8 research outputs found

    Model-based Integration of Past & Future in TimeTravel

    Get PDF
    We demonstrate TimeTravel, an efficient DBMS system for seamless integrated querying of past and (forecasted) future values of time series, allowing the user to view past and future values as one joint time series. This functionality is important for advanced application domain like energy. The main idea is to compactly represent time series as models. By using models, the TimeTravel system answers queries approximately on past and future data with error guarantees (absolute error and confidence) one order of magnitude faster than when accessing the time series directly. In addition, it efficiently supports exact historical queries by only accessing relevant portions of the time series. This is unlike existing approaches, which access the entire time series to exactly answer the query. To realize this system, we propose a novel hierarchical model index structure. As real-world time series usually exhibits seasonal behavior, models in this index incorporate seasonality. To construct a hierarchical model index, the user specifies seasonality period, error guarantees levels, and a statistical forecast method. As time proceeds, the system incrementally updates the index and utilizes it to answer approximate and exact queries. TimeTravel is implemented into PostgreSQL, thus achieving complete user transparency at the query level. In the demo, we show the easy building of a hierarchical model index for a real-world time series and the effect of varying the error guarantees on the speed up of approximate and exact queries

    Signal Classes: A Mechanism for Building Synchronous and Persistent Signal Networks

    Get PDF

    Time Series Management Systems:A Survey

    Get PDF
    The collection of time series data increases as more monitoring and automation are being deployed. These deployments range in scale from an Internet of things (IoT) device located in a household to enormous distributed Cyber-Physical Systems (CPSs) producing large volumes of data at high velocity. To store and analyze these vast amounts of data, specialized Time Series Management Systems (TSMSs) have been developed to overcome the limitations of general purpose Database Management Systems (DBMSs) for times series management. In this paper, we present a thorough analysis and classification of TSMSs developed through academic or industrial research and documented through publications. Our classification is organized into categories based on the architectures observed during our analysis. In addition, we provide an overview of each system with a focus on the motivational use case that drove the development of the system, the functionality for storage and querying of time series a system implements, the components the system is composed of, and the capabilities of each system with regard to Stream Processing and Approximate Query Processing (AQP). Last, we provide a summary of research directions proposed by other researchers in the field and present our vision for a next generation TSMS.Comment: 20 Pages, 15 Figures, 2 Tables, Accepted for publication in IEEE TKD

    Time Series Management Systems: A 2022 Survey

    Get PDF

    Forecasting in Database Systems

    Get PDF
    Time series forecasting is a fundamental prerequisite for decision-making processes and crucial in a number of domains such as production planning and energy load balancing. In the past, forecasting was often performed by statistical experts in dedicated software environments outside of current database systems. However, forecasts are increasingly required by non-expert users or have to be computed fully automatically without any human intervention. Furthermore, we can observe an ever increasing data volume and the need for accurate and timely forecasts over large multi-dimensional data sets. As most data subject to analysis is stored in database management systems, a rising trend addresses the integration of forecasting inside a DBMS. Yet, many existing approaches follow a black-box style and try to keep changes to the database system as minimal as possible. While such approaches are more general and easier to realize, they miss significant opportunities for improved performance and usability. In this thesis, we introduce a novel approach that seamlessly integrates time series forecasting into a traditional database management system. In contrast to flash-back queries that allow a view on the data in the past, we have developed a Flash-Forward Database System (F2DB) that provides a view on the data in the future. It supports a new query type - a forecast query - that enables forecasting of time series data and is automatically and transparently processed by the core engine of an existing DBMS. We discuss necessary extensions to the parser, optimizer, and executor of a traditional DBMS. We furthermore introduce various optimization techniques for three different types of forecast queries: ad-hoc queries, recurring queries, and continuous queries. First, we ease the expensive model creation step of ad-hoc forecast queries by reducing the amount of processed data with traditional sampling techniques. Second, we decrease the runtime of recurring forecast queries by materializing models in a specialized index structure. However, a large number of time series as well as high model creation and maintenance costs require a careful selection of such models. Therefore, we propose a model configuration advisor that determines a set of forecast models for a given query workload and multi-dimensional data set. Finally, we extend forecast queries with continuous aspects allowing an application to register a query once at our system. As new time series values arrive, we send notifications to the application based on predefined time and accuracy constraints. All of our optimization approaches intend to increase the efficiency of forecast queries while ensuring high forecast accuracy

    Model-Based Time Series Management at Scale

    Get PDF
    corecore