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Abstract

Sensor networks are increasingly deployed to monitor and simplify management of
physical entities such as planes and wind turbines. As the produced amount of sensor
data increases, so do the requirements for methods and systems that can store and
analyze the vast quantities of sensor data being collected. However, the systems used
in industry are in general not designed to manage sensor data at large scale. This forces
practitioners to only store simple aggregates, for example averages over a 10-minute
window, instead of the raw time series. As a remedy, this thesis proposes a model-based
Time Series Management System (TSMS) named ModelarDB that supports ingestion,
storage, and multi-dimensional analysis of time series at scale. As part of ModelarDB,
this thesis proposes methods for model-based management of time series:

Firstly, the thesis provides a comprehensive literature survey of TSMSs proposed by
academia and through industrial research. A set of classification criteria are proposed
that illustrate the commonalities and differences of each system. The surveyed systems
are grouped based on these criteria and the user-facing functionality they provided to
give a simple to consume overview of the TSMSs. The survey shows that systems
combining data storage and query processing in one application tend to be research
prototypes designed to evaluate new methods, algorithms, and data structures. TSMSs
that use separate applications for storage and query processing tend to reuse existing
systems for at least one of these, and are deployed to solve real-world problems at
scale. TSMSs developed as extensions to Relational Database Management Systems
(RDBMSs) are designed to evaluate new methods for model-based query processing of
time series. Based on the analyzed TSMSs and future research directions proposed by
experts in the field, the survey proposes that research into a model-based approach for
time series management should be performed. The survey should significantly reduce
the work required for researchers entering this topic of research and allow practitioners
to easily compare the benefits and drawbacks of each TSMS.

Secondly, the thesis addresses the challenge of using models for storage and anal-
ysis of individual time series. As a result, the thesis proposes several methods for
model-based management of individual times series. A model in this context is any
representation from which a time series can be reconstructed within a user-defined error
bound (potentially zero). A model-agnostic ingestion method is proposed that split each
time series into dynamically sized sub-sequences and represents each using a model
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from a set of model types. These are either included with the system or user-defined
using a proposed API. Methods for model-based query processing are proposed to
efficiently execute aggregate queries directly on models instead of on reconstructed
data points. In addition, methods for predicate push-down and for improving the per-
formance of projections using static code-generation are proposed. A general schema
is proposed for storing time series as models, with specific optimizations proposed for
using the schema with a distributed key-value store. ModelarDB is implemented based
on a new general architecture for model-based TSMSs and the proposed methods are
implemented as part of the system. An evaluation demonstrates that the system hits a
sweet spot and provides fast ingestion, state-of-the-art compression, and fast scalable
query processing for large scale aggregate queries, while also being competitive with
existing storage solutions for small scale aggregate and time point-range queries. The
proposed methods for model-based management of time series allow storage and anal-
ysis of time series at larger scale than other solutions by significantly decreasing the
amount of storage required.

Thirdly, the thesis addresses the challenge of using models for storage and analysis
of correlated time series. As a result, the thesis proposes extensions to ModelarDB’s
ingestion method, the included model types, and its model-based query processing
methods. In addition, a method for grouping correlated time series is proposed. This
method creates groups of correlated time series based on user-hints, given using a
set of primitives that efficiently allows domain experts to describe how time series
are correlated using their domain knowledge or by analyzing historical data. As
correlation is determined based on metadata and not ingested data points, the large run-
time overhead required to compute which time series are correlated is removed. This
increases the scalability of the system. Regarding query processing, the thesis proposes
methods for performing multi-dimensional analytics directly on models using metadata
stored as a data cube. An evaluation demonstrates that the proposed methods increase
ModelarDB’s ingestion rate, compression ratio, and query processing speed for large
scale queries, while keeping the system scalable and competitive with existing storage
solutions for small scale aggregate and time point-range queries on data sets with many
short time series. As such, the proposed methods for management of correlated time
series further increases the scale at which time series can be managed.

Finally, the thesis provides a demonstration of the current version of ModelarDB.
The system’s architecture and how it can be deployed using existing infrastructure
is presented. An updated API is described for implementing user-defined model
types without modifying ModelarDB. A method combining static and dynamic code-
generation to more efficiently perform projections is proposed. How to use the system
from a user-perspective is shown as examples regarding the system’s configuration
format, the proposed primitives for describing correlation, and the system’s extended
SQL query language. A graphical user interface is presented which illustrates both
the functionality provided by ModelarDB and the underlying implementation. A
demonstration scenario is proposed that allows users to experience how ModelarDB
supports model-based time series management at scale.



Resumé

Sensornetveerk bliver i stigende grad anvendt til at overvage og simplificerer admin-
istrationen af fysiske enheder, som for eksempel fly og vindmgller. I takt med at
mere sensordata produceres, stiger behovet for metoder og systemer, der kan lagre og
analysere de enorme mangder sensordata som bliver indsamlet. Dog er systemerne,
som bliver brugt industrielt, generelt ikke designet til at handtere sensordata i stor skala.
Dette tvinger folk i industrien til blot at gemme simple aggregater, for eksempel et
gennemsnit for hver 10. minut, fremfor de ra tidsserier. Denne afhandling foreslar
en Igsning pa problemet i form af det modelbaserede Time Series Management Sys-
tem (TSMS) ModelarDB, som kan indl®se, lagre og foretage multidimensionel analyse
af tidsserier i stor skala. Som en del af ModelarDB foreslar athandlingen metoder til
modelbaseret handtering af tidsserier.

For det fgrste indeholder afhandlingen en omfattende litteraturundersggelse af
TSMSs, der blive foresléet af akademikere og forskere i industrien. Et sat klassi-
ficeringskriterier er foreslaet, der viser fellestrek og forskelle ved de analyserede
TSMSs. De undersggte systemer er grupperet ud fra de foreslaede kriterier, og den
funktionalitet som hvert system tilbyder, for at give en overskuelige oversigt af dem.
Litteraturundersggelsen viser, at systemer, der kombinerer komponenterne til at lagre
og forespgrge pa tidsserier i ét program, generelt er udviklet til at evaluerer nye metoder,
algoritmer og datastrukturer. TSMSs, hvor to forskellige programmer bruges til at
lagre og forespgrge pa tidsserier, genbruger ofte eksisterende systemer til mindst en
af disse komponenter. Disse systemer kan skalere, og bliver anvendt til 1gse proble-
mer i industrien. Systemer, der er udviklet som udvidelser til Relational Database
Management Systems (RDBMSs), anvendes til at evaluerer nye metoder til at fore-
spgrge pa tidsserier ved brug af modeller. Baseret pa analysen af TSMSs og forslag
til ny forskning fra eksperter inden for feltet, konkluderer litteraturundersggelsen, at
forskning i modelbaserede TSMSs bgr foretages. Litteraturundersggelsen bgr reducere
arbejdsbyrden for forskere, som begynder at arbejde med TSMSs, og ggr det nemmere
for folk i industrien at sammenligne fordele og ulemper ved hver TSMS.

For det andet adresserer athandlingen problemet med at bruge modeller til at lagre
og analyserer individuelle tidsserier, og prasenterer metoder til modelbaseret hand-
tering af individuelle tidsserier. En model i denne kontekst er enhver reprasentation,
hvorfra en tidsserie kan blive genskabt indenfor en brugerdefineret fejlgranse, som kan



vare nul. En modelagnostisk indleesningsmetode bliver foreslaet, som opdeler hver
tidsserie i delsekvenser af dynamisk l&ngde og repraesenterer hver med en model fra et
set af modeltyper. Disse modeltyper er enten inkluderet i systemet eller implementeret
af brugere gennem et foreslaet API. Metoder til at udfgrer forespgrgsler, der beregner
aggregater direkte pa modeller fremfor datapunkter rekonstrueret fra modeller, bliver
ogsa foreslaet. Derudover bliver der foreslaet metoder til at videregive praedikater
til det underliggende lager, samt metoder til at forgge hastigheden af projekteringer
ved brug af dynamisk kodegenerering. Et generelt skema til at lagre tidsserier som
modeller bliver foreslaet, samt specifikke optimeringer, der kan anvendes hvis skemaet
bliver implementeret i en distribueret key-value database. ModelarDB er implementeret
baseret pa en ny general arkitektur for modelbaserede TSMSs, og de foreslaede metoder
er implementeret som en del af systemet. En evaluering viser, at systemet er hurtigt
til at indlese tidsserier, har meget effektiv komprimering, og kan effektivt udfgre
forespgrgsler der beregner aggregater over store dataset. Samtidigt kan systemet ud-
fgrer forespgrgsler der beregner aggregater over fa tidsserier eller udtreekker enkelte
datapunkter med omtrent samme hastighed som for eksisterende dataformater. De
foreslaede metoder for modelbaseret handtering af tidsserier ggr det muligt at lagre og
analyserer tidsserier i stgrre skala end de eksisterende Igsninger, ved at reducere det
péakrevede lager markant.

For det tredje handterer afhandlingen problemet med at bruge modeller til at
lagre og analyserer korrelerede tidsserier, og foreslar udvidelser til ModelarDB’s
indlesningsmetode, de inkluderede modeltyper, og dets metoder til at lave forespgrgsler
pa modeller. Derudover prasenteres en metode til at gruppere korrelerede tidsserier.
Metoden grupperer korrelerede tidsserier ud fra user-hints givet ved brug af et nyt set
primitiver. Disse primitiver ggr det nemt for brugere at beskrive hvilke tidsserier der
er korrelerede ud fra deres domaneviden eller analyse af eksisterende data. Eftersom
hvilke tidsserier der er korrelerede, er beskrevet ud fra metadata fremfor datapunkter,
har metoden intet ressourceforbrug under indlasning af tidsserierne. Dette ggr systemet
mere skalerbart. Med hensyn til forespgrgsler, foreslar afhandlingen metoder til at
udfgrer multidimensionel analyse direkte pa modeller ved brug af metadata lagret som
en data cube. En evaluering viser, at de foreslaede metoder forbedrer ModelarDB’s
indlesningshastighed, komprimering, og hastigheden af forespgrgsler i stor skala.
Samtidig viser den, at ModelarDB stadig skalerer, og kan udfgre forespgrgsler der
beregner aggregater over fa tidssier eller udtrekker enkelte datapunkter med omtrent
samme hastighed som eksisterende dataformater for dataset med mange korte tidsserier.
De foresldede metoder for modelbaseret handtering af korrelerede tidsserier forgger
yderligere den stgrrelsesorden, som det er muligt at lagre og analyserer tidsserier for.

Endeligt indeholder athandlingen en demonstration af den nyeste udgave af Mode-
larDB. Systemets arkitektur, og hvordan det kan genbruge eksisterende infrastruktur,
bliver beskrevet. Et opdateret API, der ggr det muligt at implementerer nye mod-
eltyper uden at ®@ndre ModelarDB, er beskrevet. En metode til hurtigere at udfgre
projekteringer ved at kombinerer statisk og dynamisk kodegenerering bliver presen-
teret. Hvordan systemet kan anvendes af brugere, bliver beskrevet med eksempler pa



ModelarDB’s konfigurationsformat, de foreslaede primitiver til at beskrive korrela-
tion, og systemets SQL-sprog til forespgrgsler. En grafisk brugergrenseflade bliver
beskrevet, der viser funktionaliteten, som ModelarDB tilbyder, samt hvordan denne
er implementeret. Et scenarie er beskrevet, der overfor brugere demonstrer hvordan
ModelarDB understgtter modelbaseret handtering af tidsserier i stor skala.
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Thesis Summary

1 Introduction

1.1 Motivation and General Approach

Large amounts of sensor data are being collected in almost every domain. For example,
a Boeing 787 can produce half a terabyte of sensor data per flight [71], while Facebook
twice in just 18 months had to double the size of their cluster which caches the
data points collected by their monitoring infrastructure [66]. Despite the different
physical entities being monitored, all sensor data can be represented as time series.
A time series TS = ((t1,v1), (t2,02),...) is a sequence of data points in increasing
order by time where each data point is a pair of a timestamp ¢; and a value v; where
1 < i. Many Time Series Management Systems (TSMSs) have been proposed in
recent years due to the increased amount of time series data being produced. These
systems are also known as Time Series Databases or Data Series Management Systems
if the ordering of the sequences managed are generalized beyond time [60]. However,
most of these TSMSs focus on specific niches [7, 16, 42] and few support high-level
analytics such as similarity search [60]. The high-level abstractions provided by
Relational Database Management Systems (RDBMSs) greatly simplifies management
and analysis of structured relational data. However, no such widespread general purpose
high-level abstraction exists for time series [60]. Therefore, to fully benefit from the
amount of time series data being collected, a general purpose TSMS must be designed
with a storage model, data structures, algorithms, and optimization methods specifically
designed for management and analysis of time series at scale [60, 61, 75].

Many existing storage solutions have been used for time series. However, existing
formats and systems provides much less compression compared to TSMSs as shown
in Table 1. In this table, we compare the amount of storage required to store time
series from wind turbines collected with a sampling rate of 100 milliseconds. The
compared storage solutions are text files (CSV), an open-source RDBMS (PostgreSQL),
a commonly used proprietary RDBMS with a license that prevents us from using its
name (RDBMS-X), a distributed key-value store (Apache Cassandra), binary files
with a columnar layout (Apache Parquet and Apache ORC), an open-source TSMS
(InfluxDB), and our model-based TSMS (ModelarDB). The comparison was performed



as part of Paper B [43], and the selection of storage solutions were based on discussions
with companies in the energy sector, the survey conducted in Paper A [42], and DB-
Engines Ranking [16]. The results show that RDBMSs are not the best choice for
storing time series as PostgreSQL increases the storage requirement by 1.34 times
compared to the CSV files, while the proprietary RDBMS-X only reduces the storage
required by 3.49 times after switching to a clustered index with a columnar layout.
Apache Cassandra performs slightly better as it reduces the amount of storage required
by 5.21 times, but provides a more restricted query model compared to the RDBMSs
by lacking, for example, an OR operator. While Apache Parquet performs similar to
Apache Cassandra, Apache ORC reduces the amount of storage required 43.16 times
compared to the CSV files. However, Apache Parquet and Apache ORC are not well
suited for online analytics as an entire file must be written before the data it contains
can be queried. While the TSMS InfluxDB reduces the amount of storage required
by 134.57 times compared to the CSV files, it provides a limited query model. For
example, it has no DATEPART functionality and cannot perform aggregation in the
time domain for intervals of varying sizes, such as months [37, 38, 40]. Our system
ModelarDB reduces the storage required by at least 174.46 times compared to CSV.
When compared to existing storage solutions, it requires 1.3-391.44 times less storage.

Ad-hoc solutions have been created as workarounds for the limitation of the existing
storage solutions when storing time series. In the energy domain, high quality sensors
with wired power and connectivity are used to monitor modern wind turbines, solar
panels and power plants. The high quality time series produced by these sensors have a
regular sampling interval, and the few incorrect and out-of-order data points that do
occur are corrected by existing cleaning procedures. However, while the owners and

Table 1: Comparison of common storage solutions and ModelarDB (Updated) [43]

Storage Method Size (GiB)
CSV Files 582.68
PostgreSQL 10.1 782.87
RDBMS-X — Row 367.89
RDBMS-X — Column 166.83
Apache Cassandra 3.9 111.89
Apache Parquet Files 106.94
Apache ORC Files 13.50
InfluxDB 1.4.2 — Tags 4.33
InfluxDB 1.4.2 — Measurements 4.33
ModelarDB 2-3.34




1. Introduction

manufacturers of wind turbines would like to sample their sensors at high frequency to
improve the monitoring and allow for more detailed analysis, it is currently infeasible
to do so due to the amount of storage required. Currently, they only store simple
aggregates over a fixed window size, for example 1-10 minute averages. An example
is shown in Figure 1, where a sequence of twelve data points are reduced to just a
single average. It is clear from this example that reducing each sub-sequence to just
a single data point removes all outliers and fluctuations in the sequence which could
have indicated problems with the monitored entity.

A dynamic sampling interval can also be used in order to reduce the storage
requirement. By using a low sampling interval by default and then increasing it when a
critical event occurs, the storage requirement for the time series would be decreased.
However, it is not known what constitutes a critical event based on discussions with
owners and manufacturers of wind turbines. A constant high sampling rate is required
for this reason. Another method for reducing both the amount of storage required and
the query processing time is Approximate Query Processing (AQP). In this context
we use the term AQP for both approximate storage and approximate query processing.
AQP allows a TSMS to store time series and provide query results within a guaranteed
error bound. This error bound is often set by the user as required for their domain.
Some systems, such as BlinkDB [1] and SnappyData [58], use sampling for AQP
to reduce query processing time. However, sampling does not reduce the storage
requirement and can increase it if the samples are pre-computed and stored [14]. To
reduce both the amount of storage required and the query processing time, a model-
based approach can be used where time series are stored as models. We use the term
model for any representation from which a time series can be reconstructed within
a user-defined error bound (possibly zero). As an example, a linear function given
by the equation v = a X t + b can efficiently represent an increasing, decreasing or
constant sub-sequence of a time series using only two floating-point values a and b.
However, as the structure of time series often change over time the most appropriate
model type to use can be different for each sub-sequence, so multiple model types
should be used even for a single time series. In addition, time series are often correlated.
For example, two co-located temperature sensors should produce similar values. These
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Figure 1: Compression of time series using simple aggregates
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Figure 2: Model-based compression of time series

correlated time series should be modeled together to further reduce the amount of
storage required. The benefit of model-based storage for time series is illustrated
in Figure 2. The values of these time series can be efficiently represented using a
linear function and a constant function which in total only requires three floating-
point values while preserving the structure of the time series. Many aggregate queries
can be answered directly from models, for example, MIN, MAX, SUM and AVG can
all be computed in constant time for both constant and linear functions. As such, a
TSMS using a model-based approach for time series management should require less
storage and provide faster query processing compared to existing TSMSs that store
time series as raw data points. This thesis explores the idea of employing a model-based
approach for times series management and proposes the distributed TSMS ModelarDB
which compared to existing storage solutions achieves faster ingestion speeds, better
compression, and faster query performance on aggregate queries at scale.

1.2 Thesis Structure

The thesis is organized as follows:

Part I provides the motivation for the thesis and a summary of the four papers
included therein. Section 2 summarizes Paper A [42] and presents a set of paramount
properties for a TSMS to efficiently manage high quality time series, provides an
overview of TSMSs proposed by academia and through industrial research, and presents
examples of TSMSs with unique functionalities. In addition, it summarizes our pro-
posal for research into a model-based TSMS which is based on the surveyed systems
and future research directions proposed by other researches in the field. Section 3
summarizes Paper B [43] and describes methods and algorithms for model-based man-
agement of individual time series as implemented in ModelarDB. Section 4 summarizes
Paper C [41] and describes methods and algorithms for model-based management of
correlated time series as implemented in ModelarDB. Section 5 provides a description
of the general architecture for a model-based TSMS underlying ModelarDB, how
model-based storage and query processing are implemented in ModelarDB at the time
of writing, and summarizes Paper D [44] to describe the functionality provided by
ModelarDB from a user’s perspective. Finally, Section 6 provides a summary of the
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contributions made by the thesis, while Section 7 proposes directions for future work.

Part II reproduces the four papers in full with only their layout revised to fit the
format of this thesis. As each paper builds on the previous, it is recommended to read
the papers sequentially from Paper A to Paper D.

2 Existing Time Series Management Systems

2.1 Motivation and Problem Statement

As shown in Table 1, TSMSs are more suitable for storing large quantities of time
series than general purpose RDBMSs, as TSMSs are specialized systems optimized
for a specific use-cases and as a result capable of achieving greater performance [79].
However, as TSMSs focus on time series management, their performance often comes
at the cost of functionality required for general purpose RDBMSs, such as support for
transactions and the ability to update existing data. As the existing storage solutions
used in industry cannot manage the large quantities of high quality sensor data produced
by entities in the energy domain, we perform a thorough literature survey of TSMSs.
As such, Paper A [42] addresses the problem of determining the current state-of-the-art
in regard to TSMSs and if a TSMS suitable for managing large quantities of high
quality time series exists.

2.2 Paramount Properties and Classification Criteria

Based on existing literature and discussions with owners and manufacturers of wind
turbines, we propose the following set of paramount properties [43] for a TSMS
to efficiently manage large quantities of high quality sensor data: (i) Distribution:
a distributed architecture is required due to the large amounts of sensor data being
produced. (ii) Stream Processing: data points received by the system must be available
for query processing with only a small amount of lag when monitoring physical entities.
(iii) Compression: as analysis of historical data can reveal performance degradation
or indicate problems regarding the monitored entities, the sensors should be sampled
at a high frequency and the raw data should be stored instead of simple aggregates.
However, due to the amount of storage required to do so, state-of-the-art compression
must be provided. Compression also reduces query processing time due to a reduction
in disk I/O. (iv) Efficient Retrieval: partitioning, time-ordered storage, or indexing is
required to ensure a low query response time when analyzing a subset of a large data
set. (v) AQP: approximation is required to both decrease query response time and
enable use of lossy compression which generally outperforms lossless compression [36].
(vi) Extensibility: as researchers and domain experts continue to develop new and
improved model types, the system must be easily extensible without requiring users to
change the TSMS itself and the system should be able to automatically use the most
appropriate model type for each sub-sequence of a time series.



Based on these paramount properties and how the surveyed TSMSs differ, we
define the following set of classification criteria [42]: (i) Architecture: is the primary
classification criteria due to the impact it has on the system if it uses an internal data
store, an external data store, or is an RDBMS extension. (ii) Year: is the publication
year of the most recent publication about the system and is included to simplify
comparing systems from the same time period. (iii) Purpose: indicates what trade-offs
have been performed as this differs depending on the system’s intended usage, which is
either monitoring entities, receiving data from IoT devices, performing data analytics
on time series, or performing an evaluation of new research. (iv) Motivational Use
Case: is the use case driving development of the system and is another indicator
of the trade-offs that were made. (v) Distributed: systems are classified based on
their capability to scale through distributed computing or if they only support running
centralized on a single machine. (vi) Maturity: describes if a TSMS is a proof-of-
concept implementation of new research, a demonstration system that implements
functionality so users can interact with it, or is a mature system that is deployed to solve
real-life problems and is supported by an open-source project, a company, or both. (vii)
Scale Shown: is an indicator of how large deployments the system have been evaluated
with, measured in the number of nodes deployed and the size of the largest data set
used. (viii) Processing Engine: is either an existing system or is implemented from
scratch for a TSMS. (ix) API: is the primary methods for using a TSMS and are guery
languages, extended query languages, client libraries, a web service, or a web interface.
(x) Approximation: is methods provided by a TSMS for approximating time series,
if any, using either simple aggregates that provide no error guarantees, or AQP with
error guarantees provided using either sampling or mathematical models. (xi) Stream
Processing: methods are provided by each system, if any, through either user-defined
functions, as functionality part of the TSMS, or as a query interface based on streams.
(xii) Storage Engine: is the component of the system used for data storage and can
be implemented for the TSMS or be an existing system. (xiii) Storage Layout is the
representation a TSMS uses internally to store time series. Each system is categorized
with regard to these criteria and a summary is shown in Table 2.

2.3 Internal Data Stores

Some systems implement both the data storage and the query processing components
in one application. This results in tight integration between these components. As no
external application has direct access to the data store, it can be optimized exclusively
to fit the needs of the query processing component, and the query processing com-
ponent can dictate what interface should be provided unless an embedded Database
Management System (DBMS) with a pre-defined interface is used. In addition, these
systems are not required to use an existing method for transferring data between the
data storage and query processing components, such as JSON or XML. Instead, if
data serialization is required, a system can define and optimize a data serialization
method for the TSMS’s intended workload. No dependencies have to be deployed and
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Table 2: (Continued) [42]

Motivationa - . Scale Processing N Stream Storage Storage
Year  Purpose Use Case Distributed Maturity Shown Engine API Approximation Processing Engine Layout
External Stores
TSDS 2010 Data Querying data in multiple Centralized ~ Mature System Unknown Implemented (Java) REST APIserving  AQP using No stream Implemented A binary file with 64-Bit
[83] Analytics  formats from one end-point. 1 Node multiple formats. sampling. processing. (Java) for values, metadata as
caching. NcML.
SciDB 2013 Data Storage and querying of data  Distributed ~ Mature System Unknown Implemented (C++), Array languages AQP using Arrays piped  Implemented ~ N-Dimensional arrays of
[77,78, 80] Analytics  from scientific instruments. 16 Nodes ScaLAPACK AFL and AQP. sampling. through (C++), tuples, stored in chunks.
external PostgreSQL
processes.
Respawn 2013 Monitoring Executing low latency Distributed ~ Demonstration 21 GB Bodytrack REST API serving  Predefined No stream Bodytrack Bodytrack Datastore’s
[10, 59] queries across cloud and System 10,000 Datastore JSON. aggregates at processing. Datastore compressed binary
sensor nodes. Nodes multiple format.
resolutions.
SensorGrid 2013 Data OLAP of sensor data Distributed ~ Demonstration Unknown Implemented Web Interface, User-defined Window RDBMS Data points, aggregates
[15] Analytics  through AQP and grid System 5 Nodes (Unknown) SQL aggregates at queries. in two-dimensional
computing. multiple array.
resolutions.
Unnamed 2014 Evaluation Indexing mathematical Distributed ~ Proof-of-Concept 12 GB Apache Hadoop Unknown Model-based Real-time Apache In-memory binary trees
[28-30] models in a distributed Implementation 9 Nodes AQP modelling of ~ HBase indexing models in
KV-store. segmented HBase.
time series.
Tristan 2014 Data Enable creation of analytical ~Centralized ~ Demonstration Unknown HYRISE Unknown Model-based Real-time HYRISE Sparse representation
[55, 56] Analytics  applications using sensor System 1 Node AQP modelling of after dictionary
data. segmented compression.
time series.
Druid 2014 Data Ingestion and exploration of ~ Distributed ~ Mature System 100 GB Implemented (Java) REST APIserving  User-defined No stream Implemented  Immutable columns
[85] Analytics ~ complex events from log 6 Nodes JSON. aggregates and processing. (Java), DFS encoded based on their
data. model-based type.
AQP.
Unnamed 2014  Monitoring  Query both time series and ~ Distributed ~ Mature System 0.90 TB IBM Informix SQL Model-based Real-time IBM Informix  Blobs of values, or
[35] relational data through SQL. 1 Node AQP modelling of timestamp deltas and
segmented values.
time series.
Unnamed 2014 Monitoring Remote monitoring of Distributed ~ Mature System 5TB GE Streaming OQL and Client No support for Real-time Pivotal Ordered KV-pairs storing
[84] industrial installations in 46 Nodes Engine, Pivotal Library (Java) approximation of  data transfor- ~ Gemfire segments as linked lists.
real-time. GemFire time series. mations and

analytics.
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Figure 3: WearDrive uses a split architecture with remote resources located on the other device [42]. The figure was redrawn from [34]
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configured as these systems are self-contained, simplifying their deployment. On the
other hand, these TSMSs cannot reuse existing infrastructure already deployed, such
as a Distributed File System (DFS) or a distributed DBMS. In addition, if a new data
store is developed, effort will have to be spent ensuring the system’s durability and
fault-tolerance, and administrators will have to learn how to tune it for each use-case.

TSMSs using an internal data store are generally developed as research prototypes
and most them are not distributed. Of the nine systems surveyed, six are research
prototypes created to evaluate new theoretical methods while only three are developed
as general purpose systems and have mature enough implementations to fulfill this
task based on the surveyed papers. As such, systems in this category are generally
small scale prototypes instead of mature systems intended for actual deployment. This
category includes two unique systems; WearDrive [34] and Plato [45]. WearDrive [34]
is a TSMS designed to reduce the power consumption of wearable devices, like a
smart watch, communicating with a smartphone. Previous work show that the main
consumer of power in these smart devices are the flash storage [53]. As such, WearDrive
demonstrates that the battery life of wearable devices can be extended by keeping all
data in memory and persisting data by transferring it to a smartphone instead of using
local flash storage. The system is developed as two separate applications; one running
on a smartphone and the other running on a wearable device. This architecture is shown
in Figure 3. By modifying the firmware of the wearable device, WearDrive provides the
same persistence guarantees as using local flash storage would and increases the battery
life of the wearable device at the same time, despite using remote instead of local flash
storage. Plato [45] is a TSMS designed as a new RDBMS integrating methods from
signal processing to support data cleaning and data analysis. The TSMS allows users
to create and query model-based representations of time series instead of the raw data.
Plato uses a three layer architecture as shown in Figure 4 with each layer providing

_______________________________________________________________________

saL ModelQL InfinityQL

Storage Layer

Extensibility Layer

HAAR ARMA SVD FFT

Data Point Tables Compressed Model Tables

Figure 4: Plato’s architecture is split into three layers [42], redrawn from [45]
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abstractions for implementation, fitting, or querying models. Users can implement
model types through the Extensibility Layer. Users can then select which model types
to use for representing each time series using the Storage Layer. The Query Layer allow
users to query the data sets using either the raw data or the model-based representation.
To accommodate users with different backgrounds, Plato provides two query languages;
ModelQL and InfinityQL. ModelQL is designed for statisticians, treats models as black
boxes, and allows users to apply functions on the models. InfinityQL is designed
for users with a database background and allows users to query the models as if they
are relations with an infinite number of tuples. By integrating models directly into
the TSMS, Plato allows time series data to be analyzed in the system without first
transferring the data set to an external tool for time series analysis like sktime [76] or
R [70].

2.4 External Data Stores

TSMSs that rely on an external storage solution must implement methods for trans-
ferring data between the data storage and the query processing application. A TSMS
reusing an external data store benefits from the engineering time that is spent on op-
timizing and making these data stores durable. Administrators can also tune these
systems based on experience gained from existing deployments. However, splitting
a TSMS into a separate data storage and query processing application complicates
deployment as both now have to be managed and tuned for a particular workload.

Modeled Segment In-Memory Binary Tree
Value

7

> (3 | (1]
L[ (L)

KV-Store Table with Row-Key (RK)
[Node Value, | [start_time, |[min_value, Model
Interval] (RK) | end_time] |max_value] |Parameters 13
1,.a [0: 2] i .4., 5.71 (1.4, 5_.7, 4.2 _L _L

5a @, 5] [45,05] 45,9512
5, [4, 6] 4, 6] [2.4,4.8] |(2.4,4.8,2.1
—__13a 1 0214 [ [01d] 32,2, 5.

Figure 5: Time series are stored as models in a distributed key-value store and indexed by an in-memory
tree [42], redrawn from [29]
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In addition, the query processing component is restricted to the existing data model
provided by the data store and can only access the data through the interfaces provided.

There are fifteen systems in this category, and they are generally mature distributed
systems deployed to solve real-life tasks. Only two systems are not distributed. All the
systems make use of an existing data store such as Apache HBase, HYRISE, MySQL
or Couchbase. Twelve of the systems provide some form of approximation of the time
series. However, most of the systems that provides AQP have limited support for adding
additional models or are simple research prototypes. Few systems in this category
are truly unique as they are primarily developed to solve real-life problems instead
of functioning as research prototypes. As such, these systems generally represent
time series as ordered sequence of data points stored with some form of lossless
compression. However, the TSMS proposed by Guo et al. [28-30], Tristan [55, 56],
and BTrDB [2, 3] present interesting approaches for time series management. The
TSMS proposed by Guo et al. [28-30] stores time series as models to achieve high
compression and fast query processing performance through model-based AQP. The
TSMS store the models in Apache HBase using one table ordered by time and another
ordered by value. In-memory binary trees index both tables, allowing a MapReduce
based query processing algorithm to efficiently extract the models required by each
query and reconstruct the necessary data points. Query processing is shown in Figure 5
and starts with traversing the relevant binary tree to determine which models to extract.
Mappers then read these models from Apache HBase and prune models irrelevant to

Data Acquisition Layer
[N N | v | * :
i| Streaming Data Dictionar '
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E Uncompressed Segment Compressed ||
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Figure 6: Tristan is based on the MiSTRAL architecture. The dotted arrows indicate data flow only present
when creating dictionaries in offline mode [42]. The figure is redrawn from [55]
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the query. Reducers then reconstruct the data points represented by each model to
create an approximation of the original time series. This TSMS proposes an interesting
model-based approach to store time series, however, the system is limited by only
representing time series as constant functions and by always reconstructing data points
instead of computing aggregates from the models. Tristan [56] is a TSMS based on
the MiSTRAL architecture [55] and implemented using HYRISE. The system stores
time series using dictionary compression and supports executing queries on top of the
compressed representation. The MiSTRAL architecture is shown in Figure 6. The Data
Acquisition Layer combined with the Storage Layer ingests data points into statically
sized segments which are then represented as a sequence of smaller fixed size time
series using dictionary compression. Dictionaries with smaller fixed size time series
appropriate for compressing a particular data set are created offline. The system then
adjusts the dictionaries at specific time intervals during run-time. The Query Layer
extracts data from the Storage Layer to answer queries using one of three options; data
points from the Temporary Store, compressed segments, or decompressed segments
depending on the query and if the data have been compressed. Tristan proposes an
interesting method for AQP with the downside that the dictionary must be trained offline.
BTrDB [2, 3] is designed to manage large quantities of time series with nanosecond
resolution timestamps produced by high precision power meters. The system stores
time series as copy-on-write k-ary trees as shown in Figure 7. Data points are efficiently
stored sequentially in the leaves, while the internal nodes store statistics about the data
to reduce query processing time. As the tree is copy-on-write the internal nodes also
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Figure 7: BTrDB uses a copy-on-write K-ary tree storing data points in the leaves with statistics and version
numbers stored in internal nodes [42], redrawn from [2]
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2. Existing Time Series Management Systems

store version numbers to support queries on older versions of the data. While BTrDB
provides fast ingestion rates and query performance at multiple resolutions, its use of
two iterations of delta-encoding combined with Huffman encoding for compression
only achieves a 2.93 times reduction in the amount of storage required compared to
storing the data without compression using 16 bytes per data point.

2.5 RDBMS Extensions

Implementing a TSMS as an RDBMS extension allows reuse of existing functionality
from the RDBMS without requiring the data to be transferred between two separate
applications. In addition, there exists a substantial amount of work on how to tune most
RDBMSs, simplifying the work of the administrator. Extending a RDBMS comes with
the trade-off that the TSMS must adhere to the limitations of the RDBMS in terms
of data model and extensibility, in addition to the performance overhead and added
complexity of features irrelevant for a time series workload, such as transactions.

Out of the three TSMSs implemented as RDBMS extensions, both TimeTravel [23,
46] and F?’DB [24, 25] present interesting ideas for integrating forecasting into a
RDBMS instead of relying on external tools such sktime [76] or R [70]. However,
they are only mature enough to be considered demonstration systems that show the
effectiveness of such functionality with a real-life use-case. To support forecasting,
TimeTravel [46] extends PostgreSQL with the ability to construct a hierarchy of
forecasting models which the system then indexes and uses for query processing. The
architecture of TimeTravel is shown in Figure 8. The model hierarchy is constructed
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Figure 8: TimeTravel allows a hierarchy of model for forecasting being constructed offline and then
maintains them online [42]. The figure was redrawn from [46]
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offline and then maintained online by the system. A hierarchy of models at different
granularities is used to answer queries with different error bounds efficiently. To
build the hierarchy the user must provide the error bound guarantees required, which
model types to use for forecasting, and hints about the seasonality of the time series.
Constructing the model hierarchy enables AQP, as TimeTravel supports both exact and
approximate queries on historical data and approximate queries on forecasted values.
TimeTravel is limited in terms of scalability due to it being a single node system.

F?DB [24] also extends PostgreSQL with support for forecasting but focuses on
data warehouse style analytics. In contrast to TimeTravel, F>DB [24] does not require
user-hints to construct models from data points but can use a set of evaluation criteria
to determine the most appropriate model for a particular time series. Users can also
manually choose to represent a time series with a specific model type. The system
automatically maintains the created models. As F?DB uses a generic interface for model
types, domain experts can optionally implement more. A model advisor assists the user
by suggesting alternative configurations of models for a query workload [24, 25]. The
model advisor is a separate component from which model configuration can be loaded
into F2DB, as shown in the architecture in Figure 9. Like TimeTravel, F’DB is a single
node system and limited in terms of scalability.
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Figure 9: F? DB TSMS allow forecasting models to be constructed from data stored in relations, which the
system then indexes and use for query processing [42]. The figure was redrawn from [24]
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3. Management of Individual Time Series

2.6 Future Research Directions

Based on the survey, it is clear that none of the systems fulfill the paramount prop-
erties for managing high quality time series. The existing TSMSs generally lack the
capability to scale through distributed storage and distributed query processing, have
limited support for AQP, or cannot be extended by domain experts to support new
approximation methods optimized for a particular domain without changing the TSMS.
As such, we propose that research into a purely model-based TSMS be conducted,
with the goal of developing a TSMS utilizing a model-based physical storage layer
instead of storing raw data points. The complete TSMS should be scalable through
distributed storage and query processing, and provide automatic model management to
automatically store each time series using the model types providing the highest degree
of compression so both the storage requirement and query processing time is reduced.
Query processing time should be further reduced through efficient retrieval of time
ordered or indexed models, and by answering queries directly from the stored models
using model-based AQP instead of reconstructed data points. To ensure received data
points are available for query processing with only a small amount of lag, the system
must allow queries to be executed online while data is being ingested. A robust notion
of metadata about each time series must be provided so the TSMS can function as a
model-based sensor data warehouse and support multi-dimensional analysis of time
series. Finally, the system should be extensible so that domain experts can define new
model types that are optimized for their specific use-cases.

3 Management of Individual Time Series

3.1 Motivation and Problem Statement

As none of the existing systems fulfill all of the paramount properties required for a
TSMS to efficiently manage high quality time series, a new TSMS is required [7, 42].
Since the compression ratio provided by model-based representations of time series
generally is higher than general purpose lossless compression [72], a model-based
approach with a user-defined error bound (possibly zero) should be considered for time
series management. Different model types have been developed for specific use-case,
but each of them also have drawbacks [36, 72, 82]. As time series change over time,
each model type is only efficient for representing specific sub-sequences of a time
series. As an example, a constant function only requires one floating-point value to
represent a sequence of approximately constant values but deteriorates into a stair-step
pattern for increasing or decreasing sequences. Such sequences can be efficiently
represented by a linear function using only two floating-point values. However, if
an approximately constant sequence is represented using a linear function, it also
requires two floating-point values. In other words, using a linear function requires
an unnecessary floating-point value compared to using a constant function for this
sequence. To address this issue, multiple methods for Multi-model Compression
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(MMC) have been proposed. MMC represents a time series using multiple different
model types so each sub-sequence of a time series is represented by the model type
that provides the highest compression ratio [18, 64, 65, 69]. However, these methods
either limit the model types that can be used with the method [18, 69], provide no
upper-bound for the latency of ingested data points [18, 69], or require that the user
make a trade-off between low latency and high compression ratio [64, 65]. As such,
Paper B [43] addresses two major problems. Firstly, how can a MMC method be
created that removes the latency limitations of existing methods without compromising
the compression ratio and supports user-defined model types? Finally, how can a TSMS
be created that fulfill all the paramount properties and use a model-based physical
storage layer instead of storing raw data points?

3.2 Preliminaries

As stated, the high quality time series produced in the energy domain have a regular
sampling interval, and the few incorrect or out-of-order data points that do occur are
corrected using existing cleaning procedures. For this reason, the only anomaly that
must be considered when ingesting these time series are missing data points. While
interpolation can be utilized to approximate the missing values, their absence can
indicate problems with the monitored entity. For this reason, interpolation of missing
values should be an explicit decision performed by a data analyst, and not an implicit
action performed by the TSMS. These regular time series are defined as follows using
definitions reproduced with modifications from Paper B [43]:

Definition 1 (Time Series)

A time series TS is a sequence of data points, in the form of timestamp and value pairs,
ordered by time in increasing order TS = ((t1,v1), (f2,v2), .. .). For each pair (¢;, v;),
1 < i, the timestamp t; represents the time when the value v; € R was recorded. A
time series TS = ((t1,v1),.-., (tn, vy)) consisting of a fixed number of # data points
is a bounded time series.

Definition 2 (Regular Time Series)

A time series TS = ((t1,v1), (t2,v2),...) is considered regular if the time elapsed
between each data point is always the same, i.e., t;1 1 —t; = t;1p —t;y1 for1 <iand
irregular otherwise.

Definition 3 (Sampling Interval)
The sampling interval of a regular time series TS = ((t1,v1), (t2,v2),...) is the time
elapsed between each pair of data points in the time series SI = t; 1 —f; for 1 <.

As an example, the time series TS, = ((100,0.156), (200,0.139), (300, 0.122),
(400,0.106), (500,0.92) ...) is a regular unbounded time series with a 100 millisec-
onds sampling interval. A bounded time series can be constructed from TS, by
extracting the data points with the timestamps 100 < ¢ < 500.
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3. Management of Individual Time Series

Definition 4 (Gap)

A gap between a regular bounded time series TS; = ((t1,v1),...,(ts,vs)) and a
regular time series TSy = ((t¢, ve), (te11,Ves1), - - -) With the same sampling interval
SI and recorded from the same source, is a pair of timestamps G = (¢, tg) with
te = ts +m x SI, m € N>, and where no data points exist between ts and .

Definition 5 (Regular Time Series with Gaps)

A regular time series with gaps is a regular time series, TS = ((f1,v1), (t2,v2),...)
where v; € RU { L} for 1 < i. For a regular time series with gaps, a gap G = (¢, t,)
is a sub-sequence where v; = L for f; < t; < f,.

No gaps are present in T'S, as a value exist for all timestamps matching the sampling
interval. However, TS, = ((100,0.156), (200, 0.139), (400, 0.106), (500,0.92) .. .)
have no value for t = 300 and is two regular time series separated by a gap. For
simplicity, we say that multiple time series from the same source separated by gaps is
one time series containing gaps. As the sampling interval is undefined for a time series
with gaps, we define regular time series with gaps as a time series where all data points
in a gap have the special value L indicating that no values were collected. As an exam-
ple, TS, = ((100,0.156), (200,0.139), (300, L), (400,0.106), (500,0.92) ... .) have
a sampling interval of 100 milliseconds.

Definition 6 (Model)

A model is a representation of a time series TS = ((t1,v1), (f2,02), .. .) using a pair
of functions M = (#1es¢, Merr ). For each t;, 1 < i, the function m,g is a real-valued
mapping from ¢; to an estimate of the value for the corresponding data point in TS.
Meyr 1s @ mapping from a time series T'S and the corresponding 1.5 to a positive real
value representing the error of the values estimated by 1.

Definition 7 (Segment)

For a bounded regular time series with gaps T'S = ((ts, vs), . . ., (e, Ve)) with sampling
interval SI, a segment is a 6-tuple S = (f;,t, SI, Gy, M, €) where Gy is a set of
timestamps for which v = L and where the values of all other timestamps for TS are
defined by the model M within the error bound €.

A model type determines the set of parameters required to create a specific model
of that type for approximating the values of a time series. Models represent the values
of a time series as the function m,s; with the error of the representation given by the
error function m,,,. We say that a model is fitted to a bounded regular time series, for
example TS, = ((100,0.156), (200, 0.139), (300, 0.122), (400,0.106), (500,0.92)),
when determining the parameters of a model using a model type. To ensure the error
bound of the model-based representation is upheld for all data points in a time series, it
can be necessary to split the time series into smaller segments each represented by a
different model, and possibly a different model type if MMC is used.
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3.3 Model-Agnostic Time Series Compression

To represent time series using multiple different model types online, we propose a
method that evaluates different model types in sequence. It switches to the next model
type when the current one can no longer fit a model to the ingested data points within
the user-defined error bound. This approach is similar to the one proposed in [18], but
our approach is model-agnostic and provides latency guarantees. Our method discards
the timestamps as they can be reconstructed from the information stored as part of each
segment. An example is shown in Figure 10.
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Figure 10: Model-agnostic time series compression using MMC (Updated) [41]

In this example, three model types are used: the PMC-MR model type that rep-
resents time series as constant functions [52], the Swing model type that represents
time series as linear functions [21], and a model type using the lossless floating-point
compression algorithm proposed by Facebook for their Gorilla TSMS [66]. From #; to
ts PMC-MR can fit a model to the ingested data points within the user-defined error
bound €, but at ¢4 a data point is ingested for which PMC-MR would exceed the error
bound. As such, our method switches to the Swing model type which can represent the
ingested data points within the error bound until #{5. To accommodate this, our method
escalates to the Gorilla model type, which is the last model type in this example, and
continues ingesting. As Gorilla uses lossless compression it cannot exceed the error
bound, instead it is limited by a user-configurable length limit, 15 in this example. As a
result, at £14 all model types have exceeded their respective bounds and the model type
with the best compression ratio is selected, in this example Swing. As such, a model of
type Swing is used to represent the sub-sequence from # to f11 as part of a segment.
Afterwards, ingestion is restarted with PMC-MR from the first data point not part of
the previous segment, which is f15 in this example. As a model type might represent
all data points in a time series, the guaranteed latency is unbounded with this method.
Expanding the user-configurable length limit to apply to all model types will provide
a guaranteed upper bound for this latency. However, this reduces the compression
ratio for lossy models that can be fitted to more data point than the set limit. As an
alternative, queries can be executed on the raw data points but this approach lacks the
benefits provided by a model-based representation. To solve this problem, we propose
two types of segments; finalized segments and temporary segments.

A finalized segment is persisted to disk when all model types cannot represent
the latest data point, as shown at t14 in Figure 10. Temporary segments are only
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Algorithm 1 Our MMC algorithm that is model-agnotic, as it supports lossy and
lossless model types, and provides high compression and latency guarantees [43]

: Let ts be the time series of data points.

. Let models be the list of models to select from.

: Let error be the user defined error bound.

. Let limit be the limit on the length of each segment.

: Let latency be the latency in not emitted data points.

: Let interval be the sampling interval of the time series.

. model <+ head(models)
. buffer < create_list()

R R Y. B VSR SR

10: yet_emitted < 0

11: previous <— nil

12: while has_next(ts) do

13: data_point = retrieve_next_data_point(ts)

14 if time_diff (previous, data_point) > interval then
15: flush_buffer(buffer)

16: end if

17.  append_data_point_to_buffer(data_point, buffer)
18: previous <— data_point

19: if append_data_point_to_model (data_point, model, error, limit) then
20: yet_emitted < yet_emitted + 1

21: if yet_emitted = latency then

22: emit_temporary_segment (model, buffer)
23 yet_emitted < O

24: end if

25: else if has_next(models) then

26: model < next(models)

27: initialize(model, buffer)

28: else

29: emit_finalized_segment (models, buffer)

30: model < head(models)

31: initialize(model, buffer)

32: yet_emitted < min(yet_emitted, lengh(buffer))
33: end if

34: end while

35: flush_buffer(buffer)

stored in-memory and contain models that can represent additional data points, but
are constructed if the latency exceeds a user-defined limit in terms of data points not
available for query processing. Using these two segment types, our method removes
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the trade-off between high compression and low latency exhibited by other MMC
methods. This is done by storing time series as models with high compression in
finalized segments, while also incrementally making temporary segments available for
query processing to satisfy a user-defined latency threshold. Our model-agnostic MMC
algorithm is shown in Algorithm 1.

The algorithm ingests the time series fs one data point at a time and verifies that a
gap is not present in Line 12—15. If there is no gap, the data point is stored in buffer
and the current model is fitted to the new data point in Line 17-19. As the current
model now represent another data point yet to be emitted for query processing, the
variable yet_emitted is incremented in Line 20. When the current model type represents
more data points yet to be emitted than the user-defined latency limit, a temporary
segment is emitted on Line 21-23. If the data point cannot be represented by the current
model type, the next model type is selected in Line 25-27, corresponding to t4 and
t17 in Figure 10. When the last model type exceeds its bound, a finalized segment is
emitted as shown in Line 28-32, corresponding to ¢4 in Figure 10. The number of
yet to be emitted data points represented by a finalized segment are subtracted from
yet_emitted in Line 32. This reduces the number of temporary segments emitted while
still providing the required latency guarantee. If a gap is present in the time series,
all data points in buffer are emitted as finalized segments before ingestion restarts
with the remaining data points. While gaps could also be stored in segments as pairs
of start time and end time, we found no significant difference in the compression
ratio when evaluating the two methods. As such, we decided that no segments should
contain missing data points. This simplifies implementation of user-defined model
types significantly.

3.4 Model-Based Query Processing

Since all models can reconstruct the data points they represent within the user-defined
error bound by definition, any SQL query can be executed on these reconstructed data
points as if they were stored directly. However, this adds unnecessary overhead as
many aggregate queries can be answered directly from the models.

public double sum() {
int timespan = this.endTime - this.startTime;
int size = (timespan / this.SI) + 1;
double first = this.a » this.startTime + this.b;
double last = this.a * this.endTime + this.Db;
double average = (first + last) / 2;
return average x size;

0NN B W -

Listing 1: Implementation of SUM for a linear function [43]

As an example, SUM can be calculated in constant time for each segment that
represents values using a linear function. The procedure implemented for the model
type Swing is shown in Listing 1. The number of data points represented by the model
is calculated in Line 2-3, while the average is calculated in Line 4-6. Finally, in Line 7
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the SUM is calculated by multiplying the average with the number of data points the
model represents.

Model-based aggregation methods can directly substitute aggregation of recon-
structed data points and utilizing them in a TSMS requires only a simple substitution
of the operators by the system’s dynamic optimizer. The only complication is if a
WHERE clause restricts an aggregate to a time interval that includes anything but full
segments. For such queries, the start time, end time, or both of the relevant segments
must be temporarily changed. However, TSMSs built using existing systems for query
processing such as Apache Spark or Apache Flink, can be limited by the public APIs
that provides access to the query processing system’s query plans and dynamic opti-
mizer. For such systems, we propose using a split approach for the query interface
by defining both a Data Point View and a Segment View. The Data Point View allows
queries to be executed on reconstructed data points as if they were stored directly by the
system using the schema (Tid int, TS timestamp, Value float) where
Tid is the time series identifier, TS is the timestamp of the data point, and Value
is the value of the data point. The Segment View allows queries to be executed at
the segment level to support model-based aggregate queries. The Segment View uses
the schema (Tid int, StartTime timestamp, EndTime timestamp,
SI int, Mid int, Parameters blob), where StartTime and EndTime
correspond to the start and the end time of the segment respectively, ST is the sampling
interval of the time series the segment was created from, Mid is the identifier of the
model type used to represent the values of the segment, and Parameters are the
model parameters. The model parameters are represented as a blob instead of separate
columns to make it possible to have model types with arbitrary numbers of parame-
ters. On the segment view, model-based aggregates can be implemented as a set of
User-Defined Aggregate Functions (UDAFs). The User-Defined Functions (UDFs)
START, END, and INTERVAL must also be implemented so that users can change start
time and end time of a segment to allow aggregate queries on the Segment View at
the same granularity as provided by the Data Point View. By combining the Segment
View extended with UDAFs and the Data Point View, any SQL query can be efficiently
executed without knowledge of the underlying model-based implementation. Model-
based aggregate queries can be executed on both views with the same granularity, and
point-range queries can be executed on the Data Point View.

3.5 Experimental Evaluation
Evaluation Environment

All the proposed methods were implemented as a new distributed TSMS we named
ModelarDB. The system uses Apache Spark for query processing and Apache Cassan-
dra for storage. We evaluate the system on a seven node cluster consisting of one master
node and six worker nodes. Three real-life data sets are used for the evaluation. Firstly,
the data set EH is 582.68 GiB when stored as CSV files and contains high frequency
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measurements from wind turbines with a 100 millisecond sampling interval. Secondly,
the data set EP is 339 GiB when stored as CSV files and contains measurements from
entities in the energy domain such as wind turbines, solar panels, power plants, etc.
with a 60 second sampling interval. Finally, the data set ER is 487.52 GiB when stored
as CSV files and is an extended version of the REDD data set [49] with each file
duplicated and scaled with a random value in the range [0.001, 1.001) 2,500 times.

We compare ModelarDB to popular storage solutions for time series management
used in industry: the TSMS InfluxDB, the distributed key-value store Apache Cassan-
dra, and the big data columnar file formats Apache Parquet and Apache ORC. The
storage solutions are compared in terms of ingestion rate, compression, scalability, and
query performance for multiple query workloads. Queries on ModelarDB are executed
on time series ingested with a 10% error bound using the Segment View (SV) and
the Data Point View (DPV). All queries on InfluxDB are executed on a single node
using its command-line interface (CLI) as the open-source version does not support
distribution. For all other storage solutions, an Apache Spark DataFrame (DF) or an
Apache Spark Cached DataFrames (DFC) are used for executing the queries across
all six worker nodes in the cluster. The number of worker nodes utilized is shown as
suffixes to the query interface on the relevant figures.

Ingestion Rate

We evaluate the ingestion rate for all storage solutions on a single worker node for
a direct comparison. The experiments are performed using spark-shell and the
necessary Apache Spark connectors for all formats except InfluxDB, as no mature
Apache Spark connector exists for this system. A Python application using Pandas [63]
and the client library InfluxDB-Python are used instead [39]. The ingestion rate of
ModelarDB is also measured on six worker nodes to evaluate its scalability. Depending
on the system, the experiments are performed when Bulk Loading (BL) without any
queries being executed or when performing Online Analytics (OA) with small aggregate
queries continuously being executed on random time series using the Segment View.
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Figure 11: Ingestion rate, ER (Subset) [43]
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The results for the ingestion experiment are shown in Figure 11. Only InfluxDB,
Apache Cassandra, and ModelarDB support online analytics as an entire Apache
Parquet and Apache ORC file must be written before these can be queried. ModelarDB
provides 4.89-11 times faster ingestion rates compared to the other systems supporting
online analytics. ModelarDB is only 1.52 times slower than Apache Parquet although
the latter does not support online analytics. When ingesting the same data set using all
six worker nodes, ModelarDB is 5.39 times faster for the bulk loading case and 5.36
times faster for the online analytics case.

Effect of Error Bound

The compression ratio of all storage solutions are compared using all three data sets
in Paper B [43], with EH and EP shown in this summary. In addition, the effect of
changing the error bound is evaluated for ModelarDB.

The amount of storage required for EH and EP with different error bounds can
be seen in Figure 12 and Figure 13. For both data sets, ModelarDB provides better
compression than all of the existing storage solutions when using a 0% error bound.
Moreover, ModelarDB requires less storage as the error bound is increased. With a 10%
error bound, ModelarDB provides at least a 1.8 times increase in compression for EH
with an actual average error of only 0.005% and provides at least a 1.6 times increase
for EP with an actual average error of only 0.73%. This high level of compression is
due to ModelarDB’s use of MMC as different combinations of model types are used
for each error bound and data set pair. The model type distribution in segments can
be seen for EH in Figure 14 and for EP in Figure 15. For EH, ModelarDB primarily
uses the constant PMC-MR constant model type as the high sampling interval creates
many data points with similar values. However, for EP, ModelarDB primarily uses the
lossless Gorilla model type for the 0% error bound, but uses the two lossy models more
when the error bound is increased.
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Figure 12: The amount of storage required, EH [43] Figure 13: The amount of storage required, EP [43]

27



% I PMC-MR [JSwing [CGorilla % I PMC-MR [JSwing [CGorilla
€ £
o o
& 150 & 150
Y Y
. A ~N © o
X [ ~ ) < xR ©

A @ @ Q@ N
8 10071 % 3 3 2 5100 & o N

%
B ° > o
wv wv [ Y
=} =} )
© 50 ¢ 50 & o
o o 3 o h
e A o @ o NP A® | P > ° @ o i
N ) ; 2Ty &

3 Sl Nt Nl S 3 «-OQ L "_‘ 'ﬂ
§ 0% 1% 5% 10% § 0% 1% 5% 10%

Error Bound Error Bound
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Scale-out

To evaluate the performance of ModelarDB at scale, we compare the query processing
time for all storage solutions when executing large scale aggregate queries on ER
using our seven node cluster. For ER, ModelarDB provides up to 27.4 times better
compression than the existing storage solutions by combining PMC-MR (82.86%) and
to a lesser degree Gorilla (16.09%). To evaluate the ability of ModelarDB to scale-out,
we also execute the large scale aggregate queries on Microsoft Azure using between
1 and 32 Standard_D8_v3 nodes. We use this node type as its hardware matches the
recommendations provided by the documentation for Apache Spark, Apace Cassandra
and Microsoft Azure [4-6].

The results of executing the queries on the local cluster can be seen in Figure 16.
Using the Segment View to perform model-based aggregation, ModelarDB is 2.95
times faster than InfluxDB with both only having access to the resources of one worker
node. When all six worker nodes are utilized ModelarDB is 1.52 times faster than the
closest competitor Apache Parquet. The results for Microsoft Azure can be seen in
Figure 17 and demonstrates that ModelarDB scales linearly to at least 32 nodes. This
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Figure 16: Large aggregate queries, ER [43] Figure 17: How ModelarDB scales [43]
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is expected as each time series is managed by a single node and not distributed across
the cluster.

Further Query Processing Performance

To further evaluate the query performance of ModelarDB, we execute a set of small
scale aggregate queries and, despite not being ModelarDB’s intended use-case, a set of
time point-range queries on all storage solutions using our seven node cluster. While
we only observed reduced performance when an Apache Spark Cached Data Frame
(DFC) were used instead of an Apache Spark Data Frame (DF), Figure 19 shows results
with caching both enabled and disabled to demonstrate its effect.

The results for executing small time point-range queries on EH and EP can be seen
in Figure 18 and Figure 19 respectively. For these queries, both timestamps and values
must be read to extract either specific data point or small sub-sequences. To do this,
ModelarDB must reconstruct the data point instead of executing the queries directly
on the models. For both EH and EP, InfluxDB, Apache Cassandra, and Apache ORC
provides the lowest query processing times. ModelarDB is competitive for EP which
consists of many short time series. It is important to note that time point-range queries
are not part of ModelarDB’s design focus.
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Figure 18: Time point-range queries, EH [43] Figure 19: Time point-range queries, EP [43]

The results for executing small scale aggregate queries on EH and EP can be
seen in Figure 20 and Figure 21 respectively. For EH, Apache Parquet provides the
lowest query processing time. However, despite its columnar format being optimized
specifically for simple aggregate queries on a single column, ModelarDB is only 5.96
minutes slower than Apache Parquet and faster than all other competitors. As EP
consists of small time series, InfluxDB provides the lowest query processing time.
However, ModelarDB is only 1.54 times slower.

Conclusion

The evaluation shows that using the proposed methods ModelarDB provides a com-
bination of properties not present in current storage solutions. The system provides
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fast ingestion due to its state-of-the-art compression using our proposed MMC method.
ModelarDB also scales linearly with the number of nodes added to a cluster. Fi-
nally, the system provides state-of-the-art query performance for large scale aggregate
queries while also being competitive for small scale aggregate queries and even time
point-range queries, despite not being a focus of the design.

4 Management of Correlated Time Series

4.1 Motivation and Problem Statement

As demonstrated in Section 3, utilizing a model-based approach with MMC for time
series management can yield state-of-the-art performance. Existing methods for
MMC [18, 64, 65, 69], including our own [43], only exploit that data points in a
time series are correlated by time, for example that the values of a temperature sensor
at f and t + SI will be similar. However, multiple time series in a data set are often
correlated. As an example, multiple temperature sensors placed in proximity should
generate similar values. Model-based Group Compression (MGC) methods exploit
this correlation between time series by compressing multiple time series together in
a group. An example of MGC is shown in Figure 22 where three correlated time
series are represented by three linear functions when compressed separately, but can be
represented as a single linear function if compressed together. However, the existing
MGC methods only use one model type for all time series within a group [26, 62].
In other words, it is not possible for them to use a different model type for each
sub-sequence of the time series in a group. As such, Paper C [41] addresses multiple
problems. Firstly, how can MMC and MGC be combined into a Multi-model Group
Compression (MMGC) method with the benefit of both methods? Secondly, how
should time series be partitioned across a cluster so that correlated time series are
co-located and can be compressed together online without requiring data points to be
transferred between nodes and limiting scalability of the MMGC method? Thirdly,
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Figure 22: Model-based compression of singular time series (Top) compared to model-based compression
of multiple correlated time series using MGC (Bottom) [41]

how can existing model types be extended to represent multiple correlated time series
instead of just a single time series? Finally, how can methods for model-based query
processing be extended to support executing queries on models representing multiple
time series?

4.2 Preliminaries

While ingesting the high quality time series produced in the energy domain individually,
identifying each time series using a Tid is sufficient. However, these identifiers do not
provide any information about the relationship between the time series, such as location
or type of entity from which the data points are collected. For this, a robust notation
of metadata and the connection between these pieces of metadata is required. For
this purpose, we propose using a data cube [27] and extend the definitions from Paper
B [43] to accommodate segments representing groups of time series. All definitions
are reused from Paper C [41].

Definition 8 (Dimension)

A dimension with members M is a 3-tuple D = (member : TS — M, level :
M — {0,1,...,n},parent : M — M) where (i) M is hierarchically organized
descriptions of the time series in the set of time series TS with the special value
T € M as the top element of the hierarchys; (ii) level is surjective; (iii) For TS € TS,
level(member(TS)) = n and fm € M where level(m) > n; (iv) For TS € TS,
m € Mandk # T, if level(m) = k then level(parent(member(TS))) = k —1; (v)
parent(T) = T; (vi) level(T) = 0.

A data set of time series is described by a set of members hierarchically organized
into dimensions. Each time series has a member at the lowest level of each dimension,
meaning that all dimensions have a balanced hierarchy. Each member except the
special member T has a parent. To traverse the hierarchy, the function member returns
the member for a time series at the lowest level of the hierarchy, the function parent
returns the parent of each member until the value T is returned at the top of the
hierarchy. Instead of using numbers for the levels of a dimension, we use named
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levels to make their connection to real-world entities clear. As an example, given a
time series with Tid = 7337 collected from one out of four wind turbines located
in a park near Vester Hornum in Denmark and a Location dimension defined as
Turbine — Park — Region — Country — T, this wind turbine would be described
with the members 7337 — Vester Hornum — Vesthimmerland — Denmark — T.
Definition 9 (Model)

A model of a time series TS = ((t1,v1),...) is a pair of functions M = (m, ey, ). For
each t;, 1 < i, m is a real-valued mapping from £; to an estimate of the value v; for the
corresponding data point in TS. e, is a mapping from TS and the corresponding 11 to
a non-negative real value representing the error of the values estimated by m.

Definition 10 (Model Type)

A model type is a partial function m;(TS, €), which when defined for a bounded time
series TS and a non-negative real number € returns a model M = (m, e;,) of TS such
that e, (TS, m) < €. We call € the error bound.

A definition of a model type is introduced to complement the definition of a model,
and make the difference between a model and a model type explicit. As previously
stated, we say that a model type fits a model to the data points of a time series when
the parameters for a model is computed.

Definition 11 (Time Series Group)

A time series group is a set of regular time series, possibly with gaps, TSG =
{TSy,..., TSy}, where for TS;, TS; € TSG itholds that they have the same sampling
interval SI and that £; mod SI = #; j mod SI where t; and t1j are the first timestamp
of T'S; and T'S;, respectively.

A time series group is restricted to only containing time series with the same
sampling interval and aligned timestamps. This ensures that a data point is received
from all time series in a group at each sampling interval unless gaps occur. If the
correlated time series do not consist of approximately the same values, scaling can be
applied to allow a single stream of models to represent the values of all time series
in the group. By representing the data points from a time series group with only one
model per dynamically sized sub-sequence, the compression ratio can be significantly
increased compared to a model-based representation of each individual time series.

Definition 12 (Segment)

A segment is a 5-tuple S = (ts,t,,SI, Gy : TSG — oltsts+SLte} M) representing
the data points for a bounded time interval of a time series group TSG. The 5-tuple
consists of start time ;, end time f,, sampling interval SI, a function G which for the
TS € TSG gives the set of timestamps for which v = L in TS, and where the values
of all other timestamps are defined by the model M multiplied by a scaling constant
Crs € R.

As the error bound is formally defined as part of a model type, it is no longer
included as part of the definition for a segment.
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4.3 Static Grouping of Time Series

To minimize the network overhead when compressing correlated time series using
MMGUC, all time series in a group should be ingested by the same node in a cluster.
However, determining how time series should be grouped before ingestion requires
that the groups be based either on previously collected data or metadata such as the
data set’s dimensions. As time series can be long, determining exactly which time
series are correlated is a computationally expensive task. For example, even a small
data set of only 50,000 time series creates (50'300) ~ 1.25 x 107 pairs of time series
to compare for correlation. As an alternative, we propose a set of primitives that
allow domain experts to describe how the time series in a data set are correlated based
on their domain knowledge and an analysis of historical data if such exists and the
computational resources needed to do are available. As such, finding correlated time
series in a data set becomes an orthogonal problem for which existing methods have
been proposed [19, 20, 32, 33]. To specify correlation, we propose different types
of primitives that can be combined with either AND or OR semantics. The proposed
primitives allow users to specify that time series are correlated based on the source of
the time series and a data set’s dimension hierarchy. Users can specify that all time
series with a specific member, or all time series sharing a sequence of members, should
be considered correlated. Users can also specify that time series are correlated if they
are within a distance threshold of each other based on the dimension hierarchy.

The first type of primitives allows users to directly specify that specific time
series are correlated based on the source of the time series such as a file or a socket,
for example 4LR9a_Production.gz 4LR9b_EstimatedProduction.gz.
Defining correlation between time series with respect to the source of the time series
is only feasible for data sets of trivial size. For this reason, our remaining primitives
specify correlation between time series based on their dimensions. The second type
of primitive allows users to specify a specific member that time series must share
to be considered correlated. For example, Location 3 Aalborg specifies that
time series are correlated if they have the member Aalborg as the third level of the
Location dimension. Both the third and fourth type of primitives are based on the
Lowest Common Ancestor (LCA) level of a dimension for two time series groups. The
LCA level is the number of levels for which all time series in two groups share members
in a dimension starting from T. Figure 23 shows an example where the LCA level of
two time series with Tid = 2 and Tid = 3 is the LCA level three, corresponding to the
Park level, in this Location dimension. For the third type of primitives, users specify a
level in a dimension and two time series group are considered correlated if their LCA
level is equal to or higher for that dimension. As an example, specifying Measure 2
means that two time series groups are correlated if all time series in the groups share
members at least until level two of the Measure dimension. The last primitive simply
requires users to specify a distance between 0.0 and 1.0 at which time series should
be considered correlated. The distance is based on LCA levels and is computed for
two time series groups with one dimension as (height — level) / height where height
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Figure 23: Location dimension were the LCA of the series with Tid = 2 and Tid = 3 is the level Park [41]

is the number of levels in the dimension and level is the LCA level. This distance
definition ensures that groups of time series that share only a few members at the top
of the hierarchy for that dimension are considered less correlated than those that share
members at the lowest level. If the data set contain multiple dimensions, the distance
is defined as the average distance across all dimensions. A distance of 0.0 requires
that all members of two time series groups must match for them to be considered
correlated, while a distance of 1.0 means that all time series are correlated. In addition
to indicating how time series are correlated, users can also use these primitives to
provide scaling factors for specific times series or for time series with specific members.
The use of scaling factors allows correlated time series with different values to be
compressed together. Based on hints users have provided as correlation clauses using
these primitives, groups of correlated time series can be created before ingestion begins
using Algorithm 2.

In Line 5, a group is created per time series. Then in Line 616 for each correlation
clause provided by the user, groups are combined if all of the time series in the group
are correlated according to the clause. In Line 13, the function correlated evaluates
each clause and determines if two groups are correlated. Last, in Line 22 the set of
groups created are returned.

4.4 Dynamic Grouping of Time Series

Algorithm 2 creates static groups that contain time series for which their metadata
indicates that they are correlated. However, these time series are not guaranteed to
always be correlated. As an example, co-located temperature sensors can be correlated,
but if one of them is temporarily covered by a shadow while the others are located in
the sun, the values they produce will differ. As such, to ensure high compression, a
time series has to be split from its group if it temporarily becomes uncorrelated with
the remaining time series in the group during ingestion. Should a time series split from
a group become correlated with the time series in the group again, the split group must
be re-merged so the time series are compressed together again. In addition to dynamic
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4. Management of Correlated Time Series

Algorithm 2 Groups time series based on user-hints provided using the primitives [41]

1: Let TS be the list of time series.

2: Let ID be the dimensions for all time series.

3: Let Correlations be a list of correlation clauses.

4:

5: TSG < createSingleTimeSeriesGroups(TS)

6: for clause € Correlations do

7: groupsModified « true

8: while groupsModified do

9: groupsModified < false

10: for i «+ 1to |TSG| do

11: for j < i+ 1to |TSG| do

12: (TSG1,TSG,) < getPairAt(TSG,i,7)

13: if correlated(clause, TSG1, TSG,, D) then
14: TSGi]«— mergeGroups(TSGy, TSG;)
15: removeGroupAfterLoop(TSG,, TSG)
16: groupsModified < true

17: end if

18: end for

19: end for
20: end while
21: end for

22: return Groups

splitting and joining of time series groups, only a few modifications are required for the
ingestion procedure described in Algorithm 1 to support MMGC. At each sampling
interval, a group of data points must be buffered and passed to the current model type.
In addition, each segment must store information about which time series from the
group it represents data from, as segments must be produced for the remaining time
series in a group despite a gap occurring in one of the group’s time series.

The general idea of dynamically splitting and joining time series groups during
ingestion is shown in Figure 24. In ModelarDB, the Segment Generator (SG) contains
our method for fitting models to time series groups online. To minimize the overhead of
checking when a split should be performed, we propose two heuristics: a compression
ratio below a fraction of the average and that the error between ingested data points
are above twice the user-defined error bound (2¢€). If the compression ratio of the
model emitted as part of a finalized segment is below a user-configurable fraction of the
average, a time series group is divided into sub-group where each sub-group contains
correlated time series. As a heuristic for splitting and joining, time series are considered
correlated if their currently buffered data points are within twice the user-defined error
bound (2¢) according to the error function of the included model-types. If only one
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Figure 24: Dynamic splitting and joining of time series groups during ingestion [41]

sub-group is created, all time series in the group are still correlated. If not, each
sub-group created is a split. Finalized segments are emitted after all model types have
exceeded the user-defined error bound or length limit. For this reason, this check is
naturally performed after a finalized segment is emitted and is based on the notion that
the construction of a new finalized segment indicates a large change in the structure of
at least one of the time series in the group. While ModelarDB deletes the data points
that have been emitted as part of a finalized segment, the entire time series is shown in
Figure 24 to illustrate how they change over time. At t,;, SGg ingests data points from
all three time series in the group, but at ¢,, a time series is no longer correlated with the
rest and the group is split and now ingested by SG1 and SGy. SGy is not deleted as it
ensures SG1 and SG; keep a synchronized sampling interval to simplify joining them
if the time series in the group become correlated again. Then, at {; none of the time
series are correlated anymore and each are now ingested by a separate generator.

A split time series group are joined if the time series in the group become correlated
again. However, to minimize the overhead of checking if the time series are correlated
again, it is only performed for each # finalized segments that have been emitted by a
split Segment Generator, where # starts at one and is doubled after each check. This is
again based on the notion that emitting a finalized segment indicates a large change in
the structure of the time series, and that multiple failed checks to join a split time series
group indicates that the current splits are stable. The joining of time series split from a
group can be performed in any order and at £; the split Segment Generators SGs and
SGy are joined. Finally, all three time series in the group are joined again at f; and
ingestion is once again performed by SGy.
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4.5 Model Extensions

While the extensions added to our ingestion method to support MMGC are limited,
most existing model types do not support representing time series groups and must be
extended. One straightforward idea would be to store multiple models per segment,
with each model representing the values of a single times series in the group. However,
this would only reduce the storage required for the metadata in the segment and not
the size of the actual values compared to MMC. In addition, all models stored in a
segment must represent the same number of data points as the shared metadata include
start time t; and end time t,. As such, to gain the full benefit of MMGC, model types
that can represent multiple time series using one model must be used. We extended the
model types used by ModelarDB: the constant PMC-Mean [52], the linear Swing [21],
and the delta compression method proposed for the Gorilla TSMS [66]. The constant
model type was changed from PMC-MR [52] to PMC-Mean [52] as it reduces the
average error without a large increase in the amount of storage required. The model
types extensions can be seen in Figure 25.

Both PMC-Mean [52] and Swing [21] fit models to time series online by main-
taining an upper and lower bound for a function that can represent all ingested values,
and creates a new segment when a data point is received that is outside the current
upper or lower bound. For PMC-Mean [52], no modifications are required to support
representing multiple data points for each sampling interval as it simply represents the

PMC-Mean™

Vit | V2

Gorl"a Vo1 | Va2 —> Vit | Vo1 | Va1 | Viz2 | Va2 | Va2

Va1 Va2

Figure 25: Model types modified to support MGC. For PMC-Mean and Swing a data point’s position on the
x-axis indicates time while its position on the y-axis indicates its value. Full lines separate the unmodified
models, dashed lines are the average maintained by PMC-Mean, and dotted lines are error bounds. [41]
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set of all values received V within the error bound € of min(V) and max(V) as the
single value avg(V'). Swing [21] represents each sub-sequence of a time series as a
linear function that intersects with an initial data point and then maintains an upper
and lower bound as additional data points are received. For the initial data point with
timestamp ¢, we reduce all data points in the group with that timestamp ¢ to a single
data point using PMC-Mean. The data points from the following sampling intervals
are then added one at a time until Swing cannot represent all data points ingested from
a group at a particular sampling interval. For Gorilla [66], the data points are ordered
by time so all values received at each sampling interval are stored adjacent. Given that
the time series in the group are correlated, only a small delta exists between the values
which leads to a high compression ratio.

4.6 Query Processing

The last set of extensions required to support MMGC are for query processing. To
allow users to execute queries on specific time series using the Data Point View and
the Segment View, the queries must be rewritten so the groups containing segments
for the time series requested are retrieved. In addition, the query results should only
include values from the requested time series, despite each model representing values
for an entire group. For this reason, we propose methods using the Segment View
to execute simple model-based aggregates and model-based aggregates in the time
dimension. The time dimension is implicitly part of each segment so no separate time
dimension is required, as is the case for a traditional data warehouse. Aggregation
in the remaining dimensions can be performed as a simple GROUP BY query on the
denormalized dimensions.

Figure 26 shows our approach for executing simple model-based aggregates on
time series that are part of a group. These aggregates use the UDAFs defined on the
Segment View to compute aggregates directly on the models. In ModelarDB, these
are given the suffix _S for example MIN_S and MAX_S. Firstly, all the time series
ids (Tids) in the query are rewritten to time series groups ids (Gids) so the relevant
groups can be located. Segments are then read from disk and the aggregate computed
for each time series requested by the user using model-based query processing. If a
scaling constant has been applied to any of the time series, and the aggregate performed
is not COUNT, the result is divided by the scaling constant so each result matches the
original time series.

Figure 27 shows our approach for executing model-based aggregates in the time
dimension, which exploits that time is a part of each segment. Aggregates in the time
dimension can be performed on segments using a set of UDAFs defined on the Seg-
ment View. In ModelarDB, they are given the prefix CUBE with the aggregation time
interval added as a suffix, for example CUBE_MIN_HOUR and CUBE_MAX_HOUR.
The method performs the same operations as described for simple model-based aggre-
gates, but instead of a single result per time series, as in Figure 26, the StartTime
and EndTime of each segment is changed to produce a result per time interval. In
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Figure 27, the aggregate is first performed for the time interval [00 : 13,01 : 00), then
for [01 : 00,02 : 00) and finally for [02 : 00,02 : 48]. EndTime is only inclusive
for the last time interval as the result would otherwise include duplicate values due to
overlapping timestamp.

4.7 Experimental Evaluation
Evaluation Environment

The proposed methods for MMGC and multi-dimensional query processing on models
were implemented as extensions to ModelarDB. In addition, the implementation of
ModelarDB were improved with multiple smaller optimizations over time to reduce its
CPU and memory requirements. As such, we present results from three versions of
ModelarDB: our original version ModelarDBy; from [43], ModelarDB,, —G which
is the current version from Paper C [41] with a more mature implementation but
without any correlation specified so MMGC is disabled, and ModelarDB,,+G which
is the current version from Paper C [41] but each data set is ingested with user-hints
specifying correlation using our primitives so MMGC is enabled. Results obtained
with MMGC enabled are shown with a striped bar. The evaluation environment are
reused from Section 3.5. Both the local cluster and Microsoft Azure are used for the
evaluation. The two real-life data sets EP and EH are reused. However, we do not use
ER as it is synthetically extended from REDD [49] by creating duplicate time series at
different offsets, so the compression achieved using correlation and scaling constants
would be artificially high. The queries are reused, and a set of multi-dimensional
queries aggregating measurements of energy production for each month is added.

Ingestion Rate

As the data set ER is removed from this evaluation, the ingestion rate is evaluated using
a subset of EP containing measurements of energy production. We specify correlation
for ModelarDB,,+G such that multiple measurements of energy production from the
same entity are compressed together. The ingestion rate for all formats are evaluated
using spark-shell running on a single node. We use the InfluxDB-Java [39]
library to connect to InfluxDB instead of InfluxDB-Python, as used in Section 3.5.
The Java client library provides a higher ingestion rate, and the use of a Java library
allows all experiments to be executed inside spark-shell. For all formats, we
evaluate the ingestion rate when Bulk Loading (B) without any queries being executed
while loading. For ModelarDB,, we also evaluate the ingestion rate while performing
Online Analytics (O) with simple aggregate queries continuously executed against
the TSMS using the Segment View while loading the data. Finally, the consistency
of ModelarDB,,’s ingestion rate is evaluated by ingesting a time series continuously
duplicated by a separate C program over multiple days.

The results can be seen in Figure 28. ModelarDBy,+G outperforms all other
storage solutions when bulk loading on a single node by 1.14—-12.5 times, due to
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Figure 28: Ingestion rate, EP (Subset) [41]

its use of MMGC and more mature implementation than ModelarDB, ;. When us-
ing all six worker nodes in the cluster, ModelarDB,, —G achieves a 3.91 times and
a 3.55 times increases when bulk loading and performing online analytics, respec-
tively. ModelarDB,,+G achieves a 3.96 times increase when bulk loading and a 3.54
times increase when performing online analytics. When evaluating the consistency
of ModelarDB,; ingestion rate, we found that the average time required to ingest the
repeated time series for a window of a day only increases by 0.6% from the first to the
last day.

Effect of Error Bound

The compression ratio of all storage solutions are compared using EP and EH, and the
effect of changing the error bound is evaluated for ModelarDB. To enable MMGC for
ModelarDB,,+G, correlation between time series are specified for EP so measurements
of energy production from the same entity are grouped. For EH, measurements of
the same type from each wind turbine in a park are grouped. We expect that enabling
MMGC will significantly reduce the amount of storage required for EP as the time
series in this data set are highly correlated, while MMGC should only provide a limited
benefit for EH as the time series in this data set are much less correlated.

The results for EP can be seen in Figure 29 with all versions of ModelarDB pro-
viding better compression than the remaining formats. To our surprise ModelarDB;
and ModelarDB,, —G have similar storage requirements despite the more restric-
tive PMC-Mean constant model type being used for ModelarDB,;. By comparing
ModelarDB,; —G and ModelarDB,,+G, we can see that enabling MMGC provides a
1.44-1.56 times reduction in the amount of storage required. This is expected due to the
high degree of correlation between the different measurements of energy production in
this data set. The results for EH are shown in Figure 30 and the changes in ModelarDB,,
provide a small decrease in compression ratio compared to ModelarDB,,; as expected.
MMGC only provides a benefit with a high error bound as ModelarDB,, 4G requires
1.06 and 1.28 times less storage then ModelarDB,, —G with a 5% and 10% error bound,
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respectively. Again, this is expected as the time series in this data set are much less
correlated and even small differences between the time series creates new segments
when a low error bound is used. The impact of MMGC on the model types used per
data point can be seen in Figure 31 for EP and in Figure 32 for EH. For both data sets,
enabling MMGC in general increases the number of data points represented by Gorilla
and reduces the use of the two lossy models. This is expected as all time series in a
group must exhibit the same structure for a sub-sequence to be efficiently compressed
using one of the two lossy model types.

Scale-out

ModelarDB,; s ability to perform query processing at scale is evaluated by executing
the set of large scale aggregate queries on EP for all storage solutions. The most
appropriate query interface is used for each. For InfluxDB, we use its command line
interface (CLI). We use an Apache Spark DataFrame (S) for Apache Cassandra, Apache
Parquet and Apache ORC, and use the Data Point View (DPV) and the Segment View
(SV) for ModelarDB. To evaluate the scalability of ModelarDB,,+G, we also execute
the queries on EP using between 1 and 32 Standard_D8_v3 nodes on Microsoft Azure.
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The results of executing the large scale aggregate queries on our local cluster can
be seen in Figure 33. For this data set, InfluxDB is unable to execute the queries as it
terminates with out-of-memory errors. Of the remaining formats, only Apache Parquet
are faster than the different versions of ModelarDB, and it only provides a 2.26 times
reduction in query processing time compared to ModelarDB,,+G despite its columnar
format being designed specifically for simple aggregate queries on a single column.
When comparing the different versions of ModelarDB, ModelarDB,,+G achieves a
1.31 and 1.46 times reduction in query processing time compared to ModelarDB
and ModelarDB,, —G, respectively, when using the Segment View. This is due to
ModelarDB,;,+G having to read less data from disk as MMGC is used. The results of
executing the large scale aggregate queries on Microsoft Azure can be seen in Figure 34
and shows that ModelarDB,,+G provides linear scalability.

Further Query Processing Performance

The remaining sets of queries from Section 3.5 and the new multi-dimensional queries
are evaluated on all possible storage solutions. The multi-dimensional queries cannot
be executed using InfluxDB as it does neither support aggregation by month [37, 40]
nor support any DATEPART-like functionality [38]. ModelarDB,; is also not included
in our experiment with multi-dimensional queries as it does not support dimensions.
In general, ModelarDB,; and ModelarDB,, provide similar performance for the
remaining sets of queries from Section 3.5. For small scale aggregate queries on EP
that consists of many short time series, ModelarDB,, —G is 17.63 seconds, or 1.62
times, slower than ModelarDB, indicating that the additional computation required
to support MMGC adds a minor overhead. However, for small scale aggregate queries
on EH that consists of fewer but much longer time series ModelarDB,,—G is 1.46
times faster than ModelarDB, |, indicating that the more mature implementation of
ModelarDBy, provides improved performance for longer running aggregate queries.
The introduction of MMGC have the largest impact on time point-range queries as
ModelarDBy, is 1.01-3.92 times slower than ModelarDB, due to less effective predi-
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cate push-down for these queries and having to read groups. This is considered as an
acceptable trade-off as such queries are not the intended use-case for ModelarDB. The
results of executing the multi-dimensional queries on EP are shown in Figure 35 and
Figure 36. ModelarDB,, provides a 1.52-55.21 times reduction in query processing
time using the Segment View, due to the support for executing aggregates in the time
dimension on models introduced in ModelarDB,,. In addition, ModelarDB,,+G is
1.24-1.27 times faster than ModelarDB,, —G when using the Segment View due to
the additional compression provided by MMGC for EP. As ModelarDB,, can execute
queries on the individual time series in each group, the query performance is not
reduced when aggregating below the level at which the grouping is performed. This
would not be the case for simple aggregates which cannot be decomposed. For EH,
ModelarDBy, —G is 3.01-253.78 times faster than the other storage solutions, as shown
in Figure 37 and Figure 38. However, enabling MMGC for EH increases the query
processing time despite providing 1.28 times better compression. This is caused by the
different group sizes in EH creating a different load on each node.
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Figure 37: Multi-dimensional queries that GROUP Figure 38: Multi-dimensional queries that GROUP
BY at the level used for the MMGC groups, EH [41] BY one level beneath the MMGC groups, EH [41]
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Conclusion

The evaluation demonstrates the benefit of ModelarDB,,’s use of MMGC with static
partitioning and its more mature implementation. The evaluation shows that when
compared to ModelarDB, |, ModelarDB,, generally provides increased ingestion speed,
a reduced storage requirement, and faster query processing, while still scaling linearly
on up to 32 nodes. In addition, the evaluation also demonstrates the limitations of
MMGTC as it only provides limited benefits for data sets containing time series with
little correlation and can restrict the ability of ModelarDB,; to evenly distribute the
time series across the cluster. However, MMGC can easily be disabled for such data
sets, with ModelarDBy, then falling back to MMC for compressing the time series.

5 The ModelarDB System

5.1 Motivation and Problem Statement

ModelarDB is developed as a remedy to the limitations of storage solutions used
in industry for time series management, as shown in Table 1, and because none of
the TSMSs surveyed in Paper A [42] provides the paramount properties required to
efficiently manage high quality time series. We designed ModelarDB to provide the
benefits of model-based time series management while allowing users to use it as
a TSMS with a simple SQL interface. The current version of ModelarDB uses the
methods for model-based management of individual time series proposed in Paper
B [43] and was extended with the methods for model-based management of correlated
time series presented in the Paper C [41]. Paper D [44] addresses the problem of
demonstrating the functionality provided by ModelarDB from a user’s perspective. To
provide a complete overview of ModelarDB, this section summarizes content from
both Paper B [43], Paper C [41] and Paper D [44].

5.2 Architecture

ModelarDB is designed to be both modular and highly configurable to support differ-
ent deployment environments and different data sets. To be modular, ModelarDB is
implemented as the Java library ModelarDB Core, which is interfaced with a query
processing system and a data storage system to create the full TSMS ModelarDB.
ModelarDB Core contains all the functionality that are agnostic regarding the query
processing systems and the data storage systems it currently can be interfaced with.
For example, it contains an implementation of our static time series grouping and
partitioning algorithm, our online model-based compression algorithm, and the model
types provided as part of the system. Users can also implement their own model
types without any changes to ModelarDB. The current implementation of ModelarDB
interfaces with the stock version of Apache Spark for query processing and either
the stock version of Apache Cassandra or a JDBC compatible RDBMS for storage.
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However, support for other query processing system such as Apache Flink can be
implemented as a new engine class, while support for other storage systems such
as Apache HBase, MongoDB, or Apache Kudu can be implemented as a new class
deriving from ModelarDB Core’s provided storage interface. ModelarDB is purposely
implemented without any modifications to its dependencies and only utilize their public
interfaces to make it simple to deploy the system and upgrade the dependencies in
the future. In addition, as it uses the stock versions of Apache Spark and Apache
Cassandra, ModelarDB can be deployed on an existing cluster running Apache Spark
and Apache Cassandra by simply deploying a JAR file using Apache Spark’s included
spark-submit script. As such, ModelarDB is simple to deploy and maintain for
administrators. Due to the use of Apache Spark, ModelarDB uses a master/worker ar-
chitecture. The master performs the static grouping of the time series using a Partitioner
component. It then partitions the groups evenly across the cluster to minimize situa-
tions where one worker node is overwhelmed while the remaining are underutilized.
ModelarDB uses a partitioning method based on [51] that minimizes maxsg, s sa
data_points_per_minute(SGy)) — mingg,essc(data_points_per_minute(SGy))
where SSG are the groups created by the Partitioner [41]. After each group has
been assigned to a worker node, each worker node ingests the time series directly from
their source so inter-cluster network traffic does not limit the scalability of the system.
The architecture of ModelarDB’s worker nodes can be seen in Figure 39. For
each component, the main provider of this component is written in parentheses. For
example, the predefined models are implemented as part of ModelarDB Core while
distributed query processing and caching are primarily implemented using functionality
from Apache Spark. A worker consists of three sets of components: Data Ingestion,
Query Processing, and Segment Storage. The Data Ingestion components receive
data points from the time series groups created by the master and assigned to this
worker. This set of components also fits models to these time series using a Segment
Generator for each group and the model types the user has configured the system to
use. The stream of segments produced are cached in memory by the Query Processing
components so users can execute queries on them using both the Data Point View and
the Segment View. As such, the in-memory cache stores both recently produced and
recently queried segments read from the Segment Group Store. As segments from the
Segment Generator are evicted from the in-memory cache they are sent to the Segment
Storage components and persisted to disk using the Segment Group Store ModelarDB
is configured to use. The full source code is available at https://github.com/
skejserjensen/ModelarDB under the Apache License Version 2.0.

5.3 Model-Based Query Processing

Users provide queries to ModelarDB using its Data Point View and Segment View,
with UDAFs and UDFs implemented on the Segment View to support model-based
processing of aggregate queries. Queries are expressed using SQL and send to the
Query Processing component which is implemented using Apache Spark SQL. The
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Figure 40: Query processing in ModelarDB using the Data Point View and the Segment View. The acronyms
are: result set (RS), temporary segment (SF), and finalized segment (SF). (Updated) [43]

full query processing pipeline of ModelarDB is shown in Figure 40.

In this example, the query uses the Segment View so the query is parsed, the Tid
rewritten to the corresponding Gid, and the requested columns and the predicates of
the WHERE clause are provided to the Segment View. It is important to be aware that
Apache Spark SQL does not provide information about which aggregates, if any, are
being performed through its stable APIs. As such, all the requested segments or data
points must be provided instead of pre-aggregated results. The Segment View uses the
Storage Interface to rewrite the query predicates and push them to the Segment Store,
which must return at least the requested finalized segments, shown as RS,, from the
stored finalized segments, shown as RS;. ModelarDB allows a Segment Group Store
to return more than the requested finalized segments to allow use of storage solutions
without support for predicate push-down for all types of predicate. The finalized
segments retrieved from the Segment Group Store are unioned with the temporary
segments and finalized segments currently stored in the cache, shown as RS3 and
RSy, respectively. The unioned segments representing time series groups, shown as
RSs, are then expanded to segments representing individual time series. The Segment
View then filters the expanded segments according to the query’s predicates so extra
segments are removed before the expanded segments are returned to the distributed
query processor, shown as RSg. The distributed query processor then computes the
final results using the SUM_S UDAF. Queries executed on the Data Point View use the
Segment View read the required segments from the Segment Group Store as described
above, before reconstructing approximations of the ingested data points using the
model-based representations stored as part of each segment. As such, a new Segment
Group Store needs only support predicate push-down from the Segment View, making
it simpler to extend ModelarDB with a new Segment Group Store.
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In addition to predicate push-down, ModelarDB also supports efficient execution
of projections by combining static and dynamic code-generation. Projections are per-
formed by each view before returning a result set. The Segment View and the Data Point
View contain a known set of columns. Optimized code for projections that only contain
these columns are generated at compile-time. However, as dimensions are defined by
users at run-time, optimized code for performing projections involving these columns
must be dynamically generated. Alternatively, the rows can be dynamically built based
on the requested columns. ModelarDB dynamically builds each row for small data sets,
using the number of Spark Partitions as an heuristic that is efficient to compute, and
uses dynamic code-generation for larger result sets. ModelarDB performs dynamic
code-generation and compilation using the scala.tools.reflect.ToolBox
APIs provided by the Scala programming language. This approach is used as dynami-
cally compiling Scala code at run-time adds a significant startup cost for each query.
This overhead makes it faster to dynamically build the rows for projections on small
result sets, with similar approaches also utilized by other researchers to minimize the
overhead of dynamic code-generation [48].

5.4 Model-Based Data Storage

To store time series groups as sub-sequences represented by different model types, we
propose the general schema shown in Figure 41. The schema consists of three tables;
Time Series, Model, and Segment. Time Series always stores the time
series identifier Tid, the Gid which is the identifier of the group to which ModelarDB
has assigned the time series based on user-hints, the Scaling constant given by the
user or the default value of one, and the sampling interval of the time series which
is stored as SI. Any dimensions added by the user are denormalized and stored in
the Time Series table. The Model table stores the identifier of each model type,
Mid, and the Java Classpath to the concrete implementation of this model type.
The Java Classpath can include classes that are not part of ModelarDB, as users can

" Segment £ 1 Model
Gid (PK) | StartTime (PK) | Gaps (PK) EndTime Mid Parameters Mid (PK) | Classpath
1 1460442200000 | [] 1460442620000 | 1 0x3f50cfco 1 PMC-Mean
3 1460642900000 | [2] 1460645060000 | 2 0x3f1e ... 2 Swing
3 Gorilla
Time Series
VN R N [ E e L CCE
Tid (PK) Gid Scaling SI || Country Region Park Entity . E Level 1 | Level 2 Level N
1 1 1.0 30000 | Denmark | Nordiylland | Farso | 9572 |}
2 3 1.0 60000 Denmark | Nordjylland | Aalborg | 9632
3 3 4.75 30000 Denmark | Nordjylland | Aalborg | 9634
e Location Dimension ¢ | Nth Dimension

Figure 41: General schema for storing time series groups with dimensions as models [41]
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implement their own model types to be loaded dynamically. The Segment table stores
the segments representing dynamically sized sub-sequences of time series groups using
different model types with the required parameters to reconstruct each time series in
the group from the model-based representation. As gaps prevent all time series in a
group from being part of all segments for that group, the column Gaps store the Tid
of the time series in that group that are not part of the segment. As dynamic splitting
and joining of time series groups can create multiple segments with the same Gid and
StartTime, the column Gaps are included as part of the primary key.

This general schema is implemented in Apache Cassandra with a few modifications
to optimize the schema for compression and due to Apache Cassandra functioning more
like a distributed key-value store than a RDBMS. Firstly, Gaps in Apache Cassandra
are stored as an integer with each bit set if the time series matching that index in the
group is not represented by that segment due to a gap. A 64-bit integer is used in
the current implementation. This creates an upper limit on the group size of 64 time
series when Apache Cassandra is used. Secondly, to more efficiently support predicate
push-down, EndTime is used instead of StartTime for the second part of the key,
making the final primary key Gid, EndTime, Gaps. This means that the time
series are distributed by Gid and ordered by EndTime followed by Gaps. Finally,
StartTime is replaced with the column S1ize that stores the length of the segment to
improve the compression ratio as it requires fewer bits than storing the full timestamp
and StartTime can be recalculated as StartTime = EndTime — (Size x SI) [43].

5.5 User-Defined Model Types

For domain experts to define a new model type, they must implement two classes deriv-
ing from interfaces provided by ModelarDB Core: a Model interface and a Segment
interface. A Model must implement functionality to construct a model-based repre-
sentation from a time series, while a Segment must implement functionality to query
and reconstruct a time series from a model-based representation. By using two types
instead of one, a Mode1 can store additional information to more efficiently fit a model
to data points without adding any overhead to each of the Segment objects created by
aModel. As only one Model object is created for each model type enabled by the
user for each Segment Generator, and a Segment is created for each sub-sequence
represented by that specific model type, the impact of adding additional variables to a
Segment is much larger than adding additional variables to a Model. An overview
of the methods a user is required to implement for each type is shown in Table 3.

5.6 Configuration and Static Partitioning

For configuration, ModelarDB uses a commonly used configuration file format. Each
setting is given as a name and value pair separated by a space, while each part of the
name is separated by a punctuation. For example, the query processing system of
ModelarDB can be set using the setting modelardb.engine, the Segment Group
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Store can be set using modelardb. storage, the time series to ingest are set using
one or more instances of the setting modelardb. source which supports wildcards,
the file to read dimensions from are specified using modelardb.dimensions, the
model types to use are set by one or more instances of the setting modelardb.model,
and correlations are specified using modelardb.correlation with examples
shown in Listing 2.

modelardb.correlation 44L80R%a_AirTemperature 44L80R9%b_AirTemperature
modelardb.correlation Measure 1 Temperature

modelardb.correlation Location 0, Measure 3

modelardb.correlation 0.25

modelardb.correlation Location 0, Measure 3 % Measure 1 Temperature 0.5

DA W=

Listing 2: User-hints specifying correlated time series [44]

Users can combine our correlation primitives with AND semantics by writing mul-
tiple primitives separated by a comma as one modelardb.correlation setting,
or with OR semantics by writing multiple different modelardb.correlation
settings. Two groups of time series are only grouped by ModelarDB if all time series in
each group are considered correlated according to amodelardb.correlation set-
ting. In Line 1, the user states that the two time series 441L80R%9a_AirTemperature
and 44L80R9b_AirTemperature are correlated and should be grouped together.
As this quickly becomes infeasible to manage for even small data sets, Line 2 shows an
example of defining correlation based on a specific member. In this case, time series
with the member Temperature at the first level of the Measure dimension are
considered correlated and will be grouped. Line 3 shows multiple primitives being
combined with AND semantics. The line states that time series that share members
on all levels in the Locat ion dimension and at least the first three members of the
Measure dimension should be considered correlated. In Line 4, correlation is defined
as the distance 0.25, and as such, ModelarDB will compute the distance between each
pair of groups and combine the groups that share enough members in each dimension
starting from T. Lastly, in Line 5, multiple primitives are combined to not only group
time series that share members on all level in the Locat ion dimension and at least
the first three members of the Measure dimension, but a scaling constant of 0.5 will
also be applied to all time series with the member Temperature at the first level of
the Measure dimension. This allows correlated time series with different values to be
compressed together. The scaling performed by ModelarDB is hidden from the user
as they only see the original data points approximated within the user-defined error
bound.

5.7 Query Interface

From a user’s perspective, ModelarDB query interface operates like a RDBMS as it
accepts queries expressed using standard SQL extended with UDAFs, despite using a
model-based physical storage layer. The inclusion of the Segment View makes this a
leaky abstraction, as without it users querying the system would not know that time
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series are stored as models. However, as started in Section 3.4 some query processing
systems have very limited public APIs. As such, splitting the query interface into two
views makes ModelarDB Core simpler to interface with a new query processing engine
and as a result simpler to port to different domains. ModelarDB implements two sets
of UDAFs on the Segment View for model-based query processing. The first set allows
for model-based aggregates to be computed on segments as rows and each is suffixed
by _S, for example MIN_S, or prefixed by CUBE and suffixed with the time interval it
aggregates by, for example CUBE_COUNT_MONTH. The other set of UDAFs, which
are suffixed by _SS, are implemented to execute model-based queries on segments
as structs, as returned by the UDFs START, END, and INTERVAL. The two sets of
UDAFs are needed as Apache Spark SQL requires UDFs to only return one value and
does not support overloaded UDAFs. Multiple examples of the queries supported by
ModelarDB are shown in Listing 3.

SELECT AVG(Value) FROM DataPoint WHERE Tid = 3
SELECT AVG_S (#) FROM Segment WHERE Tid = 3

SELECT MIN_SS( START (#, '2019-02-06 18:22") )
FROM Segment WHERE EndTime >= '2019-02-06 18:22'

SELECT Tid, CUBE_MAX_ MONTH (#) FROM Segment
WHERE Category = 'Temperature' GROUP BY Tid

SO 00N R W=

—_

SELECT x FROM DataPoint WHERE Tid = 3 AND TS < '2012-04-22 12:25"'

Listing 3: Examples of queries using the Data Point View and Segment View (Updated) [43, 44]

The query in Line 1 computes a simple AVG on one time series using the Data
Point View, while the query on Line 2 computes the same average using model-based
aggregation through the Segment View. The # operator is a specialized version of the
* operator implemented by ModelarDB that provides the arguments necessary for a
UDAF. The query in Line 4-5 computes the minimum value in the data set with a
timestamp at or after 2019-02-06 18:22. As a WHERE clause on the Segment
View can only filter segments by their start and end time, any values with a timestamp
before 2019-02-06 18:22 must be dropped by the UDF START. The query on
Line 7-8 computes the maximum temperature for each month for each time series
using the Segment View. Finally, the query on Line 10 retrieves the data points of the
time series with Tid = 3 with a timestamp before 2012-04-22 12:25. While
the Data Point View provides the illusion that the data points are stored by the TSMS,
they are reconstructed from highly compressed models managed by ModelarDB.

6 Summary of Contributions

In conclusion, this thesis performs a comprehensive survey of existing TSMSs and
proposes the model-based TSMS ModelarDB designed for regular high quality time
series, possibly with gaps, that are correlated and have additional metadata describing
them. As part of ModelarDB, the thesis proposes multiple techniques and optimizations
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for a model-based TSMS. The four papers included in the thesis provide the following
contributions:

» Paper A [42] provides a comprehensive survey of existing TSMSs proposed
by academia and through industrial research. A set of classification criteria for
TSMSs are proposed based on paramount properties required for a TSMS to
efficiently manage high quality time series. The surveyed TSMSs are grouped
according to the proposed classification criteria and the user-facing functionality
provided by each system. An analysis of each group of systems show that
TSMSs integrating both data storage and query processing in one application
primarily are research prototypes, that TSMSs with data storage and query
processing separated into multiple applications often reuse existing systems for
these and are mature system deployed to solve real-world tasks, and that TSMS
designed as extensions to RDBMSs are implemented to evaluate model-based
query processing for time series. Based on the analyzed TSMSs and future
research directions proposed by experts in the field, the survey proposes that a
distributed model-based TSMS be developed with support for multi-dimensional
analytics.

* Paper B [43] proposes the distributed and modular model-based TSMS Mode-
larDB, which is designed for individual time series. As part of the TSMS, the
paper proposes a general purpose architecture for a model-based TSMS and
multiple methods for model-based management of time series. A model-agnostic
algorithm for compressing each dynamically sized sub-sequences of a time series
with the most appropriate model type is also presented. An API for extending
the TSMS with additional model types without changing the system is proposed.
Methods for executing queries directly on the model-based representation instead
of on reconstructed data points, for performing efficient predicate push-down,
and for efficiently executing projections using static code-generation, are also
proposed. Finally, a general schema for storing time series as models is presented.
Specific optimizations for using the schema with a distributed key-value store
are also proposed. An experimental evaluation shows that ModelarDB hits a
sweet spot with a fast ingestion rate, state-of-the-art compression, is scalable, and
provides fast query processing speeds for large scale aggregate queries, while
also being competitive with other storage solutions for small scale aggregate
queries and time point-range queries.

 Paper C [41] proposes multiple extensions to ModelarDB for exploiting that time
series often are correlated, to increase compression and reduced query processing
time. Primitives allowing domain experts to efficiently describe how time series
are correlated and a method for creating groups of correlated time series from
these user-hints are proposed. Creating the groups using only metadata removes
the run-time overhead required to compute which time series are correlated from
data points in a distributed setting. This increases the system’s scalability. To
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support management of time series groups, extensions are proposed for Mode-
larDB’s ingestion method, the included model types, and its model-based query
processing method. Methods for model-based query processing are proposed to
support multi-dimensional analytics directly on models using metadata stored
as a data cube. An evaluation demonstrates that the proposed methods provide
faster ingestion rates, an increased compression ratio for correlated time series,
and improves the query processing speed for large scale aggregate queries. The
system is at the same time both scalable and provides competitive performance
for small scale aggregate queries and time point-range queries on data sets with
many short time series.

* Paper D [44] describes a demonstration scenario for the current version of Mode-
larDB TSMS that focus on the functionality it provides from a user’s perspective.
The paper provides a high-level overview of the system’s architecture, its model-
based ingestion method, its method for statically grouping correlated time series
using our proposed primitives for describing how time series are correlated, and
ModelarDB’s model-based query processing method and the queries supported
by its SQL interface. A graphical user interface is presented which illustrates both
the functionality provided by ModelarDB and the underlying implementation.

7 Future Work

Multiple directions for extending ModelarDB exist as future work.

As ModelarDB is designed specifically for high quality time series, it only supports
management of regular time series with gaps. As many time series do not follow a reg-
ular sampling interval, it would make the system usable in additional domains if it were
extended to support time series with irregular and possibly dynamic sampling intervals.
However, it is unclear if existing methods for compressing timestamps efficiently can
represent timestamps from both regular and irregular time series, without increasing
the amount of storage required for regular time series, or if a new compression method
optimized for model-based management of time series have to be developed.

While ModelarDB automatically represents each dynamically sized sub-sequence
of a time series group with the model type providing the highest compression ratio from
a user-configurable set of model types, the system does not provide any information
if the selected set of model types are not appropriate for a given data set. As such,
the user must manually determine if it would be beneficial to implement a new model
type optimized for their domain, and if the ingestion speed can be improved without
reducing the compression ratio by disabling model types unsuited for their specific data
set. To remedy these problems, ModelarDB should be extended with a model advisor
that can determine what set of model types are sufficient to efficiently represent a set of
time series. To gain the necessary information, the advisor should analyze historical
data from the same sources to determine what structures the time series they produce
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contain, or analyze the data compressed by ModelarDB to determine what structures
are not efficiently represented by the currently selected set of model types.

ModelarDB is a distributed TSMS designed to ingest data points from remote
sources with wired connectivity and electricity. However, as the ingestion rate and
the number of sources increases, the network can become a bottleneck. To remedy
this problem, the data ingestion components of ModelarDB should be moved to the
edge nodes, for example be placed within wind turbines, so only highly compressed
models are transferred over the network instead of the raw data points currently being
transmitted. In addition, by supporting query processing directly on the edge nodes,
both the query latency and the urgency at which the data have to be transmitted from
the wind turbine would be reduced.

ModelarDB already utilizes the properties of each model type to efficiently execute
aggregate queries directly on the model-based representations instead of on recon-
structed data points. However, a model-based index should be built to more efficiently
answer queries for specific ranges of values and allow high level analytics, such as
similarity search, to be performed directly on the model-based representation.

While ModelarDB only requires two parameters, the sources of the time series
to ingest and their error bounds, multiple additional parameters such as cache sizes
and the maximum length of segments represented by model types using lossless
compression can be configured. To simplify use of ModelarDB, these parameters
should automatically be inferred by the system or dynamically tuned at run-time.
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Abstract

The collection of time series data increases as more monitoring and automation are
being deployed. These deployments range in scale from an Internet of things (IoT)
device located in a household to enormous distributed Cyber-Physical Systems (CPSs)
producing large volumes of data at high velocity. To store and analyze these vast
amounts of data, specialized Time Series Management Systems (TSMSs) have been de-
veloped to overcome the limitations of general purpose Database Management Systems
(DBMSs) for times series management. In this paper, we present a thorough analysis
and classification of TSMSs developed through academic or industrial research and
documented through publications. Our classification is organized into categories based
on the architectures observed during our analysis. In addition, we provide an overview
of each system with a focus on the motivational use case that drove the development of
the system, the functionality for storage and querying of time series a system imple-
ments, the components the system is composed of, and the capabilities of each system
with regard to Stream Processing and Approximate Query Processing (AQP). Last, we
provide a summary of research directions proposed by other researchers in the field
and present our vision for a next generation TSMS.
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Transactions on Knowledge and Data Engineering (TKDE), Volume 29, Number 11,
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1. Introduction

1 Introduction

The increase in deployment of sensors for monitoring large industrial systems and the
ability to analyze the collected data efficiently provide the means for automation and
remote management to be utilized at an unprecedented scale [1]. For example, the
sensors on a Boeing 787 produce upwards of half a terabyte of data per flight [2]. While
the use of sensor networks can range from an individual smart light bulb to hundreds of
wind turbines distributed throughout a large area, the readings from any sensor network
can be represented as a sequence of values over time, more precisely as a time series.
Time series are finite or unbounded sequences of data points in increasing order by
time. Data series generalize the concept of time series by removing the requirement
that the ordering is based on time. As time series can be used to represent readings
from sensors in general, the development of methods and systems for efficient transfer,
storage, and analysis of time series is a necessity to enable the continued increase
in the scale of sensor network and their deployment in additional domains [1, 3-5].
For a general introduction to storage and analysis of time series see [6, 7], a more
in-depth introduction to sensor data management, data mining, and stream processing
is provided by [8-10].

While general DBMSs, and in particular RDBMSs, have been successfully de-
ployed in many situations, they are unsuitable to handle the velocity and volume of
the time series produced by the large scale sensor networks deployed today [3-5, 11].
In addition, analysis of the collected time series often requires exporting the data to
another application such as R or SPSS, as these provide additional capabilities and a
simpler interface for time series analysis compared to an RDBMS, adding complexity
to the analysis pipeline [12]. In correspondence with the increasing need for systems
that efficiently store and analyze time series, TSMSs' have been proposed for multiple
domains including monitoring of industrial machinery, analysis of time series collected
from scientific experiments, embedded storage for Internet of things (IoT) devices,
and more. For this paper we define a TSMS as any system developed or extended
for storing and querying data in the form of time series. Research into TSMSs is
not a recent phenomenon and the problems using RDBMSs for time series have been
demonstrated in the past. In the 1990s Seshadri et al. developed the system SEQ and
the SQL-like query language SEQUIN [13]. SEQ was built specifically to manage
sequential data using a data model [14] and a query optimizer that utilize that the
data is stored as a sequence and not a set of tuples [15]. SEQ was implemented as
an extension to the object-relational DBMS PREDATOR with the resulting system
supporting storage and querying of relational and sequential data together. While
additional support for sequences was added to the SQL standard through for examples
window queries, development of query languages and TSMSs continued throughout
the early 2000s. Lerner et al. proposed the algebra and query language AQuery [16]

I'TSMS is one among multiple names for these systems commonly used in the literature, another
common name is Time Series Database.
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for which data is represented as sequences that can be nested to represent structures
similar to tables. Utilizing the AQuery data model and information provided as part
of the query, such as sort order, novel methods for query optimization were imple-
mented with improved query performance as a result. In contrast to AQuery which
uses a non-relational data model, Sadri et al. proposed an extension to the SQL query
language named SQL-TS for querying sequences in the form of time series stored in an
RDBMS or from an incoming stream [17]. SQL-TS extended SQL with functionality
for specifying which column uniquely identifies a sequence and which column the
sequence should be ordered by. Patterns to search for in each sequence can then be
expressed as predicates in a WHERE clause. They proposed a query optimizer named
OPS based on an existing string search algorithm, making complex pattern matching
both simple to express and efficient to execute [18, 19].

It is clear that decades of research into management of time series data have lead to
the development of expressive query languages and efficient query processing engines.
However, this past generation of TSMSs are unable to process the amount of time
series data produced today, as support for parallel query processing is limited and
the capability to utilize distributed computing is non-existing. In addition, as the
TSMSs developed were designed for general-purpose use, only limited optimizations
could be implemented for specific use cases [11]. As a result, as new use cases
and technologies appear, such as data management for IoT devices and commodity
distributed computing, a new generation of TSMSs have been developed. With this
paper we provide an overview of the current research state-of-the-art in the area of
TSMSs presented as a literature survey with a focus on the contributions of each
system. The goal of this survey is to analyze the current state-of-the-art TSMSs,
discuss the limitations of these systems, analyze research directions proposed by other
researchers in the field, and as a result of our analyses present our vision for a next
generation TSMS. To focus the survey, we primarily analyze systems designed for
storing numerous time series persistently, allowing the system to support aggregate
analysis of multiple data streams over time. In addition, while scalability has not been
used as a criterion for excluding systems, we see it as an important characteristic for
any TSMS and a focus of this survey. As a consequence of these decisions, systems
such as Antelope [20], HybridStore [21], LittleD [22] and StreamOp [23] developed for
deployment on sensor nodes, and more broadly research in the area of query processing
inside sensor networks, are not included. For an introduction to the topic of query
processing in sensor networks see [8]. Also, the survey only includes systems with
papers published in the current decade, due to the switch in focus towards Big Data
systems built using commodity hardware for large scale data storage and analytics.
For TSMSs we observed a general trend towards distributed storage and processing,
except for TSMSs developed for evaluation of research or for use in embedded systems.
Furthermore, only systems implementing methods specifically for storage and querying
of time series are included due to the effect design decisions for each component have
on the other. The survey also provides an overview of open research questions in order
to provide not just an overview of existing systems but also provide insight into the
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next generation of TSMSs. Last, in addition to the systems proposed by academia
or produced through industrial research, many open-source and proprietary TSMSs
have been developed, with the systems OpenTSDB, KairosDB, Druid, InfluxDB, and
IBM Informix being popular examples. For information about selecting a TSMS for a
particular workload see the following papers [12, 24-29].

The search method for the survey is a follows. An unstructured search using Google
Scholar was performed to provide an overview of what research is performed in the area
of TSMSs, and to determine the relevant conferences, terms specific to the research
area, and relevant researchers. Based on the papers found during the unstructured
search, iterations of structured search were performed. Relevant publications found
in each iteration were used as input for the next iteration. In each iteration additional
papers were located by exhaustively going through the following sources for each

paper:
* The references included in the paper.

* Newer publications citing the paper, the citations were found using Google
Scholar.

* All conference proceedings or journal issues published in this decade for the
conference or journal in which the paper was presented or published. For
the data management outlets the most commonly used were ACM SIGMOD,
IEEE Big Data and PVLDB, while papers were primarily presented at USENIX
conferences when looking at system outlets.

* The publication history for each paper’s author found using a combination of
DBLP, Google Scholar and profile pages hosted by the author’s employer.

The rest of the paper is organized as follows. Section 2 provides a summary
of all the systems included in this survey in addition to a description of the criteria
each system will be classified by. Section 3, 4, and 5, describe the systems and are
organized based on if the data store is internal, external, or if the system extends
an RDBMS. Section 6 provides an overview of open research questions proposed
by leading researchers in the field in addition to how these ideas correspond to the
surveyed systems, culminating in our vision for a next generation system for time series
management and what research must be performed to realize it. Last, a summary and
conclusion are presented in Section 7.

2 C(lassification Criteria

An overview of the TSMSs included in this survey is shown with regards to our classi-
fication criteria in Table A.1 and the operations each system supports in Table A.2. As
some publications refrain from naming the proposed system some systems are marked
as unnamed with only the references as identification. The TSMSs were organized into
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Table A.1: Summary of the Surveyed Systems in Terms of Classification Criteria

Motivationa g . Scale Processing s Stream Storage Storage
Ye P S Dist t Maturit; APIL A t]
ear urpose Use Case istributed aturity Shown Engine pproximation Processing Engine Layout
Internal Stores
tsdb 2012 Monitoring Monitoring of large Centralized ~ Mature System 6.3GB Implemented (C) Client Library (C)  No support for No stream BerkeleyDB Fixed sized arrays stored
[30] computer networks at high 1 Node approximation of  processing. as values in BerkeleyDB.
resolution. time serie:
FAQ 2014 Evaluation Efficient approximate Centralized  Proof-of-Concept 1.9 GB Implemented (Java)  Unknown Model-based No stream KyotoCabinet ~ Sketches and histograms
[31] queries on time series of Implementation 1 Node AQP processing. organized in a range tree.
histograms.
WearDrive 2015  IToT Power efficient storage of Distributed ~ Demonstration Unknown Implemented (C, Client Library (C,  No support for Register Implemented  In-memory log of
[32,33] data produced by wearable System 2 Nodes Java, INT) Java, INI) approximation of  callbacks (C, Java, INI)  KV-pairs indexed by a
Sensors time serie: waiting for hash table.
sensor
readings.
RINSE 2015 Querying time series Centralized ~ Demonstration 1TB Implemented (C) Drawn nearest Model-based No stream Implemented ~ ADS+ tree indexing an
[34-36] without constructing a full System 1 Node neighbor search. AQP processing. ©) unspecified ASCIT
index first. format.
Unnamed 2015 Evaluation Fast approximated queries Centralized ~ Proof-of-Concept  Unknown Implemented (R) Extended SQL Model-based No stream Implemented  Separated storage of both
[371 for decision support Implementation 1 Node AQP used for processing. (R) raw data and models.
systems. aggregate queries.
Plato 2015 Data Simple analysis of Centralized  Demonstration Unknown Implemented Extended SQL Model-based No stream Implemented  Tables with models
[38] Analytics  spatiotemporal data with System 1 Node (Unknown) AQP processing. (Unknown) stored as a built-in data
signal processing. type.
Chronos 2016 Monitoring Monitor hydroelectric plants  Centralized =~ Demonstration 11.5GB Implemented (C++)  Client Library No support for Out-of-order ~ Implemented ~ B-Tree index over
[39, 40] using PCs with flash System 1 Node (C+4) approximation of  inserts. (C+4) quasi-sequential data
memory. time series. points.
Pytsms 2016  Evaluation Reference implementation Centralized  Proof-of-Concept  Unknown Implemented Client Library User-defined No stream Implemented  Python objects pickled to
[41,42] of two formalisms for time Implementation 1 Node (Python) (Python) aggregates at processing. (Python) a file or serialized to
series. multiple CSV.
resolutions.
PhilDB 2016 Data Storage and analysis of Centralized ~ Demonstration 119.12MB  Implemented Client Library No support for No stream Implemented ~ Triples stored as binary
[43] Analytics versioned mutable time System 1 Node (Python), Pandas (Python) approximation of  processing. (Python), files, updates as HDF5.
series. time series. SQLite
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Table A.1: (Continued)

Motivationa . " Scale Processing . Stream Storage Storage
Year  Purpose Use Case Distributed Maturity Shown Engine APIL Approximation Processing Engine Layout
Bolt 2014 IoT Simplify management of IoT ~ Distributed ~ Demonstration 3789 MB  Implemented (C#)  Client Library (C#) AQP using Data is Implemented  In-memory index of
[59] data from connected homes. System 1 Nodes sampling. written to and  (C#), S3, continuous chunks on
read from Azure disk.
streams.
Storacle 2015 Monitoring Enable local processing of Distributed ~ Demonstration 541 MB Implemented (Java), Unknown Predefined Online Implemented ~ Unknown in-memory
[60, 61] data at the edge of sensor System 1 Node Cloud aggregates. computation (Java), Cloud  format and Protocol
networks. of simple Buffers.
aggregat
Gorilla 2015 Monitoring Reducing query latency fora  Distributed ~ Mature System 1.3TB Implemented (C++)  Client Library No support for No Stream Implemented  Blocks of deltas prefixed
[62] real-time monitoring system. 20 Nodes (Unknown) approximation of  processing. (C++), DFS, by a single timestamp.
time series. HBase.
Unnamed 2015 Data Execute aggregate queries Distributed ~ Mature System 3TB Implemented (Java), SQL Model-based Online MySQL Binary tree storing
[63] Analytics  on resource constrained Unknown MySQL AQP used for computation aggregates as models or
systems. aggregate queries.  of aggregate sums.
models.
servloTicy 2015 ToT Integration of stream Distributed ~ Demonstration Unknown Couchbase, Apache REST API serving  No support for Apache Storm  Coucht JSON dc with
[64, 65] processing and data storage System 16 Nodes Storm, JSON. approximation of  extended with ids indexed by
for [oT. Elasticsearch time series. versioning of Elasticsearch.
bolts.
BTrDB 2016 Monitoring  Analyzing data with ns Distributed ~ Mature System 2.757 TB Implemented (Go) Client Library (Go, Predefined Data is DFS, Versioned tree with
[66, 67] timestamps at multiple 2 Nodes Python) aggregates at written to and  MongoDB aggregates in internal
resolutions. multiple read from nodes.
resolutions. streams.
RDBMS Extensions
TimeTravel 2012 Data Continues forecasting of Centralized  Demonstration Unknown PostgreSQL Extended SQL Model-based No stream PostgreSQL Data points in arrays
[68, 69] Analytics ~ power consumption in a System 1 Node AQP processing. with layers of models on
smart grid. top.
F’DB 2012 Data Forecasting directly Centralized ~ Demonstration Unknown PostgreSQL Extended SQL Model-based No stream PostgreSQL Tables and a hierarchy of
[70, 71] Analytics  integrated as part of a data System 1 Node AQP for forecast  processing. models built on top.
warehouse. queries.
Unamed 2016  Evaluation OLAP analysis of time Centralized  Proof-of-Concept 23 MB Oracle RDBMS Extended SQL Model-based No stream Oracle Tables for both raw data
[72-74] series as ordered sequences Implementation 1 Node AQP for processing. RDBMS and model parameters.

of events.

interpolated data.
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2. Classification Criteria

three categories based on how the data processing and storage components are con-
nected, due to the major impact this architectural decision has on the implementation
of the system. In addition to the differences in architecture, the remaining classification
criteria were selected based on what differentiated the surveyed systems from each
other. For systems incorporating an existing DBMS only additional functionality de-
scribed in the surveyed papers will be documented. The full set of classification criteria
are:

Architecture: The overall architecture of the implementation is primarily determined
by how the data store and data processing components are connected. For some systems
both the data store and processing engine are internal and integrated together in the
same application, either due to them being developed together or if an existing DBMS
is embedded and accessed through the provided interface. Other systems use an existing
external DBMS or DFS as a separate data store, requiring the TSMS to implement
methods for transferring time series data to the external DBMS or DFS. Last, some
implement methods for processing time series as extensions to an existing RDBMS,
making the RDBMS’s internal implementation accessible for the TSMS in addition to
removing the need to transfer data to an external application for analysis. As Table A.1
is split into sections based on architecture, the architecture used by the systems in each
section of the table is written in italics as the heading for that section of the table.

Year: The year the latest paper documenting the surveyed system was published. This
is included to simplify comparison of systems published close to each other. The year
of the latest publication is used as new publications indicate that functionality continues
to be added to the system.

Purpose: The type of workload the TSMS was designed and optimized for. The first
type of systems are those designed for collecting, analyzing and reacting to data from
IoT devices, next TSMSs developed for monitoring large industrial installations for
example data centers and wind turbines, then systems for extracting knowledge from
time series data through data analytics, and last systems for which no other real-world
use case exist than the evaluation of research into new formalisms, architectures, and
methods for TSMSs.

Motivational Use Case: The intended use case for the system based on the problem
that inspired its creation. As multiple systems designed for the same purpose can be
designed with different trade-offs, the specific problem a system is designed to solve
indicates which trade-offs were necessary for a particular TSMS.

Distributed: Indicates if the system is intended for a centralized deployment on a
single machine or built to scale through distributed computing. It is included due
to the effect this decision had on the architecture of the system and the constraints a
centralized system adds in terms of scalability.
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Maturity: The maturity of the system based on a three level scale: proof-of-concept
implementations implement only the functionality necessary to evaluate a new tech-
nique, demonstration systems include functionality necessary for users to interact with
the system and are mature enough for the system to be evaluated with a real-life use
case, mature systems have implementations robust enough to be deployed to solve real-
life use cases and supported through either an open-source community or commercial
support.

Scale Shown: Scale shown is used as a concrete measure of scalability and defined as
the size of the largest data set and number of nodes a TSMS can manage as documented
in the corresponding publications. The sizes of the data sets are reported in bytes after
the data has been loaded into the TSMS. As data points differ in size depending on the
data types used and the amount of metadata included, data sets for which the size is
documented as the number of data points are not included. While some systems are
continuously being improved, only the results presented in the referenced publications
are included for consistency.

Processing Engine: The data processing engine used by the system for querying, and
if supported, analyzing the stored time series data. Included as this component provides
the system’s external interface for the user to access the functionality provided by
the system. If an existing system is used we write the name of the system, otherwise
if a new engine has been developed we write implemented with the implementation
language added in parentheses.

API: The primary methods for interacting with the system. The methods can be guery
languages, extensions of existing query languages, client libraries developed using
general purpose programming languages, a web service, or a web interface.

Approximation: Describes the primary method, if any, for approximating time series
that each system supports. Using approximation as part of a TSMS provides multiple
benefits. Representing time series as simple aggregates uses less storage and reduces
query processing time for queries capable of utilizing the aggregate. AQP expands
upon the capabilities of simple aggregates and provides user-defined precision guaran-
tees through the use of mathematical models or sampling. In addition, representing
time series as mathematical models, such as a polynomial regression model, provides
functionality for data analysis such as interpolation or forecasting depending on the
type of model utilized. AQP utilizing sampling reads only a subset of a time series and
uses this subset to produce an approximate query result. A survey of mathematical
models for representing time series can be found in the second chapter of [8], while ad-
ditional information about sampling and integration of AQP into a DBMS can be found
in [75]. For this survey we differentiate between approximation implemented as simple
aggregates without guaranteed error bounds, and AQP utilizing either mathematical
models or sampling to provide query results with precision guarantees.
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Stream Processing: Describes the primary method each system supports, if any, for
processing time series in the form of a stream from which data points are received
one at a time. As each data point is processed independently of the full time series,
each data point can be processed in-memory upon ingestion for applications with
low latency requirements [76]. For queries with an unbound memory requirement or
high processing time, AQP methods such as sampling or mathematical models can
be used to lower the resource requirement as necessary [76]. Stream processing can
be implemented using user-defined functions, as functionality part of the TSMS, or as
a query interface based on streams. Examples of stream processing include online
computation of aggregates, online constructing of mathematical models, removal of
outliers in real-time, and realignment of data points in a limited buffer using windows.
Operations performed after the data has been ingested by a TSMS, such as maintaining
indexes or mathematical models constructed from data on disk, are not included. For a
discussion of stream processing in contrast to traditional DBMSs see [76], while an
in-depth introduction can be found in [10].

Storage Engine: The data storage component or system embedded into the appli-
cation, used as external storage, or extended to enable storage of time series. If an
existing system is used for data storage, we write the name of the system. For TSMSs
were the storage component has been written from scratch, the column is marked as
implemented with the implementation language added in parentheses.

Storage Layout The internal representation used by the system for storing time se-
ries, included due to the impact the internal representation has on the systems batch
processing, stream processing and AQP capabilities.

In addition to the classification criteria shown in Table A.1, the TSMSs are sum-
marized with regard to their supported query functionality in Table A.2. To describe
the functionality of the surveyed TSMSs with a uniform set of well-known terms, we
elected to primarily express it using SQL. Two columns for keywords not part of SQL
have been added to mark systems for which new data points can only be appended to
an existing time series and to show which capabilities for data analytics each system
supports. The full list of functionality included is: the capability to select data points
based on timestamp or value, insert data points into a time series at any location,
append data points to the end of a time series, update data points already part of a time
series, delete data points from a time series, compute aggregates from a time series
through the use of aggregate functions, join multiple time series over timestamp or
value, perform computations over a time series using either window functions or user-
defined functions, and any support for data analytics part of the system. In Table A.2
we show a black circle if the TSMS is known to support that type of query through its
primary API, and leave the cell empty if the TSMS is known to not support that type of
query or if we were unable to determine if the functionality was supported or not. For
the column analytics we list the supported functionality to differentiate the methods for
data analytics supported by each system.
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Table A.2: Summary of the Surveyed Systems in Terms of Functionality

Select

Insert

Append Update Delete

Aggregates

Join  Over

Analytics

Internal Stores

tsdb
[30]

FAQ
[31]

Jaccard, Top-K, AQP, etc

WearDrive
[32,33]

RINSE
[34-36]

NN-Search, AQP

Unnamed
[37]

AQP

Plato
[38]

Interpolation, AQP

Chronos
[39, 40]

Pytsms
[41,42]

PhilDB
[43]

Pandas

External Stores

TSDS
[44]

AQP

SciDB
[45-47)

Linear Algebra, AQP

Respawn
[48, 49]

SensorGrid
(501

Unnamed
[51-53]

AQP

Tristan
[54, 55]

AQP

Druid
[56]

AQP

Unnamed
[57]

AQP

Unnamed
(58]

Bolt
[59]

AQP

Storacle
[60, 61]

Gorilla
[62]

Unnamed
[63]

Frequency est., AQP, etc

servloTicy
[64, 65]

BTrDB
166, 67]

RDBMS Extensions

TimeTravel
[68, 69] 4

Forecasting, AQP

F’DB
[70,71] L4

Forecasting, AQP

Unamed
[72-74] g

Interpolation, AQP
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In the following three sections, we detail the primary contributions provided by
each system in relation to the motivational use case and the classification criteria. Each
section documents one set of systems based on the architecture of the system as shown
in Table A.1 and Table A.2. In addition to a description of the contributions of each
system, illustrations, redrawn from the original publications, are utilized to document
the TSMSs. Two types of figures are used depending on the contribution of each
system: architecture diagrams and method illustrations. Architecture diagrams use
the following constructs: system components are shown as boxes with full lines, lines
between components show undefined connections, data is shown as boxes with rounded
corners, arrows show data flow between components, logically related components
are grouped by boxes with dotted lines or by dotted lines for architectural layers, data
storage is shown as cylinders, cluster nodes are components surrounded by boxes with
dashed lines, and text labels are used as descriptive annotations. Method illustrations
follow a less rigid structure due to the lack of correlation between the illustrated
methods but in general layout of data in memory is shown as boxes with full lines.
Squares with rounded corners are used for nodes in tree data structures. Constructs
only used for a single figure are documented as part of the figure.

3 Internal Data Stores

3.1 Overview

Implementing a new TSMS as a single executable allows for deep integration between
the data storage and data processing components. As the storage component is not
accessible to other applications, the data layout utilized can be extensively optimized
for the data processing component. Communication between the two components is
also simplified as no communication protocol suitable for transferring time series is
needed and no interface constrains access to the data storage layer unless an existing
embeddable DBMS is used. The absence of external dependencies reduces the com-
plexity of deploying the TSMS due to the system being self-contained. As a downside
a system with an internal data store cannot utilize existing infrastructure such as a
distributed DBMS or a DFS that already are deployed. In addition, if a new data storage
layer is developed for a TSMS, instead of an existing embeddable DBMS being reused,
time will need to be spent learning how that particular data store must be configured
for it to perform optimally unless the TSMS provides automatic configuration and
maintenance.

3.2 Systems

tsdb presented by Deri et al. [30] is a centralized TSMS designed for monitoring
the large quantity of requests to the .it DNS registry. For storage tsdb utilizes the
embeddable key-value store BerkeleyDB. The use of BerkeleyDB provides a uniform
mechanism for storage of both the time series and the metadata used by the database.
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Figure A.1: The architecture of the FAQ system, redrawn from [31]

Data points ingested by tsdb are added to an array and when the array reaches a
predefined size it is chunked and stored in BerkeleyDB. Each chunk is stored with a
separate key computed by combining the starting timestamp for the array with a chunk
id. tsdb requires all time series in the database to cover the same time interval, meaning
each time series must have the same start timestamp and contain the same number of
data points. This restriction simplifies computations that include multiple time series
stored in the system, at the cost of tsdb not being applicable for domains where the
need for regular time series adds complexity or is impossible to achieve. In terms of
additional capabilities tsdb does not support stream processing, aggregation, or AQP.

The TSMS FAQ proposed by Khurana et al. [31] utilizes sketches organized in a
range tree for efficient execution of approximated queries on time series with histograms
as values. The system consists of multiple components as shown in Figure A.1. First,
an index containing multiple types of sketches and histograms, each supporting a
different type of query or providing a different trade-off between accuracy and query
response time. An index manager and an error estimator are utilized by the query
planner to select the most appropriate representation based on the provided query and
the required error bound. However, utilization of the presented data structure, and
thereby the TSMS in general, for use with stream processing of time series is relegated
to future work. In addition, the external interface provided by the proof-of-concept
implementation is not detailed in the paper.

WearDrive by Huang et al. [32] is a distributed in-memory TSMS for IoT, that
demonstrates an increase in performance and battery life for a wearable device by
transferring sensor data to a smartphone over a wireless connection. The system
primarily uses volatile memory for storage as the flash storage used for wearable devices
was identified as being a bottleneck in earlier work by Li et al. [33]. By extending
the firmware used by a wearable device, WearDrive provides the same persistence
guarantees as non-volatile flash storage. The system is split into two applications, as
shown in Figure A.2, each built on top of a key-value store implemented for in-memory
use. The store is organized as a sequential log of key-value pairs per application with
each log file indexed by a hash map. WearCache is running on the wearable device and
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stores only a few sensor readings locally as the data is periodically pushed to remote
memory or remote flash which is physically located on the smartphone, causing a
drop in battery life for the smartphone. WearKV runs on the smartphone and stores
the complete set of sensor readings collected from the wearable devices sensors in
addition to the data sent from the smartphone itself to the wearable device. A simple
form of stream processing is supported as applications can register to be notified when
new values are produced by a specific sensor or for a callback to be executed with all
the new sensor values produced over an interval. No support for AQP is provided by
WearDrive. While the system is designed for a smaller scale, it follows a structure
similar to other TSMSs with the wearable as resource-constrained device collecting
data points. The data points are then transferred to the smartphone which serves as
the system’s backend and provides more capable hardware for storage and aggregate
analysis.

RINSE, proposed by Zoumpatianos et al. [34], is a centralized system for data
analytics supporting execution of efficient nearest neighbor queries on time series by
utilizing the ADS+ adaptive index by Zoumpatianos et al. [35, 36]. The implementation
is split into two components: a backend and a web frontend. The backend serve as
the data storage and indexing component, storing time series in an unspecified ASCII
on-disk format indexed using ADS+. The web frontend is served through NodeJS
and provide the means to execute nearest neighbor queries by drawing a pattern to
search for. In addition, the capabilities of the data storage component are available
through a TCP socket. The use of ADS+ for its index provides the system with multiple
capabilities. First, as ADS+ is an adaptive tree-based index only internal nodes are
initialized while the leafs, containing the data points from the time series, are only
initialized if that part of the time series is used in a query. This reduces the time needed
to construct the index before queries can be executed compared to alternative indexing
methods. Second, approximate queries can be executed directly on the index, providing
both AQP and an index for exact queries using the same data structure.

A centralized TSMS that utilizes models for AQP was proposed by Perera et
al. [37]. The system manages a set of models for each time series and the TSMS
optimizer selects the most appropriate model for each query, falling back to the raw
data points if necessary. To construct the models the system splits each time series into
smaller segments and attempts to approximate each segment with a model. The use of
segmentation allows different models optimized for the structure of each segment to
be used. If a model with the necessary precision cannot be constructed for a segment
then the segment is represented only by the data points, meaning only exact queries
can be executed for that segment. The authors proposed an extension of the SQL query
language with additional capabilities for AQP: support for specifying which model to
use, the maximum error bound for the query, and a maximum query execution time.
How a particular query should be executed is left to the query optimizer which given
the provided model, maximum query execution time, the required error bound and
statistics collected from past queries determines if a model can be used or if the query
must be performed using the raw data. However, in the current R based implementation,
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AQP using models is only supported for SQL aggregate queries. A later paper by the
same authors, Perera et al. [77], reused the method of approximating time series using
models to reduce the storage requirements of materialized OLAP cubes.

Another centralized TSMS that implements model-based AQP is Plato proposed
by Katsis et al. [38]. The system combines an RDBMS with methods from signal
processing to provide a TSMS with functionality for data analytics, removing the need
for exporting the data to other tools such as R or SPSS. Plato consists of three layers, as
shown in Figure A.3, in order to accommodate implementation of models, construction
of model-based representations of time series, and querying of time series represented
as models. At the lowest level, an external interface allows for additional models to
be implemented by domain experts. By providing an interface for implementing new
models, Plato becomes simple to extend for new domains. The implemented models,
however, have to be constructed manually by a database administrator by fitting a
model to a specific data set, as an automated model selection through a cost function is
left as future work. AQP is supported by querying the models manually through one of
two extensions of SQL. ModelQL is designed to appeal to data analysts familiar with R
or SPSS, while the InfinityQL language is designed to be familiar to users experienced
with SQL. Queries are evaluated directly on a model if the model implements the
functionality being used in the query. If the functionality is not implemented, the model
is instantiated at the resolution necessary for the particular query. As future work the
authors propose that models are not used only as a method for representation of time
series, but also returned as the query result in order to provide insight into the structure
of the data.

The centralized open-source system Chronos by Chardin et al. [39] is designed
as a TSMS for monitoring industrial systems located in a hydroelectric dam. Due to
the location, all persistent storage is flash based to provide increased longevity, with a

_______________________________________________________________________

saL ModelQL InfinityQL

Storage Layer

Extensibility Layer

Data Point Tables Compressed Model Tables
: HAAR ARMA SVD FFT

Figure A.3: The architectural layers of the Plato TSMS, redrawn from [38]
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substantial drop in write performance compared to spinning disks. To accommodate
the use of flash memory, an abstraction layer, proposed by Chardin et al. [40], is
implemented on top of the file system so writes are kept close to the previous write on
the flash memory ensuring near sequential writes. This is preferable as write duration
increases the further from the previous write it is performed. The abstraction layer index
data stored on this logical file system through a B-Tree implementing a new splitting
algorithm modified to not degrade in performance when used with flash memory. The
system provides a simple form of stream processing through efficient support for out-
of-order inserts by buffering and reorganizing ingested data before making it persistent,
thereby providing a trade off between efficient out-of-order inserts and the possibility of
data loss due to hardware failure as the temporary buffers are stored in volatile memory.
However, no support for stream processing using user-defined functions, functionality
for construction of aggregates or creation of approximate representation of time series
are provided.

Pytsms and its extension RoundRobinson serve as the reference implementation
for two formalisms for TSMSs proposed by Serra et al. [41, 42]. However, as the
implementation only serves as the proof-of-concept for the formalisms presented in
the papers, no attempt was made to make them efficient nor make the implementation
comparable in functionality to existing TSMSs. Pytsms implements a centralized
TSMS for storage of time series. In addition to storage, Pytsms implements a set of
operations that can be performed on time series. RoundRobinson provides a multires-
olution abstraction on top of Pytsms. The concept of multiresolution time series is
implemented as buffers and round robin discs. When a buffer is filled, either through a
time series being bulk loaded or streamed from a sensor into Pytsms, an aggregate is
computed by executing an aggregation function with the data points in the buffer as
input. The aggregate is added to the disc which functions as a fixed size round robin
buffer discarding old aggregates as new are added. As both buffers and discs can be
configured, the system is capable of creating any aggregated view of a time series that
is needed such as high resolution aggregates for the most recent part of a time series
and then decrease the resolution in increments for historical data. An example of such
a configuration is shown in Figure A.4. The example shows a schema for a time series
represented at different resolutions where only a few aggregates are stored for the entire
six hundred days the time series represents, while a high number of data points are
stored for the discs containing more recent data.

PhilDB proposed by MacDonald [43] is an open-source centralized TSMS de-
signed for data analytics in domains where updates to existing data points are a require-
ment. To preserve the existing readings and allow for old versions of a time series to
be analyzed, PhilDB separates storage of time series into two parts: data points and
updates. The data points are stored sequentially in binary files as triples containing
a timestamp, a value, and last an integer used as a flag to indicate properties of the
data point, for example if the data point is missing a value in an otherwise regular time
series. Any updates performed to a time series is stored in an HDFS file collocated
with the binary file storing the data points. Each row in the HDF5 stores the same data
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Figure A.4: A time series stored at multiple resolutions using discs of static size and with static granularity
for each measurement, redrawn from [41]

as the triples in the binary file with an additional timestamp added to indicate when
the update was performed. As the original data points are kept unchanged, queries
can request a specific version of the time series based on a timestamp. Additionally, a
time series is identified by a user-defined string and can be associated with additional
attributes such as the data source for the time series, all stored using SQLite. Reading
and writing the time series to disk is implemented as part of PhilDB, however, as its
in-memory representation it uses Pandas. The use of Pandas provides a uniform data
format for use by the DBMS and allows it to interface directly with the Python data
science ecosystem.

3.3 Discussion

A few common themes can be seen among the TSMSs that use an internal data store.
First, only WearDrive [32] is distributed and is specialized for use with wearable
devices. Instead, researchers implementing distributed TSMSs use existing distributed
DBMSs and DFSs running externally from the TSMS as will be described in Section
4. Similarly, only tsdb [30], Plato [38] and PhilDB [43] are intended for use as
general TSMSs and have implementations complete enough for this task based on
the description in their respective publications. The remaining systems serve only as
realizations of new theoretical methods, FAQ [31] is used for evaluating a method for
model-based AQP, RINSE [34] demonstrates the capabilities of the ADS+ index [35,
36], Chronos [39] illustrates the benefits of write patterns optimized for flash storage but
does neither provide thread-safety nor protection against data corruption, the system
by Perera et al. [37] is incomplete, and both Pytsms and RoundRobinson [41, 42]
are simple implementations of a formalism. In summary, researchers focusing on
development of general purpose TSMSs are at the moment focused on systems that
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solve the problem at scale through distributed computing, with centralized systems
being relegated to being test platforms for new theoretical methods. A similar situation
can be seen in terms of AQP and stream processing as none of the three general purpose
TSMS, tsdb [30], Plato [38] and PhilDB [43], support stream processing, and only
Plato implements model-based AQP. In addition, Plato provides an interface for users
to implement additional models, making it possible for domain experts to use models
optimized for a specific domain. For the research systems, FAQ [31], RINSE [34]
and the system Perera by et al. [37] all support AQP using models, while Pytsms
and RoundRobinson [41, 42] only provide user-defined aggregates. None of the four
research systems implemented functionality for stream processing.

4 External Data Stores

4.1 Overview

Implementing a new TSMS by developing a data processing component on top of
an existing DBMS or DFS provides multiple benefits. Existing DBMS and DFS
deployments can be reused and knowledge about how to configure the system for a
particular workload can still be applied. The development time for the system is also
reduced as only part of the TSMS must be implemented. In terms of disadvantages, the
choice of DBMS will restrict how data is stored and force the processing component to
respect that data model. Second, deployment of the system becomes more complicated
as multiple separate systems must be deployed, understood, and configured for a
particular workload.

4.2 Systems

TSDS developed by Weigel et al. [44] is an open-source centralized system designed
for data analytics. TSDS supports ingesting multiple time series stored in different
formats, caching them and then serving them from a central location by providing a
HTTP interface for querying the time series. As part of TSDS a TSMS named TSDB
is developed. TSDB is used primarily for caching and storing each separate time series
in a sequential binary format on disk to reduce query response time. Multiple adapters
have been implemented to allow for ingesting times series from sources such as ASCII
files and RDBMSs. Transformations through filters and sampling can be performed by
TSDS so only the time interval and resolution requested are retrieved from the system
without depending on an external data analytics program such as R or SPSS. As the
system is designed for ingesting static data sets no methods for stream processing is
provided. Development of TSDS is no longer in progress, however, the TSDS2 project
is developing a new version of the TSMS.

Proposed by the SciDB Development Team [47] and Stonebraker et al. [45,
46], SciDB is a distributed DBMS designed to simplify large scale data analytics
for researchers. While not designed exclusively for use as a TSMS, SciDB includes

84



4. External Data Stores

functionality for storing sequential data from sensors used to monitor experiments.
SciDB stores data as N-dimensional arrays instead of tables like in an RDBMS, thereby
defining an implicit ordering of the data stored. The arrays are versioned and updates to
existing arrays produce a new version. A SciDB cluster uses an instance of PostgreSQL
for storing the system catalog containing configuration parameters and array metadata,
including for example the array version number. Two query languages are implemented:
AQL a language similar to SQL that provides a high level declarative interface and AFL
which is a lower level language inspired by APL, which allows a chain of operators to be
defined directly. Matrix operations are performed outside SciDB using the ScaLAPACK
linear algebra library executing alongside the DBMS. In addition, multiple client
libraries have been developed, such as SciDB-R that supports R programs executed in
SciDB. Support for AQP is provided through a function for sampling a subset of data
from arrays, and stream processing is limited to an API inspired by Hadoop Streaming
for streaming arrays through external processes akin to Unix pipes. Other DBMSs have
been implemented using the open-source SciDB code base. As an example Li et al. [78]
created FASTDB, a DBMS specialized for use in astronomy. FASTDB extends SciDB
in several areas: an interactive frontend for data exploration, additional monitoring
for cluster management, a parallel data loader, a method for dynamically determining
the appropriate size of chunks when splitting the data into chunks for storage, and
last enhancements of the query optimizer in SciDB was implemented. For additional
information about DBMSs based on arrays see the survey by Rusu et al. [79].

The distributed TSMS Respawn presented by Buevich et al. [48] is designed for
monitoring using large scale distributed sensor networks and provide low latency range
queries on the produced data points. In Respawn, data storage is performed by the multi-
resolution TSMS Bodytrack DataStore which is integrated into two different types of
nodes: sensor network edge nodes and cloud nodes as shown in Figure A.5. Edge
nodes are ARM based devices that are placed at the edge of a sensor network and ingest
the data points produced by the sensor network and compute aggregates at multiple
different resolutions, enabling reduced query response time for queries at resolutions
lower than what the sensor is being sampled at. In addition to the distributed edge nodes,

_____________

Client E
. Dispatcher
Queries !

Streaming

!

Data
Edge Nodes Cloud Nodes

Figure A.5: Architecture of the Respawn TSMS with edge nodes collecting data at the source and migrating
it to cloud nodes, redrawn from [48]
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server grade cloud nodes are deployed to provide a cache of the data stored in the edge
nodes, with segments of time series being migrated using two preemptive strategies.
Periodic migration forces migration of low resolution aggregates at specific intervals,
as the high resolution data usually is used only if an unusual reading is found through
analysis of the low resolution time series. Proactive migration defines how segments
of a time series should be migrated based on the standard deviation of the data points,
as this can indicate irregular readings worth analyzing further. Queries are performed
through HTTP requests and to determine if they should be sent to an edge node or
to a cloud node a dispatcher is implemented to track what data has been migrated.
After the location of the time series at the requested resolution has been provided, all
communication is done directly between the client and the edge node or cloud node,
without routing it through the dispatcher. Respawn was utilized as part of the Mortar.io
platform for building automation presented by Palmer et al. [49]. Mortar.io provides a
uniform abstraction on top of the automation infrastructure, such as sensors, providing
a web and mobile interface in addition to simplifying the development of applications
communicating with the distributed hardware components.

SensorGrid is a grid framework for storage and analysis of sensor data through
data analytics proposed by Cuzzocrea et al. [50]. The proposed architecture consists
of sensors, a set of stream sources that represent nodes for interacting with sensors
and transition of the collected data points to stream servers that store the data. To
reduce query response time for aggregate queries, the stream servers pre-compute a
set of aggregates defined by the system with no mechanism provided for defining a
user-defined aggregation function. The aggregates are computed using an application-
specific time interval and the sensor that produced the data points, with the requirement
that an aggregation hierarchy for sensors must be explicitly defined. Distributed
processing is implemented as part of the stream servers providing them with three
options when a query requests data not present at a node: redirect the query, use a local
approximation of the data requested by the query at the cost of accuracy, or decompose
the query into multiple sub queries and send them to other nodes in the grid. In addition
to approximation, the system supports execution of queries over fixed windows, and
even continuous queries over moving windows using SQL for stream processing. The
SensorGrid architecture was realized as a distributed TSMS and used for hydrogeology
risk analysis developed at IRPI-CNR, where the stream source and stream server nodes
are integrated with the RDBMS Microsoft SQL Server 2000 and a web interface for
visualizing the data.

Guo et al. [51-53] proposed a TSMS that uses mathematical models stored in
a distributed key-value store to reduce query response time. The system consists of
three parts, a key-value store for storing segments of the time series represented by
models, two in-memory binary trees used as an index for the modelled segments, and
last an AQP method based on MapReduce. To enable the index to support both point
and range queries, the binary trees are ordered by intervals, with one tree constructed
for time intervals and another for value intervals. Similarly, two tables are created in
the key-value store as one stores the modelled segments with the start time and end
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Figure A.6: Model-based AQP combining an in-memory tree and a distributed KV-store for the TSMS by
Guo et al. [51-53], redrawn from [51]

time as part of each segment’s key, while the other table stores each model with the
minimum and maximum value that is part of the modelled segment as part of its key.
Query processing is shown in Figure A.6 and is performed by first traversing the index
to lookup segments relevant to the query by determining which nodes overlap with
the time and values specified in the query. Second, MapReduce is used to extract the
relevant segments from the key-value store and re-grid them. As each node in the tree
might reference multiple segments, the mapping phase prunes the sequence of proposed
segments to remove those that do not fit the provided query, and last the reducer phase
re-grids the segments to provide values approximating the original data points. The
described method does only rely on the current data point and a user-specified error
bound allowing it to be implemented in terms of stream processing.

Tristan is a TSMS designed by Marascu et al. [54] for efficient analytics of time
series through the use of AQP and online dictionary compression. The system is based
on the MiSTRAL architecture also proposed by Marascu et al. [55]. The system’s
architecture is shown in Figure A.7 and is split into three different layers: a data
acquisition and compression layer, a storage layer, and last a query execution layer. The
data acquisition and compression layer ingests data into segments which are then stored
in a temporary data store managed by the storage layer. When a segment reaches a
pre-configured size, the segment is compressed as a sequence of smaller fixed size time
series using a dictionary provided as a parameter to the system. The accuracy of the
compressed time series can be configured based on the number of fixed sized time series
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Figure A.7: The MiSTRAL architecture realized by the TSMS Tristan with data flow occurring only in
offline mode as dotted arrows, redrawn from [55]

it is represented as. Creation of the dictionary is performed through offline training,
however, when operational, the system will continue to adjust the dictionary based on
predefined time intervals. The storage layer manages access to the uncompressed time
series, the temporary store, the dictionaries used for compression and the compressed
segments. The current implementation of the storage layer is based on a customized
version of the open-source in-memory DBMS HYRISE. Last, the query execution
layer receives queries from the user in an unspecified manner and format. Tristan
is capable of using three different methods for answering the query: if the query is
for data that is in the process of being compressed, the query is executed against the
temporary data store, if the query references a compressed segment Tristan determines
if the query can be answered directly from the compressed representation and only
decompresses the time series segment if answering the query from the compressed form
is not possible. The system supports use of AQP to reduce query response time due to
its functionality for selecting the precision for compressing segments by adjusting how
many smaller fixed size time series it is represented by. Tristan only supports stream
processing through its capability to transform incoming data into an approximate model
by buffering it in an uncompressed form in a temporary data store. No support for
transforming the data through user-defined functions are possible.

Yang et al. implemented the open-source system Druid [56] as a distributed TSMS
for efficiently ingesting time series in the form of events from log files, and then
performing OLAP-based data analytics on the ingested data. Druid is based on a shared
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Figure A.8: The architecture of a Druid cluster annotated with information about data flow between nodes
in the cluster, redrawn from [56]

nothing architecture coordinated through Zookeeper in-order to optimize the cluster
for availability. Each task required by a Druid cluster is implemented as a specialized
type of node as shown in Figure A.8. Real-Time nodes ingest events and store them in
a local buffer to efficiently process queries on recent events in real-time. Periodically
a background task collects all events at the node and converts them into immutable
segments and uploads them to a DFS. Historical nodes execute queries for segments
stored in the DFS and caches the segments used in the query to reduce query response
time for subsequent queries. Coordinator nodes manage the cluster’s configuration
stored in a MySQL database, in addition to controlling which segments each historical
node must serve. Last, the broker nodes accept queries formatted as JSON through
HTTP POST requests and route them to the relevant real-time and historical nodes.
When the query result is returned it is cached at the broker for subsequent queries. Druid
does not provide any support for stream processing, and the authors suggest combining
Druid with a stream processing engine. However, Druid does support aggregation of
time series when ingested or when queried, and provides a set of aggregate functions
while also supporting user-defined aggregation functions in addition to HyperLoglLog
for approximate aggregates.

Huang et al. [57] designed a distributed TSMS that uses IBM Informix for storage
and provides a uniform SQL interface for querying both time series and relational
data together. The system is classified as an Operational Data Historian (ODH) by
the authors, marking monitoring as a clear priority. The TSMS consists of three
components: A configuration component, a storage component, and a query component
as shown in Figure A.9. The configuration component manages metadata for use by
other components in the system. Concretely, it provides information about the data
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Figure A.9: Architecture of the TSMS proposed as an Operational Data Historian (ODH) by Huang et
al. [57]. The figure was redrawn from [57]

sources the system is ingesting data from, and the IBM Informix instances available
to the system. The storage component ingests data through a set of writer APIs into
an appropriate data structure and compresses the data before it is stored. Different
data structures are used depending on if the time series is regular or irregular. The
three supported data formats are shown in Figure A.10. The first two formats store
a single time series and contain four components, a starting timestamp, a device id,
a counter and a blob of values. If the time series consists of data points separated by
regular intervals only the value from the data points are stored without timestamps
using the first format. If the time series is not regular then data points are stored as
both the delta time compared to the starting timestamp and values using the second
format. Last using the third format, a group of time series can be combined and stored
in a single data structure, in which case the device id is changed to a group id and each
element in the blob will then contain a reduced device id, a time delta and a value. To
compress time series segments two existing compression algorithms are used, both
supporting either lossless compression or lossy compression within an error bound. For
stable values the data is compressed using a linear function, while quantization is used
for fluctuating time series. The query component provides a virtual table as the query
interface for the time series, allowing SQL to be used as a uniform query interface for
both time series and relational data stored in the same TSMS.

Williams et al. [58] propose a distributed system for ingesting and analyzing time
series produced by sensors monitoring industrial installations. The system is based on
Pivotal’s Gemfire in-memory data grid due to the authors arguing that a disk-based
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Figure A.10: The data structures for storage of time series used in the TSMS proposed by Huang et al. [57].
The figure was redrawn from [57]

system is an unsolvable bottleneck for data analytics. The data points produced by
the sensors are ingested by a proprietary processing platform that cleans the data and
performs real-time analytics before the data is inserted into the in-memory data grid. In
the in-memory data grid, the cleaned data points are organized into a set of bins each
containing a fixed time interval, sorted by time and identified by both the sensor id
and the id of the machinery the sensor is installed on. The authors argue that each bin
should only contain a few minutes of data as a compromise between duplicating the
machine and sensor identifier, while also reducing the amount of data being retrieved
during query execution to extract a subset of the data points in a bin. Inside a bin,
the segment of data points produced by a specific sensor is stored as a doubly linked
list, allowing memory usage to scale with the number of data points in the bin while
achieving comparable read and write performance to a statically allocated circular
array. Due to memory limitations, the in-memory data grid is used as a FIFO cache,
storing all data points over a pre-specified time frame, with efficient transfer of the
data to a long term disk based solution designated as future work. Additionally, neither
AQP nor pre-commutation of aggregates when the data is ingested is supported by the
system. For more information about in-memory big data storage and data analytics see
the survey by Zhang et al. [80].

Bolt developed by Gupta et al. [59] is a distributed open-source TSMS designed
for being embedded into applications to simplify the development of applications for
IoT. Data is organized into tuples containing a timestamp and a collection of tag
and value pairs, providing the opportunity to store not only readings from sensors
but also annotate each reading with metadata. Bolt’s implementation is based on
encrypted streams in a configuration with one writer, the application that created the
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stream, and multiple readers that can request readings from the stream. Sample-based
AQP is provided as a function call with a parameter indicating how many elements
should be skipped between each returned sample. The streams are chunked and stored
sequentially in a log file on disk, while an index is kept in memory to provide efficient
queries for tags or tags in a specific time frame. If the index reaches a pre-specified size,
it is spilled to disk with only a summary kept in-memory, making querying historical
data more expensive than recent data points. Sharing data between multiple instances
of Bolt is achieved by having a metadata server provide information about the location
of available streams, while exchange of the encrypted data is performed through either
Amazon S3 or Microsoft Azure.

A similar TSMS Storacle, was developed for monitoring a smart grid and proposed
by Cejka et al. [60]. The system is designed to have low system requirements allowing
it to be used throughout a smart grid and connected to local sensors and smart meters.
The TSMS provides the means for computing aggregates and in general process data
from multiple sources locally before it is transmitted to the cloud over SSH. The cloud
is defined as a remote storage with support for replication, offline data processing
and remote querying. Storacle uses protocol buffers as its storage format and uses a
three-tiered storage model consisting of in-memory storage, local storage and cloud
storage. Storacle supports multiple parameters for configuring the amount of data that
should be kept in-memory or stored locally for efficient access. However, the most
recent data is kept when data is transferred to the next tier, ensuring that the most recent
readings always are available. In addition to immutable storage of time series Storacle
provides support for mutable storage of tags and meta-fields, both of which are lists of
strings but tags can be used as part of a query while meta-fields cannot. Last, Storacle
uses stream processing to process each ingested data point and produce aggregates
from the data such as the number of data points, the average of their values, the min
and max values, in addition to a histogram of observed values. Additional software
built on top of Storacle is presented by the authors in the form of a CSV exporting tool
and a tool that continuously retrieves the latest data points and computes aggregates for
monitoring. In addition to the application presented in the original paper, Faschang et
al. [61] proposed an integrated framework for active management of a smart grid in
which Storacle was integrated with a message bus named GridLink.

Pelkonen et al. designed Gorilla [62] at Facebook as a distributed in-memory
TSMS to serve as a caching layer for an existing system based on Apache HBase
for monitoring the infrastructure at Facebook. Gorilla was designed to reduce query
response time for data points collected in the last 26 hours, with the time frame
determined by analyzing how the existing system was used. The system was designed
as a cache instead of a replacement as the existing TSMS based on HBase contained
petabytes of data. Data points ingested by Gorilla contain three components: a key, a
timestamp and a value. The key is unique for each time series and used for distributing
the data points, ensuring each time series can be mapped to a single host. Each time
series is stored in statically sized blocks aligned with a two-hour window, with one block
being written to at a time per time series and older blocks being immutable. Gorilla uses
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Figure A.11: Gorilla’s compression with bit patterns written in single quotes and the size of values in bits
written in parentheses, redrawn from [62]

a lossless compression method for both timestamps and values based on the assumption
that data points are received at an almost regular interval as shown in Figure A.11. The
method works by having each block be prefixed with a timestamp at full resolution, and
the first data point stored with the timestamp encoded as the delta between the block’s
prefixed timestamp and the data point’s timestamp, and the data point’s value stored in
full. Subsequent data points are compressed using two methods, one for timestamps
and another for values. Timestamps are compressed by first computing the deltas
between the current and previous timestamps and then storing a delta of these deltas
using variable length encoding. Values are compressed by first XOR’ing the current
and previous value, and then storing the difference with zero bits trimmed if possible.
Both methods resort to storing a single zero bit in the instance where the computed
delta or XOR result show no difference. To ensure availability Gorilla replicates all
data to a different data center but provides no consistency guarantees. As each query
is redirected to the nearest location the TSMS trades lower query response time for
consistency. For fault tolerance Gorilla achieves persistence by writing the time series
data to a DFS with GlusterFS being used at the time the paper was written. Data
processing and analytics are performed by separate applications that retrieve blocks of
compressed data from the in-memory TSMS through a client library, with applications
for computing correlation between time series, real-time plotting and computation
of aggregates being developed. Similarly, no capabilities for stream processing are
implemented directly as part of Gorilla. An open-source implementation of the ideas
presented in the paper was published by Facebook as the Beringei project.

Mickulicz et al. [63] propose a TSMS for data analytics using a novel approach for
executing approximate aggregate queries on time series with the storage requirement
defined by the time interval and not the size of the raw data points. By defining what
aggregate queries will be executed, what granularity aggregates will be required in

93



Paper A.

terms of time, and with what error bound, a hierarchy of aggregates can be computed
during data ingestion. The computed aggregates are stored in a binary search tree
with the aggregates spanning the smallest time intervals at the leaves and an aggregate
over the entire time series at the root. This structure enables efficient query response
time for aggregate queries with differently sized time intervals, as aggregates over
large time intervals can be answered using aggregates at the root of the tree, while
queries over smaller time intervals use aggregates from the leaves. The presented
approach is implemented as part of a distributed TSMS used for analyzing time series
of events from mobile applications. The system consists of three components: a set of
aggregation servers that computes multiple aggregates based on the ingested events,
multiple MySQL RDBMSs for storing both the unmodified events and the aggregates
computed, and last a querying interface routing queries to the relevant RDBMS. In
terms of aggregates, the system uses a simple sum for counting events, HyperLoglLog
for approximately computing the number of distinct values, and the Count-Min Sketch
for approximate frequency estimation.

servloTicy is a TSMS implemented by Pérez et al. [64] for storing time series
and metadata from IoT devices and is split into a frontend and a backend component.
The frontend provides a REST API serving JSON for interacting with the system.
To increase the number of devices that can communicate with the system, the REST
API is accessible using multiple different communication protocols. The backend
provides data storage using a combination of Couchbase and Elasticsearch for storage
and query processing. Data is stored in Couchbase as one of two differently structured
JSON documents. The first JSON format is used for storing metadata about the
IoT devices the system is ingesting data from, while the second format is used to
store data received from each IoT device. To reduce query processing time, the data
stored in Couchbase is indexed by Elasticsearch. Stream processing using user-defined
topologies is implemented through integration with Apache Storm. Apache Storm
has also been extended with a mechanism for updating a function being executed in
an Apache Storm Bolt. The system can then execute a specific version of the Bolt
depending on the data points being processed. To change the topology it is still required
that the system is terminated before a new topology can be deployed. In terms of AQP
no support is currently provided by servloTicy. Due to servloTicy being part of the
COMPOSE project [81], it was later integrated with the web service discovery system
iServe, to augment the data stored in servloTicy as documented by Villalba et al. [65].

BTrDB proposed by Andersen et al. [66, 67] is an open-source distributed TSMS
designed for monitoring high precision power meters producing time series with
timestamps at nanosecond resolution. A new system was developed as existing TSMSs
were evaluated and determined to be unable to support the required ingestion rate and
resolution of the timestamps. In addition to the high resolution no guarantees can be
made about the ordering of data points or if each data point only will be received once.
In BTrDB both problems are solved by storing each time series as a copy-on-write
k-ary tree with each leaf node in the tree containing data points for a user-defined time
interval and each internal node containing aggregates such as min, max, and mean of

94



4. External Data Stores

t=[0, 16)

(Statistics] [Statistics)
(o14)le]5)

t=[0,8) ¢ P———y  t=[8,16)

s N N s s N
Statistics ||Statistics Statistics] Statistics

OB NDRIEB DR

v v

s aYa N
Length Length Length
(T, vl (T, V) (T, V)]

\_ AN J \ J

t=[0,4) t=[4,8) t=[12, 16)

Figure A.12: The copy-on-write K-ary tree stores time series in the leafs while aggregates and version
numbers are in non-leaf nodes, redrawn from [66]

the data points stored in children nodes. An example of the tree is shown in Figure A.12.
This data structure provides multiple benefits. Data points received out of order can
be inserted at the correct leaf node without any changes to the rest of the stored time
series, support for efficient queries at multiple different resolutions is also enabled by
the tree structure, as a time series can be extracted at multiple different resolutions by
using the pre-computed aggregates, and last as the tree is a persistent data structure,
older versions of a time series are available despite new data points being inserted and
other being deleted. The system is split into three components. BTrDB provides the
query interface, optimization of data ingestion through buffering, and manipulation of
the k-ary trees. A DFS in the form of CEPH is used for persistent storage of the k-ary
trees constructed for each time series, and last MongoDB is used to store the metadata
necessary for BTrDB. To reduce the storage requirements for the trees, compression
is applied. To compress a sequence, the compression algorithm computes the delta
to the mean of the previous deltas in the sequence, and the computed deltas are then
encoded with Huffman encoding. Apart from the API being structured around streams
BTrDB does not provide any stream processing capabilities. However, the low query
responds time for reads and writes provided by the TSMS were utilized to implement
the DISTIL stream processing framework that integrates with BTrDB [67].
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4.3 Discussion

The main domains covered by systems with external data stores are IoT, monitoring of
industrial or IT systems, and management of scientific data. The developed systems
are in general complete, in use, and support larger data sets by scaling out through
distributed computing and caching of data in memory for efficient processing of either
the most recently collected or queried data. TSDS [44] and Tristan [54] are exceptions
as both of them operate as centralized systems limiting their scalability. An interesting
observation is also that none of the systems implement an entirely new data storage
layer, and instead to varying degrees reuse existing systems for example MySQL, HDFS
and Couchbase. Only three systems, the system by Williams et al. [58], Gorilla [62], and
servloTicy [64], provide no capabilities for constructing approximate representation of
time series while the remaining systems support either simple aggregates or AQP. The
systems implementing AQP using models are either research systems or provide limited
functionality for implementing additional user-defined models. The system by Guo et
al. [51-53] is used to demonstrate a new indexing and query method and provides a
generic schema for storing the models. Tristan employs AQP by representing time series
using multiple smaller fixed sized time series but the TSMS provides no interface for
implementing other methods for representing time series suitable for AQP. Druid [56]
allows implementation of aggregation methods through a Javascript scripting API or
through a Java extensions API. The TSMS developed by Huang et al. [57] provides no
mechanisms for implementing new models for use by the system and only two types of
models are implemented and used for compression. No interface is documented for
extending the system by Mickulicz et al. [63] with new models, however, the authors
note that the approximate representation used as part of the proposed tree structure can
take different forms depending on the queries the tree the must support. In summary,
only Druid [56] and to a certain degree the system by Mickulicz et al. [63] provide
an interface for end users to implement alternative representations of time series so
domain experts can use models optimized for a particular domain. Multiple aspects
of stream processing are utilized by this category of systems. Stream processing
using user-defined computation is provided by SensorGrid [50] through the use of
SQL window functions, while servloTicy [64] and the TSMS by Williams et al. [58]
support user-defined functions. Tristan [54], Guo et al. [S1-53], Huang et al. [57], and
Mickulicz et al. [63] construct models from data points online. Last, SciDB [45-47],
Bolt [59] and BTrDB [66, 67], logically structure some APIs as streams.

5 RDBMS Extensions

5.1 Overview

Existing RDBMSs have been extended with native functionality for efficient storage,
querying and analysis of time series stored in the RDBMS. Implementing functionality
for processing time series data directly into an RDBMS provides multiple benefits. It
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simplifies analysis by providing storage and analysis through one system, removing the
need for data to be exported and the analysis performed using an additional program
such as R or SPSS. Existing functionality from the RDBMS can be reused for the
implementation of the extensions. Last, extending a known system, such as PostgreSQL,
allows knowledge of said system to be reused. However, as with all extensions of
existing systems, decisions made about the RDBMS implementation can restrict what
changes can be made, and functionality such as transactions add unnecessary overhead
if the time series is immutable.

5.2 Systems

TimeTravel, by Khalefa et al. [68], extends PostgreSQL with the capability to do
model-based AQP and continuously compute forecasts for time series stored in the
centralized RDBMS. Using forecasting and an extended SQL query language, Time-
Travel simplifies data analytics by providing a uniform interface for both exact query
processing used for historical values and approximate query processing used for histor-
ical and future values. Use of AQP is necessary as the computed forecasts will have
some estimation error due to the exact values being unknown. However, the use of
AQP is also beneficial for reducing query time on historical data. The architecture
of TimeTravel can be seen in Figure A.13, and consists of a hierarchical model in-
dex, offline components for building and compressing the model index, and online
components for query processing and maintenance of the model index. The models
range from a coarse grained model with a high error bound at the top to multiple
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Figure A.13: Architecture of the TimeTravel TSMS with components for index construction and query
processing. The figure was redrawn from [68]
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finer grained models with lower error bounds at the bottom. This hierarchy allows the
system to process queries more efficiently by using a model of the right granularity
based on the required accuracy of the result. To build the model hierarchy, the system
requires multiple parameters to be specified: First, hints about the time series seasonal
behavior, second, error bound guarantees required for the application that will query
the data, and last what method to use for forecasting. The system builds the hierarchical
model index by creating a single model, and then based on that model’s error, it splits
the time series into more fine-grained models based on the required error bound and
provided seasonality. In terms of stream processing, TimeTravel provides no extensions
to PostgreSQL other than the module for maintaining the model index automatically.
The methods created as part of TimeTravel have been incorporated into a Electricity
Data Management System (EDMS) developed as part of the MIRABEL smart grid
project [82] by Fisher et al. [69]. To facilitate both exact and approximated analysis
of time series in the EDMS, a real-time data warehouse is implemented as part of
the system. For approximate queries the AQP functionality implemented as part of
TimeTravel were used while exact queries were answered from the data points stored
in an array in PostgreSQL.

Another endeavor to extend PostgreSQL with the capability to forecast time series
in a centralized RDBMS is F2DB proposed by Fischer et al. [70]. The use case for
F’DB is data analytics using data warehouse based business intelligence, and the
system extends the SQL query language with statements for manually creating models
and performing forecast on said models. As an alternative to creating a model by
specifying it as part of an SQL statement, F>DB can compute which model provides the
best fit for a given time series based on an evaluation criteria. The system provides a
general architecture for implementing forecast models, allowing domain experts to add
additional models to the system so they can be used through the SQL query language.
The current implementation provides the means to create models based on ARIMA
and exponential smoothing. All models are stored in a central index and maintained
automatically by the system as shown in Figure A.14, but no extensions providing
stream processing are provided. To facilitate efficient query execution, the model index
provides an interface for describing the hierarchical relationship between models to
the query language. Based on query statistics and model performance, an alternative
configuration of models might be proposed by a model advisor [71]. The advisor selects
a configuration of models to use by utilizing a set of heuristics named indicators. Each
indicator is either focused on a single time series or the relationship between multiple
time series in the dimensional hierarchy. The choice of one of multiple models is
determined based on a trade-off between accuracy and performance cost. The produced
model configuration can then be loaded into F?DB.

Bakkalian et al. [72] present a proof-of-concept PL/SQL extension for the Oracle
RDBMS. The implemented extension allows time series to be stored and queried as
linear functions in an OLAP data model. The system splits storage of a time series into
two tables: the raw data is organized in one table as events with each row representing
an event with a timestamp, metadata, and a value. Another table stores the intervals
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Figure A.14: Overview of the FZDB TSMS. Models are constructed from time series stored in the base
tables, indexed, and then used by the model usage component for query processing. The figure was redrawn
from [70]

between each two consecutive events as a model, with the current implementation
supporting linear functions only. Queries are executed directly against the models
as they substitute the raw data representation. The use of linear functions allows the
system to interpolate values not present in the raw data set to support AQP. The authors
also discuss the theoretical use of models for forecasting time series as a benefit of a
model-based approach to time series storage and querying. However, no information
is provided about support for forecasting being implemented. In addition, no support
for stream processing is described in the paper. The proposed system builds directly
upon the following two publications in which some of the authors participated. Bebel
et al. [73] proposed a model for OLAP analysis of sequential data that formalized
the notion of sequences as facts and where sequences were formalized as an ordered
collection of events. Building upon the model proposed in the previously mentioned
paper, Koncilia et al. [74] proposed a new model enabling OLAP analysis of sequential
data by formally introducing the notion of intervals as the time between two consecutive
events, as well as defining a sequence to be an ordered set of intervals.

5.3 Discussion

TimeTravel [68] and F2DB [70] provide similar capabilities for forecasting time se-
ries stored in an RDBMS. However, the intended use case for the systems differs.
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TimeTravel is focused on approximating time series using models to provide AQP for
historical, present, and future values. In addition, a hierarchy of models is created so the
system can select a model based on the necessary accuracy to decrease query time, and
allow users to indicate what seasonality the time series will exhibit. F*DB is motivated
by a need to perform forecasting in a data warehouse and use the multi-dimensional
hierarchy as part of the modelling process. The systems also differ in-terms of their
ability to perform AQP as TimeTravel supports execution of AQP queries on both
historical data and as forecast queries, while F2DB’s focus is on forecast queries. The
system by Bakkalian et al. [72] represents time series using models but does not focus
on their use for forecasting. This system instead uses models to reduce the storage
requirement and query response time for OLAP queries. In addition to extending Post-
greSQL and Oracle RDBMS with new methods for storing and querying time series,
researchers have also extended RDBMSs with functionality for analytics without any
changes to data storage through for example MADLIib [83] and SearchTS [84]. Despite
all of surveyed TSMSs in this section extend an RDBMS with AQP functionality, none
of the systems implement functionality for stream processing.

6 Future Research Directions

The increase in time series data produced has lead researchers to discuss new directions
for research into development of TSMSs, with new research opportunities being created
as a result of this effort.

6.1 Research Directions Proposed in Literature

Cuzzocrea et al. [85] detail how the combination of sensor networks with cloud
infrastructure enables the development of new types of applications, detail problems
with the current state-of-the-art, and present a set of open problems regarding the
combination of sensor networks with cloud infrastructure. The first problem presented
is that different sources of sensor data often are heterogeneous, increasing the difficulty
of combining different data sources for analytics. Heterogeneous data sources also
complicate the addition of structure to a data set as a prerequisite for an analytical task.
Another problem described is the amounts of sensor data produced which add additional
requirements to the scalability of TSMSs. The authors propose to utilize methods from
both RDBMSs and NoSQL database systems, and develop new systems with a high
focus on scalability, primarily through horizontal partitioning and by reducing the
reliance on join operations.

Cuzzocrea [86] provides an overview of the state-of-the-art methods for managing
temporal data in general. However, while the general topic of the paper is temporal
data management, a discussion of existing research and future research direction in the
area of sensor data and scientific data management is also included in the paper. In
addition, the author provides a discussion of additional open research questions within
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the area of temporal and sensor data management. For this summary only the proposed
research directions relevant for management of time series data are included. The
presented research directions are primarily centered around the problem of scalability.
First the author argues that new storage methods are required, in conjunction with
additional research into indexing mechanisms. In terms of data analysis, the author
sees a hybrid system combining in-memory and disk based storage together with the
next generation of system using the distributed data processing model popularized by
Apache Hadoop as an import research direction. This architecture was later realized
for general purpose data by SnappyData [87, 88]. In addition, the author proposes
that further research into AQP method be performed, as such methods have already
been proven successful for sensor data. The development of innovative analytical
methods robust against imprecise values and outliers is presented as a pressing concern,
and new methods for data visualization are presented as being necessary, as existing
solutions for visualization of time series at different resolutions cannot be used at the
scale required today.

Additional arguments for further research into the development of TSMSs were
presented by Shafer et al. [12]. Traditional RDBMSs support functionality unneces-
sary for processing time series, such as the ability to delete and update arbitrary values,
with the argument that supporting functionality that is not necessary for analyzing time
series adds complexity and overhead to these systems. In addition, since time series
analysis often follows a common set of access patterns, creating a system optimized
specifically for these access patterns should lead to a performance increase over a
general purpose DBMS. The authors present an overview of some existing TSMSs and
DBMSs suitable for time series analysis, and argue that they all effectively function as
column stores with additional functionality specific for processing time series added on
top. Using a column store for storing and processing time series provides the benefit
of run length compression and efficient retrieval of a specific dimension of a time
series [89]. However, the authors dispute the use of column stores and describe a set of
design principles for a time series data store as shown in Figure A.15. They propose
that time series data store should separate time series into timestamps and values, the
values be partitioned based on their origin to make appending them to a time ordered
list trivial, and last the values should be archived in blocks ordered by time to allow for
efficient access to a continuous part of the time series. A preliminary evaluation demon-
strates that using these principles, a higher compression rate compared to existing
RDBMS and TSMS, can be achieved.

Sharma et al. [1] present new research directions for time series analysis in the
area of Cyber-Physical Systems (CPSs). Creating CPSs by combining sensor networks
with software for detailed analysis and decision-making allows for a new wave of
informed automation system based on sensor readings. However, the authors argue
that before such systems can be realized at a large scale, multiple challenges must be
resolved. First, the lack of information about how changes to a CPS change the sensor
readings produced, prevents systems from automatically controlling the monitored
system based on information from the sensors. As a possible solution the authors
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Figure A.15: Architecture proposed by Shafer et al. [12], redrawn from [12]

propose using graph-based methods to infer the relationship between changes to a
system and its sensor readings. Changes in discrete state could also be used to predicate
changes to sensor readings, such as predicting a change in the speed of a car if cruise
control is turned on or off. Another problem presented is scaling systems large enough
to analyze the amount of low quality data large networks of cheap sensors produce,
due both to the amount of data produced and the necessity to clean it before it can be
analyzed. For this problem, the authors propose that existing methods designed for
detection of sequential patterns in symbolic data could be effective for time series data
mining, if efficient methods for converting time series to a symbolic representation can
be created.

Another proponent for the development of specialized systems for analysis of time
series and data series is Palpanas [3-5] as he argues that the development of a new
class of systems he names Data Series Management System (SMS) is a requirement
for analysis of data series to continue to be feasible as the amounts of data from data
series increase. However, for an SMS to be realized, methods enabling a system to
intelligently select appropriate storage and query execution strategies based on the
structure of the data is necessary. As time series from different domains exhibit different
characteristics, the system should be able to take these characteristics into account,
and utilize one or multiple different representations to minimize the necessary storage
requirement while still allowing for adaptive indexes to be created and queries to be
executed efficiently. Parallel and distributed query execution must be an integrated part
of the system to take advantage of not only multi-core processor and SIMD instructions,
but also the scalability provided by distributed computing. To determine an appropriate
execution method for a query in an SMS a cost-based optimizer specialized for data
series would also be a required component, and it should abstract away the parallel
execution of the analysis and indexing methods implemented in the system. However,
the author argues that no existing cost-based optimizer is suitable for use in a SMS. In
addition to the proposed system architecture, an argument for the development of a
standardized benchmark for comparison of SMSs is also presented.
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6.2 Online Model-Based Sensor Warehouse

In addition to the proposed research direction into storage and analysis of time series,
and based on the surveyed systems, we see the following areas as being of primary
interest for the scalability and usability of TSMSs to be further increased. The end result
of the research we propose is a distributed TSMS with a physical layer storing time
series as mathematical models, serving as the DBMS for a distributed data warehouse
designed specifically for analysis of sensor data collected as time series and updated in
real-time.

Online Distributed Model-Based AQP: Among the systems in the survey, few uti-
lized models to approximate time series and provide a means for AQP, opting instead to
reduce query response time through pre-computed aggregates and distributed comput-
ing. However, we believe that for use cases where approximate results are acceptable,
the use of models provide a more flexible means for AQP. This is due to the config-
urable error bound and storage requirements, the capability to infer missing values
and remove outliers, and due to some queries being answerable directly from the
models, dramatically decreasing query response time. Similarly, to the use of models
for distributed batch processing, the use of models for distributed stream processing
should be evaluated, with the possibility that new algorithms could be developed due
to the reduction in bandwidth use. Research in this direction has been performed by
Guo et al. [51-53]. However, the proposed system does primarily demonstrate a new
indexing solution. In addition, the system only provides limited support for low latency
stream processing and the system does not implement a declarative query language.
Centralized TSMSs that use models as an integral part of the system and provide a
declarative interface have been designed, for example Plato [38], TimeTravel [68] and
F?DB [70]. However, as these systems do not utilize distributed computing, they are
limited in terms of scalability.

Automatic Model Management: Additional support for helping users determine how
model-based AQP should be utilized is necessary. Most TSMSs using model-based
AQP either provide no means for implementing and selecting models appropriate for
a particular time series or relegate the task to domain experts [38], with only a few
systems, for example F?DB [70, 71], providing a mechanism for automatic selection
of models. While development of new models and integration of such into a TSMS
properly will need to be performed manually for some time, a TSMS supporting AQP
using models should at minimum implement methods for automatically fitting models
to time series based on an error function for both batch and streaming data. While
researchers have proposed some methods for automatically fitting models to time series
stored in a DBMS, only a few publications present methods for approximating times
series by automatically selecting appropriate models in real-time [90, 91]. Inspired
by similar proposals in the area of machine learning [92], we propose that methods
and systems be developed that interactively guide non-expert user to select appropriate
models for a particular time series without the need for an exhaustive search when data
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is stored in a DBMS, and provide efficient selection of models for segmenting and
approximating time series with a pre-specified error bound when ingested. Similarly,
such a TSMS should as part of query processing provide insights into how an error
bound should be interpreted and how a model might have effected the time series it
represents.

Model-Based Sensor Data Warehousing: A distributed TSMS using models for
stream and batch processing of time series has the capability to scale through the
use of distributed processing by adjusting the acceptable error bound for a query,
through selection of alternative models, and by implementing a query optimizer capa-
ble of taking the properties of the models used into account. However, to enable simple
analytics on top of the model, an abstraction is needed. One possible abstraction, the
data cube, has already been used successfully for analyzing time series data with the
MIRABEL project as an example [69, 82], while the methods proposed by Perera et
al. [77] and Bakkalian et al. [72] demonstrated that, for centralized systems, represent-
ing time series using models in a data cube can lead to reduced storage requirements and
query response times. However, a system utilizing models for representing time series
in a data cube has, to the best of our knowledge, never been successfully integrated with
methods for continuously updating a data cube such as for example Stream Cubes [93]
or systems such as Tidalrace [94], in a distributed system. Another benefit of using
a data cube is that it is a well-known by data analysts, providing users of our envi-
sioned TSMS with a familiar interface for analytics of multi-dimensional time series.
Therefore, we see a data cube as a useful abstraction for analyzing multi-dimensional
time series represented using models at the physical layer, if methods for continuously
maintaining an OLAP cube can be unified with the methods for representing time series
using models in a distributed TSMS.

7 Conclusion

The increasing amount of time series data that is being produced requires that new
specialized TSMSs be developed. In this paper we have provided a systematic and
thorough analysis and classification of TSMSs. In addition, we have discussed our
vision for the next generation of systems for storage and analysis of time series, a
vision that is based on the analysis in this survey and the directions for future work
proposed by other researches in the field.

From our analysis we provide the following conclusions. TSMSs that use an
internal data store and integrate it directly with the query processing component are
predominately centralized systems, while distributed TSMSs are being developed using
existing DFSs and distributed DBMSs. Research into systems with an internal data
store is instead primarily focused on systems for embedded devices or which function
as a proof-of-concept implementation of a new theoretical method. This point is further
reinforced as only a few of the proposed TSMSs in the internal data store category
can be considered mature enough for deployment in a business critical scenario. This
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situation is contrasted by the set of systems using external data stores, as a larger
portion of these systems are distributed and developed by or in collaboration with
a corporate entity where the system then can be deployed in order to solve a data
management problem. As none of the TSMSs surveyed use a distributed storage
system developed and optimized exclusively for persistent storage of time series, it is
an open question what benefit such a storage solution would provide. Last, systems
built as extensions to existing RDBMSs are few and all extend a RDBMS with support
for AQP through the use of mathematical models. Other extensions to RDBMSs have
added new methods for query processing but no additional functionality for storage of
time series. The described RDBMSs are in general complete in terms of development,
two of the systems were integrated into larger applications for use in a smart grid
and the last being a prototype. However none of the RDBMS systems are distributed,
limiting their ability to scale.

Additional functionality built on top of the central storage and query processing
components is scarce in all three categories of systems. At the time of writing, only a
limited number of systems provide any capabilities for stream processing to support
transformation of the data as it is being ingested. In contrast to implementing stream
processing during data ingestion, some TSMSs provide mechanisms for piping the data
through a set of transformations after it has been stored in the TSMS or structure APIs
around streams. Compared to stream processing, more TSMSs implement methods
for approximating time series as a means to reduce query response time, storage
requirements, or provide advanced analytical capabilities. However, for the systems
that implement methods for approximating time series, it is uncommon to have an
interface for domain experts to extend the systems with additional user-defined methods
or models optimized for a particular domain or data set.

The future research directions proposed by experts in the field are primarily focused
on the need for a TSMS with a storage solution and query processor developed from
the ground up for time series, instead of reusing existing components or data models
from for example an RDBMS for storage of time series. Additionally, it is proposed
that such systems should support in-memory, parallel and distributed processing of
time series as a means to reduce query processing time enough for interactive data
analytics and visualization. AQP is mentioned as another possibility for reducing query
processing time. As future work we propose that a TSMS that inherently provides
a data cube as the means for analyzing multi-dimensional time series be developed.
The system should provide interactive query speeds through the use of distributed
in-memory processing and incorporate AQP as a central part of the system from the
start. The system must support stream processing to transform and clean the data as it
is ingested, and provide the means for construction of user-defined models, in order to
compress the time series and enable AQP.

In summary, we propose that a distributed TSMS providing the same analytical
capabilities as a data warehouse be developed specifically for use with time series. The
TSMS should provide functionality that allows the data to be updated in real-time,
support stream processing using user-defined functions and allow queries to be executed

105



References

on both historical and incoming data at interactive query speed through the use of AQP.

8

Acknowledgments

This research was supported by the DiCyPS center funded by Innovation Fund Den-
mark [95].

References

(1]

(2]

(3]

(4]

[6]

[7]

(8]
[9]
[10]

[11]

A. B. Sharma, F. Ivanci¢, A. Niculescu-Mizil, H. Chen, and G. Jiang, “Model-
ing and Analytics for Cyber-Physical Systems in the Age of Big Data,” ACM
SIGMETRICS Performance Evaluation Review, vol. 41, no. 4, pp. 74-77, 2014.

J. Ronkainen and A. livari, “Designing a Data Management Pipeline for Pervasive
Sensor Communication Systems,” Procedia Computer Science, vol. 56, pp. 183—
188, 2015.

T. Palpanas, “Data Series Management: The Road to Big Sequence Analytics,”
ACM SIGMOD Record, vol. 44, no. 2, pp. 47-52, June 2015.

——, “Big Sequence Management: A glimpse of the Past, the Present, and the
Future,” in Proceedings of the 42nd International Conference on Current Trends
in Theory and Practice of Computer Science (SOFSEM). Springer, 2016, pp.
63-80.

——, “Data Series Management: The Next Challenge,” in Proceedings of the
32nd International Conference on Data Engineering Workshops (ICDEW). 1EEE,
2016, pp. 196-199.

T.-c. Fu, “A review on time series data mining,” Engineering Applications of
Artificial Intelligence, vol. 24, no. 1, pp. 164—181, February 2011.

P. Esling and C. Agon, “Time-Series Data Mining,” Computing ACM Surveys
(CSUR), vol. 45, no. 1, 2012.

C. C. Aggarwal, Ed., Managing and Mining Sensor Data. ~Springer, 2013.
C. C. Aggarwal, Data Mining: The Textbook. Springer, 2015.

M. Garofalakis, J. Gehrke, and R. Rastogi, Eds., Data Stream Management:
Processing High-Speed Data Streams.  Springer, 2016.

M. Stonebraker and U. Cetintemel, “““One Size Fits All”’: An Idea Whose Time
Has Come and Gone,” in Proceedings of the 21st International Conference on
Data Engineering (ICDE). 1EEE, 2005, pp. 2—-11.

106



References

[12] I. Shafer, R. R. Sambasivan, A. Rowe, and G. R. Ganger, “Specialized Storage for
Big Numeric Time Series,” in Proceedings of the 5th conference on Hot Topics in
Storage and File Systems (HotStorage). USENIX, 2013, pp. 15-15.

[13] P. Seshadri, M. Livny, and R. Ramakrishnan, “The Design and Implementation of
a Sequence Database System,” in Proceedings of 22th International Conference
on Very Large Data Bases (VLDB). Morgan Kaufmann, 1996, pp. 99-110.

[14] ——, “SEQ: A model for sequence databases,” in Proceedings of the 11th Inter-
national Conference on Data Engineering (ICDE). 1EEE, 1995, pp. 232-239.

[15] ——, “Sequence Query Processing,” in Proceedings of the International Confer-
ence on Management of Data (SIGMOD). ACM, 1994, pp. 430-441.

[16] A. Lerner and D. Shasha, “AQuery: Query Language for Ordered Data, Opti-
mization Techniques, and Experiments,” in Proceedings of the 29th International
Conference on Very Large Data Bases (VLDB). Morgan Kaufmann, 2003, pp.
345-356.

[17] R. Sadri, C. Zaniolo, A. Zarkesh, and J. Adibi, “A Sequential Pattern Query
Language for Supporting Instant Data Mining for e-Services,” in Proceedings of
the 27th International Conference on Very Large Data Bases (VLDB). Morgan
Kaufmann, 2001, pp. 653—656.

[18] ——, “Optimization of Sequence Queries in Database Systems,” in Proceedings
of the 20th SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systems (PODS). ACM, 2001, pp. 71-81.

[19] ——, “Expressing and Optimizing Sequence Queries in Database Systems,” ACM
Transactions on Database Systems (TODS), vol. 29, no. 2, pp. 282-318, June
2004.

[20] N. Tsiftes and A. Dunkels, “A Database in Every Sensor,” in Proceedings of the
9th Conference on Embedded Networked Sensor Systems (SenSys). ACM, 2011,
pp- 316-332.

[21] B. Wang and J. S. Baras, “HybridStore: An Efficient Data Management System
for Hybrid Flash-Based Sensor Devices,” in Proceedings of the 10th European
Conference on Wireless Sensor Networks (EWSN).  Springer, 2014, pp. 50-66.

[22] G. Douglas and R. Lawrence, “LittleD: A SQL Database for Sensor Nodes and
Embedded Applications,” in Proceedings of the 29th Symposium on Applied
Computing (SAC). ACM, 2014, pp. 827-832.

[23] A. Cuzzocrea, J. Cecilio, and P. Furtado, “StreamOp: An Innovative Middleware
for Supporting Data Management and Query Functionalities over Sensor Network
Streams Efficiently,” in Proceedings of the 17th International Conference on
Network-Based Information Systems (NBiS). 1EEE, 2014, pp. 310-317.

107



References

[24] C. Pungila, T.-F. Fortis, and O. Aritoni, “Benchmarking Database Systems for
the Requirements of Sensor Readings,” IETE Technical Review, vol. 26, no. 5, pp.
342-349, 2009.

[25] T. W. Wlodarczyk, “Overview of Time Series Storage and Processing in a Cloud
Environment,” in Proceedings of the 4th International Conference on Cloud
Computing Technology and Science (CloudCom). 1IEEE, 2012, pp. 625-628.

[26] T. Goldschmidt, A. Jansen, H. Koziolek, J. Doppelhamer, and H. P. Breivold,
“Scalability and Robustness of Time-Series Databases for Cloud-Native Monitor-

ing of Industrial Processes,” in Proceedings of the 7th International Conference
on Cloud Computing (CLOUD). 1EEE, 2014, pp. 602—609.

[27] D. Namiot, “Time Series Databases,” in Proceedings of the XVII International
Conference Data Analytics and Management in Data Intensive Domains (DAM-
DID/RCDL). CEUR-WS.org, 2015, pp. 132-137.

[28] A. K. Kalakanti, V. Sudhakaran, V. Raveendran, and N. Menon, “A Comprehen-
sive Evaluation of NoSQL Datastores in the Context of Historians and Sensor
Data Analysis,” in Proceedings of the International Conference on Big Data (Big
Data). 1EEE, 2015, pp. 1797-1806.

[29] A. Bader, O. Kopp, and F. Michael, “Survey and Comparison of Open Source
Time Series Databases,” in Datenbanksysteme fiir Business, Technologie und Web
(BTW) - Workshopband. GI, 2017, pp. 249-268.

[30] L. Deri, S. Mainardi, and F. Fusco, “tsdb: A Compressed Database for Time
Series,” in Proceedings of the 4th International Workshop on Traffic Monitoring
and Analysis (TMA). Springer, 2012, pp. 143-156.

[31] U. Khurana, S. Parthasarathy, and D. S. Turaga, “FAQ: A Framework for Fast
Approximate Query Processing on Temporal Data,” in Proceedings of the 3rd
International Workshop on Big Data, Streams and Heterogeneous Source Min-
ing: Algorithms, Systems, Programming Models and Applications (BigMine).
JMLR.org, 2014, pp. 29-45.

[32] J. Huang, A. Badam, R. Chandra, and E. B. Nightingale, “WearDrive: Fast and
Energy-Efficient Storage for Wearables,” in Proceedings of the Annual Technical
Conference (ATC). USENIX, 2015, pp. 613-625.

[33] J. Li, A. Badam, R. Chandra, S. Swanson, B. Worthington, and Q. Zhang, “On
the Energy Overhead of Mobile Storage Systems,” in Proceedings of the 12th
Conference on File and Storage Technologies (FAST). USENIX, 2014, pp.
105-118.

[34] K. Zoumpatianos, S. Idreos, and T. Palpanas, “RINSE: Interactive Data Series
Exploration with ADS+,” Proceedings of the VLDB Endowment (PVLDB), vol. 8,
no. 12, pp. 19121915, August 2015.

108



(35]

(36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

References

——, “Indexing for Interactive Exploration of Big Data Series,” in Proceedings
of the International Conference on Management of Data (SIGMOD). ACM,
2014, pp. 1555-1566.

——, “ADS: the adaptive data series index,” The VLDB Journal (VLDBJ), vol. 25,
no. 6, pp. 843-866, December 2016.

K. S. Perera, M. Hahmann, W. Lehner, T. B. Pedersen, and C. Thomsen, “Model-
ing Large Time Series for Efficient Approximate Query Processing,” in Database
Systems for Advanced Applications - DASFAA International Workshops, SeCoP,
BDMS, and Posters. Springer, 2015, pp. 190-204.

Y. Katsis, Y. Freund, and Y. Papakonstantinou, “Combining Databases and Signal
Processing in Plato,” in Proceedings of the 7th Conference on Innovative Data
Systems Research (CIDR), 2015.

B. Chardin, J.-M. Lacombe, and J.-M. Petit, “Chronos: a NoSQL system on flash
memory for industrial process data,” Distributed and Parallel Databases, vol. 34,
no. 3, pp. 293-319, September 2016.

B. Chardin, O. Pasteur, and J.-M. Petit, “An FTL-agnostic Layer to Improve
Random Write on Flash Memory,” in Proceedings of the 16th International Con-
ference on Database Systems for Advanced Applications (DASFAA).  Springer,
2011, pp. 214-225.

A. L. Serra, S. Vila-Marta, and T. E. Canal, “Formalism for a multiresolution time
series database model,” Information Systems, vol. 56, pp. 19-35, March 2016.

A.L. Serra, T. E. C. i Sebastia, and V. Marta, “A Model for a Multiresolution Time
Series Database System,” in Proceedings of the 12th International Conference
on Artificial Intelligence, Knowledge Engineering and Data Bases (AIKED).
WSEAS, 2013, pp. 55-60.

A. MacDonald, “PhilDB: the time series database with built-in change logging,”
PeerJ Computer Science, vol. 2, art. €52, 2016.

R. S. Weigel, D. M. Lindholm, A. Wilson, and J. Faden, “TSDS: high-performance
merge, subset, and filter software for time series-like data,” Earth Science Infor-
matics, vol. 3, no. 1-2, pp. 2940, June 2010.

M. Stonebraker, P. Brown, D. Zhang, and J. Becla, “SciDB: A Database Manage-
ment System for Applications with Complex Analytics,” Computing in Science &
Engineering, vol. 15, no. 3, pp. 54-62, May-June 2013.

M. Stonebraker, P. Brown, A. Poliakov, and S. Raman, “The Architecture of
SciDB,” in Proceedings of the 23rd International Conference on Scientific and
Statistical Database Management (SSDBM).  Springer, 2011, pp. 1-16.

109



References

[47] T.S. D. Team, “Overview of SciDB: Large Scale Array Storage, Processing and
Analysis,” in Proceedings of the International Conference on Management of
Data (SIGMOD). ACM, 2010, pp. 963-968.

[48] M. Buevich, A. Wright, R. Sargent, and A. Rowe, “Respawn: A Distributed
Multi-Resolution Time-Series Datastore,” in Proceedings of the 34th Real-Time
Systems Symposium (RTSS). 1EEE, 2013, pp. 288-297.

[49] C. Palmer, P. Lazik, M. Buevich, J. Gao, M. Berges, A. Rowe, R. L. Pereira, and
C. Martin, “Demo Abstract: Mortar.io: A Concrete Building Automation System,”

in Proceedings of the 1st Conference on Embedded Systems for Energy-Efficient
Buildings (BuildSys), 2014, pp. 204-205.

[50] A. Cuzzocrea and D. Sacca, “Exploiting compression and approximation
paradigms for effective and efficient online analytical processing over sensor
network readings in data grid environments,” Concurrency and Computation:
Practice and Experience, vol. 25, no. 14, pp. 2016-2035, September 2013.

[51] T. Guo, T. G. Papaioannou, and K. Aberer, “Efficient Indexing and Query Pro-
cessing of Model-View Sensor Data in the Cloud,” Big Data Research, vol. 1, pp.
52-65, August 2014.

[52] T. Guo, T. G. Papaioannou, H. Zhuang, and K. Aberer, “Online Indexing and Dis-
tributed Querying Model-View Sensor Data in the Cloud,” in Proceedings of the
19th International Conference on Database Systems for Advanced Applications
(DASFAA). Springer, 2014, pp. 28—-46.

[53] T. Guo, T. G. Papaioannou, and K. Aberer, “Model-View Sensor Data Manage-
ment in the Cloud,” in Proceedings of the International Conference on Big Data
(Big Data). 1EEE, 2013, pp. 282-290.

[54] A. Marascu, P. Pompey, E. Bouillet, M. Wurst, O. Verscheure, M. Grund, and
P. Cudre-Mauroux, “TRISTAN: Real-Time Analytics on Massive Time Series
Using Sparse Dictionary Compression,” in Proceedings of the International
Conference on Big Data (Big Data). 1EEE, 2014, pp. 291-300.

[55] A. Marascu, P. Pompey, E. Bouillet, O. Verscheure, M. Wurst, M. Grund, and
P. Cudre-Mauroux, “MiSTRAL: An Architecture for Low-Latency Analytics on
Massive Time Series,” in Proceedings of the International Conference on Big
Data (Big Data). 1EEE, 2013, pp. 15-21.

[56] F. Yang, E. Tschetter, X. Léauté, N. Ray, G. Merlino, and D. Ganguli, “Druid: A
Real-time Analytical Data Store,” in Proceedings of the International Conference
on Management of Data (SIGMOD). ACM, 2014, pp. 157-168.

[57] S. Huang, Y. Chen, X. Chen, K. Liu, X. Xu, C. Wang, K. Brown, and I. Halilovic,
“The Next Generation Operational Data Historian for IoT Based on Informix,” in

110



(58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

References

Proceedings of the International Conference on Management of Data (SIGMOD,).
ACM, 2014, pp. 169-176.

J. W. Williams, K. S. Aggour, J. Interrante, J. McHugh, and E. Pool, “Bridging
High Velocity and High Volume Industrial Big Data Through Distributed In-
Memory Storage & Analytics,” in Proceedings of the International Conference
on Big Data (Big Data). 1EEE, 2014, pp. 932-941.

T. Gupta, R. P. Singh, A. Phanishayee, J. Jung, and R. Mahajan, “Bolt: Data
management for connected homes,” in Proceedings of the 11th Symposium on
Networked Systems Design and Implementation (NSDI). USENIX, 2014, pp.
243-256.

S. Cejka, R. Mosshammer, and A. Einfalt, “Java embedded storage for time series
and meta data in Smart Grids,” in Proceedings of the 6th International Conference
on Smart Grid Communications (SmartGridComm). 1EEE, 2015, pp. 434-439.

M. Faschang, S. Cejka, M. Stefan, A. Frischenschlager, A. Einfalt, K. Diwold, F. P.
Andrén, T. Strasser, and F. Kupzog, “Provisioning, deployment, and operation of

smart grid applications on substation level,” Computer Science - Research and
Development, vol. 32, no. 1-2, pp. 117-130, March 2017.

T. Pelkonen, S. Franklin, J. Teller, P. Cavallaro, Q. Huang, J. Meza, and K. Veer-
araghavan, “Gorilla: A Fast, Scalable, In-Memory Time Series Database,” Pro-
ceedings of the VLDB Endowment (PVLDB), vol. 8, no. 12, pp. 1816-1827,
August 2015.

N. D. Mickulicz, R. Martins, P. Narasimhan, and R. Gandhi, “When Good-
Enough is Enough: Complex Queries at Fixed Cost,” in Proceedings of the
Ist International Conference on Big Data Computing Service and Applications
(BigDataService). 1EEE, 2015, pp. 89-98.

J. L. Pérez and D. Carrera, “Performance Characterization of the servloTicy
API: an IoT-as-a-Service Data Management Platform,” in Proceedings of the
1st International Conference on Big Data Computing Service and Applications
(BigDataService). 1EEE, 2015, pp. 62-71.

A. Villalba, J. L. Pérez, D. Carrera, C. Pedrinaci, and L. Panziera, “servloTicy
and iServe: a Scalable Platform for Mining the IoT,” Procedia Computer Science,
vol. 52, pp. 1022-1027, 2015.

M. P. Andersen and D. E. Culler, “BTrDB: Optimizing Storage System Design
for Timeseries Processing,” in Proceedings of the 14th Conference on File and
Storage Technologies (FAST). USENIX, 2016, pp. 39-52.

M. P. Andersen, S. Kumar, C. Brooks, A. von Meier, and D. E. Culler, “DIS-
TIL: Design and Implementation of a Scalable Synchrophasor Data Processing

111



[68]

[69]

[70]

[71]

[72]

(73]

[74]

[75]

[76]

[77]

References

System,” in Proceedings of the 6th International Conference on Smart Grid
Communications (SmartGridComm). 1EEE, 2015, pp. 271-277.

M. E. Khalefa, U. Fischer, T. B. Pedersen, and W. Lehner, “Model-based Inte-
gration of Past & Future in TimeTravel,” Proceedings of the VLDB Endowment
(PVLDB), vol. 5, no. 12, pp. 1974-1977, August 2012.

U. Fischer, D. Kaulakiené, M. E. Khalefa, W. Lehner, T. B. Pedersen, L. éikénys,
and C. Thomsen, “Real-Time Business Intelligence in the MIRABEL Smart Grid
System,” in Revised Selected Papers from the 6th International Workshop on
Business Intelligence for the Real-Time Enterprise (BIRTE). Springer, 2012, pp.
1-22.

U. Fischer, F. Rosenthal, and W. Lehner, “F?DB: The Flash-Forward Database
System,” in Proceedings of the 28th International Conference on Data Engineer-
ing (ICDE). 1EEE, 2012, pp. 1245-1248.

U. Fischer, C. Schildt, C. Hartmann, and W. Lehner, ‘“Forecasting the Data
Cube: A Model Configuration Advisor for Multi-Dimensional Data Sets,” in

Proceedings of the 29th International Conference on Data Engineering (ICDE).
IEEE, 2013, pp. 853-864.

G. Bakkalian, C. Koncilia, and R. Wrembel, “On Representing Interval Measures
by Means of Functions,” in Proceedings of the 6th International Conference on
Model and Data Engineering (MEDI). Springer, 2016, pp. 180-193.

B. Bebel, M. Morzy, T. Morzy, Z. Krélikowski, and R. Wrembel, “OLAP-Like
Analysis of Time Point-Based Sequential Data,” in Advances in Conceptual
Modeling - 2012 ER Workshops CMS, ECDM-NoCoDA, MoDIC, MORE-BI,
RIGIiM, SeCoGlIS, WISM. Springer, 2012, pp. 153-161.

C. Koncilia, T. Morzy, R. Wrembel, and J. Eder, “Interval OLAP: Analyzing
Interval Data,” in Proceedings of the 16th International Conference on Data
Warehousing and Knowledge Discovery (DaWaK). Springer, 2014, pp. 233-244.

B. Mozafari and N. Niu, “A Handbook for Building an Approximate Query
Engine,” IEEE Data Engineering Bulletin, vol. 38, no. 3, pp. 3-29, September
2015.

B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom, “Models and issues
in data stream systems,” in Proceedings of the 21st SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems (PODS). ACM, 2002, pp. 1-16.

K. S. Perera, M. Hahmann, W. Lehner, T. B. Pedersen, and C. Thomsen, “Efficient
Approximate OLAP Querying Over Time Series,” in Proceedings of the 20th
International Database Engineering & Applications Symposium (IDEAS). ACM,
2016, pp. 205-211.

112



(78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

(86]

[87]

[88]

References

H. Li, N. Qiu, M. Chen, H. Li, Z. Dai, M. Zhu, and M. Huang, “FASTDB: An
Array Database System for Efficient Storing and Analyzing Massive Scientific
Data,” in Proceedings of the International Workshops and Symposiums on Algo-
rithms and Architectures for Parallel Processing (ICA3PP). Springer, 2015, pp.
606-616.

F. Rusu and Y. Cheng, “A Survey on Array Storage, Query Languages, and
Systems,” CoRR, February 2013, arXiv:1302.0103v2.

H. Zhang, G. Chen, B. C. Ooi, K.-L. Tan, and M. Zhang, “In-Memory Big Data
Management and Processing: A Survey,” IEEE Transactions on Knowledge and
Data Engineering (TKDE), vol. 27, no. 7, pp. 1920-1948, July 2015.

“COMPOSE - Collaborative Open Market to Place Objects at your Service,”
http://www.compose-project.eu/, Viewed: 2019-08-14.

“Micro-Request-Based Aggregation, Forecasting and Scheduling of Energy De-
mand, Supply and Distribution (MIRABEL),” http://www.mirabel-project.eu/,
Viewed: 2019-08-14.

J. M. Hellerstein, C. Ré, F. Schoppmann, D. Z. Wang, E. Fratkin, A. Gorajek,
K. S. Ng, C. Welton, X. Feng, K. Li ef al., “The MADIib Analytics Library,”
Proceedings of the VLDB Endowment (PVLDB), vol. 5, no. 12, pp. 1700-1711,
August 2012.

X. Xu, S. Huang, Y. Chen, C. Wang, 1. Halilovic, K. Brown, and M. Ashworth, “A
Demonstration of SearchonTS: An Efficient Pattern Search Framework for Time
Series Data,” in Proceedings of the 23rd International Conference on Information
and Knowledge Management (CIKM). ACM, 2014, pp. 2015-2017.

A. Cuzzocrea, G. Fortino, and O. Rana, “Managing Data and Processes in Cloud-
Enabled Large-Scale Sensor Networks: State-of-the-Art and Future Research
Directions,” in Proceedings of the 13th International Symposium on Cluster,
Cloud and Grid Computing (CCGrid). 1EEE/ACM, 2013, pp. 583-588.

A. Cuzzocrea, “Temporal Aspects of Big Data Management: State-of-the-Art
Analysis and Future Research Directions,” in Proceedings of the 22nd Interna-
tional Symposium on Temporal Representation and Reasoning (TIME). 1EEE,
2015, pp. 180-185.

J. Ramnarayan, S. Menon, S. Wale, and H. Bhanawat, “Demo: SnappyData: A
Hybrid System for Transactions, Analytics, and Streaming,” in Proceedings of the
10th International Conference on Distributed and Event-based Systems (DEBS).
ACM, 2016, pp. 372-373.

J. Ramnarayan, B. Mozafari, S. Wale, S. Menon, N. Kumar, H. Bhanawat,
S. Chakraborty, Y. Mahajan, R. Mishra, and K. Bachhav, “SnappyData: A Hybrid

113


https://arxiv.org/abs/1302.0103v2
http://www.compose-project.eu/
http://www.mirabel-project.eu/

[89]

[90]

[91]

[92]

[93]

[94]

[95]

References

Transactional Analytical Store Built On Spark,” in Proceedings of the Inter-
national Conference on Management of Data (SIGMOD). ACM, 2016, pp.
2153-2156.

D. J. Abadi, S. R. Madden, and N. Hachem, “Column-Stores vs. Row-Stores:
How Different Are They Really?” in Proceedings of the International Conference
on Management of Data (SIGMOD). ACM, 2008, pp. 967-980.

T. G. Papaioannou, M. Riahi, and K. Aberer, “Towards Online Multi-Model Ap-
proximation of Time Series,” in Proceedings of the 12th International Conference
on Mobile Data Management (MDM), vol. 1. IEEE, 2011, pp. 33-38.

F. Eichinger, P. Efros, S. Karnouskos, and K. Bohm, “A time-series compression
technique and its application to the smart grid,” The VLDB Journal (VLDBJ),
vol. 24, no. 2, pp. 193-218, April 2015.

A. Kumar, R. McCann, J. Naughton, and J. M. Patel, “Model Selection Man-
agement Systems: The Next Frontier of Advanced Analytics,” ACM SIGMOD
Record, vol. 44, no. 4, pp. 17-22, December 2015.

J. Han, Y. Chen, G. Dong, J. Pei, B. W. Wah, J. Wang, and Y. D. Cai, “Stream
Cube: An Architecture for Multi-Dimensional Analysis of Data Streams,” Dis-
tributed and Parallel Databases, vol. 18, no. 2, pp. 173-197, September 2005.

T. Johnson and V. Shkapenyuk, “Data Stream Warehousing In Tidalrace,” in
Proceedings of the 7th Conference on Innovative Data Systems Research (CIDR),
2015.

“DiCyPS - Center for Data-Intensive Cyber-Physical Systems,” http://www.dicyps.
dk/dicyps-in-english/, Viewed: 2019-08-14.

114


http://www.dicyps.dk/dicyps-in-english/
http://www.dicyps.dk/dicyps-in-english/

Paper B

ModelarDB: Modular Model-Based Time Series
Management with Spark and Cassandra

Segren Kejser Jensen, Torben Bach Pedersen, Christian Thomsen

The paper has been published in the
Proceedings of the VLDB Endowment (PVLDB), Volume 11, Number 11,
Pages 1688-1701, July, 2018, DOI: 10.14778/3236187.3236215


https://doi.org/10.14778/3236187.3236215

Abstract

Industrial systems, e.g., wind turbines, generate big amounts of data from reliable
sensors with high velocity. As it is unfeasible to store and query such big amounts
of data, only simple aggregates are currently stored. However, aggregates remove
fluctuations and outliers that can reveal underlying problems and limit the knowledge
to be gained from historical data. As a remedy, we present the distributed TSMS
ModelarDB that uses models o store sensor data. We thus propose an online, adaptive
multi-model compression algorithm that maintains data values within a user-defined
error bound (possibly zero). We also propose (i) a database schema to store time
series as models, (ii) methods to push-down predicates to a key-value store utilizing
this schema, (iii) optimized methods to execute aggregate queries on models, (iv)
a method to optimize execution of projections through static code-generation, and
(v) dynamic extensibility that allows new models to be used without recompiling the
TSMS. Further, we present a general modular distributed TSMS architecture and its
implementation, ModelarDB, as a portable library, using Apache Spark for query
processing and Apache Cassandra for storage. An experimental evaluation shows
that, unlike current systems, ModelarDB hits a sweet spot and offers fast ingestion,
good compression, and fast, scalable online aggregate query processing at the same
time. This is achieved by dynamically adapting to data sets using multiple models.
The system degrades gracefully as more outliers occur and the actual errors are much
lower than the bounds.
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1. Introduction

1 Introduction

For critical infrastructure, e.g., renewable energy sources, large numbers of high quality
sensors with wired electricity and connectivity provide data to monitoring systems.
The sensors are sampled at regular intervals and while invalid, missing, or out-of-order
data points can occur, they are rare and all but missing data points can be corrected
by established cleaning procedures. Although practitioners in the field require high-
frequent historical data for analysis, it is currently impossible to store the huge amounts
of data points. As a workaround, simple aggregates are stored at the cost of removing
outliers and fluctuations in the time series.

In this paper, we focus on how to store and query massive amounts of high quality
sensor data ingested in real-time from many sensors. To remedy the problem of
aggregates removing fluctuations and outliers, we propose that high quality sensor
data is compressed using model-based compression. We use the term model for any
representation of a time series from which the original time series can be recreated
within a known error bound (possibly zero). For example, the linear function y =
ax + b can represent an increasing, decreasing, or constant time series and reduces
storage requirements from one value per data point to only two values: a and b. We
support both lossy and lossless compression. Our lossy compression preserves the
data’s structure and outliers and the user-defined error bound allows a trade-off between
accuracy and required storage. This contrasts traditional sensor data management
where models are used to infer data points with less noise [1].

To establish the state-of-the-art used in industry for storing time series, we evaluate
the storage requirements of commonly used systems and big data file formats. We

Table B.1: Comparison of common storage solutions

Storage Method Size (GiB)
CSV Files 582.68
PostgreSQL 10.1 782.87
RDBMS-X — Row 367.89
RDBMS-X — Column 166.83
Apache Cassandra 3.9 111.89
Apache Parquet Files 106.94
Apache ORC Files 13.50
InfluxDB 1.4.2 — Tags 4.33
InfluxDB 1.4.2 — Measurements 4.33
ModelarDB 2.41-2.84
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select the systems based on DB-Engines Ranking [2], discussions with companies in
the energy sector, and our survey [3]. Two RDBMSs and a TSMS are included due to
their widespread industrial use, although being optimized for smaller data sets than
the distributed solutions. The big data file formats, on the other hand, handle big data
sets well, but do not support streaming ingestion for online analytics. We use sensor
data with a 100ms sampling interval from an energy production company. The schema
and data set (Energy Production High Frequency), are described in Section 7. The
results, in Table B.1 including our system ModelarDB, show the benefit of using a
TSMS or columnar storage for time series. However, the storage reduction achieved
by ModelarDB is much more significant, even with a 0% error bound, and clearly
demonstrates the advantage of model-based storage for time series.

To efficiently manage high quality sensor data, we find the following properties
paramount for a TSMS: (i) Distribution: Due to huge amounts of sensor data, a
distributed architecture is needed. (ii) Stream Processing: For monitoring, ingested data
points must be queryable after a small user-defined time lag. (iii) Compression: Fine-
grained historical values can reveal changes over time, e.g., performance degradation.
However, raw data is infeasible to store without compression, which also helps query
performance due to reduced disk I/O. (iv) Efficient Retrieval: To reduce processing time
for querying a subset of the historical data, indexing, partitioning and/or time-ordered
storage is needed. (v) AQP: Approximation of query results within a user-defined error
bound can reduce query response time and enable lossy compression. (vi) Extensibility:
Domain experts should be able to add domain-specific models without changing the
TSMS, and the system should automatically use the best model.

While methods for compressing segments of a time series using one of multiple
models exist [4-6], we found no TSMS using multi-model compression for our sur-
vey [3]. Also, the existing methods do not provide all the properties listed above. They
either provide no latency guarantees [4, 6], require a trade-off between latency and
compression [5], or limit the supported model types [4, 6]. ModelarDB, in contrast,
provides all these features, and we make the following contributions to model-based
storage and query processing for big data systems:

* A general-purpose architecture for a modular model-based TSMS providing the
listed paramount properties.

* An efficient and adaptive algorithm for online multi-model compression of time
series within a user-defined error bound. The algorithm is model-agnostic, extensible,
combines lossy and lossless compression, allows missing data points, and offers both
low latency and high compression ratio at the same time.

* Methods and optimizations for a model-based TSMS:

— A database schema to store multiple time series as models.

— Methods to push-down predicates to a key-value store used as a model-based
physical storage layer.

— Methods to execute optimized aggregate functions directly on models without
requiring a dynamic optimizer.
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— Use of static code-generation to optimize projections.
— Dynamic extensibility making it possible to add additional models without chang-
ing or recompiling the TSMS.

* Realization of our architecture as the distributed TSMS ModelarDB, consisting of
the portable ModelarDB Core interfaced with unmodified versions of Apache Spark
for query processing and Apache Cassandra for storage.

* An evaluation of ModelarDB using time series from the energy domain. The evalua-
tion shows how the individual features and contributions effectively work together to
dynamically adapt to the data sets using multiple models, yielding a unique combina-
tion of good compression, fast ingestion, and fast, scalable online aggregate query
processing. The actual errors are shown to be much lower than the allowed bounds
and ModelarDB degrades gracefully when more outliers are added.

The paper is organized as follows. Definitions are given in Section 2. Section 3
describes our architecture. Section 4 details ingestion and our model-based compression
algorithm. Section 5 describes query processing and Section 6 ModelarDB’s distributed
storage. Section 7 presents an evaluation, Section 8 related work, and Section 9
conclusion and future work.

2 Preliminaries

We now provide definitions which will be used throughout the paper. We also exemplify
each using a running example.

Definition B.1 (Time Series)

A time series TS is a sequence of data points, in the form of time stamp and value pairs,
ordered by time in increasing order TS = ((t1,v1), (f2,v2), . . .). For each pair (¢;, v;),
1 < i, the time stamp t; represents the time when the value v; € R was recorded. A
time series TS = ((t1,v1),..., (tn, vs)) consisting of a fixed number of 1 data points
is a bounded time series.

As a running example we use the time series TS = ((100,28.3), (200, 30.7), (300,
28.3), (400,28.3), (500,15.2), .. .), each pair represents a time stamp in milliseconds
since the recording of measurements was initiated and a recorded value. A bounded
time series can be constructed, e.g, from the subset of data points of TS where t; < 300,
1<,

Definition B.2 (Regular Time Series)

A time series TS = ((t1,v1), (t2,v2),...) is considered regular if the time elapsed
between each data point is always the same, i.e., t;1 1 —t; = t;1p —t;y1 for1 <iand
irregular otherwise.

Our example time series TS is a regular time series as 100 milliseconds elapse
between each of its adjacent data points.
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Definition B.3 (Sampling Interval)
The sampling interval of a regular time series TS = ((t1,v1), (f2,02), .. .) is the time
elapsed between each pair of data points in the time series SI = t;,1 —t; for 1 <.

As 100 milliseconds elapse between each pair of data points in T'S, it has a sampling
interval of 100 milliseconds.
Definition B.4 (Model)
A model is a representation of a time series TS = ((t1,v1), (f2,02), .. .) using a pair
of functions M = (#1est, M,y ). For each t;, 1 < i, the function m,g is a real-valued
mapping from ¢; to an estimate of the value for the corresponding data point T'S. 1.,
is a mapping from a time series T'S and the corresponding 11, to a positive real value
representing the error of the values estimated by #15¢.

For the bounded subset of TS a model M can be created using, e.g., a linear
function with m,g; = —0.0024¢; +29.5,1 < i < 5, and an error function using the
uniform error norm so e,y = max(|v; — mest(t;)]), 1 < i < 5. This model-based
representation of TS has an error of |15.2 — (—0.0024 x 500 4 29.5)| = 13.1 caused
by the data point at t5. The difference between the estimated and recorded values
would be much smaller without this data point.

Definition B.5 (Gap)

A gap between a regular bounded time series TS = ((f1,v1),...,(ts,vs)) and a
regular time series TSy = ((te, Ve), (fe41,Ves1), - - ) With the same sampling interval
SI and recorded from the same source, is a pair of time stamps G = (ts, t,) with
te =ts +m x SI, m € N>, and where no data points exist between ts and .

The concept of a gap is illustrated in Figure B.1. For simplicity we will refer to multiple
time series from the same source separated by gaps as a single time series containing

gaps.

tq ts te
T T I Y |
G = (ts te)

Figure B.1: Illustration of a gap G between ts and £,

TS does not contain any gaps. However, the time series TSg = ((100,28.3), (200,
30.7), (300, 28.3), (400,28.3), (500,15.2), (800, 30.2), . ..) does. While the only dif-
ference between TS and TS is the data point (800,30.2) a gap is now present as no
data points exist with the time stamps 600 and 700. Due to the gap, TS is an irregular
time series, while TS is a regular time series.

Definition B.6 (Regular Time Series with Gaps)

A regular time series with gaps is a regular time series, TS = ((t1,v1), (t2,v2),...)
where v; € RU{_L} for 1 < i. For a regular time series with gaps, a gap G = ({s, t,)
is a sub-sequence where v; = 1 for t5 < t; < fe.
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The irregular time series TS, = ((100,28.3), (200,30.7), (300,28.3), (400,28.3),
(500,15.2), (800,30.2), .. .) with an undefined SI due to the presence of a gap, can be
represented as the regular time series with gaps TS, = ((100,28.3), (200, 30.7), (300,
28.3), (400,28.3), (500,15.2), (600, L), (700, 1), (800,30.2),...) with SI = 100
milliseconds.

Definition B.7 (Segment)

For a bounded regular time series with gaps TS = ((ts,vs), .. ., (te, ve)) with sampling
interval SI, a segment is a 6-tuple S = (t5,t,, SI, Gys, M, €) where Gy is a set of
timestamps for which v = | and where the values of all other timestamps for TS are
defined by the model M within the error bound €.

M
o 0 0t p— .

S =(tg, to, SI, Gy, M, €)
Figure B.2: Model-based representation of data points

In the example for Definition B.4, the model M represents the data point at {5 with
an error that is much larger than for the other data points of TS. For this example
we assume the user-defined error bound to be 2.5 which is smaller than the error of
M at 13.1. To uphold the error bound a segment S = (100,400, 100, D, (s =
—0.0024t; + 29.5, meyy = max(|v; — mest(£;)])),2.5), 1 < i < 4, can be created. As
illustrated in Figure B.2, segment S contains the first four data points of T'S represented
by the model M within the user-defined error bound of 2.5 as |30.7 — (—0.0024 x
200 +29.5)| = 1.68 < 2.5. As additional data points are added to the time series,
new segments can be created to represent each sub-sequence of data points within the
user-defined error bound.

In this paper we focus on the use case of multiple regular times with gaps being
ingested and analyzed in a central TSMS.

3 Architecture

The architecture of ModelarDB is modular to enable re-use of existing software de-
ployed in a cluster, and is split into three sets of components with well-defined purposes:
data ingestion, query processing and segment storage. ModelarDB is designed around
ModelarDB Core, a portable library with system-agnostic functionality for model-
based time series management, caching of metadata and a set of predefined models.
For distributed query processing and storage ModelarDB Core integrates with existing
systems through a set of interfaces, making the portable core simple to use with existing
infrastructure. The architecture is shown in Figure B.3. Data flow between compo-
nents is shown as arrows, while the sets of components are separated by dashed lines.
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e N
Optional User- Predefined Models Query Processor . .
Defined Models : | (ModelarDB Core) (Apache Spark saL) ||  Client Queries
\ J
: Engi
Segment Generator D:_”Nq*h_“:o Storage Interface
Time Series Data Ingestor (ModelarDB Core) (ModelarDB Core) (ModelarDB Core) Storage Adaptor
DataSt k
(Apache Spark @ ! Mwwwwﬂwwmﬁ €»| Segment Store
Streaming) Main Memory Metadata Cache p ) (Apache Cassandra)
Segment Cache (ModelarDB Core) onnecton
(Apache Spark)
Data Ingestion Query Processing

Segment Storage

Figure B.3: Architecture of a ModelarDB node, each contains query processing and storage to improve locality
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Our implementation of the architecture integrates ModelarDB Core with the stock
versions of Apache Spark [7-11] for distributed query processing, while Apache Cas-
sandra [12, 13] or a JDBC compatible RDBMS can be used for storage. As distributed
storage is a paramount property of ModelarDB we focus on Cassandra in the rest of the
paper. Each component in Figure B.3 is annotated with the system or library providing
the functionality of that component in ModelarDB. Spark and Cassandra are used due
to both being mature components of the Hadoop ecosystem and well integrated through
the DataStax Spark Cassandra Connector. To allow unmodified instances of Spark and
Cassandra already deployed in a cluster to be used with ModelarDB, it is implemented
as a separate JAR file that embeds ModelarDB Core and only utilizes the public in-
terfaces provided by Spark and Cassandra. As a result, ModelarDB can be deployed
by submitting the JAR file as job to an unmodified version of Spark. In addition, a
single-node ingestor has been implemented to support ingestion of data points without
Spark. Support for other query processing systems, e.g. Apache Flink [14, 15], can be
added to ModelarDB by implementing a new engine class. Support for other storage
systems, e.g. Apache HBase [16] or MongoDB [17], simply requires that a storage
interface provided by ModelarDB Core be implemented.

When ingesting, ModelarDB partitions the time series and assigns each subset to a
core in the cluster. Thus, data points are ingested from the subsets in parallel and time
series within each subset are ingested concurrently for unbounded time series. The
ingested data points are converted to a model-based representation using an appropriate
model automatically selected for each dynamically sized segment of the time series.
In addition to the predefined models, user-defined models can be dynamically added
without changes to ModelarDB. Segments constructed by the segment generators are
kept in memory as part of a distributed in-memory cache. As new segments are emitted
to the stream, batches of old segments are flushed to the segment store. Both segments
in the cache and in the store can be queried using SQL. By keeping the most recent
set of segments in memory, efficient queries can be performed on the most recent data.
Queries on historical data have increased query processing time as the segments must
be retrieved from Cassandra and cached. Subsequent queries will be performed on the
cache.

By reusing existing systems, functionality for fault tolerance can be reused as
demonstrated in [18]. As a result, ModelarDB can provide mature and well-tested fault-
tolerance guarantees and allows users of the system to select a system for storage and a
query processing engine with trade-offs appropriate for a given use case. However, as
the level of fault tolerance of ModelarDB depends on the query engine and data store,
we only discuss it at the architectural level for our implementation. For ModelarDB data
loss can occur at three stages: data points being ingested, segments in the distributed
memory cache, and segments written to disk. Fault tolerance can be guaranteed for
data points being ingested by using a reliable data source such as Apache Kafka, or
by ingesting from each time series at multiple nodes. Fault tolerance for segments
in memory and on disk can be ensured through use of distributed replication. In our
implementation, loss of segments can be prevented by compiling ModelarDB with
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replication enabled for Spark and Cassandra. In the rest of this paper we do not consider
replication, since ModelarDB reuses the replication in Spark and Cassandra without
any modification. As each data point is ingested by one node, data points will be lost if
a node fails. However, as our main use case is analyzing tendencies in time series data,
some data loss can be acceptable to significantly increase ingestion rate [19].

In addition to fault tolerance, by utilizing existing components the implementation
of ModelarDB can be kept small, reducing the burden of ensuring correctness and
adding new features. ModelarDB is implemented in 1675 lines of Java code for
ModelarDB Core and 1429 lines of Scala code for the command-line and the interfaces
to existing systems. ModelarDB Core is implemented in Java to make it simple
to interface with the other JVM languages and to keep the translation from source
to bytecode as simple as possible when optimizing performance. Scala was used
for the other components due to increased productivity from pattern matching, type
inference, and immutable data structures. The source code is available at https:
//github.com/skejserjensen/ModelarDB.

4 Data Ingestion

To use the resources evenly, ingestion is performed in parallel based on the number of
threads available for that task and the sampling rate of the time series. The set of time
series is partitioned into disjoint subsets SS and assigned to the available threads so the
data points per second of each subset are as close to equal as possible. Providing each
thread with the same amount of data points to process, ensures resources are utilized
uniformly across the cluster to prevent bottlenecks. The partitioning method used by
ModelarDB is based on [20], and minimizes max(data_points_per_minute(S1)) —
min(data_points_per_minute(S;)) for S1,S, € SS.

4.1 Model-Agnostic Compression Algorithm

To make it possible to extend the set of models provided by ModelarDB Core, we
propose an algorithm for segmenting and compressing regular time series with gaps
in which models using lossy or lossless compression can be used. By optimizing the
algorithm for regular time series with gaps as per our use case described in Section 1,
the timestamp of each data point can be discarded as they can be reconstructed using
the sampling interval stored for each time series and the start time end time stored as
part of each segment. To alleviate the trade-off between high compression and low
latency required by existing multi-model compression algorithms, we introduce two
segment types, namely a temporary segment (ST) and a finalized segment (SF). The
algorithm emits STs based on a user-defined maximum latency in terms of data points
not yet emitted to the stream, while SFs are emitted when a new data point cannot be
represented by the set of models used. The general idea of our algorithm is shown
in Figure B.4 and uses a list of models from which one model is active at a time as
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proposed by [4]. For this example we set the maximum latency to be three data points,
use a single model in the form of a linear function, and ingest the time series T'S from
Section 2. At t1 and ¢, data points are added to a temporary buffer while a model
M is incrementally fitted to the data points. As our method is model-agnostic, each
model defines how it is fitted to the data points and how the error is computed. This
allows models to implement the most appropriate method for fitting data points, e.g.,
models designed for streaming can fit one data point a time, while models that must be
recomputed for each data point can perform chunking. At ¢3, three data points have
yet to be emitted, see ye, and the model is emitted to the main memory segment cache
as a part of a ST. For illustration, we mark the last data point emitted as part of a ST
with a T, and the last data points emitted as part of a SF with an F. As M might be
able to represent more data points, the data points are kept in the buffer and the next
data point is added at ¢4. At ¢5, a data point is added which M cannot represent within
the user-defined error bound. As our example only includes one model, a SF is emitted
to the main memory segment cache and the data points represented by the SF deleted
from the buffer as shown by dotted circles, before the algorithm starts anew with the
next data point. As the SF emitted represents the data point ingested at f4, ye is not
incremented at f5 to not emit data points already represented by a SF as a part of a ST.
Last, at t,;, when the cache reaches a user-defined bulk write size, the segments are
flushed to disk.

Our compression algorithm is shown in Algorithm B.1. First variables are initial-
ized in Line 8-11, this corresponds to t( in Figure B.4. To ensure the data points can
be reproduced from each segment, in Line 14-16, if a gap exists all data points in the
buffer are emitted as one or more SFs. If the number of data points in the buffer is
lower than what is required to instantiate any of the provided models (a linear function
requires two data points) a segment containing uncompressed values is emitted. In
Line 17-20 the data point is appended to the buffer, and previous is set to the current
data point. The data point is appended to model, allowing the model to update its
internal parameters and the algorithm to check if the model can represent the new
data point within the user-defined error bound or length limit. Afterwards, the number
of data points not emitted as a segment is incremented. This incremental process is
illustrated by states t1 to ¢4 in Figure B.4. If latency data points have not been emitted,
a ST using the current model is emitted in Line 21-23. The current model is kept as
it might represent additional data points. This corresponds to f3 in Figure B.4 as a
ST is emitted due to latency = 3. If the current model cannot be instantiated with
the data points in the buffer, a ST containing uncompressed values is emitted. When
model no longer can represent a data point within the required error bound, the next
model in the list of models is selected and initialized with the buffered data points
in Line 25-27. As the model represents as many data points from buffer as possible
when initialized, and any subsequent data points are rejected, no explicit check of if
the model can represent all data points in the buffer is needed. Instead, this check
will be done as part of the algorithm’s next iteration when a new data point is ap-
pended. When the list of models becomes empty, a SF containing the model with the
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Algorithm B.1 Online model-agnostic (lossy and lossless) multi-model compression
algorithm with latency guarantees

—

: Let ts be the time series of data points.

. Let models be the list of models to select from.

: Let error be the user defined error bound.

. Let limit be the limit on the length of each segment.

: Let latency be the latency in not emitted data points.

: Let interval be the sampling interval of the time series.

. model <+ head(models)
. buffer < create_list()

© o N L R WN

10: yet_emitted < 0

11: previous <— nil

12: while has_next(ts) do

13: data_point = retrieve_next_data_point(ts)

14 if time_diff (previous, data_point) > interval then
15: flush_buffer(buffer)

16: end if

17.  append_data_point_to_buffer(data_point, buffer)
18: previous <— data_point

19: if append_data_point_to_model (data_point, model, error, limit) then
20: yet_emitted < yet_emitted + 1

21: if yet_emitted = latency then

22: emit_temporary_segment (model, buffer)
23 yet_emitted < O

24: end if

25: else if has_next(models) then

26: model < next(models)

27: initialize(model, buffer)

28: else

29: emit_finalized_segment (models, buffer)

30: model < head(models)

31: initialize(model, buffer)

32: yet_emitted < min(yet_emitted, lengh(buffer))
33: end if

34: end while

35: flush_buffer(buffer)

highest compression ratio is emitted in Line 29. To allow for models using lossless
compression we compute the compression ratio as the reduction in bytes not the num-
ber of values to be stored: compression_ratio = (data_points_represented(model) x
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size_of (data_point)) /size_of (model). As model selection is based on the compres-
sion ratio, the segment emitted by emit_finalized_segment might not represent all
data points in the buffer. In Line 30-32 model is set to the first model in the list and
initialized with any data points left in the buffer. If data points not emitted by a ST
were emitted as part of the SF, yet_emitted is decremented appropriately. This process
of emitting a SF corresponds to t5 of Figure B.4, where the latest data point is left in
the buffer and one data point is emitted first by a SF. In Line 35 as all data points have
been received, the buffer is flushed so all data points are emitted as SFs.

4.2 Considerations Regarding Data Ingestion

Two methods exist for segmenting time series: connected and disconnected. A con-
nected segment starts with the previous segment’s last data point, while a disconnected
segment starts with the first data point not represented by the previous segment. Our al-
gorithm supports both by changing if emit_finalized_segment keeps the last data point
of a segment when it is emitted. The use of connected segments provides two benefits.
If used with models supporting interpolation, the time series can be reconstructed with
any sampling interval as values between any two data points can be interpolated. Also,
connected segments can be stored using only a single time stamp as the end time of one
segment is the start time of the next. However, for multi-model compression of time
series [, 21] demonstrated an increased compression ratio for disconnected segments if
the start and end time of each segment are stored for use with indexing. The decreased
size is due to the increased flexibility when fitting disconnected segments as no data
point from the previous segment is included [5, 21]. Since time series may have gaps,
the start and end time of a segment must be stored to ensure all data points ingested
can be reconstructed. As a result, the rest of this paper will only be concerned with
disconnected segments.

To represent gaps, there are two methods: flushing the stream of data points when a
gap is encountered, or storing the gaps explicitly as a pair of time stamps G = ({5, f).
When we evaluated both we observed no significant difference in compression ratio.
However, storing gaps explicitly requires additional computation as any operation on
segments must skip gaps which also complicates the implementation. Storing gaps
explicitly requires flush_buffer(buffer) in Line 15 in Algorithm B.1 be substituted with
timestamp (previous) and timestamp(data_point) being added to a gap buffer and that
the functions emitting segments are modified to include gaps as part of the segment.
ModelarDB flushes the stream of data points as shown in Algorithm B.1; but explicit
storage of gaps can be enabled.

4.3 Implementation of User-Defined Models

For a user to optionally add a new model and segment in addition to those predefined
in ModelarDB Core, each must implement the interfaces in Table B.2. Tid is a unique
id assigned to each time series. By having a segment class, a model object can store
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data while ingesting data points without increasing the size of its segment. As a result,
models can implement model-specific optimizations such as chunking, lazy fitting or
memoization. For aggregate queries to be executed directly on a segment, the optional
methods must be implemented. An implementation of sum for a segment using a
linear function as the model is shown in Listing B.1. For this model, the sum can be
computed without recreating the data points by multiplying the average of the values
with the number of represented data points. In Line 2—-3 the number of data points is
computed. In Line 4-5 the minimum and maximum value of the segment. Last, in Line
6-7 the sum is computed by multiplying the average with the number of data points.
As a result, the sum can be computed in ten arithmetic operations and without a loop.

public double sum() {
int timespan = this.endTime - this.startTime;
int size = (timespan / this.SI) + 1;
double first = this.a * this.startTime + this.b;
double last = this.a * this.endTime + this.Db;
double average = (first + last) / 2;
return average x size;

0NN B W ==

Listing B.1: sum implemented for a linear model

To demonstrate we use the segment from Section 2 with the start time 100, the end
time 400, the sampling interval 100, and the linear function as —0.0024¢; 4 29.5 as
model. For a more realistic example we increase the end time to 7300. First the number
of data points represented by the segment is calculated ((7300 — 100)/100) +1 = 73,
followed by the value of the first —0.0024 x 100 + 29.5 = 29.26, and last data point
—0.0024 x 7300 4 29.5 = 11.98. The average value for the data points represented
by the segment is then (29.26 + 11.98) /2 = 20.62, with the sum of the represented
values given by 20.62 x 73 = 1505.26. Our example clearly shows the benefit of using
models for queries as computing the sum is reduced from 73 arithmetic operations to
10, or in terms of complexity, from linear to constant time complexity.

All models must exhibit the following behavior. A model yet to append enough data
points to instantiate the model must return an invalid compression ratio NaN so it is not
selected to be part of a segment. Second, if a model rejects a data point, all following
data points must be rejected until the model is reinitialized. Last, as consequence of
using an extensible set of models, the method for computing the error of a model’s
approximation must be defined by the model. The combination of user-defined models
and the model selection algorithm provides a framework expressive enough to express
existing approaches for time series compression. For TSMSs that compress time series
as statically sized sub-sequences using one compression method, such as Facebook’s
Gorilla [19], a single model which rejects data points based on the limit parameter
can be used. For methods that use multiple lossy models in a predefined sequence,
such as [4], the same models can be implemented and re-used with any system that
integrates ModelarDB Core, with the added benefit that the ordering of the models are
not hardcoded as part of the algorithm as in [4] but simply a parameter.

For evaluation we implement a set of general-purpose models from the literature.
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We base our selection of models on [22] demonstrating substantial increases in com-
pression ratio for models supporting dynamically sized segments and high compression
ratio for some constant and linear models, in addition to existing multi-model ap-
proaches predominately selecting constant and linear models [4, 21]. Also we select
models that can be fitted incrementally to efficiently fit the data points online. To
ensure the user-provided error bound is guaranteed for each data point, only models
providing an error bound based on the uniform error norm are considered [23]. Last, we
select models with lossless and lossy compression, allowing ModelarDB to select the
approach most appropriate for each sub-sequence. We thus implement the following
models: the constant PMC-MR model [24], the linear Swing model [25], both modified
so the error bound can be expressed as the percentage difference between the real and
approximated value, and the lossless compression algorithm for floating-point values
proposed by Facebook [19] modified to use £ Loats. A model storing raw values is
used by ModelarDB when no other model is applicable.

5 Query Processing

5.1 Generic Query Interface

Segments emitted by the segment generators are put in the main-memory cache and
made available for querying together with segments in storage. ModelarDB pro-
vides a unified query interface for segments in memory and storage using two views.
The first view represents segments directly while the second view represents seg-
ments as data points. This segment view uses the schema (Tid int, StartTime
timestamp, EndTime timestamp, SI int, Mid int, Parameters
blob) and allows for aggregate queries to be executed on the segments without re-
constructing the data points. The attribute Tid is the unique time series id, ST the
sampling interval, Mid the id of the model used for the segment, and Parameters
the parameters for the model. The data point view uses the schema (Tid int, TS
timestamp, Value float) to enable queries to be executed on data points re-
constructed from the segments. Implementing views at these two levels of abstraction
allows query processing engines to directly interface with the data types utilized by
ModelarDB Core. Efficient aggregates can be implemented as user-defined aggregate
functions (UDAFs) on the segment view, and predicate push-down can be implemented
to the degree that the query processing engine supports it. While only having the data
point view would provide a simpler query interface, interfacing a new query processing
engine with ModelarDB Core would be more complex as aggregate queries to the data
point view should be rewritten to use the segment view [1, 26, 27].

5.2 Query Interface in Apache Spark

Through Spark SQL ModelarDB provides SQL as its query language. Since Spark
SQL only pushes the required columns and the predicates of the WHERE clause to
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the data source, aggregates are implemented as UDAFs on the segment view. While
full query rewriting is not performed, the data point view retrieves segments through
the segment view which pushes the predicates of the WHERE clause to the segment
store. As a result, the segment store needs only support predicate push-down from
the segment view, and never from both views. Our current implementation supports
COUNT, MIN, MAX, SUM, and AVG. The UDAFs use the optional methods from the
segment interface shown in Table B.2 if available, otherwise the query is executed
on data points. As UDAFs in Spark SQL cannot be overloaded, two sets of UDAFs
are implemented. The first set operate on segments as rows and have the suffix _S.
The second set operate on segments as structs and have the suffix _SS. Queries on
segments can be filtered at the segment level using a WHERE clause. Thus, for queries
on the segment view to be executed with the same granularity as queries on the data
point view, functions are provided to restrict either the start time (START), end time
(END), or both (INTERVAL) of segments. While ModelarDB at the moment only
supports a limited number of built-in aggregate functions through the segment view, to
demonstrate the benefit of computing aggregates using models, any aggregate functions
provided as part of Spark SQL can be utilized through the data point view. In addition,
existing software developed to operate on time series as data points, e.g., for time series
similarity search, can utilize the data point view. Last, using the APIs provided by
Spark SQL any distributive or algebraic aggregation function can be added to both the
data point view and the segment view.

5.3 Execution of Queries on Views

Examples of queries on the views are shown in Listing B.2. Line 1-2 show two
queries calculating the sum of all values ingested for the time series with Tid =
3. The first computes the result from data points reconstructed from the segments
while the second query calculates the result directly from the segments. The query on
Line 4-5 computes the averages of the values for data points with a timestamp after
2012-01-03 12:30. The WHERE clause filters the result at the segment level and
START disregards the data that is older than the timestamp provided. Last, in Line 7-8
a query is executed on the data point view as if the data points were stored.

SELECT SUM(Value) FROM DataPoint WHERE Tid = 3
SELECT SUM_S (x) FROM Segment WHERE Tid = 3

SELECT AVG_SS( START (%, '2012-01-03 12:30") )
FROM Segment WHERE EndTime >= '2012-01-03 12:30°'

SELECT * FROM DataPoint WHERE Tid = 3
AND TS < '2012-04-22 12:25'

00NN AW

Listing B.2: Query examples supported in ModelarDB

To lower query latency, the main memory segment cache, see Figure B.3, stores the
most recently emitted or queried SFs and the last ST emitted for each time series. Then,
to ensure queries do not return duplicate data points, the start time of a ST is updated
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Figure B.5: Query processing in ModelarDB

when a SF with the same Tid is emitted so the time intervals do not overlap. STs
where StartTime > EndTime are dropped. Last, the SF cache is flushed when it
reaches a user-defined bulk write size.

Query processing in ModelarDB is primarily concerned with filtering out segments
and data points from the query result. An example is shown in Figure B.5 with a query
for segments that contain data points from the sensor with Tid = 77 from after the
date 2012-01-03. Assume that only SF3 and ST satisfy both predicates and that
SF; is not in the cache. First, the WHERE clause predicates are pushed to the segment
store, see RSq, to retrieve the relevant segment. The segment retrieved from disk is
cached, see RS», and the cache is then unioned with the STs and SFs in memory, shown
as RS3 and RS, to produce the set RSs. RS5 is filtered according to the WHERE clause
to possibly remove segments provided by a segment store with imprecise evaluation of
the predicates (i.e., with false positives) and to remove irrelevant segments from the
in-memory cache. The final result is shown as RSg. Queries on the data point view are
processed by retrieving relevant segments through the segment view. The data points
are then reconstructed and filtered based on the WHERE clause.

5.4 Code-Generation for Projections

In addition to predicate push-down, the views perform projections such that only the
columns used in the query are provided. However, building rows dynamically based on
the columns requested creates a significant performance overhead. As the columns of
each view are static, optimized projection methods can be generated at compile time
without the additional overhead and complexity of dynamic code generation.

The method generated for the data point view is shown in Listing B.3. On Line 3,
the list of requested columns is converted to column indexes and concatenated in the

133



Paper B.

1 |def getDataPointGridFunction

2 (columns: Array[String]): (DataPoint => Row) = {
3 val target getTarget (columns, dataPointView)
4 (target: @switch) match {

5 //Permutations of ('tid')

6 case 1 => (dp: DataPoint) => Row(dp.tid)

7

8 //Permutations of ('tid', 'ts', 'value')

9

10 case 321 => (dp: DataPoint) => Row(dp.value,
11 new Timestamp (dp.timestamp), dp.tid)

12 }

13 |}

Listing B.3: Selection of method for a projection

requested order to create a unique integer. This works for both views as each has less
than ten columns and allows the projection method to be retrieved using a switch in-
stead of comparing the contents of arrays. On Line 4, the projection method is retrieved
using a mat ch statement which is compiled to an efficient Llookupswitch [28].

6 Segment Storage

Figure B.6 shows a generic schema for storing segments with the metadata necessary
for ModelarDB. It has three tables: Time Series for storing metadata about time
series (the current implementation requires only the sampling interval), Model for
storing the model type contained in each segment, and last Segment for storing
segments with the model parameters as blobs. The bulk of the data is stored in the
segment table. Compared to other work [4, 21, 29], the inclusion of both a Tid and
the Time Series table allows queries for segments from different time series with
different sampling intervals to be served by one Segment table.

%
Tid (PK)| Sl Tid (PK) | StartTime (PK) EndTime Mji(d Parameters MidtPK) Name
1 60000 1 1460442200000 | 1460442620000 | 1 0x3f50cfcO 1 PMC-MR
2 120000 | | 3 1460642900000 | 1460645060000 |2 0x3fte ... 2 Swing
3 30000 3 Facebook
Time Series Segment Model

Figure B.6: Generic schema for storage of segments

6.1 Segment Storage in Apache Cassandra

Compression is the primary focus for ModelarDB’s storage of segments in Cassan-
dra. As Cassandra expects each column in a table to be independent, using Tid,
StartTime, EndTime asthe primary key only indicates to Cassandra that each par-
tition is fully sorted by Start Time. As a result, adding StartTime and EndTime
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to the primary key does not allow direct lookup of segments. However, as segments
are partitioned by T1id, inside each partition the EndT ime would be sorted as a conse-
quence of StartTime being sorted. We utilize this for ModelarDB by partitioning
each table on their respective ids, and use EndTime as the clustering column for the
segment table so segments are sorted ascendingly by EndTime on disk. This allows
the Size of a segment to be stored instead of StartTime, for a higher compression
ratio, while allowing ModelarDB to exploit the partitioning and ordering of the segment
table when executing queries as Cassandra can filter segments on EndTime while
Spark loads segments until the required StartTime is reached. The StartTime
column cannot be omitted due to the presence of gaps as explained in Section 4.2. To
support indexing methods suitable for a specific storage system like in [29], secondary
indexes can be implemented in ModelarDB as part of the storage interface shown in
Figure B.3.

6.2 Predicate Push-Down

The columns for which predicate push-down is supported in our implementation are
shown in Figure B.7. Each cell in the table shows how a predicate on a specific
column is rewritten before it is pushed to the segment view or storage. Cells for the
column StartTime marked with Spark takeWhile indicate that Spark reads rows
from Cassandra in batches until the predicate represented by the cell is false for a
segment. As explained above, this allows Start Time to be replaced with the column
Size which stores the number of data points in the segment. This reduces the storage
needed for start time without sacrificing its precision. When a segment is loaded,
the start time of the segment can be recomputed as StartTime = EndTime -
(Size = SI), allowing Spark to load segments until the predicate represented by
the cell is false for a segment. Non-equality queries on Tid are rewritten as Cassandra
only supports equality queries on a partitioning key.

7 Evaluation

We compare ModelarDB to the state-of-the-art big data systems and file formats used
in industry: Apache ORC [30, 31] files stored in HDFS [32], Apache Parquet [33] files
stored in HDFS, InfluxDB [34], and Apache Cassandra [12]. InfluxDB is running on
a single node as the open-source version does not support distribution. The number
of nodes used for each experiment is shown in the relevant figures. Multi-model
compression for time series is also evaluated in [4, 5, 21]. We first present the cluster,
data sets and queries used in the evaluation, then we describe each experiment.

7.1 Evaluation Environment

The cluster consists of one master and six worker nodes connected by I Gbit Ethernet.
All nodes have an Intel Core i7-2620M 2.70 GHz, 8 GiB of 1333 MHz DDR3 memory

135



Paper B.

Tid Timestamp Tid Ti Tid StartTime EndTime Tid StartTime EndTime
Tid IN 2 | Timestamp IN ? Tid IN ? | No Pushdown Tid IN ? | StartTime IN ? EndTime IN ? Tid IN ? No Pushdown No Pushdown
Tid> ? Timestamp > ? Tid>? EndTime > ? Tid>? StartTime > ? EndTime > ? Tid IN (?+1..n) | No Pushdown EndTime > ?
Tid >= ?_| Timestamp >= 2 Tid>=? | EndTime >=? Tid >= ? | StartTime >=? EndTime >=? H__v Tid IN (?..n) No Pushdown EndTime >=?
Tid<? Timestamp < ? Td<? StartTime < ? Td<? StartTime < ? EndTime < ? Tid IN (1..2-1) | Spark takeWhile EndTime <?
Tid <= ? | Timestamp <= ? Tid <= ? | StartTime <= ? Tid <= ? | StartTime <= ? EndTime <= ? Tid IN(1..7) Spark takeWhile EndTime <= ?
Tid=? Timestamp = ? Tid="7? StartTime <= ? AND Tid="7? StartTime = ? EndTime = ? Tid="? No Pushdown EndTime = ?
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Figure B.7: The two-step methods for predicate push-down utilized by ModelarDB
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Table B.3: The parameters we use for the evaluation

ModelarDB Value
Error Bound 0%, 1%, 5%, 10%
Limit 50
Latency 0
Bulk Write Size 50,000
Spark Value
spark.driver.memory 4 GiB
spark.executor.memory 3 GiB
spark.streaming.unpersist false
spark.sql.orc.filterPushdown true
spark.sql.parquet.filterPushdown true
Model Representation Type of Compression
PMC-MR [24] Constant Function Lossy Compression
Swing [25] Linear Function Lossy Compression
Facebook [19] Array of Delta Values Lossless Compression
Uncompressed Values Array of Values No Compression

and a 7,200 RPM hard-drive. Each node runs Ubuntu 16.04 LTS, InfluxDB 1.4.2,
InfluxDB-Python 2.12, Pandas 0.17.1, HDF'S from Hadoop 2.8.0, Spark 2.1.0, Cassan-
dra 3.9 and DataStax Spark Cassandra Connector 2.0.2 on top of EXT4. The master is
a Primary HDFS NameNode, Secondary HDFS NameNode and Spark Master. Each
worker serves as an HDFS Datanode, a Spark Slave, and a Cassandra Node. Cassandra
does not require a master node. Only the software necessary for an experiment is kept
running and replication is disabled for all systems. Disk space utilization is found
with du. The time series are stored using the same schema as the Data Point View:
Tid as a int, TS using each storage method’s native timestamp type, and Value
as a float. InfluxDB is an exception as it only supports double. Ingestion for all
storage methods is performed using f1oat. For Parquet and ORC, one file is created
per time series using Spark and stored in HDFS with one folder created for each data
set and file format pair, for InfluxDB time series are stored as one measurement with
the Tid as a tag, and for Cassandra we partition on Tid and order each partition on
TS and Value for the best compression.
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The configuration of each system is, in general, left with its default values. However,
the memory available for Spark and either Cassandra or HDFS, is statically allocated
to prevent crashes. To divide memory between query processing and data storage, we
limit the amount of memory Spark can allocate per node, so the rest is available to
Cassandra/HDFS and Ubuntu. Memory allocation is limited through Spark to ensure
consistency across all experiments. The appropriate amount of memory for Spark is
found by assigning half of the memory on each system to Spark and then reduce the
memory allocated for Spark until all experiments can run successfully. We enable
predicate push-down for Parquet and ORC. The parameters used are shown in Table B.3,
with ModelarDB specific parameters in the upper left table, changes to Spark’s default
parameters in the upper right table, and the models implemented in ModelarDB Core
shown in the bottom table. The parameter values are found to work well with the data
sets and the hardware configuration. The error bound is 10% when not stated explicitly.

7.2 Data Sets and Queries

The data sets we use for the evaluation are regular time series where gaps are uncommon.
Each data set is stored as CSV files with one time series per file and one data point per
line.

Energy Production High Frequency This data set is referred to as EH and consists
of time series from energy production. The data was collected by us from an OPC
Data Access server using a Windows server connected to an energy producer. The
data has an approximate sampling interval of 100ms. As pre-processing we round the
timestamps and remove data points with equivalent timestamps due to rounding. This
pre-processing step is only required due to limitations of our collection process and not
present in a production setup. The data set is 582.68 GiB in size.

REDD The public Reference Energy Disaggregation Data Set (REDD) [35] is a
data set of energy consumption from six houses collected over two months. We use
the files containing energy usage in each house per second. Three of the twelve files
have been sorted to correct a few out-of-order data points and the files from house six
removed due to irregular sampling intervals. As REDD fits into memory on a single
node, we extend it by replicating each file 2,500 times by multiplying all values of each
file with a random in the range [0.001,1.001) and round each value to two decimals
places to ensure our results are not impacted by identical files. 2,500 is selected due to
the amount of storage in our cluster. The data set is 487.52 GiB in size, and is referred
to as Extended REDD (ER). We use this public data set to enable reproducibility.

Energy Production This data set is referred to as EP and primarily consists of
time series for energy production and is provided by an energy trading company. The
data is collected over 508 days, has a sampling interval of 60s, and is 339 GiB in size.
The data set also contains entity specific measurements such as wind speed for a wind
turbine and horizontal irradiance for solar panels.

Queries The first set of queries (S-AGG) consists of small aggregate and GROUP
BY queries and represents online analytics on one or a few time series, e.g., correlated
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sensors, as analytical queries are the intended ModelarDB use case. Both types of
queries are restricted by Tid using a WHERE clause, with the GROUP BY queries
operating on five time series each and GROUP on Tid. The second set (L-AGG)
consists of large aggregate and GROUP BY queries, which aggregate the entire data
set and each GROUP BY query GROUPs on Tid. L-AGG is designed to evaluate the
scalability of the system when performing its intended use case. The third set (P/R)
contains time point and range queries restricted by WHERE clauses with either TS
or Tid and TS. P/R represents a user extracting a sub-sequence from a time series,
which is not the intended ModelarDB use case, but included for completeness. We do
not evaluate SQL JOIN queries as they are not commonly used with time series, and
similarity search is not yet built into ModelarDB.

7.3 Experiments

Ingestion Rate To remove the network as a possible bottleneck, the ingestion rate is
mainly evaluated locally on a worker node. For each system/format we ingest channel
one from house one of ER from gzipped CSV files (14.67 GiB) on local disks. Except
for InfluxDB, ingestion is performed using a local instance of Spark through spark-shell
with its default parameters. As no mature Spark Connector to our knowledge exists for
InfluxDB, we use the InfluxDB-Python client library [36]. The input files are parsed
using Pandas and InfluxDB-Python is configured with a batch size of 50,000. For
Cassandra we increase the parameter batch_size_fail_threshold_in_kb
to 50 MiB to allow larger batches. To determine ModelarDB’s scalability we also
evaluate its ingestion rate on the cluster in two different scenarios: Bulk Loading
(BL) without queries and Online Analytics (OA) with aggregate queries continuously
executed on random time series using the Segment View. When using a single worker,
ModelarDB uses the single-node ingestor, and when it is distributed, Spark streaming
with one receiver per node, a micro-batch interval of five seconds, and latency set to
zero so each data point is part of a segment only once.

The results are shown in Figure B.8. As expected InfluxDB and Cassandra had the
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lowest ingestion rate, as they are designed to be queried while ingesting. ModelarDB
also supports executing queries during ingestion but still provides 11 times and 4.89
times faster ingestion than InfluxDB and Cassandra, respectively. Parquet and ORC
provided 1.52 and 1.39 times increase compared to ModelarDB, respectively. However,
an entire file must be written before Parquet and ORC can be queried, making them
unsuitable for online analytics due to the inherent latency of this approach. This
compromise is not needed for ModelarDB as queries can be executed on data as it is
ingested. When bulk loading on the six node cluster the ingestion rate for ModelarDB
increases 5.39 times, a close to linear speedup. The ingestion is nearly unaffected, a
5.36 times increase, when doing online analytics in parallel. In summary, ModelarDB,
achieves high ingestion rates while allowing online analytics, unlike the alternatives.

Effect of Error Bound and Outliers The trade-off between storage efficiency
and error bound is evaluated using all three data sets. The models used and size of
each data set are found when stored in ModelarDB with the error bound set to values
from 0% to 10%. We compare the storage efficiency of ModelarDB with the systems
used in industry. In addition, we evaluate the performance of ModelarDB’s adaptive
compression method when outliers are present, by adding an increasing number of
outliers to each data set. The outliers are randomly created such that the average
distance between two consecutive outliers is N and the value of each outlier is set to
(Value of Data Point to Replace + 1) * 2.

The storage used for EH is seen in Figure B.9. Of the existing systems, InfluxDB
performs the best, but even with a 0% error bound, ModelarDB reduces the size of
EH 1.52 times compared to InfluxDB. This is expected as the PMC-MR model can be
used to perform run-length encoding while changing values are managed with delta-
compression using the Facebook model. Increasing the error bound to 10% provides a
further 1.18 times reduction, while the average actual error is only 0.005%. The results
for ER are seen in Figure B.10. Compared to InfluxDB, ModelarDB provides much
better compression: 2.40 times for 1%, 7.02 times for 5%, and 9.31 times 10% error
bound. For ER, ORC is best of the existing systems, but ModelarDB further reduces by
2.13 times for 1%, 6.24 times for 5%, and 8.27 times for 10% error bound. In addition,
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average actual error for ER is only 0.22% with 1% bound, 1.25% for 5% bound and
2.50% for 10% bound. Even with a 0% bound, ModelarDB uses just 1.17 times more
storage than ORC. EP results are shown in Figure B.11. Here, ModelarDB provides
the best compression, even at 0% error bound, however, the difference is smaller than
for EH and ER. This is expected, as the EH and ER sampling intervals are 600 and 60
times lower, respectively, yielding more data points with similar values due to close
time proximity. ModelarDB also manages to keep the average actual error for EP low
at only 0.08% for 1%, 0.48% for 5% and 0.73% for a 10% bound.

The models utilized for each data set are shown in Figure B.12—B.14. Overall
PMC-MR and Facebook are the most utilized models, with Swing used sparingly
except for EP with 5% and 10% error. Note, that Swing also is utilized for ER and EP
with a 0% error bound as perfectly linear increases and decreases of values do exist
in the data sets. Last, except for EH, multiple models are used extensively. These
results clearly show the benefit and adaptivity of multi-model compression as each
combination of data set and error bound can be handled efficiently using different
combinations of the models.

The effect of outliers is shown in Figure B.15. As expected the storage used
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increases with the number of outliers, but the increase depends on the data set and
error bound. For all data sets, ModelarDB degrades gracefully as additional outliers
are added to the data set. As the values of N decrease below 250 the relative size
increases more rapidly as the high number of outliers severely restrict the length of the
segments ModelarDB can construct. The results also show that ModelarDB is more
robust against outliers when a 0% error bound is used. With a 10% error bound the
relative increase for EH and EP is slightly higher than for a 0% error bound, while the
relative size increase for ER with a 10% error bound in the extreme case of N = 25 is
9.06 while it is only 1.12 with a 0% error bound. This is expected as ER has a high
compression ratio with a 10% error bound and the high number of outliers prevents
ModelarDB from constructing long segments. The results show that although designed
for time series with few outliers, ModelarDB degrades gracefully as the amount of
outliers increases. In summary, ModelarDB provides as good compression as the
existing formats when a 0% error bound is used, and much better compression for even
a small error bound, by combining different models depending on the data and error
bound.

Scale-out To evaluate ModelarDB’s scalability we first compare it to the existing
systems when executing L-AGG on ER using the test cluster. Then, to determine the
scalability of ModelarDB on large clusters, we execute L-AGG on Microsoft Azure
using 1—32 Standard_D8_v3, the node type is selected based on the documentation
for Spark, Casandra and Azure [37-39]. The configuration from the test cluster is
used with the exception that Spark and Cassandra each have access to 50% of each
node’s memory as no crashes were observed with this initial configuration. For each
experiment REDD is duplicated, using the method described above, and ingested so
each node stores compressed data equivalent to the node’s memory. This makes caching
the data set in memory impossible for Spark and Cassandra. The number of nodes and
data size are scaled in parallel based on existing evaluation methodology for distributed
systems [40]. Queries are executed using the most appropriate method for each system:
InfluxDB’s command-line interface (CLI), ModelarDB’s Segment View (SV) and Data
Point View (DPV), and for Cassandra, Parquet, and ORC a Spark SQL Data Frame
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(DF). We evaluate the query performance using a DF and a cached Data Frame (DFC)
as shown in Figure B.25. However, as DFCs increased the run-time, as the data was
inefficiently spilled to disk, we only use DFs for the other queries.

The results are shown in Figure B.16—B.17. For both views ModelarDB achieves
close to linear scale-up. This is expected as queries can be answered with no shuffle
operations as all segments of a time series are co-located. However, using SV, the query
processing time is significantly reduced as SV does not reconstruct the data points
which reduces both CPU and memory usage. On one node SV is 2.27 times faster
than DPYV, and 2.16 times faster with six nodes. For L-AGG on ER, ModelarDB is
faster than all the existing systems. Compared to InfluxDB, on one node, ModelarDB
is 2.95 times and 1.30 times faster for SV and DPV, respectively. Using six nodes,
ModelarDB is 1.52 times and 1.67 times faster than Parquet and ORC, respectively. In
summary, ModelarDB scales almost linearly while providing better performance than
the competitors.

Effect of Optimizations To evaluate the code generation and predicate push-down
optimizations, we execute L-AGG and P/R on ER both with and without the optimiza-
tions. As a comparison to static code generation, we implement a straightforward
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dynamic code generator using scala.tools.reflect.ToolBox and Spark’s
mapPartitions transformation. By default ModelarDB uses static code-generation
for projections and predicate push-down for Tid, Timestamp, and takeWhile.

The results for projection in Figure B.18 show that generating optimized code for
projections decreases the run-time up to 1.60 times compared to constructing each
row dynamically. However, using our implementation of dynamic code generation
increases the run-time compared to our static code generation. The results for predicate
push-down are seen in Figure B.19. Predicate push-down has little effect on the query
processing time for L-AGG, but the reduction is more pronounced for P/R where we
see a 7.03 times reduction. This is to be expected as all queries in L-AGG must read
the entire data set from disk, while all queries in P/R can be answered using only a
small subset.

Further Query Processing Performance To further evaluate the query perfor-
mance of ModelarDB, we execute S-AGG and P/R on all data sets using the query
interfaces described for scale-out.

The results for S-AGG are shown in Figures B.20—B.22. Once again the run-time
is reduced using the SV. While InfluxDB performs slightly better than ModelarDB for
S-AGG on ER and EP, it is limited in terms of scalability and ingestion rate, as shown
above where ModelarDB executes L-AGG on ER 2.95 times faster than InfluxDB.
Compared to the distributed systems, ModelarDB provides as good, or better query
processing times for nearly all cases. On EH, ModelarDB is 1.4 times faster than ORC
and 152.62 times faster than Cassandra. For EH, Parquet is faster, but for all other
data sets ModelarDB is faster and uses much less storage space. For ER, which is a
core use case scenario, ModelarDB reduces the query processing time by staggering
34.57, 286.03 and 45.99 times, compared to Cassandra, Parquet and ORC, respectively.
Last, for EP, Cassandra and ModelarDB provide the lowest query processing time
with ModelarDB being 11.33 times faster. Thus for our experiments ModelarDB
improves the query processing time significantly compared to the other distributed
systems, in core cases by large factors, while it for small-scale aggregate queries
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remains competitive with an optimized single node system.

The results for P/R are shown in Figures B.23—B.25. For P/R, InfluxDB and
Cassandra perform the best, which contrasts our scale-out experiment where they
perform the worst. Clearly these systems are optimized for queries on a small subset of
a data set, while Parquet, ORC, and ModelarDB, are optimized for aggregates on large
data sets. While P/R queries are not a core use case, ModelarDB provides equivalent
performance for P/R queries in most cases and is only significantly slower for EH.
When compared to ORC and Parquet, ModelarDB is in general faster and in the best
case, ER, provides 1.63 times faster query processing time. In one single instance, for
EH, ORC is 33.59 times faster than ModelarDB due to better predicate push-down, as
disabling predicate push-down for ORC increases the run-time from 47.64 seconds
to 1 hour and 40 minutes. However, unlike Parquet and ORC, time series ingested by
ModelarDB can be queried online. An interesting result was that DFCs increased the
query processing time, particularly for the first query. This indicates that the data set
is read from and spilled to disk due to a lack of memory during the initial query with
subsequent queries executed using Spark’s on-disk format.

For our experiments, the other systems require a trade-off as they are either good at
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large aggregate queries or point/range and small aggregate queries and support online
analytics, but not both. ModelarDB hits a sweet spot, improving the state-of-the-art
for online analytics by providing fast ingestion, better compression and scalability
for large aggregate queries while remaining competitive with other systems for small
aggregate and point-range queries. This combination of features is not provided by any
competitor.

8 Related Work

Management of sensor data using models has received much attention as the amounts
of data have increased. We provide a discussion of the most relevant related methods
and systems. For a survey of model-based sensor data management see [41], while a
survey of TSMSs can be found in [3].

Methods have been proposed for online construction of approximations with mini-
mal error [42], or maximal segment length for better compression [23]. As the optimal
model can change over time, methods using multiple mathematical models have been
developed. In [5] each data point in the time series is approximated by all models in a
set. A model is removed from the set if it cannot represent a data point within the error
bound. When the set of models is empty, the model with the highest compression ratio
is stored and the process restarted. A relational schema for segments was discussed
in [21]. The Adaptive Approximation (AA) algorithm [6] uses functions as models
with an extensible method for computing the coefficients. The AA algorithm approx-
imates each data point in the time series until a model exceeds the error bound and
a local segment is created for that model and the model reset. After all models have
constructed one local segment, the segments using the lowest number of parameters
are stored. An algorithm based on regression was proposed in [4]. It approximates data
points with a single polynomial model and then increases the number of coefficients
as the error bound becomes unsatisfiable. As the user-defined maximum number of
coefficients is reached, the model with the highest compression ratio is stored and the
time series rewound to the last data point of the stored segment. In this paper, we
propose a multi-model compression algorithm for time series that improves on the
state-of-the-art as it supports user-defined models, supports lossy and lossless models,
and removes the trade-off between compression and latency inherent to the existing
methods.

In addition to techniques for representing time series as models, RDBMSs with
support for models have also been proposed. MauveDB [26] supports using models for
data cleaning without exporting the data to another application. Models are explicitly
constructed from a table with raw data and then maintained by the RDBMS. Model-
based views created with a static sampling interval serve as the query interface for
the models. FunctionDB [27] natively supports polynomial functions as models. The
RDBMS’s query processor evaluates queries directly on these models when possible,
with the query results provided as discrete values. Model fitting is performed manually
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by fitting a specific model to a table. Maintenance of the constructed models is
outside the scope of the paper. Plato [1] allows for user-defined models. Queries are
executed on models if the necessary functions are implemented and discrete values
if not. The granularity at which to instantiate a model for a query can be specified
with a grid operator or left to Plato. Fitting models to a data set is done manually as
automated model selection is left as future work. Tristan [43], based on the MiSTRAL
architecture [44], approximates time series as sequences of fixed-length time series
patterns using dictionary compression. Before ingestion a dictionary must be trained
offline on historical data. During ingestion a fixed number of data points are buffered
before the compression is applied and the dictionary updated with new patterns if
necessary. For approximate query processing a subset of the patterns stored for a time
series is used. A distributed approach to model-based storage of time series using an in-
memory tree-based index, a key-value store, and MapReduce [45] was proposed by [29].
The segmentation is performed using Piecewise Constant Approximation (PCA) [41].
Each segment is stored and indexed twice, once by time and once by value. Query
processing is performed by locating segments using the index, retrieving segments from
the store using mappers, and last, instantiating each model using reducers. ModelarDB
hits a sweet spot and provides functionality in a single extensible TSMS not present in
the existing systems: storage and query processing for time series within a user-defined
error bound [1, 26, 27], support for both fixed and dynamically sized user-defined
models that can be fitted online without requiring offline training of any kind [43], and
automated selection of the most appropriate model for each part of a time series while
also storing each segment only once [29].

9 Conclusion & Future Work

Motivated by the need for storage and analysis of big amounts of data from reliable
sensors, we presented a general architecture for a modular model-based TSMS and
a concrete system using it, ModelarDB. We proposed a model-agnostic extensible
and adaptive multi-model compression algorithm that supports both lossless and lossy
compression within a user-defined error bound. We also presented general methods
and optimizations usable in a model-based TSMS: (i) a database schema for storing
multiple distinct time series as (possibly user-defined) models, (ii) methods to push-
down predicates to a key-value store that utilizes the presented schema, (iii) methods to
execute optimized aggregate functions directly on models without requiring a dynamic
optimizer, (iv) static code-generation to optimize execution of projections, (v) dynamic
extensibility that allows user-defined models to be added and used without recompiling
the TSMS. The architecture was realized as a portable library which was interfaced
with Apache Spark for query processing and Apache Cassandra for storage. Our
evaluation showed that, unlike current systems, ModelarDB hits a sweet spot and
achieves fast ingestion, good compression, almost linear scale-out, and fast aggregate
query processing, in the same system, while also supporting online queries. The
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evaluation further demonstrated how the contributions effectively work together to
adapt to the data set using multiple models, that the actual errors are much lower than
the bounds, and how ModelarDB degrades gracefully as outliers are added.

In future work we are planning to extend ModelarDB in multiple directions: (i)
Increase query performance by developing new techniques for indexing segments
represented by user-defined models, performing similarity search directly on user-
defined models, and performing dynamic optimizations utilizing that the time series are
represented as models. (ii) Reduce the storage needed for large volumes of sensor data
by representing correlated streams of sensor data as a single stream of segments. (iii)
Further simplify use of ModelarDB by removing or automatically inferring parameters.
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Abstract

To monitor critical infrastructure, high quality sensors sampled at a high frequency
are increasingly installed. However, due to the big amounts of data produced, only
simple aggregates are stored. This removes outliers and hides fluctuations that could
indicate problems. As a solution we propose compressing time series with dimensions
using a model-based method we name MMGC. MMGC adaptively compresses groups
of correlated time series using an extensible set of model types within a user-defined
error bound (possibly zero). To partition time series into groups, we propose a set
of primitives for efficiently describing correlation for data sets of varying sizes. We
also propose efficient query processing algorithms for executing multi-dimensional
aggregate queries on models instead of data points. Last, we provide an open-source
implementation of our methods as extensions to the model-based TSMS ModelarDB.
ModelarDB interfaces with the stock versions of Apache Spark and Apache Cassandra
and can thus reuse existing infrastructure. Through an evaluation we show that,
compared to widely used systems, our extended ModelarDB provides up to 13 times
faster ingestion due to high compression, 65 times better compression due to the
adaptivity of MMGC, 391 times faster aggregate queries as they are executed on
models, and close to linear scalability while also being extensible and supporting
online query processing.

The layout has been revised.



1. Introduction

1 Introduction

Companies managing energy production benefit from monitoring with a high degree of
coverage and having data points sampled at a high frequency to manage their critical
infrastructure. Energy producing entities, such as wind turbines and solar panels,
are thus monitored by regularly sampling high quality sensors with wired power and
connectivity. As a result, invalid, missing and out-of-order readings are rare, and
all except missing values can be corrected using established methods. In addition to
data points, metadata, e.g., location and sensor type, is stored for each time series
to support analysis along multiple dimensions. The collected data is used by park
owners and turbine manufactures for management and warranty purposes. Based on
discussions with both owners and manufacturers, we learned that storing such high
volumes of raw sensor data is either infeasible or prohibitively expensive. Instead
only simple aggregates are stored, e.g., 1-10 minute averages, removing outliers and
fluctuations as a result. Use of a dynamic sampling rate can reduce the amount of
data to store by only storing critical events at high detail. However, what constitutes
a critical event is not known by the park owners so a constant high sampling rate is
needed. As a remedy, model-based storage uses models to reconstruct the original time
series within a known error bound (possibly zero) [1, 2]. Model-based storage of time
series has been improved through MMC and MGC. MMC utilizes that the structure of
time series changes over time and compresses each time series using multiple model
types [3—7]. MGC exploits that time series are correlated, e.g., temperature sensors in
close proximity likely report similar values, and compresses correlated time series as
one stream of models [8, 9]. MGC is illustrated in Figure C.1 where a linear function
(v = a X t + D) is used to represent three correlated time series, creating a mapping
from a timestamp ¢ to an approximated value v for the three values observed at that
timestamp.

However, to our knowledge no method for MMC exploits the correlation between
time series, while existing methods for MGC each only utilizes one model type. In
this paper, we focus on the novel problem of compressing groups of correlated time

Start Time | End Time Model
' 100 2300 v =-0.047t+192.2
. 100 2300 v =-0.046t+180.1
[ ] { e
e SCHLES . 100 2300 v =-0.057t+205.4
ay ..., ’

\ ' Start Time | End Time Model
100 2300 v =-0.0465t+186.1

Figure C.1: Time series compressed and stored as one model per time series (Top), or as one model for all
time series (Bottom)
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series with user-defined dimensions using both MMC and MGC. We name this new
type of compression Multi-model Group Compression (MMGC). We demonstrate that
MMGTC is suitable for use with a TSMS by extending the open-source MMC TSMS
ModelarDB [7] with MMGC. To differentiate between the two versions of ModelarDB
we use ModelarDB,; for the original version and ModelarDB,, for the new version
extended with MMGC. We also demonstrate how multi-dimensional aggregate queries
can be performed much more efficiently on models compared to data points. As a
result, ModelarDB,;, provides a high compression ratio for time series data, distributed
storage and query processing for scalability, stream processing for low latency, and
efficient support for multi-dimensional aggregate queries of time series. In summary,
we make the following contributions in the area of big data systems:

* The concept of Multi-model Group Compression and extensions of existing model
types for compressing groups of time series.

* Primitives for partitioning time series into groups of correlated time series using their
dimension hierarchy and user hints.

 Algorithms for performing simple and multi-dimensional aggregate queries on mod-
els representing groups of time series.

e The TSMS ModelarDB implementing our methods for partitioning, Multi-model
Group Compression, and query processing.

* An evaluation of ModelarDB with the algorithms for partitioning, Multi-model
Group Compression, and query processing.

The structure of the paper is as follows. Definitions are provided in Section 2.
Section 3 provides an overview of ModelarDB,,. Section 4 documents our parti-
tioning primitives, while Section 5 describes our MGC extensions to existing model
types. In Section 6 our query processing algorithms are described. An evaluation of
ModelarDBy, is given in Section 7. Related work is presented in Section 8. Last,
Section 9 provides our conclusion and future work.

2 Preliminaries

We now provide definitions for use in the paper. As we extend ModelarDBy,;, Defini-
tions C.1-C.4 and C.6-C.7 are mainly reproduced from [7].

Definition C.1 (Time Series)

A time series TS is a sequence of data points, in the form of timestamp and value pairs,
ordered by time in increasing order TS = ((t1,v1), (f2,v2),...). For each pair (;,v;),
1 < i, the timestamp t; represents when the value v; € R was recorded. A time series
TS = ((t1,v1),--.,(ty, vy)) with a fixed number of n data points is a bounded time
series.
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Definition C.2 (Regular Time Series)

A time series TS = ((t1,v1), (f2,v2), . ..) is considered regular if the time elapsed
between each data point is always the same, i.e., t;1 1 —t; = t;1p —t;y1 for 1 <iand
irregular otherwise.

Definition C.3 (Sampling Interval)
The sampling interval of a regular time series TS = ((t1,v1), (t2,v2), .. .) is the time
elapsed between each pair of data points in the time series SI = t;,1 —t; for 1 <.

Consider for example the time series TS = ((100, 188.5), (200, 181.8), (300,179.15),
(400,172.4), (500,169.7), .. .). The timestamps represent milliseconds since record-
ing started. To construct a bounded time series, we can consider a subset of the data
points where, e.g., 100 < t; < 500. Both versions of TS are regular and have a SI of
100 milliseconds.

Definition C.4 (Model)

A model of a time series TS = ((t1,v1),...) is a pair of functions M = (m, ey, ). For
each t;, 1 < i, m is a real-valued mapping from £; to an estimate of the value v; for the
corresponding data point in T'S. e, is a mapping from TS and the corresponding m1 to
a non-negative real value representing the error of the values estimated by m.

Definition C.5 (Model Type)

A model type is a partial function m;(TS, €), which when defined for a bounded time
series T'S and a non-negative real number € returns a model M = (m, e;;) of TS such
that e, (TS, m) < €. We call € the error bound.

For example, Swing [10] is a model type which computes the parameters a4 and b
for a linear function at; + b to represent the values of the bounded time series TS
within € using the uniform norm. We say a model is fitted to a time series when its
parameters are computed. An example of a model is the representation of T'S within
€ = 5 according to the uniform norm e,, = max(|v; — m(t;)|), 1 < i < 5 using
the linear function m = —0.047¢; +192.2, 100 < ¢; < 500. This model has an
error of [169.7 — (—0.047 x 500 + 192.2)| = 1 as the uniform norm uses the largest
difference between a real and an approximated value as the error.

Definition C.6 (Gap)

A gap between a regular bounded time series TS = ((f1,v1),...,(ts,vs)) and a
regular time series TSy = ((t¢, ¢), (te41,Ves1), - - -) with the same sampling interval
SI and recorded from the same source, is a pair of timestamps G = (fs, f,) with
te = ts +m x SI, m € N>, and where no data points exist between ts and .

Definition C.7 (Regular Time Series with Gaps)

A regular time series with gaps is a regular time series, TS = {((t1,v1), (f2,v2),...)
where v; € RU{_L} for 1 < i. For a regular time series with gaps, a gap G = (ts, t,)
is a sub-sequence where v; = | for t; < t; < f,.
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t ts fe
' TS, '\// TS,
G - (ts, tg)

Figure C.2: Illustration of a gap G between ¢, and t,

A gap is shown in Figure C.2. For simplicity time series from the same source
separated by gaps are referred to as a time series with gaps. For example TSy =
((100,188.45), (200, 181.8), (300, 179.15), (400,172.4), (500,169.7), (1100, 141.5),
...y has the gap G = (500,1100). As TS contains a gap it is irregular with an un-
defined SI. However, TS can also be represented as a regular time series with gaps
TS, = ((100,188.45), (200,181.8), (300, 179.15), (400, 172.4), (500, 169.7), (600,
1),(700, 1), (800, 1), (900, L), (1000, 1), (1100,141.5),...) with ST = 100 mil-
liseconds.

Definition C.8 (Dimension)

A dimension with members M is a 3-tuple D = (member : TS — M, level :
M — {0,1,...,n},parent : M — M) where (i) M is hierarchically organized
descriptions of the time series in the set of time series TS with the special value
T € M as the top element of the hierarchys; (ii) level is surjective; (iii) For TS € TS,
level(member(TS)) = n and #m € M where level(m) > n; (iv) For TS € TS,
m € Mandk # T, if level(m) = k then level(parent(member(TS))) = k —1; (v)
parent(T) = T; (vi) level(T) = 0.

A time series belongs to a dimension’s most detailed level that has no descendants.
Each member (except T) at a level k has a parent at level kK — 1. This allows users to
do analysis at different levels by grouping on a level. To better describe the relation
of the time series to real-world entities we will be writing dimensions using named
levels. For example, for time series collected from wind turbines a location dimension
could be defined as Turbine — Park — Region — Country — T . For a time series
TS, the function member(TS) then provides a member for the Turbine level, while
parent(member(TS)) provides a member for the Park level. If TS is collected from a
sensor on a wind turbine with id 9834 placed in Aalborg, the member for the first level is
member(TS) = 9834, while the member for the next level is parent(9834) = Aalborg
until parent returns T indicating the top of the hierarchy.

Definition C.9 (Time Series Group)

A time series group is a set of regular time series, possibly with gaps, TSG =
{TSy,..., TSy}, where for TS;, TS; € TSG it holds that they have the same sampling
interval SI and that t1; mod SI = t;; mod SI where t1; and ;; are the first timestamp
of TS; and T'S;, respectively.

For example, TSG = {TS, TSy} is a time series group which contains the time series
TS and the regular time series with gaps T'S,¢, both with SI = 100 milliseconds.
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The irregular time series TS¢ cannot be in the set as it does not have SI = 100
milliseconds. Different time series can also be correlated even if they consist of very
different values. For example, TS; = ((100,188.45), (200, 181.8), (300,179.15)
and TS, = ((100,282.7), (200,272.7), (300,268.73) are correlated, but consist of
different values. Scaling the values of TS by 1.5, however, makes the values of
TSq and TS, approximately equal and they can thus be compressed together. During
query processing, the scaling must obviously also be taken in account to reproduce the
original values.

To uphold an error bound for a model-based representation, a time series can be
split into segments which are dynamically sized subsequences. For each segment a
model represents its values and the segments of a given time series may use different
model types. Subsequences of multiple time series in a group may even be represented
by a single segment such that a single model is used to approximate values for all time
series in the group.

Definition C.10 (Segment)

A segment is a 5-tuple S = (t;,t.,SI, Gts : TSG — oltsts+SLte} M) representing
the data points for a bounded time interval of a time series group TSG. The 5-tuple
consists of start time ¢;, end time f,, sampling interval SI, a function G which for the
TS € TSG gives the set of timestamps for which v = _L in TS, and where the values
of all other timestamps are defined by the model M multiplied by a scaling constant
Crs € R.

As an example of a segment we use the series TS = (100, 187.5), (200, 182.8), (300,
178.1), (400,173.4), (500,183.7), TS, = (100,175.5),(200,170.9), (300,166.3),
(400,161.7),(500,179.1) and TS3; = (100,189.7), (200, 184), (300,178.3), (400,
174.6), (500,172.9). Representing these time series with the linear function m =
—0.0465¢; + 186.1 creates an approximation with the error |183.7 — (—0.0465 x
500 + 186.1)| = 20.85 when using the uniform norm. If the error bound, e.g., is
10, the segment S = (100,400,100, G;s = @, (m = —0.0465¢t; 4+ 186.1,¢,, =
max(|v; — e (t)]))), 1 < i <4, is created.

In this paper we focus on using MMGC to compress unbounded regular times
series, possibly with gaps and dimensions, while the time series are being ingested by a
TSMS and analyzed using data warehouse style Online Analytical Processing (OLAP)
queries.

3 Overview

3.1 Architecture

ModelarDBy, is designed as a portable library, ModelarDB,, Core, that is simple to
interface with existing software. We interface it with the stock versions of Apache
Spark for query processing and Apache Cassandra for storage in a master/worker
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(Apache Spark SQL)
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Figure C.3: Architecture of ModelarDB,, workers. Time series are grouped using only metadata and user hints before workers start ingesting
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architecture. ModelarDB,; implements MMGC by adding a Partitioner to the mas-
ter node and by changing ModelarDBy;’s components [7]. The Partitioner groups
correlated time series using metadata (source and dimension hierarchy), as historical
data might not be available and due to the large overhead of discovering correla-
tion in time series ingested by distributed workers. Discovering correlation through
data mining is thus considered an orthogonal problem. Last, to prevent data skew
the Partitioner partitions the set of time series groups into subsets SSG and dis-
tributes them across the cluster so the numbers of data points received per second
for each thread are as close to equal as possible. The partitioning method used
is based on [11], and minimizes maxsg, essg (data_points_per_minute(SGy)) —
mingg, essc (data_points_per_minute(SGy)). During ingestion the system auto-
matically selects an appropriate model type for each dynamically sized sub-sequence
of each time series group. Three model types, extended to support MGC, are in-
cluded in ModelarDB,, Core: the constant PMC-Mean model (PMC-Mean) [12], the
linear Swing model (Swing) [10], and the lossless compression algorithm for floating-
point values proposed for the TSMS Gorilla (Gorilla) [13]. Users can optionally add
model types through an API without recompiling ModelarDB,,. For query processing
ModelarDB,, uses SQL and expands the Segment View and Data Point View proposed
for ModelarDBy [7]. The Segment View allows aggregates to be executed on segments,
e.g., SUM on a linear model uses constant time, while queries on the Data Point View
are executed on reconstructed data points.

The architecture of the worker nodes in ModelarDBy; is split into three sets of
components as shown in Figure C.3. In the figure each component is annotated with
the software providing that functionality and components modified for ModelarDB,,
have a gray gradient. Data Ingestion ingests time series and constructs models within a
user-defined error bound; Query Processing caches recently constructed and queried
segments and processes queries at either the segment or data point level; Segment
Storage provides a uniform interface with predicate push-down for the persistent
segment group store.

3.2 Ingestion and Representation of Gaps

The multi-model ingestion method used by ModelarDB,, for both bounded and un-
bounded time series is shown in Figure C.4, and compresses each group of time series

PMC-Mean Swing Gorilla PNIC
187.5]-25]-5.4] - |
I'-H-l-j' Soguun, H Jeguun HHEH
:}>s—>l"h.#.:-§... >s—>--l-,...:.:::...... > —
L] 4

Y ts Y 42 4 te o Ye

S=(t, t,4, SI, Gts, M = (m = ax+b, e )))

Figure C.4: Multi-model ingestion as performed by ModelarDB,,
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using a user-configurable list of model types. While users optionally can add additional
model types, we use the three model types included in ModelarDBy; in the following
example. At tq the first group of data points is received and added to a buffer, then
the first model type (PMC-Mean) fits a model to them. At each SI the current model
is updated if possible within the error bound so that it also represents the new group
of data points. All models included in ModelarDB,, Core are incrementally updated
instead of fitting a model to all buffered data points at each SI. At tg a group of data
points is received that the current model cannot represent without exceeding the error
bound € for other data points in the current segment. Therefore, the model type is
replaced with the next in the list (Swing). If possible, a new model is fitted to all
buffered data points and ingestion continues, otherwise the next model type is used.
For model types using lossless compression, e.g., Gorilla, the model is limited by
a user-configurable length instead of an error bound. At t14 the last model type in
the list (Gorilla) cannot fit a model to the received group of data points. Then the
model providing the highest compression ratio (a model of type Swing in this example)
is temporarily cached in memory and stored persistently on disk, the data points it
represents cleared from the buffer, and the ingestion restarted from the first model
type with the data points not yet represented. ModelarDB,; stores each group of time
series as dynamically sized segments, with each segment represented by the model
type providing the best compression within an error bound (possibly zero). If none of
the model types can represent any of the buffered data points, e.g., a linear function
requires two values, a fallback model type is used to store the raw buffered values.
To simplify management of gaps and improve filtering during query processing, the
start time and end time are stored for each segment. In addition, segments are stored
disconnected (no overlapping data points) to increase the compression compared to
connected segments [3, 4].

If a gap occurs ModelarDBy; creates a new segment and stores Tids in the segment
as shown in Figure C.5. As the group shown consists of three time series a model is
fitted to three values at 1. At time ts + SI, a gap occurs in TS, and a new model is
fitted to the values from only two time series. To indicate that the model created only
represents a subset of the time series, the Tids of the time series not represented are

TS1 44 S1=(t, ts, SI{}, My)
TS2 :.-i..;.- ta
TS3 *rrr*uizialllie, th S, = (t+Sl, te-SI, SI, {TS;}, My)

]
L L
LS a
o o,y

S4 ts S, te 83.... S3 = (te, th, SI, {}, M3)

Figure C.5: Creating segments to not store gaps as timestamps
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stored in the segment, see Sp. When data points are received from all time series again,
the process is repeated, see f, and S3. Thus, a segment represents data points for a
static number of time series. This method is used as it simplifies implementation of
user-defined model types as ModelarDB,, manages gaps.

3.3 Storage Schema

The storage schema used by ModelarDB,, to support MMGC is shown in Figure C.6.
The Time Series table stores ST, a scaling constant Scaling (Crg in Defini-
tion C.10) and denomalized user-defined dimensions for each time series, with each
identified by a Tid. Only the ST is mandatory. The Gid is the group a time series has
been partitioned into and is computed by ModelarDBy, using user hints. Scalingisa
constant that is applied to values during ingestion and query processing. With a scaling
constant correlated time series with different values can be compressed together. The
Model table maps a Mid to the Java Classpath of that model type. Last, the Segment
table contains all ingested data points as dynamically sized segments.

" Segment £ 1 Model
Gid (PK) | StartTime (PK) | Gaps (PK) EndTime Mid Parameters Mid (PK) | Classpath
1 1460442200000 | ] 1460442620000 | 1 0x3f50cfcO 1 PMC-Mean
3 1460642900000 | [2] 1460645060000 | 2 Ox3fte ... 2 Swing
3 Gorilla
Time Series
A Ty [ R LR EEEEEEL e EEFEEEEEELS
Tid (PK) Gid Scaling Sl | Country Region Park Entity i Level 1 | Level 2 Level N
1 1 1.0 30000 | Denmark | Nordiylland | Farss | 9572 |}
2 3 1.0 60000 Denmark | Nordjylland | Aalborg | 9632
3 3 4.75 30000 Denmark | Nordjylland | Aalborg | 9634
. Location Dimension i Mn Dimension |

Figure C.6: Schema for storing time series groups using segments

In data warehouse terms, the Segment table functions as a fact table with new
segments continuously appended during ingestion. Its primary key includes Gaps to
prevent duplicate keys due to the dynamic splitting described in Section 4.2. The user-
defined dimensions are stored denormalized as part of the Time Series table. However,
no explicit time dimension is required as aggregate queries in the time dimension
can be computed efficiently using only StartTime and EndTime as described in
Section 6.3. For Cassandra two modifications are made to the general schema. First, to
more efficiently support predicate push-down, the primary key for Segment is changed
to Gid, EndTime, Gaps [7]. The values in Gaps are stored as 64-bit integers
with each bit representing if a gap has occurred for that time series in the group.
Second, as the column StartTime is not used for indexing, it is changed so the size
of the segment is stored instead to save space. The StartTime can be efficiently
recomputed as StartTime = EndTime - (Size X SI) [7].
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4 Partitioning of Time Series

4.1 Partitioning of Correlated Time Series

To provide the benefit of model-based storage and query processing while ensuring low
latency, models must be fitted online [7]. However, in a distributed system, time series
compressed together should be ingested on one node to prevent excessive network
traffic from limiting the scalability of the system. So, to prevent migration of data in
the cluster, the time series must be partitioned based only on metadata or previously
collected data. Using existing methods, time series can be partitioned into correlated
groups based on historical data [14—17]. However, as historical data might not exist
and even a small data set of only 50,000 time series creates (50’300) ~ 1.25 x 10 pairs
of possibly very large time series to compare for correlation, simply computing what
time series are correlated quickly becomes infeasible. Thus, we focus on the problem
of defining correlation using only metadata by proposing a set of primitives allowing
users to specify correlation between time series directly or based on their dimension
hierarchy. By providing a diverse set of primitives for describing correlation, users

Algorithm C.1 Group time series using the primitives

1: Let TS be the list of time series.

2: Let ID be the dimensions for all time series.

3: Let Correlations be a list of correlation clauses.
4:

5. TSG < createSingleTimeSeriesGroups(TS)

6: for clause € Correlations do

7: groupsModified < true

8: while groupsModified do

9: groupsModified < false

10: for i «+ 1to |TSG| do

11: for j < i+ 1to |TSG| do

12: (TSG1,TSG,) < getPairAH(TSG, i,j)

13: if correlated(clause, TSG1, TSG,, D) then
14: TSG[i]« mergeGroups(TSGy, TSG;)
15: removeGroupAfterLoop(TSG,, TSG)
16: groupsModified < true

17: end if

18: end for

19: end for

20: end while

21: end for

22: return Groups
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are free to only use their domain knowledge or analyze historical data if the needed
data and compute resources are available, making computing correlation from data an
orthogonal problem [14—17].

Our primitives can be combined to efficiently describe correlation for data sets with
different quantities of time series and dimensions. They are specified in ModelarDBy,’s
configuration file as modelardb.correlation clauses. All primitives in a clause
are combined with an AND operator and multiple clauses are combined with an OR
operator. Using these user hints ModelarDB,, creates groups of correlated time series
to be ingested together. The primitives allow correlation to be specified as sets of time
series, members that must be equal, levels for which members must be equal, or the
distance between all of the dimensions (see below). Grouping is performed as shown
in Algorithm C.1. First, a group is initialized per time series in Line 5. In Line 6-16,
for each user-defined correlation clause, groups are merged until a fixpoint is reached
in the number of groups. The function correlated in Line 13 evaluates the primitives in
the clause and ensures that all time series in both groups are correlated before a pair
of groups are merged. As the clauses are applied in the order they are defined, users
control their priority. In essence, Algorithm C.1 computes cliques (as correlations are
non-transitive) in a graph with time series as vertices and correlated defining the edges.
However, as edges are dynamically defined as correlated groups are found, all possible
edges need not be materialized.

To specify that specific time series are correlated their source (file or socket) must
be provided, e.g., 4LR%9a_Temperature.gz 4LR9b_Temperature.gz. For
correlated time series that do not contain similar values, a scaling constant can be added
per time series. While this allows precise control over the groups, it quickly becomes
too time consuming as the number of time series increases. The other primitives are
based on the notion that time series correlation can be derived from their dimensions.
For example, temperature sensors in close proximity likely produce similar values. The
similarity of a dimension for two groups can be computed as their LCA level. This
is the lowest level in a dimension where all time series in the two groups have equal
members starting from T. An example can be seen in Figure C.7.

Level 0: T T
1
Level 1: Country Denlmark
1
Level 2: Region Nordjylland
L Ve N
Level 3: Park Farso Aalborg
I | VRN
Level 4: Turbine 9572 9632 9634

(Tid=1) (Tid=2)(Tid =3)

Figure C.7: An example Location dimension for wind turbines where the LCA for Tid = 2 and Tid = 3 is
the level Park
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To specify correlation based on members, the user must provide either a triple
consisting of a dimension, a level, and a member or a pair with a dimension and an
LCA level. The triple Measure 1 Temperature, e.g., specifies that time series
sharing the member Temperature at level one of the Measure dimension are
correlated. The pair Location 2 states that if the LCA level is equal to or higher
than two for the Locat ion dimension, the time series are correlated. Zero specifies
that all levels must be equal, and a negative number 7 that all but the lowest |n]
levels must equal. When specifying a scaling constant for many time series, it can be
defined for time series with a shared member as a 4-tuple containing dimension, level,
member, and scaling constant. These primitives are appropriate for a data set with few
dimensions but many time series.

For data sets with both a large number of time series and dimensions, the user can
specify correlation as the distance [0.0; 1.0] between dimensions. The intuition is that
time series with much overlap between their members are correlated. For example,
for the Location dimension in Figure C.7, time series sharing members at the Turbine
level are more likely to be correlated than if they only share members at the Country
level. The distance 0.0 specifies that all members must match for the time series to
be grouped, and 1.0 that all time series should be grouped. Values in-between specify
different degrees of overlap. The user can inject domain knowledge by changing the
impact of a dimension using a weight for which the default value is 1.0. Distances
above 1.0 due to user-defined weights are reduced to 1.0. For distance-based correlation
the rule of thumb is to use the lowest non-zero value such that only time series with
many overlapping members are grouped. The lowest distance can be calculated as
(1/max(Levels))/|ID| where Levels is the set of levels in each dimension and ID is
the dimensions.

To evaluate each type of primitive, correlated uses different functions. The function
for determining correlation using a distance threshold is shown in Algorithm C.2. The
definition of the remaining functions follows directly from the description of the primi-
tives. In Line 11 in Algorithm C.2 distance is computed as (height — ancestor) / height
to reduce the impact of groups with equivalent members only at the top of the hierarchy.
In Line 12 the dimension’s distance is multiplied by its user-defined weight before
being added to the accumulator. In Line 14—15 the distance between the two time
series groups is normalized to the range 0.0 — 1.0 and compared to the user-defined
threshold to determine if the two time series groups are correlated. As an example, for
the Location dimension shown in Figure C.7, the normalized distance between the time
series with Tid = 2 and Tid = 3 can be computed as 1 x ((4 —3)/4) = 0.25.

4.2 Dynamically Splitting Groups

As events can change the values of a time series, e.g., a wind turbine might be damaged,
ModelarDB,, splits a group if its time series become temporarily uncorrelated. A split
can be performed after emission of a segment as it indicates that the structure of a time
series has changed so the next data point would exceed the error bound. An example is
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Algorithm C.2 Use of distance to indicate correlation

. Let clause be a user-defined correlation clause.
: Let TSG1, TSG, be time series groups.
: Let ID be the dimensions for all time series.

. threshold < getThreshold(clause)
: sumDistance < 0
ford € D do
ancestor < computeLCA(TSG1, TSG,, d)
height <— getHeight(d, D)
weight < getWeight(d, D)
distance < (height — ancestor) / height
sumDistance < sumDistance + weight x distance
: end for
. normalized < sumDistance/length(ID)
. return min(normalized, 1.0) <= threshold

_ = e = e

shown in Figure C.8. While ModelarDB,, discards data points emitted as segments,
the entire time series are included in the example to show how they change over time.
At t, the group is ingested using the Segment Generator SGg. At ¢, the time series in
the group are no longer correlated and segments with poor compression are emitted.
The group is then split into two and ingestion continues with SGq and SG,. SGy is
used to synchronize ingestion for the splits to simplify joining and joins the split groups
if they again become correlated. Then at ¢; the group ingested by SGy is split causing
each time series to be ingested separately.

tm th t; tj t
sco |3 =
SG1 —
562 N N i
SGj3 ~
split split join join

Figure C.8: Ingestion of TSG with dynamic splitting and joining

To minimize the number of non-beneficial splits and the overhead of determining
when to split, ModelarDB,; uses two heuristics: poor compression ratio and the error
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Algorithm C.3 Potentially splitting groups of time series temporarily

Let TSG be a time series group.
Let ffl be the user-defined error bound.
Let Buffer be the data points buffered for TSG.

while notEmpty(TSG) do
TSy < getTimeSeries(TSG)
TSGy, < createGroup()

1:
2:
3:
4:
5. Splits < createSet()
6:
7
8
9 for TS, € TSG do

10: DP; < dataPoints(TS7, Buffer)

11: DP; < dataPoints(TS,, Buffer)

12: if allWithinDoubleBound(DP1, DP,, ffl) then
13: addTimeSeriesToGroup(TS,, TSGy,)

14: removeTimeSeriesFromGroup(TS;, TSG)
15: end if

16: end for

17.  sg < createSegmentGenerators(TSGy,)

18:  addSegmentGeneratorToSet (sg, Splits)
19: end while
20: return Splits

between ingested data points. First, ModelarDB,, checks if the compression ratio of a
new segment is below a user-configurable fraction of the average (default is 1/10). If
the compression ratio is lower and data points are currently buffered, Algorithm C.3
is executed. The algorithm groups time series if their buffered data points are within
twice the user-defined error bound (2€), using the error metric of the included model
types (Line 9-14). Thus, groups of size one to the size of the group TSG can be created.
In Figure C.8 two groups are created at both t, (SGq and SG;) and t; (5G1 and 5G3).
Time series in a gap are grouped together.

To demonstrate joining we continue with the example in Figure C.8. At £; two time
series become correlated again and are merged into one group. Last, at f; all the time
series are correlated again so SGy takes over ingestion. The algorithm for restoring
a split group is shown in Algorithm C.4 and is similar to Algorithm C.3. However,
when joining groups it is only necessary to compare one time series from each as a
group consists of correlated time series (otherwise a split would have occurred). To
simplify joining groups Algorithm C.4 is only potentially executed at the end of each
SI so all groups have received data points for the same time period. As a segment
being emitted indicates a significant change of the values ingested by a group, a split
group is only marked for joining after emitting a number of segments. The number of
segments that must be emitted are doubled after each attempt to join a split group to
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Algorithm C.4 Potentially restoring a split group of time series

N D) — m e e e e s e e
A A A R T 4

22:
23:
24:
25:

: Let JoinCandidates be groups marked for joining.
: Let Splits be the set of all split time series groups.
: Let ffl be the user-defined error bound.

: Let Buffer be the data points buffered for Splits.

Joined < createSet ()

. while notEmpty(JoinCandidates) do

TSG; < getGroup(JoinCandidates)
TS; < getFirstTimeSeries(TSGy)
DPR; < getReverseDataPoints(TSq, Buffer)
for TSG; € Splits do
TS, < getFirstTimeSeries(TSG,)
DPR, < getReverseDataPoints(TS;, Buffer)
shortest <— computeShortestLength(DPRy, DPR;)
length < withinDoubleBound(DPRy, DPR;, ffl)
if shortest > 0 and shortest = length then
TSGy < mergeGroups(TSGy, TSG;)
removeGroupFromSet(TSG;, Splits)
removeGroupFromSet(TSG;, JoinCandidates)
end if
end for
sg < createSegmentGenerators(TSGq)
addGroupToSet(sg, Joined)
end while
return Joined

reduce the overhead of joining. The intuition is that each failed attempted at joining

further indicates that the current splits are preferable.

5

To benefit from MMGC a set of models is required. However, as most model-based
compression methods for time series are designed for individual time series [1, 2],
existing model types must be extended to support MGC to be used with ModelarDBy,.
We first describe a simple method for extending any model type with MGC by storing
multiple models per segment, and then two model type specific approaches that allow a

Model Extensions

group to use one model per segment.
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5.1 Multiple Models per Segment

A baseline method for adding MGC support to any model type is to split the data points
received and fit separate models to them. The resulting models are then stored together
in one segment, without any changes to the model type or model. However, to store
multiple models in one segment, each representing the values of different time series,
the models must represent values for the same time interval. This is intuitively simple
to ensure by verifying that each model will not exceed the error bound before fitting
them to a new data point. However, this is unnecessary as explained next.

0] () tsn =/ tsn =
ts te tg tellts  te ts  tete#Slits te ts  to te+SI

o LI L] [ [o] [ [e}[e]
I < I A3 NN EY, < B Y
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Figure C.9: Fitting models, (O) indicates it can fit the value, (X) that it cannot, and a dashed line that a new
segment is created

o

|
o[>

[ [o] [ ]

of|lL |

Three cases can occur when models are fitted as shown in Figure C.9. For case
(D all models can be fitted to the data point received from their respective time series.
The opposite occurs in case (II) as the first model cannot be fitted to the data point it
received within the user-defined error bound. For case (I) and case (II) it is trivial to see
that all resulting models represent the same time interval. In case (III), the first model
can be fitted to the data point received, however, the second model cannot. As the
models in the segment no longer represent the same time interval, the end time t, of the
segment is simply not incremented to f, + SI. As each model represents all previously
ingested values, the end time £, of a segment can be safely reduced in increments of
SI until t; > t,. For models where the number of parameters depends on the number
of data points fitted, e.g., models of type Gorilla, the leftover parameters should be
deleted. Afterwards new models are fitted to the next set of data points. While the use
of n models stored in one segment reduces the amount of duplicate metadata from n
copies to one and is simple to implement, it does not reduce the storage required for
the values. To further improve compression, each model must represent multiple time
series using one set of parameters.

5.2 Single Model per Segment

To fully exploit MMGTC it is necessary to use multiple model types which can rep-
resent many time series in a single model. We found that the model types used by
ModelarDB,; can be extended to efficiently compress a group of time series using a
single model based on two general ideas. For model types using lossless compression,
e.g., Gorilla, values from multiple time series should be stored in time ordered blocks.
This allows exploitation of both temporal correlation and correlation across time series
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PMC-Mean

GOI‘IIIa V21 [ Va2 —> Vi1 | Vo1 | Va1 | Vi2 | Va2 [ Va2

Figure C.10: Methods for modifying model types to support MGC. For lossy models the x-axis represents
the time and the y-axis represents the value. Full lines separate the models, dashed lines show the average
value for PMC-Mean, and dotted lines show the error bound.

at each SI. For model types that fit models to data points by verifying that values are
within an upper and lower bound according to the uniform norm, e.g., PMC-MR and
Swing, only the data points with the minimum and maximum value for each SI are re-
quired to validate the bounds. As a result, the set of values V' C IR for a timestamp ¢ can
be reduced to a range of values represented by the 3-tuple v, = (t, min(V), max(V)).
We now show in detail how MMGC can be performed efficiently using the model types
provided in ModelarDB,, Core.

For PMC-Mean, the set of values V from a group of time series is represented as
avg (V') within the error bound € of min(V) and max (V). As a result, PMC-Mean
requires no changes as the model type only tracks the current minimum, maximum and
average value. See PMC-Mean in Figure C.10. Swing produces a linear function that
passes through the initial value and then maintains the upper bound and lower bound
required for it to represent the values within €. The initial value can be computed using
PMC-Mean. The values for each SI are then added one data point at a time. See Swing
in Figure C.10. For Gorilla, values from data points with the same timestamp are stored
in blocks. As the time series in a group are correlated, n — 1 values in each block
will have only a small delta compared to the first value and only require a few bits to
encode. See Gorilla in Figure C.10. To demonstrate the benefit of our MGC extensions
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we compress three real-life time series representing the temperature of co-located wind
turbines. Compared to using only MMC, enabling MMGC in ModelarDB,; reduces
the storage required by 28.67% with a 0% error bound, by 26.63% for 1%, by 33.16%
for 5%, and by 43.50% for 10%.

6 Query Processing

6.1 Query Interface

As a model M can reconstruct the data points it represents within the error bound,
queries can be executed on these. However, many aggregate queries can be answered
from models, e.g., for a constant or linear function MIN, MAX, SUM and AVG can com-
puted in constant time [7]. For these model types, aggregate queries can be answered
in linear time in the number of models instead of the number of data points. As a
model represents at least one data point, but typically many more, computing aggre-
gates from models greatly reduces query time as shown in Section 7. To support this,
ModelarDB,, provides a Segment View with the schema (Tid int, StartTime
timestamp, EndTime timestamp, SI int, Mid int, Parameters
blob, Gaps blob, Dimensions) and a Data Point View with the schema
(Tid int,TS timestamp,Value float, Dimensions).Dimensions
represents the columns storing the denormalized user-defined dimensions. The user-
defined dimensions are cached in-memory and joined with segments and data points
when required during query processing using an in-memory hash-join. Using the
Segment View, ModelarDB,, supports executing aggregate queries on segments using
user-defined aggregate functions, which for simple aggregates are suffixed with _S,
e.g., MAX_S. Functions performing aggregation in the time dimension are suffixed
with aggregate and level in the time hierarchy, e.g., CUBE_AVG_HOUR. All aggregate
functions divide the result by the scaling constant of each time series as part of the
iterate step. Queries performing aggregation using the user-defined dimension hierar-
chy can be executed using a GROUP BY on the appropriate columns in the Segment
View, reducing the problem to computing a simple aggregate on segments. As a result,
in this section we describe how simple aggregate queries and multi-dimensional aggre-
gate queries in the time dimension can be executed on segments for distributive and
algebraic functions [18].

6.2 Aggregate Queries

To allow queries to be expressed at the time series level instead of the time series group
level, a mapping between Gids and Tids is performed as part of query processing using
the identifiers stored in the time series table shown in Figure C.6. As a result, queries
provided by the user and the result returned from ModelarDB,, only reference Tids,
with Gids being utilized for predicate push-down so the segment group store only needs
to index one id per segment. While ModelarDB,,; only supports predicate push-down
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for Tid, StartTime and EndTime [7], ModelarDB,, also supports predicate push-
down for user-defined dimensions by rewriting instances of a member in the WHERE
clause to the Gids of the groups that include time series with that dimensional member.
An example of a simple aggregate query executed on the Segment View is shown
in Figure C.11. First, all Tids in the query are rewritten to their corresponding Gids so
users only need to know the Tids. Then for each segment the aggregate function speci-
fied in the query is executed. The aggregate function also applies the scaling constant.
After the aggregate has been computed for all segments, the final aggregate is computed
from the intermediate results, e.g., by computing an average. The pseudo-code for
executing aggregate queries using the Segment View is shown in Algorithm C.5.

Algorithm C.5 Execution of simple aggregates on the Segment View

. Let predicates be the WHERE clause of the SQL query.

: Let groups be a mapping from Gid to Tid and reverse.

. Let members be a mapping from Members to Gid.

. Let initialize be the function preparing storage for the results.
. Let iterate be the segment aggregation function.

. Let finalize be a function for aggregating results.

® N LA W~

. predicates < rewriteQuery(predicates, groups, members)
> Executed on workers with the result sent to the master
9: result < initialize()

10: segments <— retrieveSegments(predicates, groups)

11: for segment € segments do

12: result < iterate(segment, result)

13: end for

14: results <— mergeResults()

15: return finalize(results)

In Line 8 the SQL query is rewritten to query segments in terms of time series
groups by replacing the Tids and members in the SQL queries WHERE clause with the
matching Gids at the master before the query is sent to each worker node (Rewriting).
In Line 9-10 each worker node initializes memory for storing the intermediate values
and retrieves relevant segments from its data store (Initialize). Then for each segment,
in Line 11-12 the aggregate function passed as argument is executed on each segment
(Iterate). Finally, in Line 15, to support both distributive and algebraic functions,
computation that must be performed on the intermediate results is performed (Finalize).

6.3 Aggregation in the Time Dimension

As the schema shown in Figure C.6 stores the start time and end time as part of each
segment, aggregates in the time dimension can be computed using only the segment
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table without an expensive join with a separate time dimension. An example of an
aggregation in the time dimension using segments is shown in Figure C.12. The query
computes the sum per hour for the time series with Tid = 1, Tid = 2 and Tid = 3,
using the function CUBE_SUM_HOUR to compute the result efficiently on segments
rather than on data points. After rewriting the query, the aggregate is computed for
the interval from ¢; = 00:13 until 01:00 which is the next timestamp delimiting two
aggregation intervals. Afterwards, the aggregate is computed for the interval from
01:00 until 02:00. Last, the aggregate is computed for the interval from 02:00 to
and including f, = 02:48. The last value is computed with an inclusive end time as
ModelarDB,,, to increase the compression ratio, does not store connected segments [7].
The pseudo-code for executing aggregate queries in the time dimensions using the
Segment View is shown in Algorithm C.6. The algorithm follows the same structure
as Algorithm C.5. First, in Line 9 the query is rewritten in terms of Gids instead of
Tids and members (Rewriting), before each worker initializes memory for storing the
intermediate results and retrieves relevant segments in Line 10—11 (Initialize). In Line
12-24 the algorithm iterates over each segment and computes an intermediate aggregate
for each of the requested time intervals (Iterate). Last, the final result is computed and
returned in Line 28 to support distributive and algebraic functions (Finalize).

7 Evaluation

7.1 Overview and Evaluation Environment

We compare ModelarDB,, to state-of-the-art big data formats/systems used in in-
dustry (Apache ORC and Parquet in HDFS, Apache Cassandra), and the TSMS
InfluxDB due to its popularity in industry (together termed industry formats), as
well as ModelarDB,; [7]. Apache Spark is used for query processing, except for
InfluxDB as the open-source version is single-node. To evaluate MMGC in isola-
tion from ModelarDB,;’s more mature implementation, we experiment with both
MMGC enabled (ModelarDBy,+G) and disabled (ModelarDBy,—G). We expect
ModelarDB,, —G to win when queries only require a single/few time series per group,
e.g., simple aggregate and point-range queries, while ModelarDB,, 4G performs better
for compression, ingestion and queries on entire groups. Users can enable MMGC de-
pending on their use-case. Our seven node local cluster is described in Table C.1: it has
one master node being Primary HDFS NameNode, Secondary HDFS NameNode and
Spark Master, and six workers being Cassandra Nodes, HDFS Datanodes, and Spark
Slaves. Default configurations are used as much as possible. Changed values are shown
in Table C.1 and selected as they work well with the hardware and data sets used. For
parameters we change during the experiments, all values are shown, with the default in
bold. Spark memory is limited by spark.driver.memory and spark.executor.memory, set
at the max values where Cassandra or HDFS do not crash. We use the extended model
types from Section 5.2 PMC-Mean [12], Swing [10], and Gorilla [13]. We only run the
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Algorithm C.6 Rewrite and execution of aggregate queries with a roll-up in the time
dimension using the Segment View

18:
19:
20:

21:
22:
23:
24:

25:
26:
27:
28:

: Let predicates be the WHERE clause of the SQL query.

: Let groups be a mapping from Gid to Tid and reverse.

. Let members be a mapping from Members to Gid.

. Let level be the roll-up level in the time hierarchy.

. Let initialize be the function preparing storage for the results.
. Let iterate be the segment aggregation function.

. Let finalize be a function for aggregating results.

. predicates < rewriteQuery (predicates, groups, members)

> Executed on workers with the result sent to the master

. result < initialize()
. segments <— retrieveSegments(predicates, groups)
: for segment € segments do

originalEndTime <— extractEndTime(segment)
startTime <— extractStartTime(segment)
endTime + ceilToLevel (startTime, level)
if originalEndTime <= endTime then
result < aggqregatelnterval (iterate, segment,
startTime, originalEndTime, result)
else
while endTime < originalEndTime do
result < agqregatelnterval (iterate, segment,
startTime, endTime, result)
startTime < endTime
endTime <+ updateForLevel (startTime, level)
end while
result < aggqregatelnterval (iterate, segment,
startTime, original EndTime, result)
end if
end for
results <— mergeResults()
return finalize(results)

necessary software and disable replication. Disk space usage is measured with all data
on one node using du, and execution time using time or System.currentTimeMillis().
Graphs show the number of workers on the x-axis labels and use striped bars for
ModelarDB,,+G.
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Table C.1: Evaluation environment

Hardware

Processor Intel Core 17-2620M
Memory 8GiB of 1333 MHz DDR3
Storage 7,200RPM Hard-Drive
Network 1 Gbit Ethernet
Software

Ubuntu GNU/Linux v16.04 LTS on ext4
ModelarDB v2.0
— Model Error Bound 0%, 1%, 5%, 10%
— Model Length Limit 50
— Dynamic Split Fraction 10
— Bulk Write Size 50,000
InfluxDB v1.4.2
InfluxDB-Java v2.10
— Batch Size 50,000
Apache Hadoop v2.8.0
Apache Spark v2.1.0
— spark.driver.memory 4 GiB
— spark.executor.memory 3 GiB
— spark.streaming.unpersist false
— spark.streaming.stopGracefullyOnShutdown true
— spark.sql.orc.filterPushdown true
— spark.sql.parquet.filterPushdown true
Apache Cassandra v3.9
— commitlog_segment_size_in_mb 128 MiB
— batch_size_warn_threshold_in_kb 5 MiB
— batch_size_fail_threshold_in_kb 50 MiB
DataStax Spark Cassandra Connector v2.0.3

ModelarDBy, is designed for unbounded time series, but our comparison with
industry formats uses two static real-life data sets. For ingesting unbounded time series,
we continuously replicate the values of a static time series using a C program. The in-
dustry formats use the schema: (Tid int, TS timestamp, Value float,
Dimensions). timestamp is each format’s native timestamp type. Cassandra uses
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(Tid, TS, Value) as primary key, InfluxDB stores time series as one measurement
with the Tid as a tag, and for ORC and Parquet we create a file per series stored on
HDFS in a folder named Tid=n so Spark can prune by Tid.

7.2 Data Sets and Queries

Data Set “EP” This real-life energy trader data set consists of regular time series with
gaps from energy production collected over 508 days, has SI = 60 seconds, has two
dimensions: Production: Entity — Type and Measure: Concrete — Category, contains
45,353 time series, and uses 339 GiB as uncompressed CSV files.

Data Set “EH” This real-life data set consists of regular time series with gaps from
wind parks. The data was collected by us with an approximate SI = 100 milliseconds
using an OPC Data Access server running on Windows. A pre-processing step rounds
timestamps to the nearest 100 milliseconds and removes data points with equivalent
timestamps (due to collection limitations not present in a production setup). It has
two dimensions: Location: Entity — Park — Country and Measure: Concrete —
Category, contains 286 time series, and uses 582.68 GiB as uncompressed CSV files.

Queries For evaluation, we use small simple aggregate queries for interactive anal-
ysis (S-AGQG), large scale simple aggregate queries for scalability (L-AGG), medium
scale multi-dimensional aggregate queries for reporting (M-AGG), and point/range
queries for extracting sub-sequences (P/R). Half of the S-AGG queries aggregate one
time series while the rest GROUP BY Tid for five time series. The L-AGG queries
aggregate the full data set where half GROUP BY Tid. M-AGG is multi-dimensional
aggregates on measures of energy production. Half GROUP BY month and dimension,
while the rest GROUP BY month, dimension and Tid. P/R is point/range queries with
WHERE clauses on either TS or Tid and TS.

7.3 Experiments

Ingestion Rate First, we evaluate the ingestion rate when performing bulk loading
without queries (B) on one node for a direct comparison with InfluxDB. For each format
we ingest energy production measures from EP (3500 gzipped CSV files, 6.59 GiB)
using spark-shell with its default parameters. Dimensions are read from a 6.7 MiB CSV
file. For the industry formats, dimensions are appended to the data points from an in-
memory cache. Second, we measure ModelarDB,, scalability on all six worker nodes
using both bulk loading without queries (B) and online analytics (O) with aggregate
queries executed on random time series using the Segment View during ingestion.
ModelarDB,; uses a specialized ingestor on a single node, and Spark Streaming with a
5 sec micro-batch interval and one receiver per node on the cluster. Last, we evaluate
the stability of ModelarDB,,’s ingestion rate by ingesting an unbounded time series
over a socket on one node for 2.5 days, measuring the time for each ingestion of the
repeated time series.

The results are shown in Figure C.13. As expected, due to better compression
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Figure C.13: Ingestion, EP

ModelarDB,,+G provides a 2.38—12.5 times higher ingestion rate compared to the
other formats. ModelarDB,,+G is 2.38 times faster than ModelarDB,; due to a more
mature implementation and the use of MMGC. On six workers ModelarDB,,+G
achieves a 3.96 times speedup for bulk loading and a 3.54 times speedup for online
analytics. The ingestion rates are stable over long intervals: the average daily ingestion
time only increases by 0.6% from the first to the last day. Temporary short-term
decreases in ingestion speed seem to match JVM garbage collections, as expected.
In summary, ModelarDB,, provides a stable ingestion rate that is higher than the
other formats due to an efficient model-agnostic ingestion method and state-of-the-art
compression while also supporting online analytics.

Effect of Error Bound and Grouping We evaluate ModelarDB,, compression
using EP and EH. We ingest using 0%, 1%, 5%, and 10% error bounds and the best
combination of correlation primitives found for each data set with our limited domain
knowledge. For formats not supporting approximation, the error bound is 0%. For
each data set we show storage and model types used, and the actual average error as
( L[il? |rvn — avy|/ ZLD:T |rv,|) x 100 where DP is the ingested data points, av,
is the nth approximated value and rv, is the nth real value. As many EP time series
are correlated MMGC should significantly reduce the storage required, while for the
less-correlated EH series MMGC should only yield benefits with high error bounds.
We compare our metadata-based grouping method with compressing EP and EH using
groups of time series with equivalent min and max values. Last, we use instrumentation
to determine the overhead of our algorithms for dynamically splitting (Algorithm C.3)
and joining (Algorithm C.4) groups during ingestion.

EP results are shown in Figure C.14 with correlation Production 0, Measure
1 ProductionMWh as EP contains no location information but has multiple energy
production measurements per entity. This creates 39,164 groups from 45,353 time
series, with splitting and joining using only 0.74% of the total run-time in the worst
case. Compared to industry formats ModelarDB,; uses up to 16.17 times less stor-
age, while the highest average error is only 0.34% (10% error-bound). Surprisingly,
ModelarDBy, —G provides similar compression compared to ModelarDB,,; despite
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using the PMC-Mean constant model type, which is more restrictive but yields lower ac-
tual error compared to ModelarDB,;’s PMC-MR [7]. Compared to ModelarDB,; —G,
ModelarDBy,+G reduces the storage used by 1.44—1.56 times as the energy production
measures compress well together. EH results are shown in Figure C.15 with correlation
defined by the lowest distance (0 .16666667) using our rule of thumb in Section 4.1.
This creates 102 groups from 286 time series, with splitting and joining using only
0.32% of the total run-time in the worst case. ModelarDB,, reduces the storage
required by up to 64.63 times compared to the other formats, while the highest aver-
age error is only 2.03% (10% error-bound). For low error-bounds ModelarDB,,+G
performs slightly worse than ModelarDB,, due to its more restrictive PMC-Mean
model type [7]. Despite MMGC being nonapplicable for low error bounds on EH,
ModelarDB,, always outperforms the industry formats and ModelarDB,,+G uses
1.21 times less storage than ModelarDBy; for a 10% error-bound.

Figure C.16-C.19 show that all model types are used for both of the data sets.
ModelarDB,,+G adapts by representing more data points using Gorilla. This is
expected as only one time series has to exhibit a constant or linear trend for PMC-Mean
or Swing to be used with ModelarDB,, —G, while all time series in a group must exhibit
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the same trend to efficiently use these two model types with ModelarDB,,+G. When
compressing EP using value-based grouping, 8,487 groups are created as time series
with similar measures are grouped. As ModelarDBy, uses 64 bits to store gaps, a few
groups larger than 64 time series were split. The storage required is 8.00-6.49 GiB (0-
10% error bound). EP contains no Location dimension, which explains the difference in
compression to our metadata-data based method. For EH, 187 groups are created, using
2.99-2.35 GiB (0-10% error bound), and thus value-based grouping performs similarly
to our distance-based method. In both methods, time series with similar measures
collected from the same area are grouped. While value-based groups in some cases
provide better compression than our metadata-based method, it requires prior analysis
of the full data set. Any correlations found by prior analysis can then be specified using
our ModelarDB,, primitives. This also demonstrates that additional grouping methods
can be added to ModelarDB,,. In summary, ModelarDB,, yields better compression
than existing formats by using model-based compression and dynamically selecting
appropriate combinations of model types for each data set and error bound pair with
both MMGC being enabled and disabled.

Effect of Distance We evaluate our distance-based grouping method by ingesting
EP and EH with all distances up to 0.50 where both starts using more space. The
number of dimensions and levels limit the possible distances, e.g., EP distances are in
increments of 0.25. As both EP dimensions have two levels their distance impact is the
same. However, as Measure is a stronger correlation indicator, the Production
weight is increased so only time series with equivalent Product ion members are
grouped.

The results for EP and EH are shown in Figure C.20. As expected, only the
lowest distance provides a decrease in the storage required, as higher distances create
inappropriate groups. This fits with our rule of thumb to use the lowest distance as
a start. For EP, times series with similar measures from the same entity are grouped,
giving only a 1.14-1.29 times increase in storage compared to our manually tuned
results (up to 14.23 times lower than the other formats). For EH, time series with
the same measure from each entity in a park are grouped, with the compression
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outperforming our manual tuning. In summary, even without domain knowledge,
MMGC can be used successfully with distance-based grouping and our rule of thumb.

Scale-out We evaluate ModelarDB,,’s scalability in two experiments. First, we
compare it against the other formats for L-AGG on the local cluster. Second, we
evaluate its scalability on L-AGG with MMGC enabled using 1-32 Standard_DS8_v3
MS Azure nodes. This node type is selected based on Spark, Cassandra, and Azure
documentation [19-21]. The local cluster configuration is used on Azure, with the
exception that Spark is allowed 50% of each node’s memory as no crashes occur with
this configuration. EP is duplicated until the data ingested by each node exceeds its
memory, so ModelarDB,,+G cannot simply cache all data in memory. The values of
each duplicated data set are multiplied with a random value in the range [0.001, 1.001)
to avoid repeated values. Queries are executed using the most appropriate method for
each system: InfluxDB’s command-line interface (CLI), ModelarDB’s Segment View
(SV) and Data Point View (DPV), and a Spark SQL Data Frame (S) for Cassandra,
Parquet, and ORC.

Local results are shown in Figure C.21. ModelarDBy,+G outperforms almost all
of the other formats with Parquet being only 2.26 times faster despite the benefits of its
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column-based layout for simple aggregate queries on one column. However, compared
to ModelarDBy,+G Parquet is 2.94 times slower to ingest data, does not allow for
online analytics, and uses up to 11.60 times more storage for EP. L-AGG fails on
InfluxDB due to memory limitations on a single node with all 8 GiB available to it and
the OS, and the open-source version does not support distribution. ModelarDB,,+G
executes L-AGG on a single worker in just 6.63 hours using SV. We have previously
shown that the slower ModelarDBy; outperforms InfluxDB at scale [7]. Azure results
are shown in Figure C.22 with ModelarDB,, -G scaling linearly for both SV and DPV.
This is expected as ModelarDB,, assigns each time series group to a node, allowing
queries to be answered without shuffling. In summary, ModelarDB,, provides either
faster (up to 59.34 times) or comparable query performance compared to the other
formats for large scale queries and scales linearly when adding additional nodes.

Additional Query Processing Performance To further evaluate ModelarDBy,’s
query performance we execute S-AGG, P/R and M-AGG on both data sets using the
same query interfaces. M-AGG cannot be executed for ModelarDB,; as it does not
support dimensions, nor InfluxDB as it can only aggregate fixed size intervals, e.g., an
hour or a day [22, 23]. InfluxDB has no DATEPART functionality, so aggregates over,
e.g., the days of months are not supported [24] unlike ModelarDB,y,.

S-AGG results are shown in Figures C.23—C.24. ModelarDB,+G is slower
as expected as it must read a group to access even a single time series. For EP,
ModelarDB,; is much faster than Cassandra and only slightly slower than the other
formats. As EP consists of small time series, this shows that ModelarDB,,’s MMGC
support has a very small overhead. For EH, only Parquet and ORC are faster (7.35
times and 1.55 times, respectively) than ModelarDB,; —G due to their column-based
layout. However, ModelarDB,, —G has up to 2.93 times faster ingestion and uses up to
41.96 times less storage than Parquet and ORC. Last, the benefit of Algorithm C.5 is
clear as SV is up to 4.13 times faster compared to DPV. Point and range queries are
not the intended use-case for ModelarDB,,, as they require reading large segments
representing multiple time series from disk, but are evaluated for completeness. The
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results are shown in Figures C.25-C.26. For EP ModelarDB,,+G performs better than
ModelarDB,, —G as it executes range queries extracting a short sub-sequence from all
time series faster. However, to support MMGC, predicate push-down for point-range
queries is implemented less efficiently in ModelarDB,; than in ModelarDB,;. As a
result, the query performance of ModelarDB,; and ModelarDB,,+G for P/R on EP is
similar. For EH, ModelarDBy, —G is 1.77 times slower than ModelarDBy1, as expected,
while ModelarDB,,+G is 3.92 times slower as the groups in EH are larger. M-AGG
results on EP are shown in Figures C.27-C.28. For M-AGG-One, queries GROUP BY
category which match the groups created by ModelarDB,+G when ingesting. As
having a direct match between the groups and the executed aggregate queries is the
optimal use-case for MMGC, since each query only reads time series required for
the query, ModelarDB,,+G is 1.93-54.70 times faster than the other formats. For
M-AGG-Two, queries GROUP BY concrete to drill-down one level below the grouping
level. However, contrary to pre-computed aggregates, ModelarDB,,+G can execute
queries on each time series in a group, so it is still the fastest by 2.36-55.21 times.
M-AGG results on EH are shown in Figures C.29—-C.30. For M-AGG-One, queries
GROUP BY park and ModelarDBy,—G is 3.22-253.78 times faster than the other
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formats, while for M-AGG-Two, queries GROUP BY entity and ModelarDB,,—G is
3.01-246.52 times faster. ModelarDB,,+G is 2.13-2.25 and 64.50-68.01 times faster
than Parquet and Cassandra, respectively, with ORC being only 1.16—1.27 times faster.
ModelarDB,, —G is faster due to the difference in the group size when grouping using
the lowest distance (0.16666667). Last, the benefit of Algorithm C.6 is clear as SV
is up to 3.02 times faster than DPV. In summary, for S-AGG and P/R ModelarDB,,
provides performance competitive with the other formats when MMGC is disabled.
ModelarDB,; outperforms all other formats by up to 253.78 times for M-AGG due to
model-based query processing.

8 Related Work

We summarize papers about model-based time series management and model-based
OLAP. There are surveys about model-based time series management [1, 2], use of sig-
nal processing in the energy domain [25], Hadoop-based OLAP [26] and TSMSs [27].
Group Compression: Compression of correlated time series is primarily used for
efficient data acquisition in sensor networks [28-31]. However, group compression
methods designed for TSMSs have been proposed. Gamps [8] approximates each
time series using constant functions and then relaxes error bounds before compressing
overlapping models together, possibly with scaling. Static grouping is done by an
approximate algorithm, with groups re-computed at run-time using dynamically sized
windows. MTSC [9] proposes two graph-based methods for partitioning time series
into correlated groups MTSCyc and MTSCygar, with MTSCyy, sacrificing compression
for performance. MTSC also uses constant functions and represents correlated series
using a base signal and scaling. Sprintz [31] performs lossless compression of integer
time series. It is designed for small devices with no floating-point operations with
decompression on large servers. Sprintz combines forecasting, bit packing of errors for
time series groups, run-length encoding, and Huffman encoding. As it is designed for
integers, floating-point values must be quantized leading to lossy compression without
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a guaranteed error bound. Group compression has also been used in other domains.
Elgohary et. al. [14, 15] proposed compressing static matrices of features for machine
learning using dense dictionary coding, run-length encoding and offset-list encoding.
Correlated columns are found by analyzing the static data set and compressed together.
For performance, common machine learning operations are performed directly on the
compressed matrix and vectors.

Multi-Model Compression: MMC was proposed in [3, 4]. Model types fit models
to data points in parallel until they all fail, the model with the best compression is
stored. The Adaptive Approximation (AA) algorithm [5] fits models in parallel and
creates segments as each model type fails. After all model types fail, segments from
the model type with the best compression are stored. In [6] regression models are fitted
in sequence with coefficients added as required by the error bound. The model with the
best compression is stored after a given number of coefficients.

Model-Based Data Management Systems: DBMSs with explicit support for
using mathematical models for data cleaning or compression have also been proposed.
MauveDB [32] integrates model use in an RDBMS using views, to support data
cleaning without exporting data to an external application. FunctionDB [33] natively
supports polynomial function models and evaluate queries directly on models when
possible. Plato [34] supports models for cleaning and can add user-defined model types
integrating with its optimizer and query processor. Using an in-memory tree index,
a distributed key-value store and MapReduce [35] allows segments to be stored and
queried in a distributed system. ModelarDBy [7] is a distributed model-based TSMS
using MMC with user-defined model types by integrating its portable core with Spark
and Cassandra.

Model-Based OLAP: Another use of model-based time series compression is
approximate materialization of data cubes. Perera et. al. [36] propose offline algorithms
for finding similarities between time series aggregates. In an OLAP cube, similar
aggregates are then materialized as a model (perhaps with an offset) to reduce the
materialized cube size. A similar method for online data cubes was proposed by Shaikh
et. al. [37]. Using models an approximate data cube is materialized in memory. As
data points are ingested, the in-memory data cube is updated and data points persisted
to disk. Models representing old data are persisted to preserve memory.

ModelarDBy;: In contrast to existing model-based compression algorithms [3-6,
8, 9] and systems [7, 32-35], ModelarDB,; utilizes multiple model types for com-
pression and unifies MMC and MGC to create the novel MMGC method for efficient
compression of time series online. In addition, ModelarDB,, groups correlated time
series using only metadata and user hints based on domain knowledge. Analyzing time
series correlation to gain domain knowledge is an orthogonal problem [8, 9, 14, 15].
As correlation is determined only by metadata, data points can be sent directly to
the worker assigned to each time series group. A simple API allows users to add
user-defined model types without recompiling ModelarDB,,. Compared to other
OLAP systems [38-45], ModelarDB,, executes multi-dimensional aggregate queries
on models. While existing model-based approaches for OLAP [36, 37] store both data
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points and models, ModelarDB,; stores only highly compressed models. In summary,
ModelarDB,; provides state-of-the-art compression and query performance for time
series by compressing correlated series as a sequence of models and executing OLAP
queries on it.

9 Conclusion & Future Work

Motivated by the need to efficiently store and perform multidimensional analysis on big
time series from reliable sensors, we presented a new version of our distributed model-
based TSMS ModelarDB, ModelarDB,,. It achieves state-of-the-art compression and
query performance by exploiting time series correlation using multiple model types
(optionally user-defined). We presented several novel contributions: (i) the concept of
Multi-model Group Compression and extensions to model types to support it, (ii) a set
of primitives simplifying describing time series correlation without requiring historical
data, and (iii) query processing algorithms for efficiently evaluating multidimensional
aggregate queries directly on models. ModelarDB,; uses stock versions of Apache
Spark and Cassandra. A comprehensive evaluation shows that ModelarDB,, provides
faster ingestion, a significantly reduced storage need by adaptively selecting appro-
priate model types for dynamically sized segments, and provides much faster query
performance for multidimensional aggregates.

In future work, we will simplify ModelarDB use and increase its query performance
by: (i) Developing indexing techniques exploiting that data is stored as user-defined
model types. (ii) Supporting high-level analytical queries, e.g., similarity search,
directly on models. (iii) Removing or automatically inferring parameter arguments.
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Abstract

Due to the big amounts of sensor data produced, it is infeasible to store all of the data
points collected and practitioners currently hide outliers by storing simple aggregates
instead. As a remedy, we demonstrate ModelarDB, a model-based TSMS for time series
with dimensions and possibly gaps. In this demonstration, participants can ingest data
sets from multiple domains and experience how ModelarDB provides fast ingestion
and a high compression ratio by adaptively compressing time series using a set of
models to accommodate changes in the structure of each time series over time. Models
approximate time series within a user-defined error bound (possibly zero). Participants
can also experience how the compression ratio can be improved by ingesting correlated
time series in groups created by ModelarDB from user-hints. Participants provide these
using primitives for describing correlation. Last, participants can execute SQL queries
on the ingested data sets and see how the system optimizes queries directly on models.

© 2019 ACM. Reprinted, with permission, from Sgren Kejser Jensen, Torben Bach
Pedersen, Christian Thomsen, Demonstration of ModelarDB: Model-Based Manage-
ment of Dimensional Time Series, Proceedings of the International Conference on
Management of Data (SIGMOD), Pages 1933-1936, 2019.
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1. Introduction

1 Introduction

ModelarDB [1, 2] is a model-based distributed TSMS for management of dimensional
time series possibly with gaps. Dimensions are like in a data warehouse with each
dimension consisting of hierarchically organized members describing the time series.
A gap is a sub-sequence from a time series where no values exist, and a model is any
representation of a time series from which the original values can be reconstructed
within a user-defined error bound (possibly zero).
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Figure D.1: Model-based compression of time series

Figure D.1 shows an example where linear functions ¥ = ax + b are used to
represent increasing and decreasing sub-sequences. The values of these time series
can be represented using just seven linear models, with the models clearly preserving
the structure of the time series using only two parameters each. If we assume each
time series represent five minutes and a data point is sampled each second, (300 x
4)/1024 = 1.17 KiB are required to store the values using f1loats, while only
7 x (4 +4) = 56 bytes are required for the models. As time series often change over
time the compression ratio can be increased significantly by compressing each time
series using multiple models [1, 2]. In addition, as time series often are correlated, e.g.,
from temperature sensors in close proximity, additional compression can be achieved
by compressing correlated time series together [2]. ModelarDB combines both of these
approaches using a novel technique we named MMGC [2]. The system includes three
types of models: a constant function, a linear function, and lossless compression of
floating-point values [2]. In addition, because each model is a black-box, user-defined
models can optionally be added without recompiling the TSMS. ModelarDB accepts
queries as SQL and executes simple and multi-dimensional aggregate queries directly
on models instead of reconstructed data points for increased query performance. As an
example, for a linear function, SUM can be computed in constant time using the model
compared to linear time using data points. In summary: ModelarDB provides state-of-
art model-based compression with very fast ingestion, efficient query processing using
a familiar interface, and is extensible for the end user without recompiling the TSMS.
This make ModelarDB unique among TSMSs as the few existing model-based systems
focus on data cleaning, compress time series using only one type of model, or do not
exploit correlation [3]. The rest of the paper is structured as follows. In Section 2
we provide an overview of ModelarDB, while Section 3 describes the demonstration
scenarios.
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Figure D.2: The distributed architecture of ModelarDB with data ingestion, query processing, and segment storage
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2. ModelarDB

2 ModelarDB

Architecture: ModelarDB is implemented (https://github.com/skejser
jensen/ModelarDB) as the portable Java library ModelarDB Core which can be
interfaced with query processing systems and storage systems. This modular architec-
ture allows ModelarDB to be optimized for multiple domains and reuse infrastructure
by interfacing ModelarDB Core with other systems. ModelarDB Core also contains
the models provided by the system. Users can optionally also implement additional
models without recompiling the system. Our current implementation interfaces Mode-
larDB Core with the stock versions of Apache Spark for query processing, and Apache
Cassandra or a JDBC compatible RDBMS for storage. As a result ModelarDB can be
deployed on an existing cluster running Spark simply by submitting a JAR file using
Spark’s spark—submit script. The distributed architecture of ModelarDB is shown
in Figure D.2. The architecture consists of three sets of components: data ingestion,
query processing, and segment storage. Each component is annotated with the software
providing that functionality (our components are marked ModelarDB Core). We now
describe the user-facing components, data ingestion and query processing (they and
segment storage are documented in detail in [1, 2]).

Model-based Data Ingestion: To ensure low latency, models are fitted online
and the ingestion process requires only that users specify time series and an error
bound. ModelarDB statically assigns each time series to the worker node with the most
available resources. Then as shown in Figure D.1 the Segment Generator fits models
to dynamically sized sub-sequences of each time series. For each, the model with the
best compression ratio is emitted to the in-memory cache and persistent storage, see
Figure D.2, as part of a segment containing the metadata to reconstruct the time series.
When a gap occurs, a segment is emitted and values received after the gap are fitted to
a new model. This simplifies implementation of user-defined models as ModelarDB
manages gaps [1, 2].
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Figure D.3: Model-based compression of grouped series

As many time series are correlated, e.g., wind speed and the energy production of a
wind turbine, the compression ratio can be increased further by compressing time series
together in a group as shown in Figure D.3. In this example the two time series have a
similar structure but different values. Therefore, a scaling constant is applied during
ingestion and query processing so the time series have similar structure and values
during ingestion with the original values restored during query processing. Compared
to compressing the values of each time series separately as in Figure D.1 compressing
them together uses only 4 x (4 + 4) = 32 bytes instead of 56 bytes. Should a group
no longer be correlated, ModelarDB splits the group into sub-groups of correlated time
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series, and if they become correlated again, the sub-groups are merged.

modelardb.correlation 44L80R%9a_AirTemperature
44L80R9%>_AirTemperature
modelardb.correlation Measure 1 Temperature
modelardb.correlation Location 0, Measure 3
modelardb.correlation 0.25
modelardb.correlation Location 0, Measure 3 =
Measure 1 Temperature 0.5

NN B WD =

Listing D.1: User-hints specifying correlated time series

As ModelarDB is a distributed system, time series compressed together should be
ingested by the same node to prevent network traffic from limiting the scalability of the
system. As historical data might not be available or be too large (just 50, 000 time series
create (50'g00) ~ 1.25 x 10? pairs) computing correlation from historical data quickly
becomes infeasible. To remedy this, ModelarDB groups dimensional time series
using their dimensions and user-hints. Users can specify correlation in ModelarDB’s
configuration file as specific time series, groups of time series with specific members,
or time series with similar members in their dimensional hierarchy. Examples of the
supported primitives for specifying correlation are shown in Listing D.1. Line 1-2
specify that two time series are correlated, and Line 3 that time series with the member
Temperature at the first level of the dimension Measure are correlated. Line 4 specifies
that time series are correlated if they share members in all levels of the Location
dimension as well as all members until and including the third level of the Measure
dimension. Line 5 specifies that time series are correlated if the distance between their
dimensional hierarchies is 0.25 or below. The distance between hierarchies is in the
range [0, 1] and computed based on the number of shared ancestors and the size of each
dimension. An example of setting a scaling constant is shown on Line 67, where the
suffix * Dimension Level Member ScalingFactor scales time series with the member
Temperature at the first level in the Measure dimension by 0. 5 [2].

The performance of ModelarDB’s model-based ingestion is shown in Figure D.4.
ModelarDB provides up to 11 time faster ingestion when Bulk Loading on one node
(BL-1) compared to other formats and scales when five more nodes are added despite
performing Online Analytics (OA-6) in parallel [2].

Model-based Query Processing: ModelarDB uses SQL as its query language to
give users a well-known interface and simplify interfacing it with other applications.
Queries are executed either directly on segments using the Segment View or on recon-
structed data points using the Data Point View [1, 2]. Dimensions are denormalized and
joined to the rows of each view. We have implemented the Segment View by means of
Spark’s UDAFs with support for simple aggregates like AVG and multi-dimensional
aggregates using a combination of GROUP BY on the denormalized dimensions and
UDAFs suffixed by the time interval they aggregate by, e.g., CUBE_COUNT_HOUR
and CUBE_AVG_YEAR. ModelarDB requires no explicit time dimension as aggregate
queries in the time dimension can be computed efficiently using the start and end
time of segments. To allow queries on the Segment View to be executed at data point
granularity, functions are defined to restrict either the start time (START), end time
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(END), or both (INTERVAL) of segments. Efficient execution of queries directly on
user-defined models is supported if users optionally implement optimized methods for
computing MIN, MAX and SUM.

Examples of queries supported by ModelarDB can be seen in Listing D.2. In Line
1-2 the average of the values from the time series identified by Tid = 3 is computed
using both views. The operator # is a specialized version of « that selects only the
columns from the Segment View required for a UDAF. In Line 4-5 the query computes
the minimum value ingested after the timestamp 2019-02-06 18:22 using the Segment
View. As the WHERE clause filters at the segment level the function START is used to
disregard data older than the timestamp provided. The UDAF MIN_SS is a version
of MIN_S that operates on the struct returned by START as Spark does not support
functions returning multiple columns. Last in Line 7-8 the average temperature per
month is computed for each time series with the member Temperature at the Category
level of the Measure dimension.

SELECT AVG_S (#) FROM Segment WHERE Tid = 3
SELECT AVG (Value) FROM DataPoint WHERE Tid = 3

SELECT MIN_SS( START (#, '2019-02-06 18:22') )
FROM Segment WHERE EndTime >= '2019-02-06 18:22"'

SELECT CUBE_AVG_MONTH (#) FROM Segment
WHERE Category = 'Temperature' GROUP BY Tid

0NN B W -

Listing D.2: ModelarDB query examples

The query performance of ModelarDB for large scale aggregate queries can be seen
in Figure D.5, where ModelarDB provides 1.52-29.09 times faster query performance
using the Segment View on one or six nodes compared to existing formats when
executing queries through their Command-Line Interface (CLI) or a Spark DataFrame
(DF) [1].
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3 Demonstration Scenario

Graphical User Interface: In the demonstration participants can operate ModelarDB
through the graphical user interface shown in Figure D.6. The interface is split into data
ingestion and query processing. Ingestion allows the user to choose between multiple
data sets, specify correlation between the time series, and change the error bound and
models used. Correlation can be specified with the primitives using either text or a
graphical tool. For each ingested data set the participants can view the size of the data
set in comparison to the raw data set, the distribution of models used per time series
and the distribution of models used in total. This allows participants to get insights into
how ModelarDB adapts to different combinations of data sets and parameters. The
query processing component as shown in Figure D.6 allows users to select an ingested
data set, either local or remote, and view the storage and models used by ModelarDB.
For remote pre-ingested data sets we also provide a comparison to existing formats as
shown in the left part of the interface. Using the editor in the right part of the interface,
participants can execute any query against the Segment View and the Data Point View.
The query results are printed as well as the columns required, how the WHERE clause
was rewritten to translate time series to time series groups, how predicate push-down
was performed, and the query time to illustrate the capabilities of ModelarDB.

ece ModelarDB Demonstration
T oo Proessin |
Ingested Data Sets Query Read-Eval-Print Loop
[_Extended REDD (R) [ 10% Error Bound ded REDD (R)=# SELECT COUNT_R(st, et, res) FROM Segment WHERE sid = 87

ModelarDB: segment required columns { st et res sid }
ModelarDB: segment provided filters { EqualTo(sid,87) }
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}
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Figure D.6: Executing queries on the Segment View and Data Point View using the interface with a data set
from [1]

Data Sets: ModelarDB is designed for clusters, but as the demonstration mainly

uses a laptop we use smaller real life data sets from multiple domains. For this
small scale demonstration we use the data set REDD which contains measurements of
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electricity usage from houses, a data set from BackBlaze containing measurements of
hard drive health with metadata regarding the hard disk type, time series from the KNMI
Climate Explorer with temperature, wind speed and snow fall with metadata about the
location, and last time series from the UCR Time Series Classification Archive. Data
sets too small for the demonstration are enlarged by duplicating the time series and
applying a scaling constant so duplicate values do not change the results. In addition,
we have pre-ingested larger real life data sets about energy production on a remote
cluster so participants can experience executing queries at scale. These data sets contain
metadata describing both the location and type of measurement performed, but both the
dimensions and values have been anonymized due to NDAs with the data providers.

Scenarios: The demonstration allows participants to experience the entire workflow
of using ModelarDB. First the participants use the user interface to select a data set
and specify correlations before starting the quick ingestion procedure. The participants
can then compare the size of the ingested data and the models used with the results
from other participants. After the data has been ingested the participants can execute
queries on the ingested data sets using the Segment View and Data Point View to
see the difference in performance. In addition to the small data sets, participants can
execute queries on a cluster to experience operating ModelarDB at scale.
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