1,575 research outputs found

    A Deep Q-Learning based Smart Scheduling of EVs for Demand Response in Smart Grids

    Full text link
    Economic and policy factors are driving the continuous increase in the adoption and usage of electrical vehicles (EVs). However, despite being a cleaner alternative to combustion engine vehicles, EVs have negative impacts on the lifespan of microgrid equipment and energy balance due to increased power demand and the timing of their usage. In our view grid management should leverage on EVs scheduling flexibility to support local network balancing through active participation in demand response programs. In this paper, we propose a model-free solution, leveraging Deep Q-Learning to schedule the charging and discharging activities of EVs within a microgrid to align with a target energy profile provided by the distribution system operator. We adapted the Bellman Equation to assess the value of a state based on specific rewards for EV scheduling actions and used a neural network to estimate Q-values for available actions and the epsilon-greedy algorithm to balance exploitation and exploration to meet the target energy profile. The results are promising showing that the proposed solution can effectively schedule the EVs charging and discharging actions to align with the target profile with a Person coefficient of 0.99, handling effective EVs scheduling situations that involve dynamicity given by the e-mobility features, relying only on data with no knowledge of EVs and microgrid dynamics.Comment: Submitted to journa

    A Deep Reinforcement Learning-Based Charging Scheduling Approach with Augmented Lagrangian for Electric Vehicle

    Full text link
    This paper addresses the problem of optimizing charging/discharging schedules of electric vehicles (EVs) when participate in demand response (DR). As there exist uncertainties in EVs' remaining energy, arrival and departure time, and future electricity prices, it is quite difficult to make charging decisions to minimize charging cost while guarantee that the EV's battery state-of-the-charge (SOC) is within certain range. To handle with this dilemma, this paper formulates the EV charging scheduling problem as a constrained Markov decision process (CMDP). By synergistically combining the augmented Lagrangian method and soft actor critic algorithm, a novel safe off-policy reinforcement learning (RL) approach is proposed in this paper to solve the CMDP. The actor network is updated in a policy gradient manner with the Lagrangian value function. A double-critics network is adopted to synchronously estimate the action-value function to avoid overestimation bias. The proposed algorithm does not require strong convexity guarantee of examined problems and is sample efficient. Comprehensive numerical experiments with real-world electricity price demonstrate that our proposed algorithm can achieve high solution optimality and constraints compliance

    Learning-Augmented Scheduling for Solar-Powered Electric Vehicle Charging

    Full text link
    We tackle the complex challenge of scheduling the charging of electric vehicles (EVs) equipped with solar panels and batteries, particularly under out-of-distribution (OOD) conditions. Traditional scheduling approaches, such as reinforcement learning (RL) and model predictive control (MPC), often fail to provide satisfactory results when faced with OOD data, struggling to balance robustness (worst-case performance) and consistency (near-optimal average performance). To address this gap, we introduce a novel learning-augmented policy. This policy employs a dynamic robustness budget, which is adapted in real-time based on the reinforcement learning policy's performance. Specifically, it leverages the temporal difference (TD) error, a measure of the learning policy's prediction accuracy, to assess the trustworthiness of the machine-learned policy. This method allows for a more effective balance between consistency and robustness in EV charging schedules, significantly enhancing adaptability and efficiency in real-world, unpredictable environments. Our results demonstrate that this approach markedly improves scheduling effectiveness and reliability, particularly in OOD contexts, paving the way for more resilient and adaptive EV charging systems

    An Efficient Distributed Multi-Agent Reinforcement Learning for EV Charging Network Control

    Full text link
    The increasing trend in adopting electric vehicles (EVs) will significantly impact the residential electricity demand, which results in an increased risk of transformer overload in the distribution grid. To mitigate such risks, there are urgent needs to develop effective EV charging controllers. Currently, the majority of the EV charge controllers are based on a centralized approach for managing individual EVs or a group of EVs. In this paper, we introduce a decentralized Multi-agent Reinforcement Learning (MARL) charging framework that prioritizes the preservation of privacy for EV owners. We employ the Centralized Training Decentralized Execution-Deep Deterministic Policy Gradient (CTDE-DDPG) scheme, which provides valuable information to users during training while maintaining privacy during execution. Our results demonstrate that the CTDE framework improves the performance of the charging network by reducing the network costs. Moreover, we show that the Peak-to-Average Ratio (PAR) of the total demand is reduced, which, in turn, reduces the risk of transformer overload during the peak hours.Comment: 8 pages, 4 figures, accepted at Allerton 202

    Optimal Scheduling of Electric Vehicle Charging with Deep Reinforcement Learning considering End Users Flexibility

    Full text link
    The rapid growth of decentralized energy resources and especially Electric Vehicles (EV), that are expected to increase sharply over the next decade, will put further stress on existing power distribution networks, increasing the need for higher system reliability and flexibility. In an attempt to avoid unnecessary network investments and to increase the controllability over distribution networks, network operators develop demand response (DR) programs that incentivize end users to shift their consumption in return for financial or other benefits. Artificial intelligence (AI) methods are in the research forefront for residential load scheduling applications, mainly due to their high accuracy, high computational speed and lower dependence on the physical characteristics of the models under development. The aim of this work is to identify households' EV cost-reducing charging policy under a Time-of-Use tariff scheme, with the use of Deep Reinforcement Learning, and more specifically Deep Q-Networks (DQN). A novel end users flexibility potential reward is inferred from historical data analysis, where households with solar power generation have been used to train and test the designed algorithm. The suggested DQN EV charging policy can lead to more than 20% of savings in end users electricity bills

    Definition and evaluation of model-free coordination of electrical vehicle charging with reinforcement learning

    Get PDF
    Demand response (DR) becomes critical to manage the charging load of a growing electric vehicle (EV) deployment. Initial DR studies mainly adopt model predictive control, but models are largely uncertain for the EV scenario (e.g., customer behavior). Model-free approaches, based on reinforcement learning (RL), are an attractive alternative. We propose a new Markov decision process (MDP) formulation in the RL framework, to jointly coordinate a set of charging stations. State-of-the-art algorithms either focus on a single EV, or control an aggregate of EVs in multiple steps (e.g., 1) make aggregate load decisions and 2) translate the aggregate decision to individual EVs). In contrast, our RL approach jointly controls the whole set of EVs at once. We contribute a new MDP formulation with a scalable state representation independent of the number of charging stations. Using a batch RL algorithm, fitted QQ -iteration, we learn an optimal charging policy. With simulations using real-world data, we: 1) differentiate settings in training the RL policy (e.g., the time span covered by training data); 2) compare its performance to an oracle all-knowing benchmark (providing an upper performance bound); 3) analyze performance fluctuations throughout a full year; and 4) demonstrate generalization capacity to larger sets of charging stations

    Federated Reinforcement Learning for Electric Vehicles Charging Control on Distribution Networks

    Full text link
    With the growing popularity of electric vehicles (EVs), maintaining power grid stability has become a significant challenge. To address this issue, EV charging control strategies have been developed to manage the switch between vehicle-to-grid (V2G) and grid-to-vehicle (G2V) modes for EVs. In this context, multi-agent deep reinforcement learning (MADRL) has proven its effectiveness in EV charging control. However, existing MADRL-based approaches fail to consider the natural power flow of EV charging/discharging in the distribution network and ignore driver privacy. To deal with these problems, this paper proposes a novel approach that combines multi-EV charging/discharging with a radial distribution network (RDN) operating under optimal power flow (OPF) to distribute power flow in real time. A mathematical model is developed to describe the RDN load. The EV charging control problem is formulated as a Markov Decision Process (MDP) to find an optimal charging control strategy that balances V2G profits, RDN load, and driver anxiety. To effectively learn the optimal EV charging control strategy, a federated deep reinforcement learning algorithm named FedSAC is further proposed. Comprehensive simulation results demonstrate the effectiveness and superiority of our proposed algorithm in terms of the diversity of the charging control strategy, the power fluctuations on RDN, the convergence efficiency, and the generalization ability

    Learning-based Predictive Control via Real-time Aggregate Flexibility

    Full text link
    Aggregators have emerged as crucial tools for the coordination of distributed, controllable loads. To be used effectively, an aggregator must be able to communicate the available flexibility of the loads they control, as known as the aggregate flexibility to a system operator. However, most of existing aggregate flexibility measures often are slow-timescale estimations and much less attention has been paid to real-time coordination between an aggregator and an operator. In this paper, we consider solving an online optimization in a closed-loop system and present a design of real-time aggregate flexibility feedback, termed the maximum entropy feedback (MEF). In addition to deriving analytic properties of the MEF, combining learning and control, we show that it can be approximated using reinforcement learning and used as a penalty term in a novel control algorithm -- the penalized predictive control (PPC), which modifies vanilla model predictive control (MPC). The benefits of our scheme are (1). Efficient Communication. An operator running PPC does not need to know the exact states and constraints of the loads, but only the MEF. (2). Fast Computation. The PPC often has much less number of variables than an MPC formulation. (3). Lower Costs. We show that under certain regularity assumptions, the PPC is optimal. We illustrate the efficacy of the PPC using a dataset from an adaptive electric vehicle charging network and show that PPC outperforms classical MPC.Comment: 13 pages, 5 figures, extension of arXiv:2006.1381
    corecore