1,222 research outputs found

    Curvature-driven PDE methods for matrix-valued images

    Get PDF
    Matrix-valued data sets arise in a number of applications including diffusion tensor magnetic resonance imaging (DT-MRI) and physical measurements of anisotropic behaviour. Consequently, there arises the need to filter and segment such tensor fields. In order to detect edgelike structures in tensor fields, we first generalise Di Zenzo\u27s concept of a structure tensor for vector-valued images to tensor-valued data. This structure tensor allows us to extend scalar-valued mean curvature motion and self-snakes to the tensor setting. We present both two-dimensional and three-dimensional formulations, and we prove that these filters maintain positive semidefiniteness if the initial matrix data are positive semidefinite. We give an interpretation of tensorial mean curvature motion as a process for which the corresponding curve evolution of each generalised level line is the gradient descent of its total length. Moreover, we propose a geodesic active contour model for segmenting tensor fields and interpret it as a minimiser of a suitable energy functional with a metric induced by the tensor image. Since tensorial active contours incorporate information from all channels, they give a contour representation that is highly robust under noise. Experiments on three-dimensional DT-MRI data and an indefinite tensor field from fluid dynamics show that the proposed methods inherit the essential properties of their scalar-valued counterparts

    A Convex Semi-Definite Positive Framework for DTI Estimation and Regularization

    No full text
    International audienceIn this paper we introduce a novel variational method for joint estimation and regularization of diffusion tensor fields from noisy raw data. To this end, we use the classic quadratic data fidelity term derived from the Stejskal-Tanner equation with a new smoothness term leading to a convex objective function. The regularization term is based on the assumption that the signal can be reconstructed using a weighted average of observations on a local neighborhood. The weights measure the similarity between tensors and are computed directly from the diffusion images. We preserve the positive semi-definiteness constraint using a projected gradient descent. Experimental validation and comparisons with a similar method using synthetic data with known noise model, as well as classification of tensors towards understanding the anatomy of human skeletal muscle demonstrate the potential of our method

    3D mesh processing using GAMer 2 to enable reaction-diffusion simulations in realistic cellular geometries

    Full text link
    Recent advances in electron microscopy have enabled the imaging of single cells in 3D at nanometer length scale resolutions. An uncharted frontier for in silico biology is the ability to simulate cellular processes using these observed geometries. Enabling such simulations requires watertight meshing of electron micrograph images into 3D volume meshes, which can then form the basis of computer simulations of such processes using numerical techniques such as the Finite Element Method. In this paper, we describe the use of our recently rewritten mesh processing software, GAMer 2, to bridge the gap between poorly conditioned meshes generated from segmented micrographs and boundary marked tetrahedral meshes which are compatible with simulation. We demonstrate the application of a workflow using GAMer 2 to a series of electron micrographs of neuronal dendrite morphology explored at three different length scales and show that the resulting meshes are suitable for finite element simulations. This work is an important step towards making physical simulations of biological processes in realistic geometries routine. Innovations in algorithms to reconstruct and simulate cellular length scale phenomena based on emerging structural data will enable realistic physical models and advance discovery at the interface of geometry and cellular processes. We posit that a new frontier at the intersection of computational technologies and single cell biology is now open.Comment: 39 pages, 14 figures. High resolution figures and supplemental movies available upon reques

    PDE-based preprocessing of medical images

    Full text link
    Medical imaging often requires a preprocessing step where filters are applied that remove noise while preserving semantically important structures such as edges. This may help to simplify subsequent tasks such as segmentation. One class of recent adaptive denoising methods consists of methods based on nonlinear partial differential equations (PDEs). In the present paper we survey our recent results on PDE-based preprocessing methods that may be applied to medical imaging problems. We focus on nonlinear diffusion filters and variational restoration methods. We explain the basic ideas, sketch some algorithmic aspects, illustrate the concepts by applying them to medical images such as mammograms, computerized tomography (CT), and magnetic resonance (MR) images. In particular we show the use of these filters as preprocessing steps for segmentation algorithms

    PDEs for tensor image processing

    Get PDF
    Methods based on partial differential equations (PDEs) belong to those image processing techniques that can be extended in a particularly elegant way to tensor fields. In this survey paper the most important PDEs for discontinuity-preserving denoising of tensor fields are reviewed such that the underlying design principles becomes evident. We consider isotropic and anisotropic diffusion filters and their corresponding variational methods, mean curvature motion, and selfsnakes. These filters preserve positive semidefiniteness of any positive semidefinite initial tensor field. Finally we discuss geodesic active contours for segmenting tensor fields. Experiments are presented that illustrate the behaviour of all these methods

    Mumford-Shah and Potts Regularization for Manifold-Valued Data with Applications to DTI and Q-Ball Imaging

    Full text link
    Mumford-Shah and Potts functionals are powerful variational models for regularization which are widely used in signal and image processing; typical applications are edge-preserving denoising and segmentation. Being both non-smooth and non-convex, they are computationally challenging even for scalar data. For manifold-valued data, the problem becomes even more involved since typical features of vector spaces are not available. In this paper, we propose algorithms for Mumford-Shah and for Potts regularization of manifold-valued signals and images. For the univariate problems, we derive solvers based on dynamic programming combined with (convex) optimization techniques for manifold-valued data. For the class of Cartan-Hadamard manifolds (which includes the data space in diffusion tensor imaging), we show that our algorithms compute global minimizers for any starting point. For the multivariate Mumford-Shah and Potts problems (for image regularization) we propose a splitting into suitable subproblems which we can solve exactly using the techniques developed for the corresponding univariate problems. Our method does not require any a priori restrictions on the edge set and we do not have to discretize the data space. We apply our method to diffusion tensor imaging (DTI) as well as Q-ball imaging. Using the DTI model, we obtain a segmentation of the corpus callosum

    Navier-Stokes Modelling of Non-Newtonian Blood Flow in Cerebral Arterial Circulation and its Dynamic Impact on Electrical Conductivity in a Realistic Multi-Compartment Head Model

    Full text link
    Background and Objective: This study aims to evaluate the dynamic effect of non-Newtonian cerebral arterial circulation on electrical conductivity distribution (ECD) in a realistic multi-compartment head model. It addresses the importance and challenges associated with electrophysiological modalities, such as transcranial electrical stimulation, electro-magnetoencephalography, and electrical impedance tomography. Factors such as electrical conductivity's impact on forward modeling accuracy, complex vessel networks, data acquisition limitations (especially in MRI), and blood flow phenomena are considered. Methods: The Navier-Stokes equations (NSEs) govern the non-Newtonian flow model used in this study. The solver comprises two stages: the first solves the pressure field using a dynamical pressure-Poisson equation derived from NSEs, and the second updates the velocity field using Leray regularization and the pressure distribution from the first stage. The Carreau-Yasuda model establishes the connection between blood velocity and viscosity. Blood concentration in microvessels is approximated using Fick's law of diffusion, and conductivity mapping is obtained via Archie's law. The head model used corresponds to an open 7 Tesla MRI dataset, differentiating arterial vessels from other structures. Results: The results suggest the establishment of a dynamic model of cerebral blood flow for arterial and microcirculation. Blood pressure and conductivity distributions are obtained through numerically simulated pulse sequences, enabling approximation of blood concentration and conductivity within the brain. Conclusions: This model provides an approximation of dynamic blood flow and corresponding ECD in different brain regions. The advantage lies in its applicability with limited a priori information about blood flow and compatibility with arbitrary head models that distinguish arteries.Comment: 13 pages; 8 figures; 2 tabl
    • …
    corecore