonetheless, for component C1 de-

scribed in process SOURCE1 on line 6 we simulate time through the additional process
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SourceCounter shown on line 9. Counter processes are introduced for all components

that have only output channels. Each type of connector is defined as a Promela pro-

cess. For example, process CON ONE TO ONE on line 3 describes the one-to-one

connector. The fork and join connectors are not part of this composition and as such

are omitted. In the init method on line 18, communication channels are assigned to

the connectors and components according to their connection topology. Similar to the

behavior of connectors in the real system, communication in our Promela specification

is asynchronous. However, the maximum number of messages in a channel is bounded

by a constant value. This is because unbounded queues are not permitted in the SPIN

model checker [14], since the focus is on process coordination and not computation.

Valid executions can be specified in Promela and subsequently validated by the

SPIN model checker. To specify safety, we create assert statements such as the one

on line 9 for important properties. To specify liveness, we assign a progress label to

each state in a component that produces output, such as the one on line 8. By default the

SPIN model checker validates that there is no deadlock or any unreachable states in the

system. The SPIN model checker validates the system by analyzing all possible process

states obtained through the interleaved execution of the active processes. State space

explosion decreases the feasibility of employing this type of validation as a standalone

validation process, and thus we include it only as the first layer in our approach.

Meta-Simulation Validation

Meta-simulation validation shows that the logical properties demonstrated in the previ-

ous step hold through time. Our implementation translates the complete state machine

of each component into a Java class hierarchy. Attributes and their values provided

by the user, state transitions, as well as time are modeled. Next, we construct a meta-

simulation of the composed model using the translated classes. We execute the meta-

simulation over the simulation time and observe the execution for desired properties.
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During the meta-simulation run, sampling is performed for attributes that require so.

This is the case especially for time attributes such as inter-arrival time or service time.

For example, as shown in Table 6.1, the inter-arrival time ∆interArrivalT ime for

component C1 is sampled from an exponential distribution with a mean of 3. The dis-

tribution type and mean values are an example of attribute values provided by the user.

Since sampling is performed, the meta-simulation is run for N = n ∗ noSampling
times, where n is the total number of components and noSampling is the total num-

ber of locations where sampling is done. If any of the properties does not hold in the

meta-simulation runs, the composition is declared invalid.

The most important logical properties that are validated through time are safety and

liveness. From a practical perspective, we consider safety to mean that components do

not produce invalid output. The simulator developer specifies the desired valid output

by providing validity points at various connection points in the composition. A validity

point contains semantic description of data that must pass through its assigned connec-

tion point. For example, the two validity points for the data that passes through the

second connector in Figure 4.7 could be V P1 = d1{origin = Server, destination =

Sink, range = 10; 35, type = double}, and V P2 = d2{origin = Server, destination =

Sink, range = 1; 2}. If anytime during the meta-simulation run, semantically incom-

patible data passes through the connection point, a safety error is issued. Semantically

incompatible data is data whose type and constraints are not related in the COSMO

ontology.

Liveness is validated by considering a transient predicate assigned to each compo-

nent. The value of the transient predicate is ideally provided by the component creator

in the meta-component as shown in Table 6.1. Its initial value is false. Each compo-

nent is assigned a liveness observer that is notified every time the attributes involved in

a transition change values. The liveness observer evaluates the transient predicate and
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time stamps the moment in which the transient predicate becomes true. A component

is considered alive if its liveness observer has evaluated the transient predicate to true

and then to false in an interval of time smaller than the specified timeout. For example

the transient predicate for component C2 could be transient(C2) = (busy == true).

Based on the meta-component information from Table 6.1, the state machine for

each component is executed on separate threads. Figure B.2 presents one of the meta-

simulation runs for our example model. The flow of input and output from component to

connector and reverse ([Connector]) as well as the execution of the safety and liveness

([Observer]) observer are shown.

Generating Semantically Valid Models

In Section 4.3.2, we were able to obtain a repository of syntactically correct, standalone

simulators, by automatically generating them from the Queueing Network Composition

grammar using queueing networks base components.

To create semantically valid models with respect to model properties, we assign

each base component with a COML file selected from a pool of sample COML files

for that type of base component. We perform this assignment repeatedly until the com-

posed model passes the validation of general model properties. For Meta-simulation

validation, in which attribute values are needed to perform sampling, we employ the

default values of component attributes, and consider only meta-components that have

such values provided.

Specifically, the component communication is semantically validated. If the sim-

ulator has a CI = 1, the process is followed by Concurrent Process Validation and

Meta-Simulation validation. Only simulators that pass all the tests are saved in the

repository. In order to obtain model components, several components from the vali-

dated simulators must be stripped in order to obtain model components with both “in”

and “out” communication channels. In the case of the simple composition grammar
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employed in Section 4.3.2, in which open queueing models with only one Source and

one Sink are generated, the stripping of components from the simulator to create model

components is effortless, since only the Source and the Sink components are removed.

Table 6.2 presents the number of semantically valid model components with the total

number of components ranging from 4 to 10. The total number of generated model

#Components #Models with # Models with
Correct Syntax Valid Semantics

4 2 2
5 6 6
6 19 19
7 57 57
8 164 164
9 457 457

10 1,244 1,244
Total 1,949 1,949

Table 6.2: Number of Model Components in the Repository

components adds up to 1,949 model components, for a total of 1,958 components in

the CoDES repository for the Queueing Networks application domain. In our sample

case, we were able to obtain the same number of semantically valid models as the

syntactically correct models.

6.5 Summary

This chapter presents our approach for the validation of semantic composability. For a

composed and discovered model, we attempt to discard it as invalid using a new dual-

step deny validity process. Firstly, we attempt to discard models that have invalid gen-

eral model properties, such as component communication, and logical properties such

as safety and liveness of instantaneous and timed transitions. If the composed model

passes this test, we next formally compare the execution of the composed model over

time with that of a reference model deduced according to the composition structure.
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This second layer is presented in detail in the next chapter.

In the validation of general model properties, we target several key properties.

Firstly, we validate that the component communication is semantically meaningful.

We propose the Composability Index, a new measure of the semantic correctness of

component communication. The composability index is calculated as a fraction of the

satisfied constraints of all connected components from all the constraints on input/out-

put data exchanged between connected components. These constraints are semantically

defined in our proposed COSMO ontology.

Next, we validate the logical coordination of components in the composed model.

We focus on properties such as safety and liveness in the context of instantaneous and

timed transitions. In concurrent process validation, we employ model checking to

validate that a composed model satisfies safety, liveness and deadlock-freedom using

abstracted component representations that focus only on component coordination, by

removing timed transitions and other component attributes. If a model passes the con-

current process validation stage, the meta-simulation validation step introduces timed

transitions and other component attributes to validate the model over time, using defi-

nitions of safety and liveness as validity points and transient predicates respectively.
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Formal Validation of Semantic

Composability

In the previous chapter, we proposed a deny validity approach for the validation of

semantic composability. Given a composed model, we try to discard it as invalid using

a series of validation tests. We base our approach on the common sense observation

that there are various degrees of semantic validity and, more importantly, that there

are more invalid models than valid models for a simulation problem. Firstly, we try to

validate general composition properties, such as the semantic correctness of component

communication, and the valid component coordination in the context of instantaneous

and timed transitions. If the composed model fails any of these tests, it is discarded as

invalid.

However, it is possible for a model to be invalid even if it has the desired model

properties mentioned. This is the case where the composed model does produce re-

sults, but these results are not close to those produced by the real system that the com-

posed model abstracts. In traditional modeling and simulation that does not adhere to

a component-based paradigm, this problem is addressed through the validation of in-

put/output transformations [11]. However, the comparison of input/output transforma-
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tions is not a sufficient measure of composition validity, especially since the combined

output of the entire composition is not a direct reunion of the outputs of the individual

components. We thus propose to compare the execution of the composed model with

the execution of a reference model over time, using a formal validation method.

The main purpose of formal model execution validation is to obtain a guarantee of

the composition validation that relies on a formal theory, by analyzing the similarity

between the composition execution and the execution of a reference model. Further-

more, we propose to obtain a quantitative measure of this similarity. Towards this, we

propose a formalism to describe composability and validity. This formalism contains

definitions of simulation components, simulation, and validity to facilitate reasoning

about the composition validity. Current approaches that attempt to formalize seman-

tic composability validation [88] fail to capture important characteristics of simulation

components such as time and state in their formalism. This high level of abstraction

facilitates the understanding of the formalism and reasoning about complex properties

such as different types of validity under composition, but is not applicable to real simu-

lation scenarios. In contrast, we represent a component as a function of states over time

and formalize composition, simulation and validity accordingly.

Our five-step formal validation process relies on our proposed formalism. The pro-

posed validation process aims to provide a formal measure of composition validity by

comparing the composed model with a reference model. One of the problems that arise

here is the source of the reference model. One solution would be to require the model

composer to provide the reference model. However, this process is tedious and error-

prone. As such, we propose to obtain the reference model from reference components

in the repository. We consider that for each type of base component, there exists a refer-

ence model in the repository, initially provided by domain experts when the application

domain is added to the framework. The reference base component models describe
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what the domain experts consider to be the ideal component behavior. The generic de-

scriptions lack specific attributes (e.g. sampling distributions for time attributes) and

are without an implementation. We assume that for each base component type (e.g.

Source in Queueing Networks Application domain), there exist different base compo-

nent implementations in the repository (e.g. SourceOpen - a Source component for open

queueing network systems).

A reference component is a generic, desirable representation of a base component

ideally provided by domain experts when the new application domain is added to the

framework. Ideally, the reference components should describe what the system ex-

perts consider to be the desirable base component behavior. It should be generic in

the sense that their description lacks any real data values. It follows that the refer-

ence model composed from the generic reference components is only a description of

the desired simulation, without an attached implementation. Throughout the valida-

tion process, the generic reference components attributes will be instantiated using the

same attribute values used by the corresponding components in the composed model.

Lastly, the base component implementations may differ widely from the reference base

component models.

The idea of comparing a composed model with a reference model has been pre-

viously explored in [88], which represent components as functions of integer values.

This approach is presented in detail in Chapter 6. However, this representation does not

allow complex compositions (e.g. with “fork” connectors). This is because different

outputs for the connector branches cannot be specified using a single coordinate func-

tional domain. Moreover, the mathematical composition of functions cannot be applied

to connector branches. Furthermore, the simulation execution is represented statically

based on the component position in the composition. We provide a major improvement

by representing components dynamically as functions of states over time. Our novel
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formalism allows for complex models to be validated as we will show below. Fur-

thermore, simulation execution is represented as a time ordered schedule of component

executions. This allows for a more accurate validation process in which the composition

execution through time is evaluated.

7.1 Time-based Formalism

In this section we define components, simulation, and validity in the context of our

formal validation process. To facilitate the proposed validation process we separately

represent a simulation component using our proposed time-based formalism. The sep-

aration of the component specification from the component implementation is widely

recognized in the simulation community as an important step towards simulation com-

posability and model reuse [88].

7.1.1 Definitions

In our proposed approach, a simulation component is represented as a function of states

over time.

Definition 12 (Simulation Component). The formal representation of a simulation

componentCi is a function fi : Xi → Yi, whereXi = Ii×Si×Ti, and Yi = Oi×Si×Ti.
Ii and Oi are the set of input/output messages, Si is the set of states and Ti is the set of

simulation time points at which the component changes state.

By representing a simulation component as a mathematical function we leverage on

Petty and Weisel’s formal theory of composability [88]. However, our approach greatly

improves this by including time and state as domain coordinates. Our three coordinate

representation allows for a meaningful and detailed definition of a valid model with-

out affecting the complexity of the validation process. The domain of each functional
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representation is Xi = Ii × Si × Ti. Coordinate Ii represents semantically rich inputs,

enriched by our COSMO ontology [125]. Next, Si represents all possible component

states. A component state contains all values of the component attributes. Lastly, Ti

represents the set of simulation time moments at which state transitions occur.

Definition 13 (Composition). Given the components Ci, i = 1, n formally repre-

sented as fi. The formal representation of the composed model made up of Ci is

M = {(fi, fj)|i 6= j, i, j = 1, n} with (fi, fj) ∈ M meaning that Ci is connected

to Cj in the composed model with Cj requiring input from Ci.

Definition 14 (Mathematical Composability). Given a composed modelM = {(fi, fj)|
i 6= j, i, j = 1, n}, and the time values when fi produces output and fj requires input,

T outi = {t(i)m |1 ≤ m ≤ |Oi|}, and T inj = {t(j)n |1 ≤ n ≤ |Ij|} respectively. Then fi

and fj are composable iff there exists the bijective binary relation R = {(t(j)n , t(i)m ) ∈
T inj × T outi |t(j)n > t(j)m }.

Informally, for the component functions to be composable, all sampled time values

for components requiring input must be greater than the time moment values for the

components that provide them with output. Definition 14 is the usual mathematical

composability definition that only considers the time moment values from the three

coordinate function domain. This is because individual component states are irrelevant

at this point in the validation, and input and output data has been previously validated

as shown in Chapter 6.

A simulation represents the execution of the composition over the simulation time.

Definition 15 (Simulation). The simulation S(M) of the composed model M =

{(fi, fj)|i 6= j, i, j = 1, n} is defined formally as the ordered set S(M) = {[. . . fi(I ip, Sip, tip)
→ (Oi

p, S
i
p+1, t

i
p+1), . . . , fj(I

j
q , S

j
q , t

j
q) → (Oj

q, S
j
q+1, t

j
q+1) . . .]|tip ≤ tjq, t

i
p ≤ tip+1, t

j
q ≤

tjq+1, i, j ∈ 1, n, } where I ip ∈ Ii, Sip, Sip+1 ∈ Si, tip, tip+1 ∈ Ti, and Ijq ,∈ Ij , Sjq , Sjq+1 ∈
Sj , tjq, t

j
q+1 ∈ Tj, Oi

p ∈ Oi, Oj
q ∈ Oj..
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Informally, the simulation S of a composition of functions M is defined as the ordered

set of the function executions for all components. The set order is based on the time

tip at which each function fi is executed. For example, if (fi, fj) ∈ M , then at least

one function execution of fi will come before all function executions of fj . Thus, the

simulation of the composed model is an ordered schedule of the function executions.

This provides an accurate representation of the simulation to facilitate the validation

process. Previous approaches such as that of Petty and Weisel [87] do not consider time

in the simulation representation. The Petty and Weisel approach employs a static simu-

lation description in which components appear in the linear order of aggregation in the

composed model. Using our proposed time-based formalism, we obtain a dynamic rep-

resentation of the simulation, in which components appear based on the time moments

when they run.

7.1.2 Validation Process

The proposed formal validation approach aims to formally compare between the simu-

lation of the composed model and the simulation of a reference model. The reference

model is defined below.

Definition 16 (Reference Model). Given a composed model of components Ci repre-

sented formally as M = {(fi, fj)|i 6= j, i, j = 1, n}, the reference model is defined

as M∗ = {(f ∗i , f ∗j )|i 6= j, i, j = 1, n}, where C∗i formally represented as f ∗i is the

corresponding reference component for component Ci.

To facilitate the comparison between the composed model simulation, S(M), and

the reference model simulation, S(M∗), the two simulations are represented as La-

beled Transition Systems (LTS) [114]. Next, we compare the two LTS using the well-

established theory of bisimulation [86].
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Definition 17 (Simulation Representation). Given a composed model M and its sim-

ulation S(M). The simulation run S is represented as a Labeled Transition System

L(M) = (N,Act,→) where N is the set of nodes,→ is the set of transitions between

nodes, and Act is the set of transition labels. In L(M), each node in N represents an

annotated composition state given by the tuple Sj=1,r = [{state(Ci)i=1,n}, fin, fout],
where state(Ci) is the state of component Ci, r = |S|, n is the number of compo-

nents, fin is the function called to enter this node, and fout is the function called to

exit this node. Edges→ are the function calls fin or fout in the simulation run, and la-

bels ai ∈ Act are the tuple <function name(fout), duration(fout), output(fout)>, where

duration(fout) represents the execution time of fout.

A simulation run is represented as an LTS where nodes represent the entire composition

state as a reunion of the individual component states, and edges are labeled to facilitate

the validation process. To facilitate accurate comparison between L(M) and the ref-

erence LTS L(M∗), the edge labels contain the name of the function called to exit the

node, its duration, and its output. We consider the duration rather than the time mo-

ment when fout begins to execute, because the time moments at which the functions

fout start to execute are already ordered through the directed nature of simulation S.

Based on the definitions presented above, we refine the formal validation process

to the five steps presented in Figure 7.1. The first three steps of the validation process,

namely Unfolding and Sampling, Composition, and Simulation are applied separately

to the components and reference components. Components and reference components

annotated with a star symbol (∗) from the composition and reference composition re-

spectively are formally represented as functions of their states over time according to

Definition 12. The formal component representations are input to the Unfolding and

Sampling step where the component representation is adjusted to fit our validation pro-

cess. Based on the composed model topology, the unfolded representations obtained
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Figure 7.1: Formal Validation Process

from the Unfolding and Sampling step are composed according to Definition 14 in the

Composition step. The Simulation step applied to the composition and reference com-

position results in a composition simulation, L(M), and reference composition simula-

tion, L(M∗), respectively according to Definition 17. The Composition step formally

composes the functional representations based on our mathematical composability def-

inition, which considers the time moments at which the functions are activated. As

such, L(M) and L(M∗) consist of time-ordered simulation schedules of the function

executions. Lastly, in the Validation step, we first attempt to determine whether L(M)

and L(M∗) are exact matches. This is done by determining strong equivalence between

L(M) and L(M∗). If strong equivalence is not possible, we introduce the semantic re-

lation Vε to determine weak equivalence only between related states, i.e., the parts in the

two executions that are semantically related. If Vε is not a weak bisimulation relation

between L(M) and L(M∗), then the model is invalid.
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Assumptions For the formal validation process to be realized, a series of assumptions

must be in place. Firstly, component information including state machine description

must be available in the form of a meta-component in which component attributes and

state machine are defined in a standardized format. The component creator provides

the component state machine when the component is added to the component repos-

itory. For example, components in our CoDES framework are represented as a meta-

component in a standardized COML format [125]. Next, logical composition properties

such as safety and liveness [82] over time have been previously validated. This is the

case in the layered validation process in the CoDES framework in which logical proper-

ties are first validated in the context of instantaneous transitions and secondly, over time

[119]. Lastly, to facilitate the calculation of Vε, a component-based ontology in which

component-based simulation concepts as well as application domain notions are rigor-

ously defined. In the CoDES framework, the COSMO ontology describes component-

oriented simulation within and across application domains [125].

7.1.3 Validity Measures

In our proposed formal theory, we consider two possible relations between the simu-

lation of the composed model and the simulation of the reference model, L(M) and

L(M∗) respectively: strong equivalence relation [86] and our proposed semantic para-

metric metric relation, Vε. Informally, strong equivalence between L(M) and L(M∗)

validates that L(M) is exactly the same or included in L(M∗), including the sequence

of the function calls and the edge labels. If this is not possible, we propose the seman-

tic parametric relation Vε as a weak bisimulation relation. Vε considers only parts of

L(M) and L(M∗) that are semantically close and validates that they appear in the same

sequence in L(M) and L(M∗). Vε is defined below.

Definition 18 (Semantic Parametric Metric Relation). Let P ⊆ {S1, . . . , Sn}, Q ⊆

140



Chapter 7: Formal Validation of Semantic Composability

{S∗1 , . . . , S∗n} a subset of the annotated composition states for L(M) and L(M∗) re-

spectively, with p ∈ P , q ∈ Q, p = [s(p), fin(p), fout(p)], q = [s∗(q), f ∗in(q), f ∗out(q)],

with s(p) = [state(C1), . . . , state(Cn)] and s∗(q) = [state(C∗1), . . . , state(C∗n)] vec-

tors representing component states. We define the semantic relation with parameter ε,

Vε ⊆ P ×Q, as V (p, q) = {(p, q) ∈ P ×Q|‖p− q‖σ ≤ ε}. The semantic vector norm,

‖p− q‖σ, is defined as

‖p− q‖σ =
DS(s(p), s∗(q)) +

DF (fin(p),f∗in(q))+DF (fout(p),f∗out(q))

2

2

whereDS(s(p), s∗(q)) is the semantic distance between composition states, andDF (fi, f
∗
j )

is the semantic functional distance between the function names.

The semantic metric relation with parameter ε, Vε, contains semantically related

states between L(M) and L(M∗). Semantically related states are those for which the

semantic vector norm, ‖ ‖σ, is smaller than the parameter ε. The semantic vector

norm has two components, DS and DF . The semantic state distance, DS, measures

the semantic differences between component attribute values. The semantic functional

distance, DF determines whether the functions that are called to enter and exit the LTS

nodes are related.

Definition 19 (Semantic State Distance). Let s(p) = [state(C1), . . . , state(Cn)],

s∗(q) = [state(C∗1), . . . , state(C∗n)]. The semantic state distance between vectors p

and q is defined as

DS(s(p), s∗(q)) =

n∑
i=1

|ds(state(Ci), state(C∗i ))|
n

where ds(state(Ci), state(C∗i )) =

∑
ai∈A(Ci),a∗j∈A(C∗j )

d(ai, a
∗
j)

m
, A(Ci) is the set of at-
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tributes for component Ci, m = |A(Ci)| and d(ai, a
∗
j) is defined as

d(ai, a
∗
j) =


0 if related(ai, a∗j ) and value(ai) = value(a∗j )

0.5 if related(ai, a∗j ) and value(ai) 6= value(a∗j )

1 if @a∗j ∈ A(C∗i ) such that related(ai, a∗j ) = true

where related(ai, aj) signifies that ai and aj are related in the COSMO ontology.

Definition 20 (Semantic Function Distance). Let fi(p), f ∗j (q) be the functions called

to enter or exit nodes p and q in L(M) and L(M∗) respectively. The semantic state

distance DF is defined as

DF (fi(p), f
∗
j (q)) =


1, i 6= j

0, i = j

The calculation of the semantic distance DS is facilitated by the COSMO ontology.

This is done by determining the similarity between component states (ds) by calculat-

ing the semantic closeness in the ontology of all component attributes (d). Informally,

Vε determines whether semantically related states from L(M) and L(M∗) (in terms of

composition state - DS, and incoming and outgoing function calls - DF ) appear in

the same labeled sequence in L(M) and L(M∗) respectively. The above definition is

similar to that of Petty and Weisel [88]. However, the fundamental difference and our

major improvement comes from forcing the weak bisimulation relation to be Vε which

we previously defined. Vε is a semantic metric relation that considers related composi-

tion states according to the COSMO ontology in which a well-defined component and

attribute hierarchy is present. By representing components as functions of times and

states, L(M) and L(M∗) can be compared based on the timed sequences of component
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executions. Through Vε, the model can be compared with a reference model based on

rigorously defined concepts in an ontology.

Definition 21 (Validity). Given the composed model M = {(fi, fj)|i 6= j, i, j =

1, n} and its simulation representation L(M), and a reference model M∗{(f ∗i , f ∗j )|i 6=
j, i, j = 1, n} with the simulation representation L(M∗). M is valid iff (fi, fj) ∈ M
and (f ∗i , f

∗
j ) ∈ M∗ are composable respectively (by Definition 14) and there exists a

binary relation R between L(M) and L(M∗), with L(M) R L(M∗) such that R is

either a strong equivalence relation [86] or a weak semantic parametric relation, Vε.

7.2 Theoretical and Experimental Analysis

7.2.1 Theoretical Analysis

The time complexity of this layer, OPM , is calculated as the sum of three main parts:

OPM = Otransform +Ocompose +Obisimulate (7.1)

where Otransform is the time complexity for the formal component representation, un-

folding and sampling, and simulation steps (Step 1, 2, and 4); Ocompose is the time

complexity for the Composition step (Step 3) and Obisimulate is the time complexity for

the Validation Step (Step 5). The time complexity for the formal component representa-

tion and the unfolding and sampling steps, as well as the simulation step is in the worst

case O(n). Thus,

Otransform = O(n) (7.2)

The time complexity of the Composition step is reduced to the time complexity required

by a constraint solver implementation to solve the proposed constraints. The constraint
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satisfaction problem is NP-Complete. However, the algorithm that solves the particular

set of constraints from the Composition step has the time complexity of O(n). This is

because we require a single solution, which can be obtained by fixing the values for the

time moments for the source components (e.g. x in Equation 7.6) and propagating the

values to the rest of the variables. Therefore,

Ocompose = O(n) (7.3)

For two LTS withN nodes andM transitions, strong and weak bisimilarity between

two states can be determined in O(MN) [60]. As such, strong and weak bisimilarity

between two LTS can be determined in O(N2M). For the two LTS that are obtained in

the reference Model Validation, we have N = τn and M = N − 1 = τn− 1. Thus,

Obisimulate = O(τ 2 × n2 × (τn− 1)) = O(n3) (7.4)

Combining Equations 7.2, 7.3, and 7.4, Equation 7.1 becomes:

OPM = O(n) +O(n) +O(n3) = O(n3) (7.5)

Therefore, the complexity of the reference Model Validation is polynomial in the num-

ber of components.

Given n, the number of components in the composition and s, the maximum number

of messages allowed in the connectors, we summarize our results in Table 7.1.
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Layer Complexity

Concurrent Process Validation O(s2P 1(n) ×
n∏
i=1

Ti)

Meta-Simulation Validation O(2n×P
1(n))

reference Model Validation O(n3)

Table 7.1: Theoretical Analysis of the Validation Process

7.2.2 Experimental Analysis

We demonstrate our approach using a simple single-server queue example presented in

Figure 4.7. Each component has an attached implementation as described in the meta-

component [125]. Key meta-component information is the same as the one shown in

Table 6.1 in the previous chapter. To focus on our approach, we consider only simplified

component state machines.

Validation of General Model Properties

As presented in Chapter 6, the first step of our proposed dual-step validation process

validates the composed model for general model properties, which include component

communication, and component coordination in the context of instantaneous (Concur-

rent Process Validation) and timed (Meta-simulation Validation) transitions. We assume

that the model in Figure 4.7 has passed the validation of general model properties as

shown in Section 6.4.2.

Validation of Model Execution for a Single-Server Queue Model

In the following we present the detailed validation process only for the selected com-

ponents Ci represented formally as functions fi. The same process is repeated for ref-

erence functions f ∗i . For this example, we consider the behavior of the reference com-
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ponents represented by f ∗i to be the same with respect to input/output transformations

to the behavior represented by fi. The base components Ci differ from the reference

components C∗i through additional logging attributes such as noJobsGenerated.

Formal Component Representation

In the Formal Component Representation step, the state machine for component C1 as

specified in its meta-component is S1(∆interArrivalT ime) → S2, S2 → S1O1[A1].

This expression is translated to a formal component representation specified by f1

which is defined as

f1 : ∅ × S1 × T1 → {O1} × S1 × T1, f1(∅, si, t)→ (O1, s
′
i, t+ ∆t)

where ∆t is sampled from a specified distribution and the function is re-called until

t > T , where the simulation runs for time T = 40 wall clock units.

Unfolding and Sampling

The above expression is not useful for the Unfolding and Sampling step in our ap-

proach since during a simulation run, t and ∆t have specific values. Thus we unfold the

function call graph for τ = 3 times and sample the values for ∆t, using mean values

provided by the user. For component C1 assume that the inter-arrival time is sampled

from an exponential distribution with a mean = 3. With sampling and an unfolding

grade of τ = 3 we have ∆t = 6,∆t = 2,∆t = 4. For component C2 described

formally by f2 assume the service time has an exponential distribution with a mean of

mean = 6 sampled as 11, 6, 1. Lastly, we assume component C3 formalized in f3 takes

1 unit of time to service each job, so ∆t = 1 for all samples. The values of f1, f2, and

f3 are presented in Table 7.2.
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Unfold ∆t Formula

f1

1 6 f1(∅, s1
1, 0) → (O1, s

1
2, 6)

2 2 f1(∅, s1
2, 6) → (O1, s

1
3, 8)

3 4 f1(∅, s1
3, 8) → (O1, s

1
4, 12)

f2

1 11 f2(I2, s
2
1, x ≥ 0) → (O2, s

2
2, x+ 11)

2 6 f2(I2, s
2
2, t ≥ x+ 11) → (O2, s

2
3, t+ 6)

3 1 f2(I2, s
2
3, r ≥ t+ 6) → (O2, s

2
4, r + 1)

f3

1 1 f3(I3, s
3
1, x
′ ≥ 0) → (∅, s3

2, x
′ + 1)

2 1 f3(I3, s
3
2, t
′ ≥ x′ + 1) → (∅, s3

3, t
′ + 1)

3 1 f3(I3, s
3
3, r
′ ≥ t′ + 1) → (∅, s3

4, r
′ + 1)

Table 7.2: Formal Component Representation

Composition

Next, the function composability is validated in the Composition step. Following Def-

inition 14 we obtain constraints for the values of x, t, r and x′, t′, r′ respectively. The

constraints on x, t, r are derived from the fact that the first call to function f2 has to take

place after at least one call to f1 has completed and produced output, since f2 requires

output from f1. Similarly for f3, the first call has to take place after f2 has produced

at least one output. Furthermore, the average time spent by messages in the connector

queues is considered. The average time in queue is obtained from the meta-simulation

validation layer. Assuming that the average times spent in the connector queues are

∆w1 = 2,∆w2 = 3,∆w3 = 1 and ∆w′1 = 4,∆w′2 = 3,∆w′3 = 2 for f2 and f3

respectively, the most trivial constraints that can be derived are:

x ≥ 6 + ∆w1, t ≥ x+ 11, t ≥ 8 + ∆w2, r ≥ t+ 6, r ≥ 12 + ∆w3 (7.6)

x′ ≥ x+ 11 + ∆w′1, t
′ ≥ x′+ 1, t′ ≥ t+ 6 + ∆w′2, r

′ ≥ t′+ 1, r′ ≥ r+ 1 + ∆w′3 (7.7)

Next, the constraints are solved by a constraint solver 1. Assume that a solution is:

(x = 8, t = 19, r = 25), (x′ = 23, t′ = 28, r′ = 29).

1We employ the Choco constraint solver [23].
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For the reference functions f ∗i , the constraint solver returns the same solution for

(x∗, t∗, r∗) and (x
′∗, t

′∗, r
′∗):

(x∗ = 8, t∗ = 19, r∗ = 25), (x
′∗ = 23, t

′∗ = 28, r
′∗ = 29).

Simulation

The above solutions dictate the interleaved execution schedules of the function calls.

Interleaved execution schedules are obtained for both composition and reference com-

position. For this simple model in which the component definitions are similar with

the exception of some attributes, the interleaved schedules shown in Figure 7.2(a) and

Figure 7.2(b) are the same. Each interleaved execution is represented as a Labeled

f1(∅, s1
1, 0)→ (O1, s

1
2, 6)

f1(∅, s1
2, 6)→ (O1, s

1
3, 8)

f1(∅, s1
3, 8)→ (O1, s

1
4, 12)

f3(I3, s
3
2, 28)→ (∅, s3

3, 29)

f3(I3, s
3
3, 29)→ (∅, s3

4, 30)

f2(I2, s
2
2, 19)→ (O2, s

2
3, 25)

f3(I3, s
3
1, 23)→ (∅, s3

2, 24)

f2(I2, s
2
3, 25)→ (O2, s

2
4, 26)

f2(I2, s
2
1, 8)→ (O2, s

2
2, 19)

(a) Composition

f ∗1 (∅, s1
1, 0)→ (O1, s

1
2, 6)

f ∗1 (∅, s1
2, 6)→ (O1, s

1
3, 8)

f ∗2 (I2, s
2
1, 8)→ (O2, s

2
2, 19)

f ∗1 (∅, s1
3, 8)→ (O1, s

1
4, 12)

f ∗3 (I3, s
3
1, 23)→ (∅, s3

2, 24)

f ∗2 (I2, s
2
3, 25)→ (O2, s

2
4, 26)

f ∗3 (I3, s
3
2, 28)→ (∅, s3

3, 29)

f ∗3 (I3, s
3
3, 29)→ (∅, s3

4, 30)

f ∗2 (I2, s
2
2, 19)→ (O2, s

2
3, 25)

(b) Reference Composition

Figure 7.2: Interleaved Execution Schedules

Transition System, L(M) and L(M∗) respectively, as shown in Figure 7.3.

Validation

In the Validation step, strong equivalence between L(M) and L(M∗) is validated using

the BISIMULATOR equivalence checker, part of the CADP toolset. For this simple

example, the BISIMULATOR returns true. As such, there is no need to validate a

possible weak equivalence by calculating the semantic metric relation Vε.

For a more complex example, we examine below the validation of a single-server

queue model in which the source generates two job classes.
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s1 s2 s10s9s6

s1 s2 s10s9s6
* * * * *

< f1, 6, O1 >

< f1, 6, O1 >

< f1, 2, O1 >

< f1, 2, O1 >

< f2, 2, O2 >

< f2, 2, O2 >

< f3, 1,− >

< f3, 1,− >

< f3, 1,− >

< f3, 1,− >

...
...

... ...

* * * * *

M

M∗

Figure 7.3: LTS Representation of Model Execution

Validation of Model Execution for a Single-Server Queue with Two Job Classes

For a more complex example, assume that the composition to be validated represents

a single-server queue in which the Source generates alternatively two classes of jobs

that have different service times when serviced by the Server component. The meta-

component information is presented in Table 7.3. Assume that the reference compo-

nents are the same as in the previous example.

Formal Component Representation & Unfolding and Sampling

Following the Unfolding and Sampling, step we obtain the formal component represen-

tation presented in Table 7.4.

Composition

Similar to the previous example, the function composability is validated in the Compo-

sition step. Following Definition 14, we obtain constraints for the values of x, t, r and

x′, t′, r′ respectively. The constraints on x, t, r derive from the fact that the first call to

function f2 has to take place after at least one call to f1 has completed and produced

output, since f2 requires output from f1. Similarly for f3, the first call has to take place

after f2 has produced at least one output. Furthermore, the average time spent by mes-

sages in the connector queues is considered. The average time in queue is obtained

from the meta-simulation validation layer. Assuming that the average times spent in the
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C1 C2 C3

Attribute

noJobsGenerated = 0 noJobsServiced = 0 noJobsPrinted = 0
timeout = 20 timeout = 20 timeout = 20
time = 200 time = 200 time = 200

timeScale = 1 timeScale = 1 timeScale = 1/5
interArrivalTime: exponential(3) serviceTime1 : exponential(6) ∆printingT ime = 1

serviceTime2 : exponential(3)
busy = false

transient(C1) : (noJobsGenerated == 1) transient(C2) : (busy == true) transient(C3) : (noJobsPrinted == 1)

Input

-

I1, constraints: I1, constraints:
origin = Source|Server origin = Server

range = 10; 35
type = double
class = C1

-

I2, constraints:

-
origin = Source|Server

range = 10; 35
type = double
class = C2

Output

O1, constraints: O1, constraints:

-
destination = Server destination = Server|Sink

range = 11; 15 range = 10; 20
type = int type = double
class = C1

O2, constraints:

- -
destination = Server

range = 11; 15
type = int
class = C2

State Machine

S1(∆interArrivalT ime)
[C1]−−→ S1O1[A1] I1S1 → S2[A1;A3;A4] I1S1 → S2

S1(∆interArrivalT ime)
[C2]−−→ S1O2[A2] I2S1 → S2[A1;A3;A5] S2(∆printingT ime)→ S1[A1]

S2(∆serviceT ime1)
C1−→ S1O1[A2]

S2(∆serviceT ime2)
C2−→ S1O1[A2]

[A1] = noJobsGenerated+ +; [A1] = (busy = true);
[A1] = noJobsPrinted+ +;[C1] = noJobsGenerated%2 == 0; [A2] = (busy = false);

[C2] = noJobsGenerated%2 == 1; [A3] = noJobsServiced+ +;
[A3] = class = C1;
[A4] = class = C2;

[C1] = class == C1;
[C2] = class == C2;

Table 7.3: Meta-component Information

Unfold ∆t Formula

f1

1 6 f1(∅, s1
1, 0) → (O1, s

1
2, 6)

2 2 f1(∅, s1
2, 6) → (O2, s

1
3, 8)

3 4 f1(∅, s1
3, 8) → (O1, s

1
4, 12)

f2

1 11 f2(I1, s
2
1, x ≥ 0) → (O2, s

2
2, x+ 11)

2 2 f2(I2, s
2
2, t ≥ x+ 11) → (O2, s

2
3, t+ 2)

3 1 f2(I1, s
2
3, r ≥ t+ 6) → (O2, s

2
4, r + 1)

f3

1 1 f3(I3, s
3
1, x
′ ≥ 0) → (∅, s3

2, x
′ + 1)

2 1 f3(I3, s
3
2, t
′ ≥ x′ + 1) → (∅, s3

3, t
′ + 1)

3 1 f3(I3, s
3
3, r
′ ≥ t′ + 1) → (∅, s3

4, r
′ + 1)

Table 7.4: Formal Component Representation
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connector queues are ∆w1 = 2,∆w2 = 3,∆w3 = 1 and ∆w′1 = 4,∆w′2 = 3,∆w′3 = 2

for f2 and f3 respectively, the most trivial constraints that can be derived are:

x ≥ 6 + ∆w1, t ≥ x+ 11, t ≥ 8 + ∆w2, r ≥ t+ 2, r ≥ 12 + ∆w3 (7.8)

x′ ≥ x+ 11 + ∆w′1, t
′ ≥ x′+ 1, t′ ≥ t+ 2 + ∆w′2, r

′ ≥ t′+ 1, r′ ≥ r+ 1 + ∆w′3 (7.9)

Next, the constraints are solved by a constraint solver. Assume that a solution is:

(x = 8, t = 19, r = 21), (x′ = 23, t′ = 24, r′ = 25).

For the reference functions f ∗i , the constraint solver returns the same solution for

(x∗, t∗, r∗) and (x
′∗, t

′∗, r
′∗):

(x∗ = 8, t∗ = 19, r∗ = 25), (x
′∗ = 23, t

′∗ = 28, r
′∗ = 29).

Simulation

The above solutions dictate the interleaved execution schedules of the function calls.

Interleaved execution schedules are obtained for both composition and reference com-

position, as shown in Figure 7.4(a) and Figure 7.4(b) respectively. Each interleaved ex-

f1(∅, s1
1, 0)→ (O1, s

1
2, 6)

f1(∅, s1
3, 8)→ (O1, s

1
4, 12)

f1(∅, s1
2, 6)→ (O2, s

1
3, 8)

f2(I2, s
2
2, 19)→ (O2, s

2
3, 22)

f2(I1, s
2
3, 22)→ (O2, s

2
4, 23)

f3(I3, s
3
1, 23)→ (∅, s3

2, 24)

f3(I3, s
3
2, 24)→ (∅, s3

3, 25)

f3(I3, s
3
3, 25)→ (∅, s3

4, 26)

f2(I1, s
2
1, 8)→ (O2, s

2
2, 19)

(a) Composition

f ∗1 (∅, s1
1, 0)→ (O1, s

1
2, 6)

f ∗1 (∅, s1
2, 6)→ (O1, s

1
3, 8)

f ∗2 (I2, s
2
1, 8)→ (O2, s

2
2, 19)

f ∗1 (∅, s1
3, 8)→ (O1, s

1
4, 12)

f ∗3 (I3, s
3
1, 23)→ (∅, s3

2, 24)

f ∗2 (I2, s
2
3, 25)→ (O2, s

2
4, 26)

f ∗3 (I3, s
3
2, 28)→ (∅, s3

3, 29)

f ∗3 (I3, s
3
3, 29)→ (∅, s3

4, 30)

f ∗2 (I2, s
2
2, 19)→ (O2, s

2
3, 25)

(b) Reference Composition

Figure 7.4: Interleaved Execution Schedules

ecution is represented as a Labeled Transition System, L(M) and L(M∗) respectively,
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as shown in Figure 7.5.

s1 s2 s10s9s6

s1 s2 s10s9s6
* * * * *

< f1, 6, O1 >

< f1, 6, O1 >

< f1, 2, O1 >

< f1, 2, O1 >

< f2, 3, O2 > < f2, 1, O2 >

...
...

... ...

* * * * *

M

M∗

< f3, 1,− >

< f3, 1,− >< f2, 2, O2 > < f3, 1,− >

Figure 7.5: LTS Representation of Model Execution

Validation

It is evident that the two LTS are not strongly equivalent (see the outgoing labels from

S6 and S∗6 ), hence the BISIMULATOR tool returns false. We calculate the semantic

metric relation Vε for ε = 0.5 and obtain the following related nodes: Vε = {(S1, S
∗
1),

(S2, S
∗
2), (S3, S

∗
3), (S4, S

∗
4), (S3, S

∗
5), (S5, S

∗
5), (S7, S

∗
6), (S7, S

∗
8), (S9, S

∗
9), (S10, S

∗
9),

(S10, S
∗
10)}, with {‖Si − S∗j ‖σ = 0.41|∀(i, j) 6= (5, 5)} and {‖S5 − S∗5‖σ = 0.45}. For

these values of Vε we can conclude that the model is not valid since Vε is not a weak

bisimulation relation between L(M1) and L(M∗).

Discussion

The above examples raise some interesting issues. Firstly, there is the well-known

difference between what system experts perceive as valid and what can be defined in a

computer system as a valid model for it to validate automatically and independently. In

our formal approach, a valid model is one that is close enough with respect to the states,

sequence and duration of component execution, to a reference model. Yet, what exactly

is close enough (i.e., the values of ε), as with all thresholds, remains an open problem.

For the examples presented in this section, the value of ε has been set to ε = 0.5 after

a series of experiments that looked at various valid and invalid composed models. Our

initial experiments seem to suggest that the value of ε depends mainly on the structure
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of the generic reference components, which we can say that depends on the application

domain. For example, if the reference components have a lot of specific attributes and

a state machine behavior with a large number of states, this will result in a high number

of nodes in L(M∗), for which a lower value of ε might be more suited.

Our second experiment for the validation of a single-server queue with two classes

of jobs showed another limitation of our approach, which stems from the hidden as-

sumptions that can appear in the reference components. In particular, the current ref-

erence components had a single time attribute that needed to be sampled. This did not

work well for the models with two classes of jobs because different service times were

necessary for each individual job class. For example, the single-server queue with two

classes of jobs described above would be considered valid if the reference model for the

Server component would contain two sampling time intervals instead of a single one.

This will be the inherent problem when creating reference generic components specific

to each application domain.

The problem of reference models remains. While it is acceptable to assume their

existence, their origin (i.e., who provides them) and content (i.e., timed attributes, inter-

nal structure) is still an open question. Previous approaches such as Petty and Weisel’s

[88] do not consider the nature of the reference components. This is the first time that

the exact structure of the reference models has been studied.

Lastly, the impact of a different semantic distance DS on the weak semantic bisim-

ulation relation remains to be studied.

7.3 Summary

Thorough study of semantic composability validation shows that in the literature there

are various degrees of model validity and validity is not a yes/no answer. Current ap-

proaches to validate composed models are theoretically elegant but do not apply to
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complex simulation models [88] or are computationally expensive and do not scale

[127, 77]. Based on our composability studies of reusing base components, we observe

that there are more invalid than valid models. Moreover, checking for absolute validity

is more expensive than if we employ a dual-step deny validity approach. Firstly, invalid

models are eliminated by validating general model properties for both instantaneous

and timed transitions. If the model passes this test, formal model execution validation

is performed. Table 7.5 presents a summary of our validation approach.

What How Outcome

1. Model Properties
- Component Communication - Communication is semantically aligned
- Concurrent Process Validation - Interleaved execution is correct (timeless).
- Meta-simulation Validation - Interleaved execution is correct

(time + other attributes.)

2. Formal Validation
Time-based validation - Quantitative measure of similarity
with reference model. to reference model.

Table 7.5: Summary of Semantic Composability Validation

In this chapter, we propose a formal approach for the validation of semantic compos-

ability. We introduce a novel time-based formalism, in which a simulation component is

represented as a function of its states over time. Based on our formal definitions of com-

position, simulation, and validity, we refine and specialize the formal validation process

to suit component-based simulations, in which time and state are of paramount impor-

tance and the behavior of the composed model over time is compared to the behavior of

a reference model. The comparison determines the equivalence of the schedules based

on a new semantic metric relation. Our theoretical analysis shows that the validation

process has polynomial complexity and our execution time analysis shows that our ap-

proach is scalable. We have fully implemented and integrated the validation process in

our CoDES component-based framework and tested our formal approach on models of

varying size and complexity from two application domains, Queueing Networks, shown

in Appendix B, and Military Training Simulations, shown in Appendix D.
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Prototype and Evaluation

In the design of the CoDES framework, three main considerations are: (i) to provide for

the reuse and composability of simulation components in an integrated approach with

low cost for each simulation life-cycle step, (ii) the accurate semantic validation of the

composed model to increase model credibility, and (iii) a component-based framework

that is easily implemented. This chapter presents an overview of our implemented pro-

totype of the CoDES framework. Different application domains can co-exist seamlessly

in the CoDES framework, with reuse possible both within and across application do-

mains. We demonstrate our approach for two application domains, namely, Queueing

Networks and Military Training Simulations.

We show the benefits and inherent trade-offs of our proposed approach as they are

observed in two main experiments. In the first experiment, we evaluate the cost of

semantic validation of data-driven components in the Military Training Simulations

application domain. We identify trade-offs between accuracy and computational cost

and evaluate the state space growth and runtime execution of the validation process.

Furthermore, to determine the scalability of our deny validity approach, as well as the

incremental cost of each step, we evaluate the runtime execution of semantic compos-

ability validation for large models in the Queueing Networks application domain. In
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the second experiment, we analyze the benefits and cost of model component reuse by

composing a grid system in the Queueing Networks application domain. The grid sys-

tem has sixteen components and is observed from the conceptual stage to the validated

model, using base and model components to showcase different types of reuse.

8.1 Prototype Design and Implementation

Figure 8.1 presents an overview of the proposed solutions for the modular design pro-

posed in Chapter 3. The structure of our prototype implementation is according to the

four-step life-cycle of component-based modeling and simulation proposed in Chapter

3. The verification of syntactic composability is achieved by the SyntaxVerifier mod-

ule that employs the proposed EBNF compositional grammar. In model discovery and

selection, the ModelLocator module calculates the Matching Index using the COSMO

ontology. Lastly, in semantic composability validation, the SemanticValidator module

implements our proposed deny-validity approach.

A high level overview of the Java prototype implementation of the CoDES frame-

work is shown in Figure 8.2. The CoDES prototype implementation revolves around the

three key modules discussed above: SyntaxVerifier, ModelLocator, and SemanticVal-

idator. All modules rely on the meta-component representation in COML. The COML

specification is described in XSD and each meta-component is defined by a XML file.

The COSMO ontology is implemented in RDF using the Protege tool. The SyntaxVer-

ifier module implements the Earley parser algorithm [37] and relies on an EBNF rep-

resentation of the CoDES composition grammar. In model discovery and selection by

the ModelLocator module, we employ the Jena reasoner to query the COSMO ontol-

ogy and reason about similarity. The SemanticValidator module relies on three auxil-

iary modules for validation: ConcurrentProcessValidation, MetaSimulationValidation,

and FormalValidation. ConcurrentProcessValidation employs the SPIN model checker
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<mandatoryAttributes >                     <specificAttributes>

<name>tank1</name>              <attribute name="health">
<type>Tank</type>  <name>health</name>
<ad>tn</ad>             <value>100</value></attribute>
<coml>tank1.coml</coml>             <attribute name="ammo">
<author>unknown</author> <name>ammo</name>
<version>0.0</version> <value>50</value></attribute>
<date>2009-06-06</date>             <attribute name="range">
<lastUsed>2009-06-06</lastUsed> <name>range</name>
<timeScale>1</timeScale> <value>7</value></attribute> ...

</mandatoryAttributes>              <specificAttributes>                                   
<behavior>

<inputs><data name="I1"/><data name="I2"/> </inputs>
<outputs><data name="O1"/><data name="O2"/></outputs>
<initial name="S1"/>
<states><state name="S1" description="existence"/></states>
<durations><duration name="mt" description="moving time" distribution="exponential" 

mean="movingTime"/> <final name="S1"/>  </transition> ...

Figure 8.1: Overview of CoDES Prototype Design
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Figure 8.2: CoDES Implementation Overview

to verify a Promela specification of the composed model. MetaSimulationValidation

translates the composition into a Java class hierarchy that is subsequently executed.

Lastly, FormalValidation employs the BISIMULATOR tool from the CADP toolset to

reason about equivalence with the reference perfect model. Detailed class diagrams are

presented in Appendix E.

8.2 Composable Queueing Networks Simulations

To add a new application domain to the CoDES framework involves extending the

COSMO ontology with descriptions of the domain base components, including defining

hierarchies for attributes and properties. Next, the framework composition grammar is

extended by adding composition rules specific to the new application domain. We have

presented an overview of the Queueing Networks application domain in Chapter 3.

158



Chapter 8: Prototype and Evaluation

Next, Chapter 4 has shown how the addition of a new application domain is reflected

in the basic COSMO ontology. A diagram of the COSMO ontology for Queueing Net-

works is shown in Figure 5.4. For any new application domain added to the CoDES

framework, a new specific composition grammar must be added to the CoDES Com-

position Grammar. In this case, composition rules specific to the Queueing Network

application domain define the connectivity of the base components (i.e., source, server,

sink) to form different queueing network systems using the three types of CoDES con-

nectors, as shown in Chapter 4.

8.3 Composable Military Training Simulations

In a similar manner, we extend the COSMO Ontology and the CoDES composition

grammar to include the new Military Training Simulation application domain. For sim-

plicity, we present a Military Training application consisting of two base components,

namely, a Tank that models a tank unit, and SoldierTroop that models a troop of soldiers.

The addition of the military training base components to the repository is reflected in

the ontology and in the composition grammar, as shown in Figure 8.3 and Figure 8.4

respectively.

Component

BaseComponent ModelComponent

QNBaseComponent MTSBaseComponent

Tank SoldierTroop

health ammo movingTimeMean shootingTimeMean

Distribution

is_a is_a

is_a is_a

is_ais_a

has_ShootingTimeDistrhas_MVTimeDistr

has_Health has_Ammo has_ShootingTimehas_MVTime

Figure 8.3: Extended COSMO Ontology for Military Training Simulation Domain
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MTSBaseComponent is added as a new subclass of the BaseComponent class, with

Tank and SoldierTroop as its subclasses. Besides having attributes and behavior like

their superclass, the Tank and SoldierTroop components must have a movingTimeMean

attribute and a moving time Distribution, and a shootingTimeMean and a shooting time

Distribution, as well as a health and an ammo attribute. hasMVTime, has ShootTime,

and hasMVTimeDistr, has ShootTimeDistr are subproperties of has Attribute and

has Distribution respectively.

# CoDES Reuse Rule
Model Comp ::= QN Simulator | MC Simulator
...
# Application Domain Composition Rules
# Military Training Simulations (MTS)
# Base Components
MTS B Comp ::= Tank | SoldierTroop

# MTS Composition Rules
MTS Simulator ::= SingleTankSingleSoldier |

MultipleTankSingleSoldier | MTMS ...
SingleTankSingleSoldier ::= Tank ConO SoldierTroop ConO Tank
MultipleTankSingleSoldier ::= (Tank ConJ SoldierTroop)+ ConF (Tank)+

Figure 8.4: Composition Grammar for Military Training Application Domain

Since this is the first time we introduce the Military Training application domain

in this thesis, we discuss in detail how a composed model for the Military Training

application domain is developed. As shown in Figure 8.5, a new simulation model is

developed using our graphical input model interface by drag-and-drop icons represent-

ing base components of soldiers and tank. The conceptual model is a closed system

with feedback loop. The conceptual model is syntactically verified against the new ex-

tended composition grammar described in Figure 8.4. Once a valid answer is returned,

each base component is discovered as discussed in Chapter 5.

In contrast with the Queueing Networks application domain, where the base com-

ponents are entities with simple behavior, the components in the Military Training ap-

plication domain have more complex behaviors and are defined as data-driven. The
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Figure 8.5: Tank vs Soldier Troop Training Simulation

complexity in terms of the number of attributes and elaborate logic has impact on the

COML component representation and on the semantic validation process. For example,

the state of the Tank component changes dynamically based on the GPS coordinates

of its enemy, and many internal attributes such as available ammunition, damage, and

attack tactics (e.g. direct charge, shoot and scoot, ambush) [129]. In this respect, the

tank component is considered to be data-driven. Because of the complex nature of the

components, which results in a very large simulation state space, the validation of a

composed model from data-driven components is a complicated and lengthy process

resulting in increased costs and development time [30]. Let us assume that the com-

ponents have been discovered according to the process described in Chapter 5 and that

their meta-components, tank1 and troop1, are described in Table 8.1.

The combined state machines for the two components is shown informally in Figure

8.6, with full and dashed lines representing transition changes and message exchange,

respectively. Both tank and soldier troop have an initial position on a two dimensional

grid, a number of ammunition shots, and a speed with which they move. For both com-

ponents, the moving time and the shooting time are sampled from exponential distribu-

tions with various mean values. When a component receives the opponent’s position,

it will move towards the opponent if the opponent is not in range (condition C1 and

attribute change A1), or it will otherwise fire if it has enough ammunition and is not

severely damaged (condition C2 and attribute change A2). When a component is shot
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Entity Attribute Input Output State Machine

tank1

health = 100 I1, constraints: O1, constraints: I1S1(∆movingT ime)
C1−→ O1S1A1

range = 7 class = PositionInfo class = PositionBroadcast I1S1(∆shootingT ime)
C2−→ O2S2A2

ammo = 50 origin = SoldierTroop destination = SoldierTroop I2S1(∆movingT ime)
C1−→ O1S1A3

movingTime: exponential(5) I2, constraints: O2, constraints: I2S1(∆shootingT ime)
C2−→ O2S2A4

shootingTime: exponential(4) class = InputF ire class = OutputF ire I2S1
C3−→ O1S1

usableThreshold = 20 origin = SoldierTroop destination = SoldierTroop I1S1
C3−→ O1S1

null S2(∆movingT ime)→ O1S1A1

positionX = 20 C1 : no opponents in range
positionY = 15 C2 : at least one opponent in range
speed = 10 C3 = health < usableThreshold
team = red A1 : modify position
. . . A2 : modify target position
transient(tank1) : (ammo == 49) A3 : modify position, health

A4 : modify target position, health

troop1

health = 100 I1, constraints: O1, constraints: S0 → O1S1

range = 2 class = PositionInfo class = PositionBroadcast I1S1(∆movingT ime)
C1−→ O1S1A1

ammo = 20 origin = Tank destination = Tank I1S1(∆shootingT ime)
C2−→ O2S1A2

movingTime : exponential(3) I2, constraints: O2, constraints: I2S1(∆movingT ime)
C1−→ O1S1A3

shootingTime : exponential(2) class = InputF ire class = OutputF ire I2S1
C3−→ O1S1

usableThreshold = 40 origin = Tank destination = Tank I2S1
C3−→ O1S1

positionX = 40 C1 : no opponents in range
positionY = 45 C2 : at least one opponent in range
speed = 3 C3 = health < usableThreshold
team = blue A1 : modify position
. . . A2 : modify target position
transient(troop1) : (ammo == 49) A3 : modify position, health

A4 : modify target position, health

Table 8.1: Meta-component Information in Tank vs SoldierTroop Scenario
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Figure 8.6: Data-driven Component Interaction
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at by receiving an InputF ire message, it will be damaged (A3 and A4) depending on

the closeness to the impact point. The tank component will move immediately from its

position after firing at its opponent (state S2). This is the implementation of a “shoot

and scoot” tactic in which the tank moves after firing to prevent counter-artillery at-

tacks [129]. For simplicity, the components assume that there are no obstacles on the

two-dimensional grid battleground. Both tank and soldier troop can obtain the GPS

coordinates at any time of their respective enemy.

We propose a new version of COML to cater for data-driven components in two

ways [121]. Firstly, attribute names and values can be specified in the input and out-

put data. Secondly, data oriented transition conditions and attribute changing sections

can be specified in the behavior representation. For example, in the previous COML

version, the transition conditions such as C1, . . . , C4 from Table 8.1 could contain only

simple logic such as the one from C3. In the new COML version, conditions, such

as C1, . . . , C4, and attribute change sections, such as A1, . . . , A4, can contain complex

logic based on specific input data attribute values, such as the opponent’s positions in

Figure 8.7. The conditions and attribute-changing sections are parsed and evaluated

during our validation process by condition and attribute parsers that determine the con-

dition truth value and the new attribute values respectively. Consequently, the adjoining

parsers have also been modified to include input and output data attribute values as well

as more complex logic.

<component> ...
<behavior> ... : inputs <data type="input" name="I1">
<condition name="C1"><value> int [][] positions = new int [100][2]; <class>PositionInfo</class>

:methods positions = : init : array : input : I1 : position ; <constraints> <constraint>
boolean all ( int [][] positions , int n){ int position length = 1; <type>origin</type>
for ( int i=0; i&lt ;n; i++){ :preamble <value>Soldier</value>
if (!( positions [ i][0]& lt ; positionX−range−1 || boolean alive = ( health &gt;= usableThreshold ); </constraint></constraints>

positions [ i][0]&gt ; positionX+range+1 || :main <auxAttributes>
positions [ i][1]& lt ; positionY−range−1 || System.out . println ( all ( positions , position length ) <auxAttribute name="position">
positions [ i][1]&gt ; positionY+range+1)) &amp;&amp; alive); <X></X>

return false ;} </value> <Y></Y>
return true ;} </condition> </auxAttribute></auxAttributes>

</data>

Figure 8.7: Data-driven Component Representation
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As discussed in Chapter 3, each component input and output message is defined in

COML by data constraints. The constraints describe the primitive data present in the

message (if any), as data type and range constraints, as well as the type of components

that can receive or send the output or input message respectively, as destination and

origin constraints [125]. By type we mean either a base component type such as Tank

or SoldierTroop, or a general ModelComponent type that describes reused model com-

ponents. The base component types are specific to each application domain and are

defined when the new domain is added to the framework. Condition C1 in the tank1

state machine aims to establish if any of the tank targets are within range. The con-

dition parser that evaluates condition C1 will construct a .java file with the structure

determined by the :methods, :inputs, :preamble, :main tags. This file will be

compiled and executed and the result of the execution (true or false) will determine

the logical value (true or false) of condition C1. Similar structure is found in the

attribute values modification section in our COML schema.

8.4 Evaluation Methodology

This section evaluates the implemented prototype in two experiments. Firstly, we pro-

pose to evaluate the cost of semantic validation in data-driven simulation using the Mil-

itary Training application domain as an example. We validate a composed model from

the military training domain and evaluate the trade-off between accuracy and state space

explosion by examining two scenarios, with and without data-driven modeling respec-

tively. Next, we compare the runtime of the semantic validation of Queueing Network

models with the runtime of semantic validation of Military Training composed models.

Lastly, we evaluate the incremental cost of semantic composability validation for large

models in the queueing networks application domain. The second experiment show-

cases the benefits and cost of model reuse by calculating the runtime of each life-cycle
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step in the development of three composed Queueing Networks models with increasing

number of components. All experiments have been executed on a machine with Intel

Core 2 Duo CPU E6550 @ 2.33 GHz processor and 4 GB RAM, running Ubuntu Linux

8.04 (64 bit).

8.4.1 Cost of Semantic Validation

This experiment evaluates the cost of semantic validation of a composed data-driven

simulation model as shown in Figure 8.5. We first evaluate an accuracy trade-off be-

tween a data-driven representation with a large state space, and a higher level repre-

sentation, which does not consider data-driven executions, but has in turn a small state

space. This trade-off is evident in the validation of general model properties, specifi-

cally in Concurrent Process Validation. Next, to show the overall cost of validation, we

compare the runtime the formal validation of model execution for a data-driven model,

with various non-data driven models from the Queueing Networks application domain.

Lastly, we evaluate the cost of validating queueing network models with up to 1,000

components.

Let us assume that the composed model from Figure 8.5 passes syntactic verifica-

tion and the best candidates returned by the discovery service for the Tank and Sol-

dierTroop base components are components tank1 and troop1 respectively as shown

in Table 8.1. The composed model can then be semantically validated following the

process described in Chapters 6 and 7.

Accuracy vs State Space Explosion

As discussed in Chapter 6, the Concurrent Process Validation layer validates the com-

ponent coordination of the composed model. This layer guarantees that safety, liveness,

as well as deadlock freedom hold for all possible interleaved executions of instanta-
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neous transitions of the composed simulator abstracted as a composition of concurrent

processes. A composed model is invalid if it is found to be deadlocked, or if any of the

components invalidate their safety or liveness properties. The behavior of each meta-

component modeled as a state machine is translated into a logical specification using a

logic converter module.

Figure 8.8(a) shows a possible translation of the component state machine into a

Promela specification.

 1 mtype {MSG}; chan to1 = [10] of {mtype}; ...
 2 proctype CON_ONE_TO_ONE(chan in, out)
 3 {do :: in ? MSG -> out ! MSG; od}
 4 
 5 proctype TANK(byte id; chan in, out){
 6 S1: atomic{ if :: in ? MSG ->
 7  if :: out ! MSG -> progress: printf("MSG sent\n");
 8 goto S1; fi fi}}
 9
10 proctype SOLDIERTR(byte id; chan in, out){
11 bit initial = 1;
12 S0: atomic{ if
13 :: (initial == 1) -> initial = 0;
14  if :: out ! MSG -> goto S1; fi fi}
15 S1: atomic{ if
16 :: in ? MSG ->
17 if :: out ! MSG -> progress: printf("MSG sent\n");
18 goto S1; fi fi
19 }}
20 init{ run TANK(1, to1, from1);
21 run SOLDIERTR(2, to2, from2);
22 run CON_ONE_TO_ONE(from1, to2);
23 run CON_ONE_TO_ONE(from2,to1); }

(a) Simple Promela Specification

  1 proctype SOLDIERTR(byte id, health, ..., posX, posY; chan in, out)  
  2
  3 {bit initial = 1; byte posXFire, posYFire;
  4 byte msgPosX, msgPosY, auxX, auxY, auxDistance,...;
  5 S0: atomic{ 
  6 if  :: (initial == 1) -> initial = 0;
  7  if :: out ! MSG_POS -> goto S1; fi fi}
  8 S1: atomic{ if atomic{if
  9 :: in ? MSG_FIRE, msgPosX, msgPosY -> health = health - 10;   
10  
11  if :: health < health_threshold -> 
12       if :: out ! MSG_DIE -> goto end; fi
13  :: else
14     if :: out!MSG_POS, posX, posY -> progress: printf("MSG sent\n");
15 
16      goto S1;fi
17   fi
18 :: in ? MSG_DIE -> out ! MSG_DIE;goto end;  
19 #GPS coord
20 :: in ? MSG_POS, msgPosX, msgPosY ->
21  if :: !(msgPosX<posX-range||msgPosX>posX+range ||msgPosX<posY-range
22 ||msgPosY<posY+range)->
23 if :: ammo>0->out!MSG_FIRE,msgPosX,msgPosY; ammo--; goto S1; fi
24  :: else -> auxDistance = distance;
25 :: msgPosX<posX->auxX = msgPosX+range; 
26 :: else -> auxX = msgPosX - range; fi} ...
27 //similar to calc nxt position 
28 if #broadcast position
29 :: out ! MSG_POS, posX, posY -> goto S1; fi
30 fi fi } 
31 end: skip; } 
32 init{
33 run TANK(1, 100, 20, 5, 40, 45,  to1, from1); 
34 run SOLDIERTR(2, 100, 10, 5, 15, 20, to2, from2);  
35 run CON_ONE_TO_ONE(1, from1, to2);
36 run CON_ONE_TO_ONE(2, from2,to1); }

(b) Detailed Promela Specification

Figure 8.8: Tank vs SoldierTroop in Promela

Each state is transformed into a Promela label, and the label includes input and/or

output actions as specified by the meta-component behavior, as well as conditions on at-

tribute values and attribute modifications. Transitions between states are instantaneous.

Thus, time attributes such as ∆shootingT ime and ∆movingT ime from Table 8.1 are

ignored. In the init method on line 20, communication channels are assigned to the
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connectors and components according to their connection topology. Similar to the be-

havior of connectors in the real system, communication in the Promela specification is

asynchronous. Liveness is specified using progress labels such as the one on line

7, and safety is specified using assert statements. Next, the Promela specification is

validated by the SPIN model checker [14].

The above example considers a non data-driven approach to modeling, in which en-

tities in Promela are modeled strictly by considering a high-level view of component

coordination. This was the case previously for the Queueing Networks application do-

main, where the non data-driven state machines could be almost exactly transformed

into Promela and the process was easily automated [119]. For example, if we were

to interpret component coordination strictly from a message passing perspective, the

resulting Promela specification would be that presented in Figure 8.8(a). This type of

interpretation is easily automated and focuses only on component coordination. How-

ever, it lacks expressivity and any coordination logic. On the other hand, if we were

to exactly transform the component state machines from their COML specification into

Promela like in Figure 8.8(b) for the troop1 component, we would obtain a more exact

description of the attack but the translation process becomes difficult to automate.

We evaluate the two Promela models from Figure 8.8(a) and Figure 8.8(b) and

present the results in Table 8.2. For a comprehensive evaluation we analyze ten sce-

narios. We first evaluate a training scenario where a single Tank component is fighting

a single SoldierTroop component. We analyze this scenario from a simplified and data-

driven perspective. Next, we evaluate a training scenario where five Tank components

are put against five SoldierTroop components, in two situations, where pairs of Tank and

SoldierTroop components fight in parallel, and where any Tank and any SoldierTroop

component can attack each other. We analyze these scenarios from a simplified and

data-driven perspective. We repeat these experiments for a composed simulator with
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ten Tank and ten SoldierTroop components.

In our evaluation, we consider the number of components, the size of the SPIN state

vector, which is a measure of how many variables are evaluated and ideally should be

as small as possible [14], the number of states that are parsed, the memory cost and the

execution time of the SPIN model checker in validating the respective Promela models.

The results presented are an average of five runs.

No. Model #Components State Vector # States Memory Execution
Size (bytes) (MB) Time (s)

1 Simplified Tank vs SoliderTroop 2 108 35 2.59 ≤ 0.01
2 Simplified 5 Tank vs 5 SoldierTroop (one-to-one) 10 436 50,729 3.12 2.410
3 Simplified 5 Tank vs 5 SoldierTroop (dispersed) 10 1,024 3,759,596 261.05 243.67
4 Simplified 10 Tank vs 10 SoldierTroop (one-to-one) 20 760 3,317,524 283.29 384.00
5 Simplified 10 Tank vs 10 SoldierTroop (dispersed) 20 1,380 5,145,958 449.81 435.21
6 Data-driven Tank vs SoldierTroop 2 208 3,475 2.50 0.06
7 Data-driven 5 Tank vs 5 SoldierTroop (one-to-one) 10 960 1,927,277 126.99 72.63
8 Data-driven 5 Tank vs 5 SoldierTroop (dispersed) 10 1,628 1,820,875 106.94 91.12
9 Data-driven 10 Tank vs 10 SoldierTroop (one-to-one) 20 1,900 4,366,559 499.92 401.80

10 Data-driven 10 Tank vs 10 SoldierTroop (dispersed) 20 2,512 5,460,383 466.21 1,639.40

Table 8.2: Accuracy vs State Space Explosion in Semantic Validation

Two observations are evident from Table 8.2. Firstly, state space explosion is evi-

dent even when simplified, non data-driven modeling is employed. Depending on the

scenario, this can result in execution times in the minutes range (for a one-to-one sce-

nario), or in the tens of minutes range (for a dispersed scenario), for models with 20

components. The number of components directly influences state space explosion be-

cause an increase in the number of components implies an increase in the number pro-

cesses whose interleaved execution must be analyzed, and in the number of variables

that need to be analyzed. Additionally, the state space explosion is also influenced by

the patterns of communication between the connected components, since this directly

affects the number of possible combinations of interleaved executions that is analyzed

by the SPIN model checker.

Table 8.2 shows that the state vector is almost double the size in the data-driven

approach, compared with the simplified approach. Furthermore, the number of states

parsed by the SPIN model checker is almost 100 times larger in the data-driven case. As
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it can be seen, the data-driven approach fares much worse than the simplified approach

for all measures considered. While these results are only for small models, the potential

of state-space explosion for larger models is evident. Nonetheless, it is important to

highlight here that the expressivity and accuracy gain in the data-driven approach is

highly appealing and can justify the state space explosion cost, for which optimization

methods such as symbolic execution [107] exist.

Runtime Evaluation

The cost of data-driven modeling is more evident in the formal validation of model ex-

ecution. We compare in this section the runtime of the formal model execution layer

for two application domains, namely, Queueing Networks and Military Training Simu-

lations. The base components in Queueing Networks do not employ data-driven mod-

eling, have a normal communication overhead, and a simplified logic. In contrast, in

the Military Training application domain, base components employ data-driven mod-

eling, have a high communication overhead, and a complex logic. For example, the

server component in the Queueing Networks application domain is modeled as a sim-

ple service unit, which receives a job, services it for a time interval that is sampled from

a specific distribution, and outputs the job on its output communication channel. In

contrast, a Tank base component receives coordinate information from its opponents,

and based on that information decides whether to shoot, move towards its target, etc.

Similarly, the Tank component might move after firing according to a shoot and scoot

strategy, or might remain in the same position.

Table 8.3 presents our results. We evaluate the runtime of the formal validation

of model execution layer for a single-server queue and a grid system example in the

Queueing Networks application domain. For both systems we consider cases where

the composed model is both valid and invalid. The invalid models consider Source and

Server components that process two classes of jobs. Similarly, for the Military Training
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application domain we consider valid and invalid Tank vs SoldierTroop scenarios.

Model # Components # LTS States Results Execution
Time (s)

Queueing Networks Application Domain
Single-Server Queue 3 12 Valid 1.97
Single-Server Queue - 2

3 12 Invalid 4.72
job classes
Grid System 11 51 Valid 5.54
Grid System - 2 job

11 51 Invalid 8.29
classes

Military Training Application Domain
Tank vs Soldier Troop 2 21 Valid 6.20
Tank vs Soldier Troop 2 21 Invalid 22.30

Table 8.3: Runtime Evaluation of Formal Validation of Model Execution

As it can be seen, the cost of the formal validation of model execution scales well

for the Queueing Networks application domain, with values of around two seconds for

a composed model with three components, and less than nine seconds for a composed

model with eleven components. However, in the case of the Military Training applica-

tion domain, a composed model with two components has a runtime that is almost ten

times higher than a model with a comparable number of components in the Queueing

Network application domain. This is a direct result of part of the formal validation of

model execution process, in which we calculate related composition states using the

definition of Vε. More specifically, in the calculation of Vε we consider related states

with respect to the related component attributes and their values. The COSMO ontol-

ogy is queried to determine the relation between all pairs of component attributes. It

follows that a large number of attributes will incur an increased number of ontology

queries, which prove costly when the size of the ontology increases. This is the case in

the Military Training application domain, where the average number of attributes per

base component is 20, as opposed to the Queueing Networks application domain, which
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has an average of 7.6 attributes per component.

We present a detailed analysis in Table 8.4. The execution time for the formal val-

idation layer is clearly affected by the size and complexity of the components. The

runtime increases with the number of attributes per component because in the calcula-

tion of Vε all combinations of component attributes are considered when querying the

COSMO ontology. Similarly, a larger number of state transition conditions translates

into increased number of calls to the condition parsers in the evaluation of possible state

transitions.

Single Tank vs
Server Queue Soldier Troop

Data-driven x X
# comp 3 2
average

#states/comp 1.6 2
average

#attributes/comp 7.6 20
average

#delay time/comp 1 2
Runtime (s)
Exact Match 3.0 6.2

Vε 1.7 16.1

Table 8.4: Runtime Evaluation for Different Application Domains

To evaluate the scalability of our validation approach, we measure the runtime cost

of semantic validation for queueing network models with ten, twenty, and a thousand

components and present an average of ten runs in Table 8.5. For simplicity, the com-

posed models represent serial connections of single-server components. Our evaluation

shows that our validation process scales well even for models with a large number of

components. However, it is important to note here that while the composed models have

a large number of components, their complexity in terms of connections, the number of

events, and the number of state and attribute changes is reduced. In particular, the com-

posed model with n = 1, 000 components had around 7, 600 attributes, and average of
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Validation Step Experimental Analysis - Runtime (s)
n = 10 n = 20 n = 1, 000

1. Validation of General
Model Properties
A. Validation of Component

< 0.1 0.1 0.5
Communication

B. Concurrent Process
5.3 6.7 230.4

Validation
C. Meta-Simulation

51.1 52.4 130.9
Validation

2. Formal Model Validation 6.8 10.3 97.6
Total 63.3 69.5 459.4

Table 8.5: Validation of Composed Models with Large Number of Components

1.6 states per component, and an arrival rate of 0.3 evts/s. The two labeled transition

systems in formal model validation had a size of 5,994 nodes, for a value of τ = 3.

This is equivalent to 5,994 distinct composition states that had to be analyzed for close-

ness. For more complex models, such as grid systems or military training simulation

applications, detailed also in the following sections, we have found that all validation

steps scale well, with the exception of Concurrent Process Validation, which reaches

state space explosion early. Moreover, Concurrent Process Validation shows a tendency

towards state space explosion even for the simple serial connection in this example.

This is the inherent limitation of model checking. However, several techniques such as

symbolic execution [107] exist to contain this problem.

More importantly, Table 8.5 shows an increase in validity accuracy and inherently

in model credibility, at the expense of an increase in computational cost. This is the

inherent trade-off of our deny validity approach. However, our observation of real-

life simulation problems leads us to believe that for a simulation problem, there are

more invalid models than there are valid. Thus, our deny validity approach, through its

eliminating stages, will discard invalid models without the need to go through the entire

validation process. Nonetheless, if a model is not discarded, and thus the entire process
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is executed, the credibility in its validity is highly increased.

8.4.2 Benefits and Cost of Model Reuse

This experiment evaluates the benefits and cost of model reuse. We employ the CoDES

prototype to compose and validate the grid system from Figure 8.9, which contains two

virtual organizations (VO) sharing a grid meta-scheduler job queue [42]. Each virtual

organization consists of a local job scheduler and different types of computational re-

sources. Assume the meta-scheduler accepts both CPU and I/O intensive jobs that can

be serviced by V O1, whereas V O2 only services CPU intensive jobs.

C2C1

C3

C4

C5

V O1

V O2

Local
Scheduler

Local
Scheduler

- CPU_Intensive
- IO_Intensive - CPU_Intensive

- IO_Intensive

- CPU_Intensive
- IO_Intensive

- CPU_IntensiveMeta-scheduler

C6

C7

C8

C9

C10

C11

Figure 8.9: A Grid Computing System Composed using Base Components

In this experiment, we evaluate the variation of the runtime of each life-cycle step

with the number of components. To showcase the benefits of model component reuse,

we consider two scenarios, namely when only base components are used for model

development, and when reused model components are employed. Firstly, we determine

the runtime for each step for the grid system in Figure 8.9. Next, we evaluate a system

in which another virtual organization with four components, V O3, has been added as

shown in Figure 8.10(a). We next add another virtual organization, V O4, in the same

manner. To determine if the reuse of model components brings any benefits with respect

to runtime, instead of V O3 composed from base components, we introduce a model
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component that is structurally equivalent, as shown in Figure 8.10(b). We repeat the

process for V O4.
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(a) Using Base Components
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(b) Using Model Components

Figure 8.10: A Grid System with Three Virtual Organizations

We execute 10 sample runs for each life-cycle step and present the average runtime

results in Table 8.6. As expected, the runtime of each step increases with the number

of components. While the cost of runtime for most life-cycle steps is not high, ranging

from several milliseconds to at most a minute, some steps can be very costly, with up to

ten minutes in runtime. Through this experiment we are able to pinpoint the steps that

need improvement and determine the particular conditions under which performance is

decreased.

The benefits of reused model components are evident in syntactic composability

verification. Here the reuse of model components will decrease the average runtime by
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Life-cycle Step

Experimental Analysis - Runtime (s)
Base Components Model Components

Current Add V O3 Add V O4 Add V O3 Add V O4

(n = 11) (n = 15) (n = 19) (n = 13) (n = 15)

Syntactic Composability
15.36∗10−3 15.86∗10−3 19.38∗10−3 13.08∗10−3 14.34∗10−3

Verification

Model Discovery &
0.95 1.31 1.65 69.19 137.43

Selection
Semantic Composability
Validation
1. Validation of General

Model Properties
A. Validation of Component

0.09 0.11 0.12 0.10 0.11
Communication

B. Concurrent Process
71.60 77.60 85.40 77.60 85.40

Validation
C. Meta-Simulation

51.03 52.40 57.38 52.40 57.38
Validation

2. Formal Model Validation 6.76 10.32 14.70 10.32 14.70

Table 8.6: Cost of Composability for a Grid Computing System

up to 26%. It can be seen that the runtime when using model components for n = 13

is, unexpectedly, smaller than the runtime for n = 11 in the base component case. This

is because the reuse of model components determines a smaller number of symbols in

the production string to be verified by the grammar parser.

However, the runtime of the model discovery step shows a surprisingly large in-

crease when reused model components are employed. However, on a closer look this is

to be expected, because the number of model components in the repository is very high

(about 2000 model components) and as such significantly more comparisons are per-

formed in contrast to using only base components. Furthermore, in the current CoDES

repository, model components are very similar (because of their black-box view), and as

such our proposed initial elimination as discussed in Chapter 5, do not work. Efficient

organization of the repository is beyond the scope of our current work.

Model component reuse offers yet no benefit for semantic composability. This is be-

cause in the current implementation, the validation of semantic composability is not a
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closed operation, and as such validation results for model components cannot be reused.

However, some parts of the validation process could be reused under specific condi-

tions. For example, the time moments when the model component has produced output

during meta-simulation can be saved as timestamps and reused later. As such, the meta-

simulation validation of the model component can be reused as a black-box in the new

validation process.

As it can be seen, the cost of the first stage of semantic composability validation has

a very low cost. However, the credibility in the validity of the model is also reduced,

because this stage only validates component communication. The credibility in the

validity of the model increases with each validation stage, but also with incremental

cost for each step.

8.5 Summary

The Java CoDES prototype follows closely the proposed life-cycle of a component-

based simulation through three main modules, namely, SyntaxVerifier which checks

the syntactic composability of the composed model, ModelLocator which discovers

and selects the components based on the COSMO ontology, and SemanticValidator,

which performs semantic validation of the composed model. All modules rely on the

CoDES component representation in COML and the COSMO ontology. In addition,

the SyntaxVerifier module employs an implementation of the Earley parsing algorithm,

which parses composition rules from the CoDES composition grammars represented in

EBNF. The COSMO ontology is queried using the Jena reasoner. In semantic compos-

ability validation, tools such as the SPIN model checker, the Choco constraint solver,

and CADP toolset are employed. Our experiments employ two application domains,

Queueing Networks and Military Training Simulations.

Our experiments show that while data-driven modeling in the Military Training sim-
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ulation application domain provides a high level of detail that in turn increases the

validation accuracy, it also incurs a runtime cost. Furthermore, the translation from a

data-driven composed model to a representation of a similar level of detail for validation

is a process that is difficult to automate. Nonetheless, we show that our validation pro-

cess for application domains such as Queueing Networks is scalable, with the runtime

cost of around seven minutes for models with up to 1,000 components on a commodity

desktop PC. Moreover, our deny validity approach has increasing accuracy and credi-

bility, but with incremental computational cost. While this is an inherent trade-off of

our approach, most composed models will be discarded early in the validation process

and will not incur the entire cost. On the other hand, composed models that will go

through the entire validation process will have increased credibility.

Our second experiment shows the benefits and cost of model reuse. As expected,

the use of model components results in a reduced cost for syntactic composability veri-

fication. However, model discovery and selection shows a drastic increase in discovery

costs when reused model components are employed, showing the benefits of our modi-

fied life-cycle, in which syntactic composability verification is performed before model

discovery and selection. It would be a waste of valuable time if model discovery is per-

formed only to realize that the composed model is syntactically incorrect. Lastly, the

overall cost of validation is small, even for a model with a high number of components.
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Conclusion and Future Work

9.1 Thesis Summary

The composability of simulation models is an appealing approach to reduce the time and

cost of developing complex simulations. However, several challenges remain, including

among others the lack of methodologies and techniques to support a component-based

life-cycle, and the validation of semantic composability. In this thesis, we have de-

signed and prototyped CoDES (Composable Discrete-Event scalable Simulation), an

integrated approach for modeling and development of component-based simulations.

Our focus has been on a new component-based simulation approach that facilitates the

composition of simulation models at reduced costs, and on a semantic composability

validation strategy to advance formal model validation.

The two major contributions of this thesis are: (i) an approach for composable simu-

lations that addresses key crosscutting issues in the life-cycle of component-based sim-

ulation model development and (ii) a new deny validity semantic validation approach

that advances our understanding of the trade-off between validation accuracy and com-

putational cost. These contributions are detailed below.
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9.1.1 Approach for Composable Simulations

While there is consensus on the benefits of an integrated component-based simulation

approach, which include, among others, reduced development time and costs, to the best

of our knowledge, this was the first attempt that looked at the entire component-based

modeling and simulation life-cycle, from a conceptual model to a validated simulator

ready for execution. We addressed key crosscutting issues of the component-based life-

cycle and presented a feasible approach for syntactic composability and verification,

model discovery and selection, and semantic composability and validation, in our pro-

posed CoDES framework. Our contributions detailed below focus first on the overall

contributions and trade-offs in the integrated design of CoDES, followed by our contri-

butions in each individual life-cycle step.

1. Integrated vs. Piecewise

As we have argued in Chapters 1 and 2, a main challenge of component-based sim-

ulation model development is a life-cycle that considers important issues such as the

component abstraction, the modeling of the conceptual model, the component discov-

ery from a distributed repository, and the verification and validation of the composed

model. A study of related work has shown that the ad-hoc piecewise integration of

independent solutions to each step has reduced efficiency compared to an integrated ap-

proach. We proposed CoDES, a feasible and scalable framework for component-based

modeling and simulation, in which the main design considerations have been solving the

crosscutting issues, such as component sharing and reuse, component abstraction and

representation, and knowledge representation, and the reduced cost of developing the

composed simulation model. We proposed a four step life-cycle for component-based

simulation model development, namely, conceptual model definition, syntactic com-

posability verification, model discovery and selection, and semantic composability val-
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idation [125]. Although the order of these steps was different from current approaches,

we showed that our solution has a decreased runtime cost on average. Our solutions for

the above crosscutting issues facilitated modeling, composability, and validation.

Key to our proposed approach was the meta-component abstraction that specified

the component in terms of attributes and behavior. Towards flexibility in composi-

tion, we proposed a black-box component-connector abstraction, in which the compo-

nent implementation and structure are hidden from the framework and the simulation

model composer, and components are connected using only well-defined connectors.

The black-box component abstraction had the advantage of reducing complexity in

reasoning about composability in all life-cycle steps for models composed from base

components. However, this resulted in a negative impact on the life-cycle of model

components, which had an increased execution time in discovery and selection. This

issue is detailed below. We proposed the COML standard, implemented in XML, to

describe simulation components and the data they exchange. While this ensured that all

components were described using the same syntax, an inherent drawback we observed

was that XML could not capture semantic information about components. Accordingly,

the meta-component abstraction was enhanced using semantically sugared attributes

described in COSMO, our proposed component-based ontology [118, 125]. COSMO

facilitated meaningful discovery and selection and accurate semantic validation.

We proposed the sharing of simulation components within and across application

domains for the development of more complex, larger simulation models. We organized

simulation components as base components, which are fundamental entities specific to

each application domain, and model components, which are composed from base and

other model components. Using this organization, we achieved the sharing of com-

ponents across application domains both in breadth and in depth within an application

domain, and at the same time allowed for the composition and reuse of hierarchical
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heterogeneous components. Furthermore, the separation into application domains fa-

cilitated the scalable representation of knowledge specific to each application domain.

2. Life-cycle of Simulation Model Development

In addressing the crosscutting issues presented above, we promoted a life-cycle of

component-based simulation with reduced cost. Our contributions to each step are

detailed below. For ease of reading, we present our contributions to semantic com-

posability validation in Section 9.1.2.

a. Scalable Syntactic Composability Verification of a Conceptual Model

In conceptual model definition, a main challenge has been to facilitate the definition

of the simulation problem by the model composer. We proposed the drawing of a

conceptual model using icons of base and model components, which are dragged

by the model composer on a drawing panel and subsequently connected using well-

defined connectors. Because base components for each application domain were

well-defined using the COSMO ontology, the conceptual model captured intrinsic

knowledge about the simulation problem, without explicit input from the model

composer. This modeling paradigm coupled with our proposed component organiza-

tion into base and model components, improved the conceptual modeling stage and

provided valuable information, which was used to facilitate syntactic composability

verification and the reduction of state space in model discovery and selection.

We proposed a novel approach to the verification of syntactic composability using

application domain specific composition grammars [118]. The structure of the con-

ceptual model was translated into a production string that was subsequently verified

against the composition grammar. Our study showed that the advantages of using a

composition grammar to describe connection rules within and across application do-
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mains include, among others, formalization and scalability. Formalization increases

credibility in the verification process and facilitates automation. On the other hand,

infinitely large models can be expressed as production strings and verified against

the composition grammar, at minimal costs. For example, the syntactic verification

of a composed model with 10,000 components took less than seven seconds on a

commodity desktop PC.

Moreover, we proposed the verification of syntactic composability before model

discovery and selection. This reduced the average cost of development because syn-

tactically incorrect conceptual models were discarded before the costly discovery

and selection process. Our approach is different from current life-cycles [29] that

perform syntactic composability verification after the composed model has been dis-

covered.

b. Relevant Model Discovery and Selection

In model discovery and selection, two main challenges were identified. Firstly, simi-

larity is not an “yes/no” answer and current work looks only at matching components

in terms of their syntax in therms of method names and parameters. Secondly, the

runtime cost of model discovery and selection increases with the size of the compo-

nent repository and the size of the component-based ontology used for reasoning.

(i) Partial Matches

To address the first issue, we defined partial matches between query and repos-

itory components, with semantic relevancy that facilitated meaningful discov-

ery. We defined a Matching Index to quantify semantic similarity, with values

ranging from zero (no match) to one (perfect match). The calculation of the

Matching Index quantified component similarity according to attribute relation-

ships defined in the COSMO ontology [125], with the help of our semantically-

sugared meta-component. This is in contrast to current approaches, which
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either do not consider partial matches [24], or fail to look at the component

semantics [29].

(ii) Reduction of Search Space

To address the second issue, we proposed an elimination approach, in which

repository components were only considered if their type (for base compo-

nents) and their neighbors (for model components) were the same as those

defined in the conceptual model. This technique was very effective for base

components. However, for model components, the combination of the black-

box component abstraction, which is restrictive in providing information about

the inner structure of the model component, and the performance of the rea-

soner used to query the COSMO ontology, proved detrimental to the execution

cost of the discovery of model components. This result could be improved if

a trade-off between a black-box and a white-box component abstraction is em-

ployed, as discussed in Section 9.2.1. For example, if the production string

that defines the structure of the model component is known, it could be hashed

as a key in a DHT overlay for the discovery of models with similar structure.

Nonetheless, the use of the conceptual model in our proposed optimization,

without explicit input from the model composer, is another example of the ben-

efits of a seamlessly integrated approach.

3. Integrated Approach for Component-based Simulation Development

We have implemented our proposed framework using the Java 1.6 programming lan-

guage. We have structured the CoDES sourcecode in a modular manner to ensure lim-

ited costs in maintenance. To ensure the feasibility of our approach, we employed a

suite of public-domain software tools including Protege 4.2 and Jena 2.5.4 for ontol-

ogy reasoning, and SPIN 5.1.7 (working with Promela 5.1.7) and CADP toolset 2006-a

with BISIMULATOR 1.5 for semantic composability validation. Our experiments were
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executed on a commodity desktop PC, with Intel Core 2 Duo CPU E6550 @ 2.33 GHz

processor and 4 GB RAM, running Ubuntu Linux 8.04 (64 bit).

As an example, we discussed the composition of a grid computing system in a

Queueing Networks application domain, and a military training scenario, in a Military

Training Simulation application domain, and evaluated the cost of component-based

model development using both theoretical and experimental analyses. Our results have

shown the feasibility of our proposed approach. The cost of syntactic verification is in

the range of milliseconds for a composed model with twenty components, and in the

range of seconds for composed models with 10,000 components. The computational

cost was influenced by the composition grammar and was found to be at worst O(n3),

where n was the number of components.

Next, discovery and selection of base components is less than two seconds. In con-

trast, the discovery and selection of model components averaged around one minute for

a repository of 2,000 model components. The overall performance of model discovery

and selection was influenced by the size and organization of the repository, the compo-

nent abstraction, the size of the ontology, the efficiency of the reasoner, issues that are

beyond the scope of this thesis. Nonetheless, our results showed the efficiency of our

approach which verifies the conceptual model before discovery. Lastly, semantic vali-

dation was in the range of three minutes for models with only base components. More

significantly, the incremental cost of validation was reduced with increased accuracy.

For models in the Queueing Networks application domain, the total life-cycle cost

ranged from two minutes for models with 20 components, to seven minutes for models

with 1,000 components, on the commodity desktop PC described above. The size of

the problem validated in this experiment was around 7,200 attributes and around 6,000

distinct composition states. The validation process is responsible for the largest amount

percentage of this cost, with around one and six minutes respectively.

184



Chapter 9: Conclusion and Future Work

9.1.2 Deny Validity Approach for Semantic Validation

The validation of the semantic composability of the composed artifact is of paramount

importance to increase the credibility of the composed model. We have shown that

the semantic validation of the composed model is a hard problem, with solutions that

require the presence of a system expert, or approaches to automation at the cost of accu-

racy [88] or scalability [77, 127]. Validation using a system expert is not feasible in the

context of a component-based framework, where there exists a geographical separation

between the model composer and the component developers and systems experts. Thus,

we proposed a fully automated approach for the validation of semantic composability

of the composed simulation model with increased accuracy to provide for high model

credibility [119, 122]. Our approach delivered incremental accuracy at each stage with

varying trade-offs related to the complexity of the composed model, in terms of the

number of attributes and states [121].

Our key strategy in semantic composability validation was based on the observation

that, the computational cost of checking for an invalid model is lower on average than

the cost of checking for a valid model. As such, we proposed a deny validity strategy

that discarded invalid models using a two-step process. Our approach first attempted

to eliminate models in the Validation of General Model Properties step. This step had

several stages, which tested the composed model for a variety of model properties.

At the end of these stages, confidence in the composed model validity was increased.

However, the model could still be invalid when compared to a reference model. We

proposed Formal Validation of Model Execution to increase credibility in the validity of

the composed model using our proposed time-based formalism.

1. Validation of General Model Properties

The first layer of our deny validity approach discarded invalid models through the val-
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idation of general model properties, such as safety and liveness for instantaneous and

timed transitions [119, 121]. We proposed three validation stages, namely, the vali-

dation of component communication, concurrent process validation to validate model

properties for instantaneous transitions, and meta-simulation for timed transitions. To

increase model credibility, we consider formal and practical definitions of model prop-

erties.

a. Validation of Component Communication

While syntactic composability verification ensures that components in the composed

model are properly connected, their communication might still be incompatible. We

proposed the Composability Index to measure the degree of data alignment of neigh-

boring components in the composition [125]. The calculation of the Composability

Index relied on the representation of the component behavior, which considered also

the data that a component can exchange. This data was described using COSMO,

our proposed ontology, by semantically-enriched data constraints. The Composabil-

ity Index provides a low-cost, initial measure of the suitability of the components

to the composition. However, the current data constraints consider primitive data

types and taxonomies of general classes of data. While this is a major improvement

compared to current work [24, 29], the feasibility of more detailed description of

exchanged data remains to be studied.

b. Validation of All Interleaved Executions

Concurrent process validation proposed to validate all possible interleaved compo-

nent executions for deadlock, safety, and liveness. Because this would normally lead

to a high computation cost, we reduced the problem size by considering timeless

transitions in this step, and added time in the next step, Meta-simulation validation.

We proposed the use of model checking to validate all possible interleaved execu-

tions of the components in the composed model. This had the advantage of validating
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all possible combinations of execution states1. However, the inherent drawback of

using model checking to formally validate general model properties is the state space

explosion problem [20]. While this problem was easily contained for application

domains such as Queueing Networks where components have a simpler structure,

it deprecated for data-driven domains such as Military Training simulations [121].

We have shown that state space explosion could still be contained for data-driven

application domains at the cost of the level of detail employed in the component ab-

straction in the model checker specification. Moreover, several techniques such as

symbolic execution [107] could be employed to further ameliorate the problem.

c. Meta-Simulation Validation

In meta-simulation validation, we proposed the definition of safety and liveness

properties from a simulation user perspective. We included validity points provided

by the model composer, and transient predicates present in the COML component

representation. From a real world perspective, we considered time attributes and all

other component attributes, with values specified by the model composer. The draw-

back of this method was that it was based on sampling, which guaranteed validity

only as long as the same sample parameters and streams are used in the simulator

execution.

2. Formal Validation of Model Execution

The second layer of our deny validity approach proposed formal validation of model ex-

ecution to increase model credibility by comparing the composed model to a reference

model using our proposed formalism. Key challenges in formal validation included

establishing a feasible formalism that preserved the level of detail in the composed

model, a definition of validity that captured different levels of validity, and the nature of

1For models with simple structure in the Queueing Networks application domains, this step also had
low execution cost compared with the following steps, regardless of the number of components.
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the reference model in the context where system experts and other usual providers are

not present.

a. A New Time-based Formalism

To address the first issue, our novel time-based formalism represented dynamic com-

ponent behavior as a function of states and time. Contrary to current work that lose

accuracy and cannot represent complex behavior [88], our proposed formalism al-

lowed for the representation of dynamic component behavior. Furthermore, complex

composition structures, with “fork” and “join” topologies, could be validated using

our formalism. The overhead of our proposed formalism was minimal because the

translation from the COML component abstraction to the formalism was straightfor-

ward. Furthermore, there was no loss in the level of detail (and implicit accuracy)

because the functional formalism retains the notion of state and time. However, sim-

ilar to meta-simulation validation, our approach was based on sampling to obtain the

time moment values when the component received/produced output.

b. Definitions and Measures of Validity

We proposed a formal definition of validity in which a valid composed model is

one whose execution is close enough to the execution of a reference model. The

inherent advantage of this definition was that it allowed for various degrees of va-

lidity, similar to situations in real life. However, an important problem was how to

meaningfully quantify closeness to a reference model. We proposed the semantic

metric relation Vε, which quantified composition state similarities based on seman-

tically sugared components defined in our component-based ontology. Informally,

a composed model is valid if there are enough composition states in its execution

that follow in the same order as related composition states in the execution of the

reference model. The semantically-sugared meta-component abstraction facilitated

the calculation of related composition states using the COSMO ontology.
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We have fully implemented the validation process and have tested our approach

on a variety of models, which differed both in terms of size and complexity. Our

observations have shown that two important factors influenced the accuracy of our

definitions and metrics, namely, the reference model, and the threshold after which

composition states are considered related.

(i) Reference Model

Several approaches in traditional simulation, which does not adhere to a component-

based worldview, have proposed the comparison of the composed model with

some form of valid reference entity [10, 104]. This entity is assumed to exist a-

priori, or is provided by the system expert or model developer during validation.

This assumption is not feasible in the context of component-based simulation

model development where a system expert is missing when the composed model

is created. We proposed to construct the reference model from perfect, desired,

and generic descriptions of base components that were provided by system ex-

perts when each application domain is added to the CoDES framework. This was

a feasible assumption, since system experts that provide the composition gram-

mars and the extension of the COSMO ontology, will also have knowledge about

generic base components in the new application domain. The generic base com-

ponents are state-based generalized descriptions of fundamental entities in the

application domain and do not have attached implementations. As such, they

cannot be used as simulation components but can be employed as reference com-

ponents. To demonstrate the feasibility of our proposed approach, we validated

models of various sizes and complexity from application domains such as Queue-

ing Networks and Military Training Simulations.

(ii) Similarity Threshold

In our formal approach, a valid model was defined as one that is close enough
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with respect to the states, sequence and duration of component execution, to a

reference model. Yet, what exactly is close enough (i.e., the values of ε), as with

all thresholds, remains an open problem. In our experiments, we have set the

value of ε using a trial and error approach for each application domain. Our sen-

sitivity studies showed that the values of ε depend on the reference models in each

application domain, and on the hidden assumptions inherent in the reference com-

ponents. The first factor offers hope because a threshold could be proposed for

each application domain. However, the second factor suggests that a more prag-

matical approach could be employed, namely by allowing the model composer

to change the values of ε as required. Nonetheless, future studies are needed to

establish the feasibility of this approach.

9.2 Future Directions

Directions for future work include: increasing model reusability and scalability through

hybrid white-box and black-box abstractions of model components, techniques for rep-

resenting and validating models with emergent properties, and practical deployment

issues on emerging platforms such as cloud computing.

9.2.1 Increasing Model Reusability and Scalability

While most component-based environments focus on reusing previously developed base

components, they do not address the reuse of the developed composition, which we

called model components [119, 122, 125]. As outlined before, current component mar-

ketplaces show marginal increases in the number of components, in the range of 20%

over ten years. However, the number of available components can be significantly in-

creased through the reuse of model components.

While the reuse of model components promises to scale the component repository
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and increase the variety of available models, several challenges remain. A key chal-

lenge is the abstraction of model components. This is because a black-box abstraction,

in which no information about the structure of the model component is saved, is not

sufficient for efficient model discovery and selection and for accurate semantic valida-

tion. Furthermore, the issue of representing the model component dynamic behavior

over time becomes more stringent in the context of model components with a large

number of sub-components. These issues are usually ignored by software engineering

component-based solutions and Service Oriented Architectures [111] because of the

inherent complexity of composition and validation. From this perspective, the study

of simulation model components, where time and states are of paramount importance,

promises to reveal and solve fundamental issues in composability.

We have shown in Chapter 8 that the cost of discovery of reused model components

from a large repository is high, and is influenced both by the size of the repository and

by the approach to the search space reduction. This is a limitation of our approach,

which stems from the purely black-box view that we employ for a model component.

Using our black-box model component abstraction, the search space reduction is in-

significant in the discovery of model components. In contrast, a white-box abstraction

exposes all details of the model component structure, as well as attributes and behavior

of its underlying sub-components, at the cost of a high level of detail that is harder to

manage. A model component abstraction that achieves a reasonable trade-off between

the two will facilitate the reduction of the search space in model discovery and thus

decrease discovery time. Furthermore, it will provide the access key towards highly

scalable models. Moreover, a suitable level of model component abstraction also influ-

ences the cost of semantic validation of models of practical size.

Lastly, semantic composability is not a closed operation [88], meaning that two se-

mantically valid models will not form a semantically valid composition. With respect
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to model components, this implies that previously validated model components do not

always compose into valid models. Thus, semantic composability validation must be

performed on the newly composed model every time. However, a right trade-off level

between black-box and white-box abstractions for a model component could possibly

improve this aspect. This could be the case for the validation of component commu-

nication and meta-simulation validation, among others. For example, the validation of

the component communication may not be performed for the sub-components of the

model components, but only by looking at the input/output of the model component. In

meta-simulation validation, the time moments when the model component produces or

needs output or input respectively, could be reused in the validation process.

9.2.2 Composed Models with Emergent Properties

A key issue in composability is that component interactions over time can lead to emer-

gent properties (or behaviors), which are not obvious from the individual component

behaviors. These emergent properties, also called behavioral composability, are dy-

namic and are often revealed when the composition is used in decision-making, where

a valid answer is crucial [49, 101]. Emergent properties are known to be pervasive in

many everyday systems and are of major research interest in domains such as computa-

tional biology [7] and systems design [101]. An emergent property can be defined as “a

property of an assemblage that could not be predicted by examining the components in-

dividually” [101]. An analogy would be that of a musical concert. While the range and

pitch of each instrument are factors that depend entirely on the manufacturing specifi-

cations of the instrument and the skill of the individual musician, when played together

in a concert, the final result is not easily predictable from the individual instruments.

Rather, it depends on the conductor interpretation of the score and the combined har-

mony of the ensemble. The validation of composed models with emergent properties
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remains a hard problem [49].

The identification, modeling, and validation of emergent properties facilitate the

discovery of valid composed models and provides valuable user insight in the behavior

of these new models. In this respect, we hypothesize that the current practice of valida-

tion by comparison with a reference model [10] is insufficient for models with emergent

properties. A key idea is to focus on (i) what a user can expect a composed model to

achieve using composition objectives, and (ii) to develop formal software techniques to

identify and validate behavioral composability.

Current approaches represent how a component acts in a composition using at-

tributes and behavior [77, 125, 132]. However, for behavioral composability validation,

this abstraction is not suitable for identifying emergent behavior. A suitable component

abstraction that specifies components and model components with focus on the valida-

tion of emergent properties is needed. An approach could be to describe a component

in terms of “what” it achieves using component properties. This provides an effec-

tive mean for validation because the emergent behavior might be exposed when the

aggregated properties of the composition are compared with composition objectives.

Furthermore, agent-based simulation, in which entities are modeled as individuals with

local knowledge whose interaction results in emergent properties [73], might provide

future insight into the problem of emergence.
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[52] J. Himmelspach, M. Röhl, and A. M. Uhrmacher. Component-based Models and
Simulation Experiments for Multi-agent Systems in James II. In Proceedings of
the International Workshop From Agent Theory to Agent Implementation, Estoril,
Portugal, 2008.

[53] G. Holzmann. Design And Validation Of Computer Protocols. Prentice Hall,
1991.

[54] J. Hopcroft, R. Motwani, and J. Ullman. Introduction to Automata Theory, Lan-
guages and Computation. Addison-Wesley, 2001.

[55] IEEE Standard 1278.1. IEEE Standard for Distributed Interactive Simulation -
Application Protocols.

[56] Institute for Software Research Irvine CA - Architecture Description Languages.
http://www.isr.uci.edu/architecture/adls.html.

[57] ISO Standard for Extended BNF. http://www.iso.org/iso/en/ cataloguedetail-
page.cataloguedetail? csnumber=26153, 1996.

[58] S. Jarzabek. Pragmatic Strategies for Variability Management in Product Lines
in Small- to Medium-size Companies. In Software Product Lines, San Francisco,
USA, 2009.

[59] Jena - A Semantic Web Framework for Java. http://jena.sourceforge.net, 2002.

[60] P. Kanellakis and S. Smolka. CCS Expressions, Finite State Processes, and Three
Problems of Equivalence. Information and Computation, 86:43–68, 1990.

[61] S. Kasputis and H. Ng. Composable Simulations. In Proceedings of the Winter
Simulation Conference, pages 1577–1584, Orlando, USA, 2000.

[62] W. D. Kelton, R. P. Sadowski, and D. T. Sturrock. Simulation with Arena.
McGraw-Hill Higher Education, 2003.

[63] J. Kofron. Checking Software Components Behavior Using Behavior Protocols
and Spin. In Proceedings of the ACM Symposium on Applied Computing, pages
1513–1517, Korea, 2007.

[64] V. V. Krzhizhanovskaya, P. M. A. Sloot, and Y. E. Gorbachev. Grid-Based Sim-
ulation of Industrial Thin-Film Production. In Simulation, volume 81, pages
77–85, 2005.

[65] K. Larsen, P. Pettersson, and W. Yi. UPPAAL in a Nutshell. Journal Tools for
Technology Transfer, 1:134–152, 1997.

198



[66] D. N. Le, B. D. Tran, P. Tan, A. E. Goh, and E. W. Lee. MODiCo: A Multi-
Ontology Web Service Discovery and Composition System. In Proceedings of
the 9th International Conference on Web Engineering, pages 531–534, San Se-
bastian, Spain, 2009.

[67] A. Lehman. Component-Based Modeling and Simulation Status and Perspec-
tives. In Proceedings of the 8th IEEE Distributed Simulation and Real-time Ap-
plications, pages 15–15, 2004.

[68] J. Magee and J. Krmaer. Dynamic Structure in Software Architecture. In Pro-
ceedings of the 4th ACM SIGSOFT Symposium on Foundations of Software En-
gineering, pages 3–14, San Francisco, USA, 1996.

[69] I. Mahmood, R. Ayani, V. Vlassov, and F. Moradi. Statemachine Matching in
BOM Based Model Composition. In Proceedings of the 13th IEEE Symposium on
Distributed Simulation and Real-Time Applications, pages 136–143, Singapore,
2009.

[70] C. McClure. Software Reuse : A Standards-based Guide. IEEE Computer Soci-
ety Press, 2001.

[71] J. Miller and P. Fishwick. Ontologies for Modelling and Simulation: Issues and
Approaches. In Proceedings of the Winter Simulation Conference, pages 259–
264, Orlando, USA, 2004.

[72] F. Min, P. Ma, and M. Yang. A Knwoledge-based Method for the Validation of
Military Simulation. In Proceedings of the Winter Simulation Conference, pages
1395–1402, Washingthon, USA, 2007.

[73] R. Minson and G. K. Theodoropoulos. Distributing RePast Agent-based Sim-
ulations with HLA. Concurrency and Computation: Practice and Experience,
20:1225–1256, 2008.

[74] ModSAF - Modular Semi-Automated Forces.
http://www.onesaf.org/onesaf.html, (retrieved Apr. 2010).

[75] F. Moradi, R. Ayani, S. Mokarizadeh, G. H. A. Shahmirzadi, and G. Tan. A
Rule-based Approach to Syntactic and Semantic Composition of BOMs. In Pro-
ceedings of the 11th IEEE Symposium on Distributed Simulation and Real-Time
Applications, pages 145–155, Crete, Greece, 2007.

[76] F. Moradi, R. Ayani, G. Tan, and S. Mokarizadeh. A Rule-based Semantic
Matching of Base Object Models. International Journal of Simulation and Pro-
cess Modelling (IJSPM), 5:132–145, 2009.

199



[77] F. Moradi, P. Nordvaller, and R. Ayani. Simulation Model Composition Us-
ing BOMs. In Proceedings of the 10th IEEE International symposium on Dis-
tributed Simulation and Real-Time Applications, pages 242–252, Washington,
USA, 2006.

[78] M. Morisio, M. Erzan, and C. Tully. Success and Failure Factors in Software
Reuse. IEEE Transactions on Software Engineering, 28:340–357, 2002.

[79] A. Natrajan, P. F. Reynolds, and S. Srinivasan. MRE: A Flexible Approach to
Multi-resolution Modeling. ACM SIGSIM Simulation Digest, 27:156–163, 1997.

[80] S. Onggo, D. Soopramanien, and M. Pidd. A Dynamic Business Model For
Component-based Simulation Software. In Proceedings of the Winter Simulation
Conference, pages 954–959, 2006.

[81] N. Oses, M. Pidd, and R. J. Brooks. Critical Issues in the Development of
Component-based Discrete Simulation. In Simulation Modelling Practice and
Theory, pages 495–514, 2004.

[82] S. Owicki and L. Lamport. Proving Liveness Properties of Concurrent Programs.
ACM Transactions on Programming Languages and Systems (TOPLAS), 4:455–
495, 1982.

[83] OWL Web Ontology Language Overview. http://www.w3.org/tr/owl-features/,
2004.

[84] E. Page, R. Briggs, and J. A. Truffarolo. Toward a Family of Maturity Mod-
els for the Simulation Interconnection Problem. In Proceedgins of the Spring
Interoperability Workshop, 2004.

[85] E. Page and J. Opper. Observations on the Complexity of Composable Simu-
lations. In Proceedings of the Winter Simulation Conference, pages 553–560,
Phoenix, USA, 1999.

[86] D. Park. Concurrency and Automata on Infinite Sequences. In Proceedings of the
5th GI-Conference on Theoretical Computer Science, pages 167–183, Karlsruhe,
Germany, 1981.

[87] M. Petty and E. Weisel. Basis for a Theory of Semantic Composability. In
Proceedings of the Spring Simulation Interoperability Workshop, Orlando, USA,
2003.

[88] M. Petty and E. W. Weisel. A Composability Lexicon. In Proceedings of the
Spring Simulation Interoperability Workshop, pages 181–187, Orlando, USA,
2003.

[89] M. Pidd. Simulation Software and Model Reuse: A Polemic. In Proceedings of
the Winter Simulation Conference, pages 772–775, Washinghton, USA, 2004.

200



[90] F. Plasil, D. Balek, and R. Janecek. OFA/DCUP: Architecture for Component
Trading and Dynamic Updating. In Proceedings of the Fourth International
Conference on Configurable Distributed Systems, pages 43–51, Annapolis, USA,
1998.

[91] R. H. Pollack, R. Baldwin, J. R. Neyer, and D. Perme. Requirements for Compos-
ing Simulations: A Use-Case Approach. In Proceedings of the Spring Simulation
Interoperability Workshop, 2003.

[92] Protege Ontology Editor. http://protege.stanford.edu, 2004.

[93] C. Reade. Elements of Functional Programming. Boston, MA, USA: Addison-
Wesley, Boston, USA, 1989.

[94] R. Reese and D. L. Wyatt. Software Reuse and Simulation. In Proceedings of
the Winter Simulation Conference, pages 185–192, Atlanta, USA, 1987.

[95] H. Rheingold. Virtual Reality. Simon Schuster, New York, USA, 1992.

[96] S. Robinson. Conceptual Modeling for Simulation Part I: definition and require-
ments. Journal of the Operational Research Society, 59:278–290, 2007.

[97] D. Rogerson. Inside COM (Microsoft Programming Series). Microsoft Press,
1997.
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Appendix A

Meta-Component Representation

Figure A.1 presents a skeleton of the COML schema for a CODES meta-component.

In the CoDES framework, a component has mandatory attributes, defined by the tag

mandatoryAttributes on line 4, component specific attributes, defined by the tag spec-

ificAttributes on line 3, and behavior, defined by the tag behavior on line 7.

1 <element name="component">
2 <complexType>
3 <sequence>
4 <element name="mandatoryAttributes" type="spec:mandAtt"/>
5 <element name="specificAttributes" type="spec:specAtt"/>
6 <element name="data" type="spec:dataType" maxOccurs="unbounded"/>
7 <element name="behavior" type="spec:behaviorType"/>
8 </sequence>
9 </complexType>

10 </element>

Figure A.1: Component Representation in COML

The COML component representation relies on a COML Schema (implemented in

XSD), which defines syntax rules that must be met by all COML component files. Fig-

ure A.2 presents excerpts from the COML Schema for base components. The COML

Schema file contains rules and restrictions for each particular tag. Figure A.3 presents

a snapshot of the asserted COSMO class structure in Protégé.
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1 <element name="component">
2 <complexType>
3 <sequence>
4 <element name="mandatoryAttributes" type="spec:mandAtt"/>
5 <element name="specificAttributes" type="spec:specAtt"/>
6 <element name="data" type="spec:dataType" maxOccurs="unbounded"/>
7 <element name="behavior" type="spec:behaviorType"/>
8 </sequence>
9 </complexType>

11 <!−− Restriction− initial and final state name for each transition should be
12 from the set of states−−>
13 <key name="stateName">
14 <selector xpath="behavior/states/state"/>
15 <field xpath="@name"/>
16 </key>
17 <keyref name="ref1" refer="spec:stateName">
18 <selector xpath="behavior/transitions/transition/initial"/>
19 <field xpath="@name"/>
20 </keyref>
21 <keyref name="ref2" refer="spec:stateName">
22 <selector xpath="behavior/transitions/transition/final"/>
23 <field xpath="@name"/>
24 </keyref>
25 ...
26 </element>

28 <complexType name="mandAtt">
29 <sequence>
30 <element name="name" type="string"/>
31 <element name="type" type="string"/>
32 <element name="author" type="string"/>
33 ...
34 </sequence>
35 </complexType>

37 <complexType name="specAtt">
38 <sequence>
39 <element name="attribute" maxOccurs="unbounded">
40 <complexType>
41 <sequence>
42 <element name="value" type="string"/>
43 <element name="description" type="string" minOccurs="0"/>
44 </sequence>
45 < attribute name="name" type="string"/>
46 </complexType>
47 </element>
48 </sequence>
49 </complexType>
50 <complexType name="behaviorType">
51 <sequence>
52 <element name="inputs" type="spec:datas" maxOccurs="unbounded"/>
53 <element name="outputs" type="spec:datas" maxOccurs="unbounded"/>
54 <element name="states" type="spec:stateType" maxOccurs="unbounded"/>
55 <element name="durations" type="spec:timeIntType"/>
56 <element name="attributes" type="spec:modifAtt" maxOccurs="unbounded"/>
57 <element name="conditions" type="spec:conditionsType" maxOccurs="unbounded"/>
58 <element name="transitions" type="spec:transitionsType"/>
59 </sequence>
60 </complexType>

Figure A.2: Component Representation in COML
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Figure A.3: COSMO Asserted Ontology Class Structure
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Appendix B

Component-based Modeling of a

Single-Server Queue System

B.1 Conceptual Model Definition

The simulation developer inputs the conceptual model by drag-and-drop icons of Queue-

ing Networks base components on the GUI drawing panel and subsequently connecting

them using One-to-One connectors as shown in Figure 4.7.

B.2 Syntactic Composability Verification

The conceptual model presented above is syntactically verified by the Syntax Verifier

module. First, the module checks that no component port is left unconnected. Next, a

production string is generated to describe the conceptual model. The production string

is a linear arrangement of the components’ types according to their position on the

graphical screen. The production string for this model is:

Simple QN = Source ConO Server ConO Sink
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The model is syntactically verified if the production string is accepted by the Queueing

Networks composition grammar. In the CoDES implementation, the composition gram-

mar is first parsed using our implemented Earley parser. Next, the production string is

verified by the parser. The parser accepts the production string and thus the model is

syntactically correct.

B.3 Model Discovery and Selection

Table B.1 presents the query information provided by the user for component C1, com-

pared to the component information for the discovered repository component with the

highest matching index. Using the weight values wr = 0.33, wa = 0.33, and wb = 0.33,

and considering that no specific attributes are mentioned in the query, the matching in-

dex value becomes:

MI(C1, C) = 0.5 ∗ 1 + 0.0 ∗ 0 + 0.5 ∗ 0.875 = 0.937.

An initial eliminatory search is performed, eliminating base components whose type

does not match the Source type, which is derived from the conceptual model. Matching

on the required attributes returns a matching index of MIr = 1, since the type attribute

matches exactly and all relevant words in the description of the query component are

found in the repository component. Since no component attributes are provided, the

resulting weight values arewr = 0.5, wa = 0, andwb = 0.5, andMIa = 0. There are no

input constraints, hence the term 0. For the output constraints, the destination constraint

matches exactly, and the range = 21:24 of the repository component is included in

the query range range = 10 : 35, hence 0.75, with a total behavior matching index

MIb = 0.875.

Table B.2 presents the query information provided by the user for component C2,
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Query Component (C1) Repository Component (C) Matching Index
type: Source type: Source

MIr = 1description: open source description: open source
- - MIa = 0
IC = ∅, OC = {C1} IC = ∅, OC = {C1} MIb = 0+(1+0.75)

0+2
= 0.875

C1 = { destination = Server, range = 10:35 } C1 = { type = int, range =21:24, destination = Server}
MI(C1,C) = 0.937

Table B.1: Query Information for Component C1

compared to the component information for the discovered repository component with

the highest matching index. Using the weight values wr = 0.33, wa = 0.33, and wb =

0.33, and considering that no specific attributes are mentioned in the query, the matching

index value becomes:

MI(C2, C) = 0.5 ∗ 1 + 0.0 ∗ 0 + 0.5 ∗ 0.75 = 0.875.

An initial eliminatory search is performed, eliminating base components whose type

does not match the Server type, which is derived from the conceptual model. Matching

on the required attributes returns a matching index of MIr = 1, since the type attribute

matches exactly and all relevant words in the description of the query component are

found in the repository component. Since no component attributes are provided, the

resulting weight values are wr = 0.5, wa = 0, and wb = 0.5, and MIa = 0. For

the first input constraint C1, the type constraint of double matches the type = double

constraint of the repository component, and the origin constraint is also matched, hence

the term (1 + 1). For the output constraints, the destination constraint matches exactly,

and the range = 21:24 is not included in range = 14 : 18, hence 1, with a total behavior

matching index MIb = 0.75.

Table B.3 presents the query information provided by the user for component C3,

compared to the component information for the discovered repository component with

the highest matching index. Using the weight values wr = 0.33, wa = 0.33, and wb =

0.33, and considering that no specific attributes are mentioned in the query, the matching
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Query Component (C2) Repository Component (C) Matching Index
type: Server type: Server

MIr = 1description: server with single unit description: single uint server
- - MIa = 0
IC = {C1}, OC = {C2} IC = {C1}, OC = {C2}
C1 = { type = double, origin = Source—Server } C1 = { type = double, range = 10:35, origin = Source|Server}

MIb = (1+1)+1
2+2

= 0.75
C2 = { destination = Sink, range = 21:24 } C2 = { type = double, range =10:35, destination = Server|Sink}

MI(C2,C) = 0.875

Table B.2: Query Information for Component C2

index value becomes:

MI(C1, C) = 0.5 ∗ 1 + 0.0 ∗ 0 + 0.5 ∗ 0.5 = 0.75.

An initial eliminatory search is performed, eliminating base components whose type

does not match the Sink type, which is derived from the conceptual model. Matching

on the required attributes returns a matching index of MIr = 1, since the type attribute

matches exactly and all relevant words in the description of the query component are

found in the repository component. Since no component attributes are provided, the

resulting weight values are wr = 0.5, wa = 0, and wb = 0.5, and MIa = 0. For the

input constraints, the origin constraint matches exactly, and the range = 21:24 of the

query component is not present in the repository component, hence 0. There are no

output constraints, hence the term 0 with a total behavior matching index MIb = 0.875.

Query Component (C1) Repository Component (C) Matching Index
type: Sink type: Sink

MIr = 1description: sink component description:sink
- - MIa = 0
IC = {C1}, OC = {∅} IC = {C1}, OC = ∅

MIb = (1+0)+0
0+2

= 0.5
C1 = { origin = Server, range = 21:24 } C1 = { origin=Server}

MI(C3,C) = 0.75

Table B.3: Query Information for Component C3

Table B.4 presents the relevant meta-component information of the discovered and

selected repository components C1, C2, and C3.
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C1 C2 C3

Attribute

noJobsGenerated = 0 noJobsServiced = 0 noJobsPrinted = 0
timeout = 20 timeout = 20 timeout = 20
time = 200 time = 200 time = 200

timeScale = 1 timeScale = 1 timeScale = 1/5
interArrivalTime: exponential(3) serviceTime : exponential(6) ∆printingT ime = 1

busy = false
transient(C1) : (noJobsGenerated == 1) transient(C2) : (busy == true) transient(C3) : (noJobsPrinted == 1)

Input
-

I1, constraints: I1, constraints:
origin = Source|Server origin = Server

range = 10; 35
type = double

Output

O1, constraints: O1, constraints:

-
destination = Server destination = Server|Sink

range = 11; 15 range = 10; 20
type = int type = double

State Machine

S1(∆interArrivalT ime)→ S2 I1S1 → S2[A1;A3] I1S1 → S2

S2 → S1O1[A1] S2(∆serviceT ime)→ S1O1[A2] S2(∆printingT ime)→ S1[A1]

[A1] = noJobsGenerated+ +;
[A1] = (busy = true);

[A1] = noJobsPrinted+ +;[A2] = (busy = false);
[A3] = noJobsServiced+ +;

Table B.4: Meta-component Information of Discovered Components

B.4 Semantic Composability Validation

B.4.1 Validation of General Model Properties

For the model presented in Table B.4, the composability index CI is obviously 1, since

the constraint I1 on the input of C2 subsums the constraint O1 on the output of C1, and

similarly the constraint I1 on the input of C3 contains the constraint on the output O1 of

component C2.

Concurrent Process Validation

Figure B.1 shows the state machine of every component translated into a Promela spec-

ification. Each state is transformed into a Promela label, and the label includes input

and/or output actions as specified by the meta-component behavior, as well as con-

ditions on attribute values and attribute modifications. Transitions between states are

assumed to be instantaneous. Nonetheless, for component C1 described in process

SOURCE1 on line 7 we simulate time through the additional process SourceCounter

shown on line 11. The role of the SourceCounter process is to modify the inter-arrival
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time (interArrivalT ime) until it reaches a predefined value. When this happens, pro-

cess SOURCE1 is activated and produces a message on its out channel. Counter

processes are introduced for all components that have only output channels.

Each type of connector is defined as a Promela process. For example, process

CON ONE TO ONE on line 4 describes the one-to-one connector. The fork and join

connectors are not part of this composition and as such are omitted. In the initmethod

on line 24, communication channels are assigned to the connectors and components ac-

cording to their connection topology. Similar to the behavior of connectors in the real

system, communication in our Promela specification is asynchronous. However, the

maximum number of messages in a channel is bounded by a constant value. This is

because unbounded queues are not permitted in the Spin model checker [14], since the

focus is on process coordination and not computation.

The Promela specification is validated by the Spin model checker. Valid executions

can be specified in various ways. By default the Spin model checker validates that there

is no deadlock or any unreachable states in the system. We limit safety validation to

deadlock checking. To specify liveness, we assign a progress label to each state

in a component that produces output. The Spin model checker validates the system

by analyzing all possible process states obtained through the interleaved execution of

the active processes. The absence of deadlocks and non-progress cycles is validated.

It is important to note the high number of visited states even for this simple example.

State space explosion decreases the feasibility of employing this type of validation as

a standalone validation process, and thus we include it only as the first layer in our

approach.

Meta-simulation Validation

Meta-simulation validation shows that the logical properties demonstrated in the previ-
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1 hidden byte sourceIAMax = 10; byte sourceIATime; byte noJobsSource = 0;

3 proctype CON ONE TO ONE(chan in, out){
4 do :: in ? Job −> out ! Job; od}

6 proctype SOURCE1(int id, noJobsMax; chan out){
7 do :: (sourceIATime == sourceIAMax) −> sourceIATime =0;
8 if :: out ! Job −> progress: printf ("[Source] Job sent\n"); fi od }

10 proctype SourceCounter(){
11 do :: (sourceIATime < sourceIAMax) −> sourceIATime++; od}

13 proctype SINK1(int id ; chan in){
14 S1: atomic{
15 if :: in ? Job −> printf("[Sink] Job received!\n"); goto S1; fi}}

17 proctype SERVER3(int id; chan in , out){
18 bit busy;
19 S1: {
20 if :: in ? Job −> printf("[Server] Job received!\n"); busy=1;goto S2; fi}
21 S2: {
22 if :: out ! Job −> progress: printf ("[Server] Job sent! \n"); busy=0; goto S1;}}
23 init {
24 run SourceCounter ();
25 run SINK1(3, to3 );
26 run SERVER3(3, to2, from2);
27 run SOURCE1(1, from1);
28 run CON ONE TO ONE(from1, to2);
29 run CON ONE TO ONE(from2, to3);}

Figure B.1: Single-Server Queue Model in Promela

ous layer hold through time. Our implementation translates the complete state machine

of each component into a Java class hierarchy. Attributes and their values provided by

the user, state transitions and time are modelled. Next, we construct a meta-simulation

of the composed model using the translated classes. During the meta-simulation run,

sampling is performed for attributes that require so. This is the case especially for time

attributes such as inter-arrival time or service time. For example, as shown in Table

B.4, the inter-arrival time ∆interArrivalT ime for component C1 is sampled from an

exponential distribution with a mean of 3. The distribution type and mean values are

an example of attribute values provided by the user. Since sampling is performed, the

meta-simulation is run for N = n ∗ noSampling times, where n is the total number of
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components and noSampling is the total number of locations where sampling is done.

If any of the properties does not hold in the meta-simulation runs, the composition is

declared invalid.

The most important logical properties that are validated through time are safety and

liveness. From a practical perspective, we consider safety to mean that components do

not produce invalid output. The simulator developer specifies the desired valid output

by providing validity points at various connection points in the composition. A validity

point contains semantic description of data that must pass through its assigned connec-

tion point. For example, the two validity points for the data that passes through the

second connector in Figure 4.7 could be V P1 = d1{origin = Server, destination =

Sink, range = 10; 35, type = double}, and V P2 = d2{origin = Server, destination =

Sink, range = 1; 2}. If anytime during the meta-simulation run semantically incom-

patible data passes through the connection point, a safety error is issued. Semantically

incompatible data is data whose type and constraints are not related in the COSMO

ontology.

Liveness is validated by considering a transient predicate assigned to each compo-

nent. The value of the transient predicate is ideally provided by the component creator

in the meta-component as shown in Table 6.1. Its initial value is false. Each compo-

nent is assigned a liveness observer that is notified every time the attributes involved in

a transition change values. The liveness observer evaluates the transient predicate and

time stamps the moment in which the transient predicate becomes true. A component

is considered alive if it’s liveness observer has evaluated the transient predicate to true

and then to false in an interval of time smaller than the specified timeout. For example

the transient predicate for component C2 could be transient(C2) = (busy == true).

Based on the meta-component information from Table B.4, the state machine for

each component is executed on separate threads. Figure B.2 presents one of the meta-
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simulation runs for our example model. The flow of input and output from component

[2][0] Blocked! State S1 no input available ! [3][38650] Receiving input !
[1][0] From state S1 to state S1 [3][38650] From state S1 to state S1
[1][1] Sleeping for 8.16158 ms [3][38650] Sleeping for 1.4340 ms
[1] Calling observer ! [2][38622] From state S2 to state S1
[1][8210] Sending output ... [2][38622] Sleeping for 7.0068 ms
Data name: O1 Input : false [3] Calling observer !

Constraint type : destination ; value : Server [3] end
Constraint type : range; value : 11;15 [1] Calling observer !

[1][8221] Write ok! [1][40571] Sending output ...
[2] Unblocked! Data name: O1 Input : false
[Connector 1,2] Read ok! Queue size : 1 Constraint type : destination value : Server
[1][8231] From state S1 to state S1 Constraint type : range value : 11;15
[1][8231] Sleeping for 0.0936 ms [1][40571] Write ok!
[2][8271] Receiving input ! [1] end
[2][8271] From state S1 to state S2 [Connector 1,2] Read ok! Queue size : 5
[2] Calling observer ! [2] Calling observer !
[2][8289] From state S2 to state S1 [Observer] Alive i tell you, alive !
[2][8289] Sleeping for 7.0989 ms [2][45634] Sending output ...
[1] Calling observer ! Data name: O1 Input : false
[Observer] Alive i tell you, alive ! Constraint type : destination ; value : Server
[1][8330] Sending output ... Constraint type : range; value : 10;20
Data name: O1 Input : false Constraint type : type ; value : double

Constraint type : destination ; value : Server [2][45634] Write ok!
Constraint type : range; value : 11;15 [2] end

[1][8330] Write ok! [Connector 2,3] Read ok! Queue size : 1
[1][8330] From state S1 to state S1 [MetaSimulation] Number of hanging components: 0
[1][8330] Sleeping for 0.2888 ms [MetaSimulation] Validity points found:
[Connector 1,2] Read ok! Queue size : 1 ... VP(d1 )... true (VPd2 )... false

Figure B.2: Meta-Simulation Output

to connector and reverse ([Connector]) as well as the execution of the safety and live-

ness ([Observer]) observer are shown.

B.4.2 Formal Validation of Model Execution

In the following we present the detailed validation process only for the selected com-

ponents Ci represented formally as functions fi. The same process is repeated for ref-

erence functions f ∗i . For this example, we consider the behavior of the reference com-

ponents represented by f ∗i to be the same with respect to input/output transformations
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to the behavior represented by fi. The base components Ci differ from the reference

components C∗i through additional logging attributes such as noJobsGenerated.

Formal Component Representation

In the Formal Component Representation step, the state machine for component C1 as

specified in its meta-component is S1(∆interArrivalT ime) → S2, S2 → S1O1[A1].

This expression is translated to a formal component representation specified by f1

which is defined as

f1 : ∅ × S1 × T1 → {O1} × S1 × T1, f1(∅, si, t)→ (O1, s
′
i, t+ ∆t)

where ∆t is sampled from a specified distribution and the function is re-called until

t > T , where the simulation runs for time T = 40 wall clock units.

Unfolding and Sampling

The above expression is not useful for the Unfolding and Sampling step in our approach

because during a simulation run t and ∆t have specific values. Thus we unfold the

function call graph for τ = 3 times and sample the values for ∆t, using mean values

provided by the user. For component C1 assume that the inter-arrival time is sampled

from an exponential distribution with a mean = 3. With sampling and an unfolding

grade of τ = 3 we have ∆t = 6,∆t = 2,∆t = 4. For component C2 described

formally by f2 assume the service time has an exponential distribution with a mean of

mean = 6 sampled as 11, 6, 1. Lastly, we assume component C3 formalized in f3 takes

1 unit of time to service each job, so ∆t = 1 for all samples. The values of f1, f2, and

f3 are presented in Table B.5.

Composition

Next, the function composability is validated in the Composition step. Following Def-
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Unfold ∆t Formula Meaning

f1

1 6 f1(∅, s1
1, 0) → (O1, s

1
2, 6) from state s1

1 with no input at time 0, to state s1
2 with output O1 at time 6

2 2 f1(∅, s1
2, 6) → (O1, s

1
3, 8) from state s1

2 with no input at time 6, to state s1
3 with output O1 at time 8

3 4 f1(∅, s1
3, 8) → (O1, s

1
4, 12) from state s1

1 with no input at time 8, to state s1
2 with output O1 at time 12

f2

1 11 f2(I2, s
2
1, x ≥ 0) → (O2, s

2
2, x+ 11) from state s2

1 with input I2 at time x, to state s2
2 with output O2 at time x + 11

2 6 f2(I2, s
2
2, t ≥ x+ 11) → (O2, s

2
3, t+ 6) from state s2

2 with input I2 at time t, to state s2
3 with output O2 at time t + 6

3 1 f2(I2, s
2
3, r ≥ t+ 6) → (O2, s

2
4, r + 1) from state s2

3 with input I2 at time r, to state s2
4 with output O2 at time r + 1

f3

1 1 f3(I3, s
3
1, x
′ ≥ 0) → (∅, s3

2, x
′ + 1) from state s3

1 with input I3 at time x′, to state s3
2 with no output at time x′ + 1

2 1 f3(I3, s
3
2, t
′ ≥ x′ + 1) → (∅, s3

3, t
′ + 1) from state s3

2 with input I3 at time t′, to state s3
3 with no output at time t′ + 1

3 1 f3(I3, s
3
3, r
′ ≥ t′ + 1) → (∅, s3

4, r
′ + 1) from state s3

3 with input I3 at time r′, to state s3
4 with no output at time r′ + 1

Table B.5: Formal Component Representation in Our Proposed Formalism

inition 14 we obtain constraints for the values of x, t, r and x′, t′, r′ respectively. The

constraints on x, t, r derive from the fact that the first call to function f2 has to take

place after at least one call to f1 has completed and produced output, since f2 requires

output from f1. Similarly for f3, the first call has to take place after f2 has produced

at least one output. Furthermore, the average time spent by messages in the connector

queues is considered. The average time in queue is obtained from the meta-simulation

validation layer. Assuming that the average times spent in the connector queues are

∆w1 = 2,∆w2 = 3,∆w3 = 1 and ∆w′1 = 4,∆w′2 = 3,∆w′3 = 2 for f2 and f3

respectively, the most trivial constraints that can be derived are:

x ≥ ∆w1, t ≥ x+ 11, t ≥ 8 + ∆w2, r ≥ t+ 6, r ≥ 12 + ∆w3 (B.1)

x′ ≥ x+ 11 + ∆w′1, t
′ ≥ x′+ 1, t′ ≥ t+ 6 + ∆w′2, r

′ ≥ t′+ 1, r′ ≥ r+ 1 + ∆w′3 (B.2)

Next, the constraints are solved by a constraint solver. Assume that a solution is:

(x = 8, t = 19, r = 25), (x′ = 23, t′ = 28, r′ = 29).

For the reference functions f ∗i , the constraint solver returns the same solution for

(x∗, t∗, r∗) and (x
′∗, t

′∗, r
′∗):

(x∗ = 8, t∗ = 19, r∗ = 25), (x
′∗ = 23, t

′∗ = 28, r
′∗ = 29).
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Simulation

The above solutions dictate the interleaved execution schedules of the function calls.

Interleaved execution schedules are obtained for both composition and reference com-

position. For this simple model in which the component definitions are almost the same

with the exception of some attributes, the interleaved schedules presented in Figure

B.3(a) and Figure B.3(b) are the same. Each interleaved execution is represented as a

f1(∅, s1
1, 0)→ (O1, s

1
2, 6)

f1(∅, s1
2, 6)→ (O1, s

1
3, 8)

f1(∅, s1
3, 8)→ (O1, s

1
4, 12)

f3(I3, s
3
2, 28)→ (∅, s3

3, 29)

f3(I3, s
3
3, 29)→ (∅, s3

4, 30)

f2(I2, s
2
2, 19)→ (O2, s

2
3, 25)

f3(I3, s
3
1, 23)→ (∅, s3

2, 24)

f2(I2, s
2
3, 25)→ (O2, s

2
4, 26)

f2(I2, s
2
1, 8)→ (O2, s

2
2, 19)

(a) Composition

f ∗1 (∅, s1
1, 0)→ (O1, s

1
2, 6)

f ∗1 (∅, s1
2, 6)→ (O1, s

1
3, 8)

f ∗2 (I2, s
2
1, 8)→ (O2, s

2
2, 19)

f ∗1 (∅, s1
3, 8)→ (O1, s

1
4, 12)

f ∗3 (I3, s
3
1, 23)→ (∅, s3

2, 24)

f ∗2 (I2, s
2
3, 25)→ (O2, s

2
4, 26)

f ∗3 (I3, s
3
2, 28)→ (∅, s3

3, 29)

f ∗3 (I3, s
3
3, 29)→ (∅, s3

4, 30)

f ∗2 (I2, s
2
2, 19)→ (O2, s

2
3, 25)

(b) Reference Composition

Figure B.3: Interleaved Execution Schedules

Labeled Transition System, L(M) and L(M∗) respectively, as shown in Figure B.4.

S*
1

S*
2

S*
3

S*
4

S*
5

S*
6 7

S* S*
8

S*
9

S
1

S
2

S
3

S
4

S
5

S
6

S
7

S
8

S
9 S

10

S*
10

M*:

M:

< f1, 2, O1 > < f2, 11, O2 > < f1, 4, O1 > < f2, 2, O2 > < f3, 1,− > < f2, 1, O2 > < f3, 1,− >

< f ∗3 , 1,− > < f ∗3 , 1,− > < f ∗3 , 1,− >< f ∗2 , 1, O2 >< f ∗2 , 2, O2 >< f ∗1 , 4, O1 >< f ∗2 , 11, O2 >< f ∗1 , 2, O1 >< f ∗1 , 6, O1 >

< f3, 1,− >< f1, 6, O1 >

Figure B.4: LTS Representation of Model Execution

Validation

In the Validation step, strong equivalence between L(M) and L(M∗) is validated using

the BISIMULATOR equivalence checker, part of the CADP toolset. For this simple

example, the BISIMULATOR returns true. As such, there is no need to validate a

possible weak equivalence by calculating the semantic metric relation Vε.
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Appendix C

Component-based Modeling of a Grid

System

The conceptual model of a grid system with two virtual organizations (VO) sharing a

grid meta-scheduler job queue [42] is shown in Figure C.1(a). Each virtual organization

consists of a local job scheduler and different types of computational resources. Assume

the meta-scheduler accepts CPU and I/O intensive jobs that can be serviced by V O1,

whereas V O2 only services CPU intensive jobs.

C2C1

C3

C4

C5

V O1

V O2

Local
Scheduler

Local
Scheduler

- CPU_Intensive
- IO_Intensive - CPU_Intensive

- IO_Intensive

- CPU_Intensive
- IO_Intensive

- CPU_IntensiveMeta-scheduler

C6

C7

C8

C9

C10

C11

(a) Conceptual Model

Grid QN = Source ConO Server ConF (Server ConF (Server ConJ Sink)
(Server ConJ Sink)
(Server ConJ Sink))

(Server ConF (Server ConJ Sink)
(Server ConJ Sink))

(b) Production String using Base Components

Figure C.1: A Grid Computing System Composed using Base Components

220



C.1 Conceptual Model Definition

The simulation developer inputs the conceptual model by drag-and-drop icons of Queue-

ing Networks base components on the GUI drawing panel and subsequently connecting

them using One-to-One, Fork, and Join connectors as shown in Figure C.1(a).

Conceptual Model Definition using Reused Model Components

To facilitate the reuse of previously developed models, reused model components can

be employed when drawing the conceptual model. For example, V O1 and V O2 could

have been developed earlier and saved into the model repository as model components

to be reused as shown in Figure C.2(a).

C2C1

V O1

- CPU_Intensive
- IO_Intensive - CPU_Intensive

- IO_Intensive

- CPU_Intensive
- IO_Intensive

- CPU_Intensive
Meta-scheduler

V O2

C5

C6

(a) Conceptual Model

Grid QN = Source ConO Server ConF (Rep Comp ConO Sink)
(Rep Comp ConO Sink)

(b) Production String using Model Components

Figure C.2: A Grid Computing System Composed using Reused Model Components

C.2 Syntactic Composability Verification

The production string for the grid system conceptual model is presented in Figure

C.1(b). The production string is accepted by the queueing network application domain

composition grammar and thus syntactic composability is verified.
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Syntactic Composability Verification with Reused Model Components

The corresponding production string for the model in Figure C.2(a) is shown in Figure

C.2(b). The composition grammar caters for reused model components, as shown in

Figure 4.6. As such, the above production string is accepted by the composition gram-

mar parser and the model is considered syntactically correct.

C.3 Model Discovery and Selection

Following syntactic composability verification, each individual component is discov-

ered based on individual component queries provided by the simulation developer. For

simplicity, we showcase the discovery of base components. In order to meaningfully

rank candidate components from the repository, we calculate the Matching Index for

all pairs of component query and repository component description, as discussed in

Chapter 5.

We perform several optimizations to reduce the number of repository components

considered in the discovery process. When discovery of base components is performed,

we consider only repository components of the same type as the base components in

the conceptual model. The type of a component is an example of a mandatory at-

tribute, which needs to be properly defined in the COSMO ontology. For example,

when discovery is performed for component C2 in Fig. 8.9, only components of type

Server (or additional sub-types according to the COSMO ontology) are considered.

The CoDES component repository contains 1958 base and model components for the

Queueing Networks application domain, from which 1949 are model components that

contain between 4 and 10 base components connected in different ways, and 9 are base

components, 3 each for the types Source, Server, and Sink respectively. This repository

models a real-life scenario where we expect the number of base components per applica-
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tion domain to be significantly smaller than the number of developed component-based

models. Thus, when a query is performed for component C2, the number of candidate

components is reduced to 3, with a decrease of 99.99%. When model components are

discovered, we reduce the state space by considering only the repository model com-

ponents whose input and output constraints match those that can be deduced from the

conceptual model.

Table C.1 presents a sample query for component C2. The meta-scheduler compo-

nent C2 must service two types of jobs, as shown in the Input/Output constraints for

the query component C2. Matching on the required attributes returns a matching in-

dex of MIr = 1, since the type attribute matches exactly and all relevant words in the

description of the query component are found in the repository component. Only the

origin and destination are close matches for the input and output constraints, resulting

in MIb = 0.25.

Query Component (C2) Repository Component (C) Matching Index
Mandatory type: Server type: Server

MIr = 1
Attributes description: server, two classes of jobs description: single-server
Specific

- - MIa = 0
Attributes

Input: I1, I2, Output: O1, O2 Input: I1, Output: O1

Behavior:
IConstraints = {I1C1 , I2C1

}, OConstraints = {O1C1 , O2C1} IConstraints = {I1C1}, OConstraints = {O1C1}

Input/Output
I1C1 = { class = CPU Intensive, origin = TwoClassSource } I1C1 = { type = double, range = 10:35,

MIb = 0.5+0.5+0.5+0.5
2+2+2+2

= 0.25
Constraints

I2C1 = { class = IO Intensive, origin = TwoClassSource } origin = Source|SingleUnitServer
O1C1 = { class=CPU Intensive, destination = SingleUnitServer } O1C1 = { type = double, range =10:35,
O2C1 = { class=IO Intensive, destination = SingleUnitServer } destination = SingleUnitServer|Sink}

MI(C2,C) = 0.625

Table C.1: Base Component Query Information

The discovery process continues in a similar manner for all base components in the

conceptual model. Assume that key meta-component information for repository com-

ponents C1, C2, and C4 is shown in Table 6.1. As it can be seen, component C4 services

a single class of jobs, namely CPU Intensive, whereas C2 services IO Intensive

jobs as well. Similarly, components C3, C5, C6, C7 and C10 will serve two classes of

jobs, whereas C4, C8, C9, and C11 will serve only CPU Intensive jobs.

Assume that all components are successfully discovered and the meta-component

223



information is shown in Table C.2. As it can be seen, component C4 services a sin-

gle class of jobs, namely CPU Intensive, whereas C2 services IO Intensive jobs

as well. Similarly, components C3, C5, C6, C7 and C10 will serve two classes of jobs,

whereas C4, C8, C9, and C11 will serve only CPU Intensive jobs. Semantic compos-

C1 C2 C4

Attribute

noJobsGenerated = 0 noJobsServiced = 0 noJobsServiced = 0
interArrivalTime: exponential(3) serviceTime1 : exponential(6) serviceTime : exponential(2)

serviceTime2 : exponential(5) busy = false
busy = false

Input -

I1, constraints: I1, constraints:
origin = Source|Server . . . origin = Source|Server . . .
class = CPU Intensive class = CPU Intensive

-
I2, constraints:

-origin = Source|Server . . .
class = IO Intensive

Output

O1, constraints: O1, constraints: O1, constraints:
destination = Server . . . destination = Server|Sink destination = Server|Sink
class = CPU Intensive class = CPU Intensive class = CPU Intensive

O2, constraints: O2, constraints:
-destination = Server . . . destination = Server . . .

class = IO Intensive class = IO Intensive

State Machine

S1(∆interArrivalT ime)
[C1]−−→ S1O1[A1] I1S1 → S2[A1;A3;A4] I1S1 → S2[A1;A3]

S1(∆interArrivalT ime)
[C2]−−→ S1O2[A2] I2S1 → S3[A1;A3;A5] S2(∆serviceT ime)→ S1O1[A2]

S2(∆serviceT ime1)
C1−→ S1O1[A2]

S3(∆serviceT ime2)
C2−→ S1O2[A2]

. . .
[A1] = noJobsGenerated+ +; [A1] = (busy = true); [A1] = (busy = true);

[C1] = noJobsGenerated%2 == 0; [A2] = (busy = false); [A2] = (busy = false);
[C2] = noJobsGenerated%2 == 1; [A3] = noJobsServiced+ +; [A3] = noJobsServiced+ +;

[A4] = class = C1;
[A5] = class = C2;

[C1] = class == C1;
[C2] = class == C2;

Table C.2: Meta-component Representation of Discovered Components
ability validation is performed when the discovery process completes successfully.

C.4 Semantic Composability Validation

C.4.1 Validation of General Model Properties

The first step in the validation of semantic composability ensures that the component

communication is meaningful. The compatibility with respect to input and output data

between connected components is calculated in a similar manner to MIb using data

from the COSMO ontology, and results in a Composability Index CI = 1 [125].
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In Concurrent Process Validation, the composition is formally specified using con-

current processes with instantaneous transitions and generic output abstracted to a sin-

gle message type. This is possible because the component communication has been

previously validated. This results in a significant state space reduction by a factor that

would otherwise have been a power of the number of states per component and number

of components (see Table 8.6). Figure C.3 and Figure C.4 show the Promela model

for this example. The SPIN model checker validates this example and the concurrent

process validation returns a positive answer.

The Meta-Simulation layer next validates the composition execution through time.

Safety and liveness properties are validated over time from a practical simulation per-

spective. Safety is specified by the simulation developer through validity points that

describe the data permitted through certain points in the composition topology. Here,

a validity point for the connection between C8 and C11 could be V P1 = d1{origin =

Server, destination = Sink, class = CPU Intensive}, but more expressive valid-

ity points could be permitted. In the validation of liveness, a transient predicate for

component C4 could be transient(C4) = {noJobsServiced == 5}. In our example,

the transient predicate for component C4 imposes a QoS on the local scheduler to serve

at least five CPU Intensive jobs in order to be considered alive. A number of 10

meta-simulation runs are performed and the composed model is considered invalid

because component C4 does not satisfy its transient predicate. This is because V O2

does not get to serve enough CPU Intensive jobs.

C.4.2 Formal Validation of Model Execution

Since the composed model did not pass the previous stage, formal validation of model

execution is not performed.
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1 mtype {Job};
2 chan to11 = [10] of {mtype};
3 chan to10 = [10] of {mtype};
4 ...
5 chan from2 = [10] of {mtype};
6 chan from1 = [10] of {mtype};
7 typedef forkChannels{
8 chan outgoing[10] = [10] of {mtype}
9 }

11 typedef joinChannels{
12 chan incoming[10] = [10] of {mtype}
13 }

15 hidden byte sourceIAMax = 10;
16 byte sourceIATime;
17 byte noJobsSource;

19 proctype CON ONE TO ONE(chan in, out){
20 byte noJobs;
21 do
22 :: in ? Job −> out ! Job; noJobs++;
23 od
24 }

26 proctype CON FORK1(int noChannels; chan in, out0,out1,out2){
27 int currentChan = 0;
28 forkChannels chans;
29 chans.outgoing [0] = out0 ;
30 chans.outgoing [1] = out1 ;
31 chans.outgoing [2] = out2 ;
32 do
33 :: in ? Job −> chans.outgoing[currentChan % noChannels] ! Job; currentChan =
34 currentChan + 1; od
35 }

Figure C.3: Specification of a Grid System in Promela
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1 proctype CON FORK(int noChannels; chan in,
2 out0 ,out1){ int currentChan = 0;
3 forkChannels chans;
4 chans.outgoing [0] = out0 ;
5 chans.outgoing [1] = out1 ;
6 do
7 :: in ? Job −> chans.outgoing[currentChan % noChannels] ! Job;
8 currentChan = currentChan + 1; od
9 }

10 proctype CON JOIN(chan out, in0,in1, in2){ ...}
11 proctype SINK1(int id ; chan in){
12 S1: { if :: in ? Job −> printf("[Sink] Job received!\n");goto S1; fi }}

14 proctype SERVER3(int id; chan in , out){
15 byte noJobsQueue;
16 S1: {
17 if
18 :: in ? Job −> printf("[Server] Job received!\n");
19 noJobsQueue++;goto S2;
20 fi }
21 S2: {
22 if
23 :: out ! Job −> progress: printf ("[Server] Job sent! \n");
24 if
25 :: noJobsQueue==1−> noJobsQueue−−;goto S1;
26 :: noJobsQueue!=1−> noJobsQueue−−;goto S2;
27 fi fi } }

29 proctype SOURCE1(int id; chan out){
30 do
31 :: (sourceIATime == sourceIAMax) −>
32 sourceIATime = 0;
33 if
34 :: out ! Job −> progress : printf ("[Source] Job sent\n"); fi od }

36 proctype SourceCounter(){
37 do
38 :: (sourceIATime < sourceIAMax) −> sourceIATime++;
39 od
40 }

42 init {
43 run SourceCounter ();
44 run SINK1(11,to11);
45 run SINK1(10,to10);
46 run SERVER3(9,to9, from9);
47 run SERVER3(8,to8, from8);
48 run SERVER3(7,to7, from7);
49 run SERVER3(6,to6, from6); ...
50 }

Figure C.4: Specification of a Grid System in Promela (continued)
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Appendix D

Component-based Modeling of a Tank

vs SoldierTroop System

D.1 Conceptual Model Definition

The simulation developer inputs the conceptual model by drag-and-drop icons of a Tank

and a SoldierTroop base components on the GUI drawing panel and subsequently con-

necting them using One-to-One connectors as shown in Figure D.1. As it can be seen,

this results in a closed system with a feeback loop going in the SoldierTroop base com-

ponent.

Figure D.1: Tank vs Soldier Troop Training Scenario
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D.2 Syntactic Composability Verification

The conceptual model presented above is syntactically verified by the Syntax Verifier

module. First, the module checks that no component port is left unconnected. Next, a

production string is generated to describe the conceptual model. The production string

is a linear arrangement of the components’ types according to their position on the

graphical screen. The production string for this model is:

TankMTS = Tank ConO SoldierTroop ConO Tank

The model is syntactically verified if the production string is accepted by the Military

Training composition grammar from Figure 8.4. In the CoDES implementation, the

composition grammar is first parsed using our implemented Earley parser. Next, the

production string is verified by the parser. The parser accepts the production string and

thus the model is syntactically correct.

D.3 Model Discovery and Selection

Following syntactic composability verification, each individual component is discov-

ered based on individual component queries provided by the simulation developer. As-

sume that the components have been successfully discovered and their meta-components

are presented in Table D.1.
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Entity Attribute Input Output State Machine

tank1

health = 100 I1, constraints: O1, constraints: I1S1(∆movingT ime)
C1−→ O1S1A1

range = 7 class = PositionInfo class = PositionBroadcast I1S1(∆shootingT ime)
C2−→ O2S2A2

ammo = 50 origin = SoldierTroop destination = SoldierTroop I2S1(∆movingT ime)
C1−→ O1S1A3

movingTime: exponential(5) I2, constraints: O2, constraints: I2S1(∆shootingT ime)
C2−→ O2S2A4

shootingTime: exponential(4) class = InputF ire class = OutputF ire I2S1
C3−→ O1S1

usableThreshold = 20 origin = SoldierTroop destination = SoldierTroop I1S1
C3−→ O1S1

null S2(∆movingT ime)→ O1S1A1

positionX = 20 C1 : no opponents in range
positionY = 15 C2 : at least one opponent in range
speed = 10 C3 = health < usableThreshold
team = red A1 : modify position
. . . A2 : modify target position
transient(tank1) : (ammo == 49) A3 : modify position, health

A4 : modify target position, health

troop1

health = 100 I1, constraints: O1, constraints: S0 → O1S1

range = 2 class = PositionInfo class = PositionBroadcast I1S1(∆movingT ime)
C1−→ O1S1A1

ammo = 20 origin = Tank destination = Tank I1S1(∆shootingT ime)
C2−→ O2S1A2

movingTime : exponential(3) I2, constraints: O2, constraints: I2S1(∆movingT ime)
C1−→ O1S1A3

shootingTime : exponential(2) class = InputF ire class = OutputF ire I2S1
C3−→ O1S1

usableThreshold = 40 origin = Tank destination = Tank I2S1
C3−→ O1S1

positionX = 40 C1 : no opponents in range
positionY = 45 C2 : at least one opponent in range
speed = 3 C3 = health < usableThreshold
team = blue A1 : modify position
. . . A2 : modify target position
transient(troop1) : (ammo == 49) A3 : modify position, health

A4 : modify target position, health

Table D.1: Meta-component Information for Tank vs. SoldierTroop Scenario

D.4 Semantic Composability Validation

D.4.1 Validation of General Model Properties

Concurrent Process Validation

The Concurrent Process Validation layer validates the component coordination of the

composed model. This layer guarantees that safety, liveness, as well as deadlock free-

dom hold for all possible interleaved executions of instantaneous transitions of the

composed simulator abstracted as a composition of concurrent processes. A composed

model is invalid if it is found to be deadlocked, or if any of the components invalidate

their safety or liveness properties. The behavior of each meta-component modeled as a

state machine is translated into a logical specification using a logic converter module.

Different converters are developed for each application domain and targeting various

logical properties. The converter takes as inputs the meta-components and the compo-
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sition topology. The result is a specification describing the composition together with

an expression of the safety and liveness properties. To prevent state explosion, each

component state machine is reduced by considering only communication states and at-

tributes that influence state transitions. The actions of non-communicating states are

abstracted as a single atomic operation. Similarly, time is not modeled and transitions

are considered instantaneous.

Figure D.2(a) shows a possible translation of the component state machine into a

Promela specification. Each state is transformed into a Promela label, and the label in-

cludes input and/or output actions as specified by the meta-component behavior, as well

as conditions on attribute values and attribute modifications. Transitions between states

are instantaneous. Thus, time attributes such as ∆shootingT ime and ∆moovingT ime

from Table D.1 are ignored. Each type of connector is defined as a Promela process.

For example, process CON ONE TO ONE on line 3 describes the one-to-one connec-

tor. The fork and join connectors are not part of this composition and as such are

omitted. In the init method on line 20, communication channels are assigned to the

connectors and components according to their connection topology. Similar to the be-

havior of connectors in the real system, communication in our Promela specification is

asynchronous. Liveness is specified using progress labels such as the one on line

7, and safety is specified using assert statements. Next, the Promela specification is

validated by the Spin model checker [14].

Discussion This example has led to some interesting observations on the translation

from a component state machine to a feasible Promela specification. Previously for the

Queueing Networks Application Domain, the non data-driven state machines could be

almost exactly transformed into Promela and the process was easily automated [119].

However, when data-driven component state machines are used, the process is not eas-

ily automated. For example, if we were to interpret component coordination strictly
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 1 mtype {MSG}; chan to1 = [10] of {mtype}; ...
 2 proctype CON_ONE_TO_ONE(chan in, out)
 3 {do :: in ? MSG -> out ! MSG; od}
 4 
 5 proctype TANK(byte id; chan in, out){
 6 S1: atomic{ if :: in ? MSG ->
 7  if :: out ! MSG -> progress: printf("MSG sent\n");
 8 goto S1; fi fi}}
 9
10 proctype SOLDIERTR(byte id; chan in, out){
11 bit initial = 1;
12 S0: atomic{ if
13 :: (initial == 1) -> initial = 0;
14  if :: out ! MSG -> goto S1; fi fi}
15 S1: atomic{ if
16 :: in ? MSG ->
17 if :: out ! MSG -> progress: printf("MSG sent\n");
18 goto S1; fi fi
19 }}
20 init{ run TANK(1, to1, from1);
21 run SOLDIERTR(2, to2, from2);
22 run CON_ONE_TO_ONE(from1, to2);
23 run CON_ONE_TO_ONE(from2,to1); }

(a) Simple Promela Specification

  1 proctype SOLDIERTR(byte id, health, ..., posX, posY; chan in, out)  
  2
  3 {bit initial = 1; byte posXFire, posYFire;
  4 byte msgPosX, msgPosY, auxX, auxY, auxDistance,...;
  5 S0: atomic{ 
  6 if  :: (initial == 1) -> initial = 0;
  7  if :: out ! MSG_POS -> goto S1; fi fi}
  8 S1: atomic{ if atomic{if
  9 :: in ? MSG_FIRE, msgPosX, msgPosY -> health = health - 10;   
10  
11  if :: health < health_threshold -> 
12       if :: out ! MSG_DIE -> goto end; fi
13  :: else
14     if :: out!MSG_POS, posX, posY -> progress: printf("MSG sent\n");
15 
16      goto S1;fi
17   fi
18 :: in ? MSG_DIE -> out ! MSG_DIE;goto end;  
19 #GPS coord
20 :: in ? MSG_POS, msgPosX, msgPosY ->
21  if :: !(msgPosX<posX-range||msgPosX>posX+range ||msgPosX<posY-range
22 ||msgPosY<posY+range)->
23 if :: ammo>0->out!MSG_FIRE,msgPosX,msgPosY; ammo--; goto S1; fi
24  :: else -> auxDistance = distance;
25 :: msgPosX<posX->auxX = msgPosX+range; 
26 :: else -> auxX = msgPosX - range; fi} ...
27 //similar to calc nxt position 
28 if #broadcast position
29 :: out ! MSG_POS, posX, posY -> goto S1; fi
30 fi fi } 
31 end: skip; } 
32 init{
33 run TANK(1, 100, 20, 5, 40, 45,  to1, from1); 
34 run SOLDIERTR(2, 100, 10, 5, 15, 20, to2, from2);  
35 run CON_ONE_TO_ONE(1, from1, to2);
36 run CON_ONE_TO_ONE(2, from2,to1); }

(b) Detailed Promela Specification

Figure D.2: Tank vs SoldierTroop in Promela

from a message passing perspective, the resulting Promela specification would be that

presented in Figure D.2. This type of interpretation is easily automated and focuses only

on component coordination. However, it lacks expressivity and any coordination logic.

On the other hand, if we were to exactly transform the component state machines from

their COML specification into Promela like in Figure D.2(b) for the troop1 component,

we would obtain a more exact description of the attack but it is difficult to automate the

translation process. In this example, we represent the composition according to Figure

D.2(b) and consider finding a middle ground between the two approaches part of our

future work. The Spin model checker validates the specification and the validation pro-

cess can proceed to the next layer.

Meta-Simulation Validation

The meta-simulation layer validates if the logical properties demonstrated previously
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hold through time. Our implementation translates the complete state machine of each

component into a Java class hierarchy. Attributes and their values provided by the user,

state transitions, and time are modeled. Next, we construct a meta-simulation of the

composed model using the translated classes. During the meta-simulation run, sam-

pling is performed for attributes that require so. This is the case especially for time

attributes such as shooting time and moving time. For example, as shown in Table D.1,

the shooting time ∆shootingT ime for component tank1 is sampled from an exponen-

tial distribution with a mean of 4. The distribution type and mean values, as well as

the initial position on the grid (positionX and positionY ) and the initial ammunition

(ammo), are examples of attribute values provided by the user. Since sampling is per-

formed, the meta-simulation is run for N = n ∗ noSampling times, where n is the

total number of components and noSampling is the total number of locations where

sampling is done. If any of the properties does not hold in the meta-simulation runs, the

composition is declared invalid.

Two important logical properties to be validated through time are safety and live-

ness. From a practical perspective, we consider safety to mean that components do not

produce invalid output. The simulator developer specifies the desired valid output by

providing validity points at various connection points in the composition. A validity

point contains semantic description of data that must pass through its assigned connec-

tion point. For example, one validity point for the data that passes through the feedback

one-to-one connector in Figure D.1 could be V P1 = d1{origin = SoldierTroop,

destination = Server, position.X{range = 20; 40, type = int}}, showing that the

new position for component troop1 is calculated properly. A safety error is issued if

anytime during the meta-simulation run semantically incompatible data according to

the component-oriented ontology passes through the connection point.

Liveness is validated by considering a transient predicate assigned to each compo-
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nent. The value of the transient predicate is ideally provided by the component creator

in the meta-component as shown in Table D.1. Its initial value is false. A component

is considered alive if its liveness observer has evaluated the transient predicate to true

and then to false in an interval of time smaller than the specified timeout. For example,

the transient predicate for component tank1 could be transient(tank1) = (ammo ==

49). This guarantees that the tank must shoot at least twice for it to be considered alive.

A liveness observer is attached to each component and is notified every time the at-

tributes involved in a transition change values. Once the meta-simulation layer returns

a positive value, the validation process can proceed to the next layer.

D.4.2 Formal Validation of Model Execution

In step 2, a model M composed of tank1 and troop1 is validated by comparison with a

reference modelM∗ consisting of reference components tank∗ and troop∗. A reference

component is a generic, desirable representation of a base component ideally provided

by domain experts when the new application domain is added to the framework. Ideally,

the reference components should describe what the system experts consider to be the

desirable base component behavior. It should be generic in the sense that their descrip-

tion lacks any real data values. Throughout the validation process, the generic reference

components attributes will be instantiated using the same attribute values used by the

corresponding components in the composed model M . The attribute correspondence

is established by using the COSMO ontology. For the military training application do-

main, we assume the reference component troop∗ to be the same as component troop1

from Table 8.1. Let component tank∗ state machine be the one presented in Table D.2.

Notice that the difference between tank∗ and tank1 is in the missing state S2. This is

because tank∗ implements a direct attack tactic whereas tank1 implements a shoot and

scoot tactic.
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Entity Data State Machine

tank∗

Input I1S1(∆movingT ime)
C1−→ O1S1A1

I1, constraints: I1S1(∆shootingT ime)
C2−→ O2S1A2

class = PositionInfo I2S1(∆movingT ime)
C1−→ O1S1A3

origin = SoldierTroop I2S1(∆shootingT ime)
C2−→ O2S1A4

I2, constraints: I2S1
C3−→ O1S1

class = InputF ire I1S1
C3−→ O1S1

origin = SoldierTroop C1 : no opponents in range
Output C2 : at least one opponent in range
O1, constraints: C3 = health < usableThreshold
class = PositionBroadcast A1 : modify position
destination = SoldierTroop A2 : modify target position
O2, constraints: A3 : modify position, health
class = OutputF ire A4 : modify target position, health
destination = SoldierTroop

Table D.2: Reference Component State Machine

Our formal validation layer is divided into five steps, namely (i) Formal Component

Representation in which component state machines are translated into our proposed

time-based formalism, (ii) Unfolding and Sampling in which time attribute values are

sampled, (iii) Mathematical Composability in which the mathematical composability of

functions is validated, (iv) Representation of Model Execution in which the execution

of the composed model is represented as a Labelled Transition System [114], and (v)

Bisimulation Validation in which the execution of model M is validated against the

execution of model M∗ [122].

In Definition 12, components tank1 and troop1 are represented formally as math-

ematical functions f1 and f2 respectively. Model M is described formally as M =

{(f1, f2),(f2, f1)}. Conversely, tank∗ and troop∗ are represented formally as f ∗1 and f ∗2

respectively and their composition is represented formally asM∗ = {(f ∗1 , f ∗2 ), (f ∗2 , f
∗
1 )}.

In the first four steps, M and M∗ are transformed in a format that facilitates meaningful

comparison. In the following we present the translation process for f1 and f2. The

process for f ∗1 and f ∗2 is exactly the same.

Formal Component Representation
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The state machine for component tank1 is translated to a formal component represen-

tation specified by f1 as

f1 : {I1, I2} × S1 × T1 → {O1, O2} × S1 × T1,

f1(I1, si, t)→ (O1, s
′
i, t+ ∆t),

f1(I1, si, t)→ (O2, s
′
i, t+ ∆t),

f1(I2, si, t)→ (O1, s
′
i, t+ ∆t),

f1(I2, si, t)→ (O2, s
′
i, t+ ∆t),

f1(null, si, t)→ (O1, s
′
i, t)

where ∆t is sampled from a specific distribution (either the distribution formovingT ime

or shootingT ime) and the function is re-called until t > T , where the simulation runs

for time T = 400 wall clock units.

Unfolding and Sampling

As it can be seen, the above expression for f1 is not useful because during a simulation

run, t and ∆t have specific values. In this step, we unfold the function definition for τ =

5 times and sample the values for ∆t from ∆movingT ime or ∆shootingT ime, using

mean values provided by the user. For component tank1 described formally as f1, ∆t

takes values as necessary from the sampled values ofmovingT ime, exponential(mean =

5) = {20, 40, 70}, and shootingT ime, exponential(mean = 4) = {10}. The values

of f1 and f2 are presented in Table D.3. f2 is described first, because according to the

state machine in Table D.3, it is the troop1 component that will initiate the communi-

cation.

Mathematical Composability

Next, the function composability is validated in the Mathematical Composition step.

Following Definition 14, we obtain constraints for the values of var1, var2,var3, var4

and var21, var22, var23 respectively.
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Unfold ∆t Formula

f2

1 - f2(∅, s2
1, 0 ≥ 0) → (O1, s

2
2, 0)

2 20 f2(I1, s
2
2, var1 ≥ 0) → (O1, s

2
3, var1 + 20)

3 40 f2(I2, s
2
3, var2 ≥ var1 + 20) → (O1, s

2
4, var2 + 40)

4 10 f2(I1, s
2
4, var3 ≥ var2 + 40) → (O2, s

2
5, var3 + 10)

5 80 f2(I2, s
2
3, var4 ≥ var3 + 10) → (O1, s

2
6, var4 + 80)

f1

1 50 f1(I1, s
1
1, var21) → (O1, s

1
2, var21 + 50)

2 10 f1(I1, s
1
2, var22 ≥ var21 + 50)) → (O2, s

1
3, var22 + 10)

3 3 f1(∅, s1
3, var22 + 10) → (O1, s

1
4, var22 + 13)

4 30 f1(I1, s
1
4, var23 ≥ var22 + 13) → (O2, s

1
5, var23 + 30)

5 7 f1(∅, s1
5, var23 + 30) → (O1, s

1
6, var23 + 37)

Table D.3: Formal Component Representation

The constraints on var21, var22, var23 derive from the fact that the first call to func-

tion f1 has to take place after at least one call to f2 has completed and produced output,

since f1 requires output from f2. Because there exists a feedback loop between f2 and

f1, the second call for f2 at time var1 has to take place at least after the first call to

f1, resulting in the var1 ≥ var21 + 50 + w21, where w21 is the average time spent in

the connector queue from f2 to f1. From a realistic perspective, we also consider the

average time spent by messages in the connector queues, which is obtained from the

meta-simulation validation layer. Assuming that the average times spent in the connec-

tor queues are ∆w12 = 2, ∆w21 = 3 for the connector between f1 and f2 and vice-versa,

the most trivial constraints that can be derived are:

var1 ≥ 0, var1 ≥ var21 + 50 + ∆w12,

var2 ≥ var1 + 20, var2 ≥ var22 + 10 + ∆w12,

var3 ≥ var2 + 40, var3 ≥ var22 + 13 + ∆w12,

var4 ≥ var3 + 10, var4 ≥ var23 + 30 + ∆w12.

var21 ≥ 0 + ∆w21,

var22 ≥ var21 + 50, var22 ≥ var1 + 20 + ∆w21,

var23 ≥ var22 + 13, var23 ≥ var2 + 40 + ∆w21.

237



Next, the constraints are solved by the Choco constraint solver [23]. Assume that a

solution is:

f2 : (var1 = 56, var2 = 91, var3 = 131, var4 = 166),

f1 : (var21 = 4, var22 = 79, var23 = 134).

The same process is applied for reference functions f ∗i using the same sampled

values and average waiting times. However, the set of constraints and the number of

variables are different because of the different implementation for component tank1.

var∗1 ≥ 0, var∗1 ≥ var∗21 + 50 + ∆w12,

var∗2 ≥ var∗1 + 20, var∗2 ≥ var∗22 + 10 + ∆w12,

var∗3 ≥ var∗2 + 40, var∗3 ≥ var∗23 + 30 + ∆w12,

var∗4 ≥ var∗3 + 10, var∗4 ≥ var∗24 + 20 + ∆w12.

var∗21 ≥ 0 + ∆w21,

var∗22 ≥ var∗21 + 50, var∗22 ≥ var∗1 + 20 + ∆w21,

var∗23 ≥ var∗22 + 10, var∗23 ≥ var∗2 + 40 + ∆w21,

var∗24 ≥ var∗23 + 30, var∗24 ≥ var∗3 + 10 + ∆w21,

var∗25 ≥ var∗24 + 20, var∗25 ≥ var∗4 + 80 + ∆w21.

The constraint solver returns the following solution:

f ∗2 : (var1 = 56, var2 = 91, var3 = 166, var4 = 201),

f ∗1 : (var21 = 4, var22 = 79, var23 = 134, var24 = 179, var25 = 284).
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Representation of Model Execution

Interleaved execution schedules are next obtained for both composition and reference

composition, in Figure D.3(a) and Figure D.3(b). Each interleaved execution is rep-
f1(∅, s1

1, 0)→ (O1, s
1
2, 6)

f1(∅, s1
2, 6)→ (O1, s

1
3, 8)

f1(∅, s1
3, 8)→ (O1, s

1
4, 12)

f3(I3, s
3
2, 28)→ (∅, s3

3, 29)

f3(I3, s
3
3, 29)→ (∅, s3

4, 30)

f2(I2, s
2
2, 19)→ (O2, s

2
3, 25)

f3(I3, s
3
1, 23)→ (∅, s3

2, 24)

f2(I2, s
2
3, 25)→ (O2, s

2
4, 26)

f2(I2, s
2
1, 8)→ (O2, s

2
2, 19)

(a) Composition

f ∗1 (∅, s1
1, 0)→ (O1, s

1
2, 6)

f ∗1 (∅, s1
2, 6)→ (O1, s

1
3, 8)

f ∗2 (I2, s
2
1, 8)→ (O2, s

2
2, 19)

f ∗1 (∅, s1
3, 8)→ (O1, s

1
4, 12)

f ∗3 (I3, s
3
1, 23)→ (∅, s3

2, 24)

f ∗2 (I2, s
2
3, 25)→ (O2, s

2
4, 26)

f ∗3 (I3, s
3
2, 28)→ (∅, s3

3, 29)

f ∗3 (I3, s
3
3, 29)→ (∅, s3

4, 30)

f ∗2 (I2, s
2
2, 19)→ (O2, s

2
3, 25)

(b) Reference Composition

Figure D.3: Interleaved Execution Schedules

resented as a Labeled Transition System, L(M) and L(M∗) respectively, as shown in

Figure 7.3. Each node represents an annotated composition state Sj=1,n∗τ . Edges are the

function calls fi and f ∗i respectively, and labels are the tuple <function name, duration,

output>, where duration represents the function execution time. The labels consider

the duration rather than the time moment when the function begins to execute, since

the time moments are already ordered through the directed nature of the LTS.

Bisimulation Validation

In the Validation step, we check the bisimulation between L(M) and L(M∗) using the

BISIMULATOR tool in the CADP toolset [45].

S
1

S
2

S
5

S
6

S
9

S
10

S*
1

S*
2

S*
5

S*
6

S*
9

S*
10

S
11

S*
11

...

...

... ...M*:

< f ∗1 , 10, O2 > < f ∗2 , 40, O1 > < f ∗1 , 30, O2 >

< f2, 0, O1 >< f1, 50, O1 > < f1, 3, O1 >< f1, 10, O2 > < f2, 1, O1 > < f1, 7, O1 > < f2, 80, O1 >

< f ∗1 , 50, O1 > < f ∗2 , 80, O2 >

M:

< f ∗2 , 30, O2 >< f ∗2 , 0, O1 >

Figure D.4: LTS Representation of Model Execution

It is evident that the two LTS are not strongly equivalent (see the outgoing labels
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from S5, S6, S9, S10 and S∗5 , S∗6 , S∗9 , S∗10 respectively), hence the BISIMULATOR tool

returns false. Next, we relax the validation constraints by defining a semantic metric

relation V with parameter ε. Vε considers only semantically related LTS nodes for

which our defined semantic distance is smaller than ε. A node Si from L(M) is related

to a node S∗j from L(M∗) iif d(Si, S
∗
j ) ≤ ε. The calculation of d considers (i) the

function that is called to exit the two nodes respectively, and (ii) the similarity of the

composition states in nodes Si and S∗j . The composition state refers to all attribute

values for all components in the composition. As such, for attribute names that are

the same or similar (according to the COSMO ontology), we consider whether their

values are the same or have followed a similar modification trend (e.g. ammo has

been decreasing) throughout the unfolding. From the related states set we construct

two new LTS, L1(M) and L1(M
∗) as follows. For each pair of related states (Si, S

∗
j ),

with Si ∈ L(M) and S∗j ∈ L(M∗) we add to L1(M) all pairs (Si, Sk), where there

exists an edge between Si and Sk in L(M). Similarly, we add to L1(M
∗) all pairs

(S∗j , S
∗
r ), where there exists an edge between S∗j and S∗r in L(M∗). Next, we try to

determine the relation between the new L1(M) and L1(M
∗). We iteratively try possible

relations including equivalence, smaller than (L1(M) included in L1(M
∗)), and greater

than (L1(M
∗) included in L1(M)).

For this example, we calculate the semantic metric relation Vε for ε = 0.25 and

obtain the following related nodes: Vε = {(Si, S∗j )‖i 6= 5, 6, 9}, with {‖Si − S∗j ‖σ =

0.07|∀i 6= 5, 6, 9}. For these values of Vε we construct two new LTS, L1(M) and

L1(M
∗), by omitting nodes S5, S6, and S9 from L(M). Space constraints prevent us

from showing the detailed process here, but it can be seen from the Vε set that L1(M)

is included in L1(M
∗).
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Appendix E

Implementation Overview

A high level overview of the CoDES modules is presented in Figure E.1.

Five main packages form the back-end of the CoDES framework, namely base,

syntax, discovery, validation, and utils. The base package contains

classes that define meta-components and compositions, such as MetaComponent,

Composition, Connector, Attribute, and Behavior among others. The

syntax package contains an EBNF grammar parser which is an implementation of

an Earley parser. The discovery package contains helper classes that calculate the

degree of similarity between the user query and a repository component. It uses the

Jena reasoner to query the COSMO ontology and rank components based on attribute

and behavior matching. The validation package is separated into four modules

that validate: a) data compatibility according to the COSMO ontology; b) correct co-

ordination - the SPIN model checker is employed to validate all interleaved executions

of components in the composed model; c) correct computation - a threaded time-based

concurrent execution of the composition; d) similarity with respect to a reference model

- a Labeled Transition System representation of the composition is used to reason about

similarity. The utils package contains utility classes for parsing XML files among

others. The size of the CoDES back-end prototype is around 20,000 LOC.
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 # CoDES Composition Rules
 Simulator     := (Comp Con)+
 Con              := ConO | ConF | ConJ
 B_Comp      := QN_B_Comp | MTS_B_Comp

 #Application Specific - Queueing Networks (QN)
 ...
 #Application Specific - Military Training Scenario 
(MTS)
 #Base Components
 MTS_B_Comp    := Tank | SoldierTroop ...

LIFE-CYCLE STEPS GUI CoDES FRAMEWORK

Figure E.1: High Level Overview of the CoDES Implementation
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