
June 6, 2019 1

Definition and evaluation of model-free
coordination of electrical vehicle charging with

reinforcement learning
Nasrin Sadeghianpourhamami, Student Member, IEEE, Johannes Deleu, and Chris Develder, Senior Member, IEEE

Abstract—Demand response (DR) becomes critical to manage
the charging load of a growing electric vehicle (EV) deployment.
Initial DR studies mainly adopt model predictive control, but
models are largely uncertain for the EV scenario (e.g., customer
behavior). Model-free approaches, based on reinforcement learn-
ing (RL), are an attractive alternative. We propose a new Markov
decision process (MDP) formulation in the RL framework, to
jointly coordinate a set of charging stations. State-of-the-art
algorithms either focus on a single EV, or control an aggregate
of EVs in multiple steps (e.g., (1) make aggregate load decisions,
(2) translate the aggregate decision to individual EVs). In
contrast, our RL approach jointly controls the whole set of EVs at
once. We contribute a new MDP formulation with a scalable state
representation independent of the number of charging stations.
Using a batch RL algorithm, fitted Q-iteration, we learn an
optimal charging policy. With simulations using real-world data,
we (i) differentiate settings in training the RL policy (e.g., the time
span covered by training data), (ii) compare its performance to an
oracle all-knowing benchmark (providing an upper performance
bound), (iii) analyze performance fluctuations throughout a full
year, and (iv) demonstrate generalization capacity to larger sets
of charging stations.

Index Terms—demand response, electric vehicles, batch rein-
forcement learning.

NOMENCLATURE

s State
s′ The next state from s
∆tdepart Time left until departure
∆tcharge Time needed for charging completion
tarrival Time of arrival
∆tflex Flexibility (time charging can be delayed)
Ns Number of connected EVs in state s
Vt Set of EVs in the system at time t
xs Aggregate demand in state s
t Timeslot
∆tslot Duration of a decision slot
Smax Maximum number of decision slots
Hmax Maximum connection time
Nmax Number of charging stations jointly being coordi-

nated
us Action taken in state s
Us Set of possible actions from state s
xtotal
s (d) Total number of EVs on the dth upper diagonal of

xs
Cdemand Cost of total power consumption
Cpenalty Penalty cost for unfinished charging
C(s, us, s′) Instantaneous cost of state transition
Btest Test set

N. Sadeghianpourhamami, J. Deleu and C. Develder are with IDLab, Dept.
of Information Technology, Ghent University – imec, Ghent, Belgium, e-mail:
<firstname>.<lastname>@ugent.be

Btrain Training set
ei set of tuples (tarrival,∆tdepart,∆tcharge) in day i
∆t Training data time span
Cπ Normalized cost of policy π
CBAU Normalized cost of business-as-usual policy
CRL Normalized cost of the learned policy
Copt Normalized cost of optimum solution

I. INTRODUCTION

DEMAND response (DR) algorithms aim to coordinate
the energy consumption of customers in a smart grid to

ensure demand-supply balance and reliable network perfor-
mance. In initial DR studies, the demand response problem
usually is cast as a model predictive control (MPC) approach
(e.g., [1], [2]), typically formulated as an optimization problem
to minimize the customer’s electricity bill or maximize the
energy provider’s profit, subject to various operating con-
straints (e.g., physical characteristics of the devices, customer
preferences, distributed energy resource constraints and energy
market constraints). However, widespread deployment of such
model-based DR algorithms is limited because (i) the hetero-
geneity of end user loads, the broad range of user behavior
patterns and the uncertainty surrounding that behavior makes
the modeling task very challenging [3], and (ii) model-based
DR algorithms are difficult to transfer from one scenario
to another, since the model is likely to require substantial
customization/tweaking, e.g., for different user groups. In this
paper, we therefore focus on developing an essentially model-
free approach, that is purely data-driven.

Recently, reinforcement learning (RL) has emerged to facili-
tate such model-free control for coordinating user flexibility in
DR and defines the DR problem as a Markov decision process
(MDP). A coordinating agent interacts with the environment
(i.e., DR participating customers, energy providers, energy
market prices, etc.) and takes control actions while aiming to
maximize the long term expected reward (or to minimize the
long term expected cost). In other words, the agent learns by
taking actions and observing the outcomes (i.e., states) and the
rewards/costs in an iterative process. The DR objective (e.g.,
load flattening, load balancing) is achieved by appropriately
designing the reward/cost signal. Hence, RL-based approaches
do not need an explicit model of user flexibility behavior nor
energy pricing: RL facilitates more practical and generally
applicable DR schemes compared to model-based approaches.
Yet, a main challenge of RL-based DR approaches is the curse
of dimensionality due to the continuity and scale of the state

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Ghent University Academic Bibliography

https://core.ac.uk/display/287941347?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:chris.develder@ugent.be?subject=RL%20paper%20in%20IEEE%20Trans.%20Smart%20Grid

June 6, 2019 2

1

3 4

. . .

2

EV charging
coordinator

∆t1charge ∆t2charge

now +1 +2 +3–3 –1–2

t1arr

t1dep

t2arr

t2dept4dep

t3arr

∆t1depart

∆t2depart

N charging
stations

max

+1 +2 +3+1 +2 +3now

1

2

3

now

1

2

3 business as usual
(BAU)

+1 +2 +3+1 +2 +3now

1

2

3

now

1

2

3 load �attening

objective: meet target load schedule

input: arrival & departure times, charging needs
output: which EVs to charge now?

ca

rs
 c

ha
rg

in
g

Fig. 1: An illustration of the EV charging coordination prob-
lem, with 2 cars currently connected (and remaining so for
∆tdepart), with indicated arrival and departure times (tarr and
tdep, measured in timeslots) as well as charging needs (noted
as time left to charge, ∆tcharge).

and action spaces, hindering applicability of RL-based DR to
large-scale problems.

Here, we focus on formulating a scalable RL-based DR
algorithm to jointly coordinate a group of electric vehicle
(EV) charging stations, which generalizes to various group
sizes and EV charging rates. The general problem is sketched
in Fig. 1: we consider a system comprising Nmax charging
stations, where EVs dynamically come and go over time. We
consider discrete timeslots, and need the coordination system
to decide which cars to charge. To make that decision, we
assume the state and future departure of the cars in the system
(vehicles 1 and 2 in the example) are known, but future arrivals
(such as vehicle 3) are not. The DR objective is to meet
a target load schedule. In the current paper, we will focus
on load flattening, i.e., minimize the load and thus spread
out consumption equally over time — which amounts to a
concept often referred to as peak shaving [4], [5] and/or valley
filling [6], [7] — but the approach is generalizable to other
objectives. Our work is aimed as an exploratory proof-of-
concept study that demonstrates feasibility and explores the
performance of a scalable RL approach.

Current literature indeed only offers a limited amount of

model-free solutions for jointly coordinating multiple EV
charging stations (see Section II). Such existing RL-based DR
solutions are either developed for an individual EV or need
a heuristic (which does not guarantee an optimum solution)
to obtain the aggregate load of a set of EV charging stations
during the learning process. Indeed, current literature does not
provide a scalable Markov decision process (MDP) formula-
tion that generalizes to a collection of EV charging stations
with different characteristics (e.g., charging rates, size). We
take the first step1 to fill this gap by proposing an MDP and
explore its performance in simulation experiments. Note that
we frame this paper as a first proof-of-concept of our proposed
MDP, focusing on demonstrating feasibility and exploring its
main characteristics. More precisely, in this paper:
• We define a new MDP with compact state and action space

representations, which do not linearly scale with the number
of EV charging stations, can generalize to collections of var-
ious sizes and can be extended to cope with heterogeneous
charging rates (Section III),

• We adopt batch reinforcement learning (fitted Q-iteration
[9]) with function approximation to find an optimal EV
charging policy (Section IV),

• We quantitatively explore the performance of the proposed
RL approach with simulations using real-world data in ex-
periments covering 10 and 50 charging stations (setup details
in Section V), to answer research questions (Section VI):
(Q1) What is the impact of varying parameter settings of
the input training data?2

(Q2) How does the RL policy perform compare to an
optimal all-knowing oracle algorithm?
(Q3) How does that performance vary over time (i.e., from
one month to the next) using realistic data?
(Q4) Does a learned approach generalize to different EV
group sizes?

Section VII summarizes our conclusions and open issues.

II. RELATED WORK

A substantial body of research has focused on proposing
model-based DR algorithms (e.g., MPC approach) for EV
charging coordination: for recent reviews, we refer to [10],
[11]. However, as explained earlier, the widespread deploy-
ment of such algorithms in smart grid is often hindered by
(i) the need for precise system models models, as well as
(ii) limited generalizability of proposed solutions. With grow-
ing EV adoption, also the amount of available (and realistic)
EV data increased. Hence, data-driven approaches to coordi-
nate EV charging gained attention, with reinforcement learning
(RL) as a notable example — which is also increasingly
popular in demand response beyond the EV case (see [12]
for a recent overview). For example, Shi et al. [13] adopt an
RL-based approach and phrase an MDP to learn to control
the charging and discharging of an individual EV under price
uncertainty for providing vehicle-to-grid (V2G) services. Their

1The model is a significant refinement of our initial proposal [8], which
just formulated an MDP and did not have any experimental results.

2The parameters of interest are (i) time span of the training data, and
(ii) number of sampled trajectories from the decision trees. For details see
Section IV-B and Section V-B.

June 6, 2019 3

MDP has (i) a state space based on the hourly electricity
price, state-of-charge and time left till departure), (ii) an action
space to decide between charging (either to fulfill the de-
mand or provide frequency regulation), delaying the charging
and discharging for frequency regulation (iii) unknown state
transition probabilities. The reward is defined as the energy
payment of charging and discharging or the capacity payment
(for the provided frequency regulation service). Chis et al.
[14] use batch RL to learn the charging policy of again an
individual EV, to reduce the long-term electricity costs for
the EV owner. An MDP framework represents this problem,
where (i) the state space consists of timing variables, minimum
charging price for a current day and price fluctuation between
the current and the next day, while (ii) the action is the amount
of energy to consume in a day. Cost savings of 10%-50%
are reported for simulations using real-world pricing data.
Opposed to these cost-minimizing approaches assuming time-
varying prices, as a first case study for our joint control of a
group of EV charging stations, we will focus first on a load
flattening scenario (i.e., electricity prices are assumed constant,
but peaks need to be avoided).

In contrast to [13] and [14], which consider the charging
of a single EV, Claessens et al. [4] use batch RL to learn a
collective charging plan for a group of EVs in the optimization
step of their previously proposed three step DR approach [5].
Their three-step DR approach comprises (i) an aggregation
step, (ii) an optimization step, and (iii) a real-time control
step. Step (i) aggregates individual EV constraints. In step (ii),
the aggregated constraints are used by the batch RL agent to
learn the collective charging policy for the EV fleet, which
is translated to a sequence of actions (i.e., aggregated power
consumption values for each decision slot) to minimize energy
supply costs. Finally, in step (iii) a priority based heuristic
algorithm dispatches the energy corresponding to the action
determined in the optimization step from the individual EVs.
Vandael et al. [15] also use batch RL to learn a cost-effective
day-ahead consumption plan for a group of EVs. Their
formulation also has two decision phases, (i) day-ahead and
(ii) intra-day.

Note that our work is different from [4] and [15] in two
aspects: (i) unlike [4], [15], our approach does not take control
decisions in separate steps (i.e., first deciding on aggregate
energy consumption and then coordinating individual EV
charging to meet that aggregate target) and instead it takes
decisions directly and jointly for all individual EVs using
an efficient representation of the aggregate state of a group
of EVs, hence (ii) our approach does not need a heuristic
algorithm, but instead learns the aggregate load while finding
an optimum policy to flatten the load curve. The next sections
describe our MDP model and the batch reinforcement learning
approach to train it.

III. MARKOV DECISION PROCESS (MDP)

A Markov decision process (MDP) as a mathematical
framework is characterized by (i) a finite state space, (ii) a
finite set of possible actions that impact transitions from
one state to the next, (iii) transition probabilities dictating

the likelihood of such stochastic state evolutions, and (iv) a
cost function (or, alternatively, rewards) associated with those
transitions. The state represents the problem/environment an
agent is interacting with by taking an action and observing
a cost/reward and the next state. In our specific setting, we
aim to minimize the cost of charging a group of EVs for an
aggregator, in a real-time slotted decision-making setup: we
consider a sequential decision making problem and formulate
it using an MDP with unknown transition probabilities.

Concretely, at each timeslot, we need to decide whether
or not to charge each of the present EVs. The input for that
decision, which represents the state of the EV coordinating
problem, comprises the current timeslot and the joint charging
demand of the connected EVs. Further, we represent the
charging decisions for the present EVs at each state in form of
an action that dictates which of the present EVs to charge in
the current timeslot. The next state depends on the action taken
and newly arriving EVs in the next timeslot. Since we do not
assume prior knowledge of future arrivals, the state transition
probabilities are unknown in our problem. The learning objec-
tive is to find a charging policy that determines what action
to take in each state of the coordination problem such that
the long term expected cost is minimized. In particular, we
focus on a load flattening scenario (a concept also commonly
referred to as peak shaving [4], [5] and/or valley filling [6],
[7]), minimizing the peak-to-average ratio of the aggregate
load of the group of EVs: a convex cost function sums the
squared total power consumption over all timeslots in the
decision time horizon. Further, as a user constraint, our cost
function will include a penalty term to ensure that charging
is completed before departure. More advanced DR objectives
and constraints are left for future work.

Given that transition probabilities are a priori unknown, the
(charging) policy is often learned from interactions with the
environment via taking actions and observing the outcome in
form of a cost and the next state. Note that in this process,
the learning agent also implicitly learns the transition proba-
bilities (or what to expect as future arrivals and their charging
demands). Hence, our approach (or any other RL method) is
based on the core assumption that EV arrivals and the as-
sociated charging needs exhibit some regularity/predictability.
Previous studies of EV charging datasets (e.g., [16]) suggest
that this assumption holds.

For a comprehensive overview of reinforcement learning,
especially in demand response, we refer to [12]. Now, we
will detail each of the MDP components of our approach in
turn, while the adopted learning algorithm will be explained
in Section IV.

A. State Space

An EV charging session is characterized by: (i) EV arrival
time, (ii) time left till departure (∆tdepart), (iii) requested
energy and (iv) EV charging rate. For (i), since we do not
assume knowledge of future arrivals, we do not explicitly
include arrival time in the current EVs’ representation. For
(iii)–(iv), we implicitly assume the same charging rate for all
EVs in a group, and translate the requested energy to time

June 6, 2019 4

needed to complete the charging (∆tcharge). Thus, if we have
Ns electric vehicles in the system, the (remaining times of)
their sessions are represented as a set

Vt = {(∆tdepart
1 ,∆tcharge

1), . . . , (∆tdepart
Ns

,∆tcharge
Ns

)}.

Each state s is represented using two variables: timeslot
(i.e., t ∈ {1, . . . , Smax}) and the aggregate demand (i.e., xs),
hence s = (t, xs). Inspired by [17], aggregate demand at each
given timeslot is obtained via a binning algorithm: the demand
is represented using a 2D grid, thus a matrix xs, with one axis
representing ∆tdepart, the other ∆tcharge. That means that the
element of xs at position (i, j) counts the number EV charging
sessions in the corresponding (∆tdepart,∆tcharge) bin, i.e., those
for which i =

⌈
∆tdepart

∆tslot

⌉
and j =

⌈
∆tcharge

∆tslot

⌉
. The resulting

matrix xs has dimension Smax × Smax, which depends on the
maximal connection time Hmax, i.e., the longest duration of an
EV being connected to a charging station: Smax , Hmax/∆t

slot.
This ensures scalability to various system sizes: the maximal
number of cars Nmax does not impact state size.

Further, we do not use absolute counts as entries in the
matrix xs, but rather divide the number of sessions in a given
(i, j) cell by the system capacity, i.e., the number of EV charg-
ing stations Nmax. This makes the state representation scale-
free, i.e., independent of Nmax. Thus we aim the formulated
MDP (and the learned control policy) to be generalizable to
a different number of EV charging stations. Note that as time
progresses, cars will move towards lower ∆tdepart cells, and
if charged) also lower ∆tcharge.3 Since time-of-day is likely to
influence the expected evolution of the state xs (and hence the
required response action we should take), we also include the
current timeslot t as explicit part of the state.

Figure 2 illustrates a simple scenario of Nmax = 2 charging
stations with a horizon of Smax = 3 slots. Let us assume
that at time t = 1 we have Ns = 2 connecting cars: V1 =
{(∆tdepart

1 ,∆tcharge
1) = (3, 2), (∆tdepart

2 ,∆tcharge
2) = (2, 1)},

with no other arrivals during the control horizon. Figure 2
depicts the resulting state space using the binning algorithm
in the first timeslot. EVs are binned according to their ∆tdepart

and ∆tcharge in a 2D grid of size 3×3. The resulting matrix is
normalized by Nmax (= 2 in this example). The shaded grid
cells in Fig. 2 indicate bins with ∆tcharge ≤ ∆tdepart: EVs in
these bins have enough time to complete their charging.

Our state representation xs not only has a scalability merit
in that it summarizes the aggregated demand of connecting
EVs (in terms of ∆tdepart and ∆tcharge) in a compact and
comparative form, but also naturally facilitates making similar
charging decisions for EVs with similar charging needs. In
particular, the flexibility in terms of how long the charging
can be delayed (denoted as ∆tflex = ∆tdepart − ∆tcharge) is
easily inferred from the diagonals of xs:

∆tflex(i, j) = j − i ∀i, j ∈ {1, . . . , Smax}. (1)

Equation (1) indicates that EVs binned into cells on the main
diagonal of xs (i.e., i = j) have zero flexibility, while the ones
in cells on the upper diagonals of xs are flexible. Negative

3An extension to consider the variable charging rate is possible by binning
the EVs in a 3D grid with charging rate as the third dimension.

car c1 : (∆t1depart, ∆t1) = (3, 2)charge

car c2 : (∆t2depart, ∆t2) = (2, 1)charge

c20 0
c100
00 0

1 32

3

2

1

i

j
0.50 0

0.500
00 0

1,

(t, x) = s

c20 0
c100
00 0

xs
total 20 0= U = { [0, 0, 0], [0, 0.5, 0], [0, 1, 0] } s

Total EVs in upper and
main diagonals of x :s

Possible actions in state s :

c20 0
c100
00 0

1

0c2 0
0c10
00 0

2 00 0
0c10
00 0

2 c10 0
000
00 0

2

00 0
000
00 0

3 0c1 0
000
00 0

3

00 0
000
00 0

terminal state

00 0 10 00.50 0

00 0 01 000 0 00.5 0 01 0 10 0 00 0

00 0 01 000 0

xst

us

state transition
when taking
action us

sample decision
tree without new
arrivals of EVs

(a)

(b)

(c)
1

2

3

4

time

Fig. 2: A simple example for Nmax = 2 charging stations:
(a) state representation, (b) possible action states, (c) full
decision tree over the horizon of Smax = 3 slots.

∆tflex, corresponding to lower diagonals of xs (i.e., white
cells in the 2D grids of Fig. 2), implies EVs whose charging
demand cannot be fulfilled. However, our control strategy will
ensure that EVs charging demands are never violated, using a
penalty term in our cost function (see Section III-C). Such
straightforward identification of flexibility allows to make
consistent charging decisions for EVs with similar flexibility
(as explained in Section III-B).

Finally, while the dimension of xs (thus the state space size)
is independent of the maximal number of cars Nmax, it is still
dependent on Smax (thus Hmax and ∆tslot). This independence
from Nmax ensures scalability of the state representation to
various group sizes of EV charging stations (see our analysis
for Q4). Yet, increasing Smax may still lead to a huge state
space. Adapting the size of xs (hence Smax) to limit the state
space is left for future work: as previously indicated, the
current paper focuses on providing a proof-of-concept for our
proposed MDP formulation to jointly coordinate charging of
multiple EVs.

B. Action Space

The action to take in state s = (t, xs) is a decision whether
or not to charge the currently connected EVs. We will make
decisions based on ∆tflex. EVs with the same ∆tflex are binned
into the cells on the same diagonal of xs, as explained in the
previous section. We indicate each diagonal of xs as xs(d)
with d = 0, . . . , Smax − 1 where xs(0) is the main diagonal,
xs(d) is the upper dth diagonal, and xs(−d) is the lower dth

diagonal of xs. We denote xtotal
s (d) as the total number of

EVs in the cells on the dth diagonal. Since we assume no
infeasible requests are issued (no arrivals of EVs in the lower

June 6, 2019 5

diagonal cells), and we will honor feasible requests (we do
do not let cars move to those lower diagonals), the action
taken in state s is defined as a vector us of length Smax: we
define the action vector for charging/delaying the cars on the
main and upper diagonals of xs only (colored cells in Fig. 2).
This design choice keeps the action space relatively small and
therefore easier to explore. Further, in each timeslot we charge
any given car either at full power or not at all. Thus the dth

element of action vector us will be a number in [0, 1]: the
fraction of EVs to charge from the corresponding dth diagonal
of xs. Us denotes the set of possible actions from state s.

Figure 2(b) illustrates how Us is constructed from state s,
starting from matrix xs with an intermediate vector xtotal

s . In
the exemplary state, there are 2 EVs in the upper first diagonal
only, hence the 1st and the 3rd element of us corresponding to
the main and 2nd upper diagonal, are zero. There are 3 possible
actions to take in this state, depending on the fraction of the
EVs to charge on the 1st upper diagonal: charging none of the
cars (i.e., us[2] = 0), only one of them (us[2] = 0.5), or both
(us[2] = 1) in the current slot.

C. Cost function

The objective we consider is to flatten the aggregate charg-
ing load of a group of EVs while ensuring each EV’s charging
is completed before departure.4 Hence, the cost for a transition
from state s to s′ by taking action us has two parts:

C(s,us, s′) = Cdemand(xs,us) + Cpenalty(xs′), (2)

with
• Cdemand(xs,us): the cost of the total power consumption

from all the connected EVs for a decision slot, and
• Cpenalty(xs′): the penalty for unfinished charging.

To achieve load flattening, we choose Cdemand to be a
quadratic function of the total power consumption for a
decision slot. Since we assume the same charging rate for
all EVs, the total power consumption in a decision timeslot is
proportional to the number of EVs being charged. Hence, the
first part of the cost for a transition (s,us, s′) is:

Cdemand(xs,us) =

(
Smax−1∑
d=0

xtotal
s (d) us(d)

)2

. (3)

The second term of the cost function is a penalty propor-
tional to the unfinished charging in the next state s′ = (ts′ , xs′)
due to taking action us in s = (t, xs) and is defined as

Cpenalty(xs,us) = M
∑

n∈Vt+1

|min(0,∆tcharge
n −∆tdepart

n)| (4)

The summation in (4) counts the amount of charging re-
quests that are impossible to complete (for EVs with ∆tdepart

n <
∆tcharge

n) as a consequence of taking action us at state s =
(t, xs). M is a constant penalty factor, which we set to be
greater than 2Nmax to ensure that any EV’s charging is always
completed before departing: having even just one incompletely
charged EV will be costlier than simultaneously charging all

4We assume only feasible requests are presented to the system, i.e.,
∆tcharge ≤ ∆tdepart for each EV.

EVs (see Appendix). This is the only user constraint we
include in our formulations.

Note that in Eq. (2) the cost is independent of the timeslot
variable t of the state and only depends on the aggregate
demand variable xs: the quadratic function of total consump-
tion (to achieve load flattening) indeed is time-independent.
Still, we include time in the state definition s = (t, xs) to
enable easy extensions to other objectives (e.g., minimal cost
under the time-varying pricing schemes). Also, we use the
time component for the function approximator in Algorithm 1
(see Section V-B).

D. System Dynamics

In the MDP framework, system dynamics (via the environ-
ment) are defined using transition probabilities P (s′|s,us) for
going from one state s to the next s′. These probabilities are
unknown in our EV charging problem due to the stochasticity
of EV arrivals and their charging demands. Perfect knowledge
of EV arrivals (and their charging demands) within the control
horizon would translate the problem into a decision tree as
depicted in Fig. 2(c), where the cost of taking each action
could be determined recursively using dynamic programming.
In absence of such knowledge, the transition probabilities need
to be estimated through interactions with the environment by
taking actions and observing the instantaneous cost of the
resulting state transitions, as explained next.

E. Learning Objective: State-Action Value Function

The learning objective is to find an optimum control policy
π∗ : S → U that minimizes the expected T -step return for
any state in S. The expected T -step return starting from s at
a given t and following policy π (i.e., us = π(s)) is:

JπT (s) = E

t+T∑
i=t

C((t, xs)︸ ︷︷ ︸
s

,us, (t+ 1, xs′)︸ ︷︷ ︸
s′

)

 . (5)

The policy π is commonly characterized using a state-action
value function, named Q-function:

Qπ(s,us) = E [C(s,us, s′) + JπT (s′)] , (6)

where Qπ(s,us) is the cumulative return starting from state
s, taking action us, and following policy π afterwards.
The optimal Qπ(s,us), denoted as Q∗(s,us), corresponds to
minπ Q

π(s,us) and satisfies the Bellman equation:

Q∗(s,us) = min
u∈U

E [C(s,us, s′) +Q∗(s′,u)] . (7)

Solving (7) requires knowledge of the transition probabili-
ties P (s′|s,us), which are unknown in our setting. Hence, a
learning algorithm is used to obtain approximation Q̂∗(s,u).
Then taking control action us follows an optimal policy π∗:

us = π∗(s) ∈ argmin
u∈Us

Q̂∗(s,u). (8)

June 6, 2019 6

Algorithm 1: Fitted Q-iteration using function ap-
proximation for estimating the T -step return

Input : F = {(s,us, s′, C(s,us, s′))|s = 1, . . . , |F|};
1 Initialize Q̂0 to be zero everywhere on X× U;
2 foreach n = 1, . . . , T do
3 foreach (s,us, s′, C(s,us, s′))) ∈ F do
4 Qn(s,us)← C(s,us, s′)+ min

us′∈Us′
Q̂n−1(s′,us′)

5 Use function approximator to obtain Q̂n from
Treg =

{
((s,us), Qn(s,us))|s = 1, . . . , |F|

}
6 return Q̂T

IV. BATCH REINFORCEMENT LEARNING

We adopt batch mode RL algorithms to approximate
Q̂∗(s,u) from past experience instead of online interactions
with the environment. The adopted approach is so-called
off-policy value-iteration algorithm. In such algorithms, the
optimum policy is learned from experiences gathered by a
non-optimum (e.g., random) policy. Hence, we use historical
EV data in terms of arrival/departures and energy demands
to generate experiences by following a random policy (i.e.,
randomly taking an action from a set of possible actions in
a particular state). Experiences are collected in the form of
state transitions from s to s′ when taking action us, with
associated costs C(s,us, s′). We then use fitted Q-iteration
to approximate Q̂∗(s,u) from the samples, detailed next.5

A. Fitted Q-iteration

The fitted Q-iteration (FQI) algorithm, listed in Algorithm 1,
takes as input a set of past experiences, F , in the form of tuples
(s,us, s′, C(s,us, s′)) where C(s,us, s′) is the immediate cost
of a transition, calculated using Eq. (2). The tuples are used
to iteratively estimate the optimum action value function. The
state-action value function Q is initialized with zeros on the
state-action space (Line 1) hence, Q1(s,us) = C(s,us, s′) in
the first iteration. In subsequent iterations, Qn is calculated for
each tuple in F by summing the immediate cost with the cost
of taking the best action that can be taken from the next state
(Line 4). The ‘best’ action is indeed the one that minimizes
the Q-function from that next state s′, which is estimated as
Q̂n−1(s′,u′s), i.e., the latest approximation of the action-value
function obtained in the previous iteration. The set comprising
all those Qn(s,us) is then used to form a labeled dataset Treg.
Based on this dataset, regression provides an updated estimate
Q̂n for all state-action pairs (Line 5).

For the function approximation, we adopt a fully connected
artificial neural network (ANN). Details on the ANN architec-
ture used in our experiments follow in Section V-B2.

5Note that instead of randomly taking actions, it is possible to go back
to the environment with the learned policy so far, gather more experience,
and retrain the learning agent to improve performance. Investigation of such
more efficient exploration strategies and thus (re)learning the policy is left for
future work (see Section VII, future work item (1)).

B. The size of the state-action space

The input for FQI (i.e., set F) is constructed from past
interactions with the environment: randomly or deterministi-
cally taking actions from the action space of state s = (t, xs)
and recording the tuple (s,us, s′, C(s,us, s′))). Note that the
number of possible actions from a given state s is

|Us| =
Smax∏
d=1

(
xtotal
s (d) + 1

)
, (9)

since for each flexibility ∆tflex = d we can choose to charge
between [0, xtotal

s (d)] cars.
The goal of the RL algorithm (hence the goal of the FQI)

is to estimate the T -step return for every possible action from
every possible state in the environment. Estimating the T -step
return starting from a state s leads to exploring a tree with an
exponentially growing number of branches at the next steps:
while the state and action representations are independent
of the group size (Nmax), the state-action space still grows
exponentially with a growth rate given by Eq. (9).

For example, consider Nmax = 50 charging stations and
a control horizon of Smax = 10 timeslots. In a state where
all EV charging stations are occupied (Ns = Nmax = 50),
there are at least 51 possible actions when all EVs have the
same flexibility, and thus are on the same diagonal in the state
matrix (i.e., xtotal

s = [50, 0, 0, 0, 0, 0, 0, 0, 0, 0]). On the other
hand, if they are scattered across different ∆tflex, e.g., xtotal

s =
[5, 5, 5, 5, 5, 5, 5, 5, 5, 5], there are |Us| = 610 possible actions.

This implies it is infeasible to include the entire state-action
space in F as input for FQI. We thus only provide a subset
of the state-action space, randomly sampling trajectories from
the decision tree (that has branching factor |Us|). This leads to
question Q1 (answered in Section VI-A): How many sample
trajectories from the state-action space suffice to learn an
optimum policy for charging a real-world group of EVs?

The computational complexity of the FQI algorithm (and
value iteration algorithms in general) depends on the calcula-
tion of the min operation (Line 4 of Algorithm 1). The min
is taken over all possible actions from state s, i.e., the set Us,
whose size depends on the arrangement of the EVs on the
diagonals of matrix xs as demonstrated above and quantified
by Eq. (9). However, the overall computational complexity
of the FQI algorithm is not explicitly quantifiable and is
influenced by the states encountered (as part of the transitions
in F) during the training process.

V. EXPERIMENT SETUP

A. Data Preparation

Our analysis uses real-world EV charging session transac-
tions collected by ElaadNL since 2011 from 2500+ public
charging stations deployed across Netherlands, as described
and analyzed in [16]. For each of the over 2M charging
sessions, a transaction records the charging station ID, arrival
time, departure time, requested energy and charging rate
during the session. The EVs are privately owned and thus
comprise a mixture of different and a priori unknown car types.

To represent the EV transactions in ElaadNL as state
transitions (s,us, s′, C(s,us, s′)), we first need to choose a

June 6, 2019 7

reasonable size for the state and the action representations. We
set the maximum connection duration to Hmax = 24 h, since
more than 98% of the EV transactions in the ElaadNL dataset
cover sessions of less than 24 hours [16]. We further set the
decision timeslot, i.e., the time granularity of control actions,
to ∆tslot = 2 h, resulting in Smax = Hmax/∆t

slot = 12. Hence,
a state s is represented by a scalar variable t and a matrix xs
of size Smax × Smax = 12 × 12. The corresponding action us
taken from state s is a vector of length 12 (with a decision
for each of the upper diagonals, one per flexibility window
∆tflex). The motivation of choosing ∆tslot = 2 h is to limit
the branching factor |Us| (which depends on Smax in Eq. (9))
from each state. This yields a manageable state-action space
size and allows model training (specifically, the min operation
in Line 4 of Algorithm 1) in a reasonable amount of time.6

Furthermore, we make the ElaadNL dataset episodic by
assuming that all the EVs leave the charging stations before the
end of a day, thus yielding an empty car park in between two
consecutive days.7 We define such an episodic ‘day’ to start
at 7 am and end 24 h later (the day after at 7 am) and refer
to it simply as a ‘day’ in the rest of the paper. The empty
system state in between two days is always reached after
Smax + 1 timeslots and represented by an aggregate demand
matrix xs of all zeros. This ensures that, while each day can
have a different starting state (depending on the first arrivals
and their energy demand), traversing the decision tree always
leads to a unique terminal state (see Fig. 2(c) for an exemplary
decision tree). This is motivated by Riedmiller [18], showing
that, when learning with FQI and adopting a neural network as
function approximator, having a terminal goal state stabilizes
the learning process. It ensures that all trajectories end up in a
state where no further action/transition is possible and hence
is characterized by an action-value of zero.

To create a group of Nmax EV charging stations, we select
the busiest Nmax ones based on the number of recorded
transactions per station. We use two subsets, one with the top-
10, the other with the top-50 most busy stations. We use the
actual session data of these stations in terms of car arrivals,
departures and charging needs:8 this determines the possible
actions that can be taken at any time, which will be used to
construct the set of experiences F , as described in the RL
algorithm settings described next.

B. Algorithm Settings

Since we consider day episodes of 24 h, and use timeslots
of 2 h, we have Smax = 12. Hence, fitted Q-iteration (FQI)
needs to estimate the 12-step return and we have 12 iterations
in Algorithm 1.

1) Creating set F: To collect the set F , we begin from
the starting state of a day characterized as (t1, x1). We then
randomly choose an action from all possible ones in that
state, observe the next state, note the associated state transition

6We use an Intel Xeon E5645 processor, 2.4 GHz, 290 GB RAM.
7The charging demands of EVs are adjusted to ensure the requested

charging can be fulfilled within 24 hours.
8Note that in the real-life ElaadNL sessions, no smart charging was applied.

But from the charging needs we can infer flexibility in terms of potential
delayed charging, and thus all possible actions.

cost, and repeat until we reach the terminal state.9 The state
transitions in each trajectory are thus recorded in F as tuples
(s,us, s′, C(s,us, s′)). We randomly sample multiple possible
trajectories from each day and analyze the effect of the number
of sampled trajectories on the performance of the resulting
policy. The notion of a sample in the following thus refers to
a full trajectory from initial to terminal state of a day.

2) Neural network architecture: We use an artificial neural
network (ANN) comprising an input layer, 2 hidden layers
(of 128 and 64 neurons respectively) with ReLU activation
function, and an output layer. Since the ANN is used for
regression, the output layer has a single neuron and a linear
activation function. Each state-action pair is fed to the input
layer in form of a vector of length S2

max+Smax+1, by reshaping
the state s and concatenating it with the action vector us (of
size Smax = 12). The state s comprises a scalar time variable t
and an aggregate demand matrix xs of size Smax×Smax, which
we reshape to a vector of size S2

max + 1 (= 145 in our case).
Inspired by Mnih et al. [19], we also found that using Huber
loss [20] instead of mean-squared-error stabilizes learning.

C. Performance Evaluation
We use the ElaadNL transactions of 2015 and select the

last 3 months as the test set for evaluation, i.e., Btest =
{ei|i = 274, . . . , 365} containing |Btest| = 92 days.10 Each
day ei in the test set contains transactions in form of tuples
(tarrival,∆tdepart,∆tcharge) where tarrival is the arrival time of the
connecting EVs. We consider training sets of varying lengths
(to determine the impact of training set size, see research
question Q1), with training time spans of ∆t ∈ {1, 3, 5, 7, 9}
months. For a given ∆t, we randomly pick 5 contiguous
periods within the range of Jan. 1, 2015 until Sep. 30, 2015
(except for ∆t = 9 months, since that covers all training
data). We define the training set for time span ∆t and run j
(= 1 . . . 5) as Btrain

∆t,j = {ei|i = estart
∆t,j , . . . , e

start
∆t,j + ∆t − 1},

where estart
∆t,j is the randomly selected starting date of the

training set.11

To evaluate the performance of the learned policy, we define
the metric of normalized cost relative to the cost Copt of
the optimum policy from an all-knowing oracle. This oracle
policy is found by following an MPC approach minimizing a
quadratic objective function, namely the sum of the squared
loads over a horizon of Hmax timeslots. For each ∆t and j we
thus define the normalized cost as

Cπ(∆t,j) =
1

|Btest|
∑
e∈Btest

Ceπ(∆t,j)

Ceopt
, (10)

where π(∆t, j) is a policy learned from run j for training data
time span ∆t. Further, Ceπ(∆t,j) is the cost for day e under

9Recall that we consider an episodic setting, i.e., case where the system
empties (definitely after Smax timeslots).

10Recall from Section V-A that each day in the set starts at 7 am and ends
24 h later, with an empty system.

11Note that the training set Btrain is different from set F . Similar to the test
set, each day in the training set also contains tuples (tarrival,∆tdepart,∆tcharge).
The control problem for each day of the training set translates into a control
tree (see Section III for MDP construction from tuples in training set) and is
randomly sampled using a methodology explained in Section V-B1 to obtain
and include the tuples (s, us, s′, C(s, us, s′)) in set F .

June 6, 2019 8

policy π(∆t, j). Ceopt is the optimum cost for day e, found by
solving the load flattening problem as a quadratic optimization
problem. The cost for day e under policy π is calculated by
summing the instantaneous cost (defined by Eq. (2)) of state
transitions encountered when taking actions according to the
policy under evaluation (using Eq. (8)). Clearly, if a learned
policy achieves the optimum policy, then Cπ(∆t,j) = 1.

We compare the performance of the learned policy not only
with the optimum policy but also with the business-as-usual
(BAU) policy where the charging of an EV starts immediately
upon arrival. In the next section, we present our analysis using
the normalized cost of BAU, optimum and learned policies
denoted as CBAU, Copt and CRL respectively.

VI. EXPERIMENTAL RESULTS

A. Learning the Charging Coordination (Q1–Q2)
To answer Q1 we study the learned policy’s performance

in function of (i) the time span covered by the training data
(i.e., ∆t), and (ii) the number of sample trajectories per day
of training data. Figure 3 compares the normalized cost of a
learned policy with that of a BAU and optimum policy for
varying ∆t and number of samples per training day, for the
case of Nmax = 10 and 50 charging stations respectively.
– Influence of the time span covered by the training set:
Fig. 3(b) shows that increasing ∆t from 1 to 3 months and
beyond reduces the normalized cost of the learned policy for
both 10 and 50 charging stations. Additionally, the perfor-
mance gain when increasing ∆t from 1 to 3 months is bigger
than for raising ∆t beyond 3 months. This suggests that the
RL approach needs at least 3 months of training data to reach
maximal performance (in case of ElaadNL).
– Influence of the number of sample trajectories: Fig. 3(a)
shows that when ∆t ≥ 3 months, increasing the number of
samples does not result in a significant cost reduction for the
learned policy (i.e., CRL) for either 10 or 50 charging stations.
Our analysis suggests that we need a training data time span
of at least 3 months to have a comparable performance over
various number of samples per day and that when training data
time span is at least 3 months, fewer samples (~5K trajectories)
can still achieve a comparable performance (with respect to
training with larger samples per day). This answers Q1.

Next, we answer Q2 (i.e., how does the RL policy perform
compare to an optimal all-knowing oracle algorithm?) by
referring to the best performance measures in Fig. 3. We
observe that the best performance is achieved when ∆t = 9
months for both Nmax = 10 and 50. The relative improvement
in terms of normalized cost reduction, compared to a business-
as-usual uncontrolled charging scenario, CBAU, amounts to
37% and 29.4% for 10 and 50 charging stations respectively.
Note that CRL is still 7% and 8.5% more expensive than
the optimal policy cost Copt for 10 and 50 charging stations
respectively. Still, it is important to realize that for the optimal
policy we assume perfect knowledge of future EV charging
sessions, including arrival and departure times and energy re-
quirements. Clearly, having that future knowledge is infeasible
in reality: the proposed RL approach, which does not require
such knowledge, thus is a more practical solution.

Finally, we note that there is an increase in the variance
between simulation runs for larger Nmax (see shaded regions in
Fig. 3). Analysis revealed that there are no notable differences
in the distributions of arrival and departure times, nor energy
demands, among the Nmax = 10 vs. 50 cases. We rather
hypothesize that the increased variance in performance is
because of the considerably larger state-action space for bigger
Nmax, given in Eq. (9). The performance of FQI is indeed
greatly influenced by the given training set F . Since we use
random sampling, essential parts of the state-action space (e.g.,
best and worst trajectories) will not necessarily be included in
F . With larger trees, that possibility is even more limited. We
leave techniques to achieve more efficient exploration of this
large state-action space as future work, and for now refer to
[21] for an overview of exploration algorithms.12

B. Variance of performance over time (Q3)

In Fig. 3, the test set was fixed: the performance was
evaluated using the last 3 months of 2015 from the ElaadNL
data as test set (i.e., Btest = {ei|ei = 274, . . . , 365}). Now,
to analyze how performance of our RL approach would vary
throughout the year, we consider each month of 2015 as
a separate test set (e.g., Btest

Jan = {ei|i = 1, . . . , 31}). We
therefore no longer fix the training set to a single given time
span, but for each test month use the immediately preceding
∆t months as training data (with ∆t = 1 or 5 months).
This analysis investigates whether learning the EV charging
characteristics is more challenging for different times of the
year, hence answering Q3.

Figure 4 shows normalized costs for coordinating Nmax =
10 charging stations (top) and cost improvement compared to
the business-as-usual scenario, CBAU (bottom).

Figure 4 shows that CBAU varies across test months: for
some (e.g., May and Aug), the difference CBAU−Copt is larger
than for others. This indicates that the charging sessions in
these months have higher flexibility, which is exploited by the
optimum solution. For such months with higher CBAU −Copt,
our proposed RL approach also achieves a higher cost reduc-
tion compared to CBAU (Fig. 4, bottom). Still, the achieved CRL
is more expensive than Copt compared to months that offer less
flexibility. We found that days on which the optimal charging
pattern requires the exploitation of larger charging delays are
more challenging to learn by RL approach, in the sense that
RL has greater difficulty in approaching the optimum (i.e.,
obtaining higher CRL). One reason is scarcity of such days in
the training set, resulting in imbalanced training data. Another
reason is that random sampling does not guarantee inclusion
of the scarce (but crucial) parts of the large state-action space
in the training set as fed to FQI. We further investigate the
effect of increasing the training data ∆t from 1 to 5 preceding
months for each test set. For most months, this results in
improvement with respect to CBAU (Fig. 4, bottom).

The analysis in this section thus answers Q3 (i.e., How
does the performance vary over time using realistic data?): the

12As indicated previously, we limit this paper’s focus to proposing the
(scalable/generalizable) MDP formulation and experimentally exploring the
resulting RL-based charging performance using real-world EV data.

June 6, 2019 9

1 month 3 months 5 months 7 months 9 months

5K 10K 15K 20K 5K 10K 15K 20K 5K 10K 15K 20K 5K 10K 15K 20K 5K 10K 15K 20K

1.08

1.10

1.12

N
or

m
al

iz
ed

 c
os

t (
10

 E
V

s)

(a)

1 month 3 months 5 months 7 months 9 months

10K 30K 50K10K 30K 50K10K 30K 50K10K 30K 50K10K 30K 50K

1.10

1.12

1.14

Number of samples per episodeN
or

m
al

iz
ed

 c
os

t (
50

 E
V

s)
5000 10000 15000 20000

1 3 5 7 9 1 3 5 7 9 1 3 5 7 9 1 3 5 7 9

1.08

1.10

1.12
CRL

(b)

10000 30000 50000

1 3 5 7 9 1 3 5 7 9 1 3 5 7 9

1.10

1.12

1.14

Training data time span (months)

Fig. 3: Normalized costs for the learned policy (CRL) for 10 (top) and 50 (bottom) charging stations, as a function of (a) the
number of sample trajectories per training day for various ∆ts, and (b) ∆t for various numbers of samples. BAU policy cost
is CBAU = 1.43 and 1.38 respectively for 10 and 50 stations. Obviously, Copt = 1. Markers are individual runs, lines are run
averages and ribbons indicate 95% confidence intervals.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●1.0

1.2

1.4

1.6

Jan Apr Jul Oct

N
or

m
al

iz
ed

 c
os

t 1 month

5 months

●

●

●

CRL

CBAU

Copt

●

●

●

●

●

●

●

●

● ● ●

●

●

●

● ●
●

●
●

●

●
●

●

●

0.30
0.35
0.40
0.45

Jan Apr Jul Oct

Test month

C
B

A
U

−
C

R
L

1 month

5 months

Fig. 4: Performance using different months as test set and
different time spans of the training set (1–5 months).

𝑐𝑐1: ∆𝑡𝑡1
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,∆𝑡𝑡1

𝑐𝑐𝑐𝑑𝑑𝑑𝑑𝑐𝑐𝑑𝑑 = (1,4)
𝑐𝑐2: ∆𝑡𝑡2

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,∆𝑡𝑡2
𝑐𝑐𝑐𝑑𝑑𝑑𝑑𝑐𝑐𝑑𝑑 = (1,4)

𝑐𝑐1: ∆𝑡𝑡1
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,∆𝑡𝑡1

𝑐𝑐𝑐𝑑𝑑𝑑𝑑𝑐𝑐𝑑𝑑 = (1,4)
𝑐𝑐2: ∆𝑡𝑡2

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,∆𝑡𝑡2
𝑐𝑐𝑐𝑑𝑑𝑑𝑑𝑐𝑐𝑑𝑑 = (1,4)

𝑐𝑐3: ∆𝑡𝑡3
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,∆𝑡𝑡3

𝑐𝑐𝑐𝑑𝑑𝑑𝑑𝑐𝑐𝑑𝑑 = (1,4)
𝑐𝑐4: ∆𝑡𝑡4

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,∆𝑡𝑡4
𝑐𝑐𝑐𝑑𝑑𝑑𝑑𝑐𝑐𝑑𝑑 = (1,4)

Scenario I

Scenario II
0

2

4

1 2 3
Time slot

0

1

4

Optimum pattern

BAU pattern

4

1

3

2

3

1 2 3 4

N
um

be
r o

f c
ha

rg
in

g
EV

s

Fig. 5: Effect of scaling up the group size on the normalized
cost for a policy learned from 10 charging stations.

RL algorithm performance depends on the available flexibility,
with greater flexibility (expectedly) leading to larger cost
reductions compared to the BAU uncontrolled charging, but
greater difficulty in approaching the optimum performance.

C. Generalization to Larger Scales (Q4)

While model-free approaches based on RL eliminate the
need for accurate knowledge of the future EV session char-
acteristics (as opposed to optimization approaches), they still
require a reasonably long training time to be able to efficiently
coordinate the EV charging sessions. The runtime for the
largest training set size (covering 9 months, with 5K sample
trajectories per day) is approximately 3 h for Nmax =10
charging stations, while for Nmax = 50 it is about 48 h.13

Since our proposed formulations are independent of the
number of charging stations (Nmax), we can investigate how a
policy learned from training with a small number of charging
stations performs when applied to coordinating a larger group.
We use the policy learned from data of Nmax = 10 charging
stations with ∆t = 9 months, with the EV sessions of the
last quarter of 2015 as test set. To investigate the effect of
scaling up the number of charging stations without changing
other system characteristics, we replicate EV charging sessions
with a factor scale to create a test set of larger Nmax. Such
scaling may change the optimum solution, as illustrated with
a simple example in Fig. 5 where the length of the control
horizon is Smax = 4 slots. In Scenario I of Fig. 5, at time
t = 1 we have 2 connecting cars: V = {(∆tdepart

1 ,∆tcharge
1) =

(1, 4), (∆tdepart
2 ,∆tcharge

2) = (1, 4)} and no other arrivals dur-
ing the control horizon. The best action is to charge 50% of
the cars at t = 1 and 2 to flatten the load curve. In Scenario II
of Fig. 5, set V is duplicated once and the best action now is
to charge 25% of the cars in each of the control timeslots.

The normalized costs (relative to Copt) of the learned policy
for scaled-up group sizes are shown in Fig. 6 for various scales
and number of samples per day in the training set. A scale
of 1 corresponds to the original test set (no replication). The
largest jumps in CRL are observed for doubling the group size
(scale factor 2×). Further increases of Nmax beyond 2× only

13Running on an Intel Xeon E5645 processor, 2.4 GHz, 290 GB RAM.

June 6, 2019 10

5000 10000 15000 20000

1 2 3 4 5 6 7 8 910 1 2 3 4 5 6 7 8 910 1 2 3 4 5 6 7 8 910 1 2 3 4 5 6 7 8 910
1.0
1.1
1.2
1.3
1.4

Scale

N
or

m
al

iz
ed

 c
os

t

CRL

CBAU

Copt

Fig. 6: The effect of scaling up Nmax on a normalized cost of a
policy learned from Nmax = 10 charging stations for different
numbers of sampled trajectories (ranging from 5K to 20K).

lead to marginal increases in normalized cost for any number
of sample trajectories per day. These analyses confirm that
our proposed MDP formulations are generalizable to varying
group sizes and that a policy learned from a smaller group of
charging stations can be used to coordinate the charging of
a larger group, at least provided that the distribution of EV
arrivals, departures and energy demands are similar.

VII. CONCLUSION

In this paper, we proposed a reinforcement learning ap-
proach for jointly controlling a group of EV charging stations.
We formulated an MDP with scalable representation of an
aggregated state that effectively takes into account individual
EV charging characteristics (i.e., arrival time, charging and
connection duration). Our formulations are independent of the
number of charging stations and charging rates and hence
generalize to a varying number of charging stations. We used
a 1-year long real-world EV charging dataset [16] to experi-
mentally evaluate the performance of the proposed approach
compared to an uncontrolled business-as-usual (BAU) policy,
as well as an optimum solution that has a perfect knowledge of
the EV charging session characteristics (in terms of arrival and
departure times). In our case study, the analyses concluded the
following:14

(1) While the representation of the state and action are
independent of the number of charging stations, because
of its sheer size it is still infeasible to feed the entire
state-action space to the FQI learning algorithm. This
raised question Q1: What are appropriate training data
time spans and number of sampled trajectories from the
decision trees? We found that when training data spans
more than 3 months, the performance of a policy does not
improve when trained with more than a relatively small
number (∼5K) of sampled trajectories per training day.

(2) We investigated how the RL policy performs compared to
an optimal all-knowing oracle algorithm (Q2). We show
that our approach learns a policy that can reduce the
cost of coordinating charging across 10 and 50 charg-
ing stations by 37% and 29.4% respectively compared
to an uncontrolled BAU charging policy. The achieved
cost reduction in our approach does not require future
knowledge on EV charging sessions and is only 7% (for
Nmax =10 charging stations) and 8.5% (for Nmax =50)

14Note that the quantitative statements made are clearly only valid under
the current experiment settings.

more expensive than an optimum solution that assumes
perfect knowledge of future EV charging demand.

(3) We then analyzed how the performance of our RL ap-
proach varies over time using realistic data (i.e., Q3) by
checking whether the learned policy performs similarly
for various months of the year (when training on the
preceding months). The results indicate that flexibility,
and hence cost reduction, varies across various months:
months with larger flexibility exhibit larger cost reduction
achieved by the learned policy, compared to the cost of
the BAU policy. Still, the cost gap between the learned
policy and the optimal one is larger for those higher
flexibility months. This is due to (a) scarcity of days with
larger flexibility in the training set, and (b) random sam-
pling of the state-action space, which does not guarantee
inclusion of the rare but crucial parts of the state-action
space in the training set as fed to the FQI algorithm.

(4) Finally, we trained an agent using an experience from
10 charging stations and applied the learned policy to
control a higher number of stations (up to a factor of
10× more arrivals) to check generalization of the learned
policy (question Q4). These analyses confirmed that our
proposed MDP formulations are generalizable to groups
of varying sizes and that a policy learned from a small
number of charging stations may be used to coordinate
charging in a larger group, at least for similar distributions
of EV arrivals, departures and energy demands.

Our future research will look into possible improvements:
(1) We used random exploration of state-action space to col-

lect the experience as an input to our learning algorithm.
We will investigate whether incorporating an efficient ex-
ploration strategies to perform a more informed sampling
of the state-action space improves the performance.

(2) We used a fully connected neural network for function
approximation in the FQI algorithm. Since we represent
our aggregate state of demand using a matrix, it is
relevant to investigate whether using convolutional neural
networks (similar to the function approximation adopted
in [17]) will further improve performance.

(3) We represented the aggregate demand in each state as a
matrix, i.e., using a 2D grid with one axis being ∆tdepart,
the other ∆tcharge. This approach efficiently represents the
aggregate demand while retaining individual EV charging
characteristics. However, the discretization during the
binning process introduces an approximation error for the
cost function. The error can be minimized by refining
the time granularity (i.e., using more precise ∆tdepart and
∆tcharge quantization) in the aggregate demand represen-
tation of a state. Still, refining the time granularity results
in a larger state space, affecting the scalability and the
learning speed of the proposed approach. Hence, as a
next step, we will analyze how this approximation error
may influence the optimization result at the aggregated
EV level. We will also investigate the possibility of
identifying an optimum time granularity that results in
an acceptable approximation error at the aggregated level
without jeopardizing scalability and learning speed of the
proposed approach.

June 6, 2019 11

(4) Note that the adopted RL approach essentially learns
from experience, implying that it gathers some knowledge
on, e.g., typical arrival and departure patterns of EVs,
but does not explicitly models those. One could also
explore explicit forecasting of future EV sessions, and
use the timings of forecasted EV charging sessions as
additional inputs to the decision system. We leave systems
exploiting such EV forecasting as future work.

(5) The learning algorithm in our RL approach is based on
value iteration, where the state-action value is estimated
for various state-action pairs and an optimum policy
is deduced form these estimations. We will investigate
whether using policy iteration methods improves perfor-
mance. The use of policy iteration will also allow taking
continuous actions, by avoiding a minimization problem
as in eq. (8), instead of the discrete ones.

(6) A real-world deployment is the ultimate goal of any DR
algorithm. Our proposed RL based approach already cir-
cumvents various unrealistic assumptions by eliminating
the need for models and learning only from data. Yet,
follow-up work is required to further validate our solu-
tion’s applicability: (a) validating our proof-of-concept
with simulations covering broader ranges of parameter
settings (e.g., use of finer decision timeslots than the
currently used coarse 2 h long timeslots), (b) taking into
account a more comprehensive set of user constraints in
proposed MDP and the use of heuristics to maximize
user acceptance, e.g., based on the previous analysis of
the user data [16], (c) improving safety and interoper-
ability of the proposed RL algorithm [22], and finally
(d) conducting real-word operational tests.

APPENDIX

This appendix elaborates on setting the value of the penalty
factor M in Eq. (4). The objective of defining that penalty
cost is to ensure that even one incomplete unit of charging is
costlier that simultaneously charging all EVs. Let us assume
an instant where joint charging of the present EVs is at its
maximum capacity: the cost of such simultaneous charging
(without any delay) is N2

max. Now, if only one unit of charging
is delayed beyond the remaining sojourn of the EV involved,
the total cost amounts to (Nmax − 1)2 + M . To achieve the
aforementioned goal we need N2

max < (Nmax−1)2 +M , hence
N2

max < N2
max − 2Nmax + 1 +M , thus M > 2Nmax − 1.

ACKNOWLEDGMENTS

The work presented in this paper was supported in part by
the Flemish Government, through the VLAIO SBO project
MultI-agent LEarnIng for neTworks (SMILE-IT), grant num-
ber 140047. We thank prof. Pascal Poupart for advice on the
reinforcement learning algorithms, and dr. Bert Claessens for
constructive feedback. The car icon in Fig. 1 was designed by
Freepik (http://www.freepik.com).

REFERENCES

[1] A. Afram and F. Janabi-Sharifi, “Theory and applications of HVAC
control systems – A review of model predictive control (MPC),” Build.
Environ., vol. 72, pp. 343–355, 2014.

[2] J. Ma, J. Qin, T. Salsbury, and P. Xu, “Demand reduction in building
energy systems based on economic model predictive control,” Chem.
Eng. Sci., vol. 67, no. 1, pp. 92–100, 2012.

[3] N. Sadeghianpourhamami, T. Demeester, D. Benoit, M. Strobbe, and
C. Develder, “Modeling and analysis of residential flexibility: Timing
of white good usage,” Appl. Energ., vol. 179, pp. 790–805, 2016.

[4] B. J. Claessens, S. Vandael, F. Ruelens, K. D. Craemer, and B. Beusen,
“Peak shaving of a heterogeneous cluster of residential flexibility carriers
using reinforcement learning,” in Proc. IEEE PES Innovative Smart Grid
Technol. Eur. (ISGT Europe 2013), Copenhagen, Denmark, 6–9 Oct.
2013, pp. 1–5.

[5] S. Vandael, B. Claessens, M. Hommelberg, T. Holvoet, and G. Decon-
inck, “A scalable three-step approach for demand side management of
plug-in hybrid vehicles,” IEEE Trans. Smart Grid, vol. 4, no. 2, pp.
720–728, 2013.

[6] N. Chen, T. Q. S. Quek, and C. W. Tan, “Optimal charging of electric
vehicles in smart grid: Characterization and valley-filling algorithms,”
in Proc. 3rd IEEE Int. Conf. Smart Grid Commun. (SmartGridComm
2012), Tainan City, Taiwan, 5–8 Nov. 2012, pp. 13–18.

[7] L. Gan, U. Topcu, and S. H. Low, “Optimal decentralized protocol for
electric vehicle charging,” IEEE Trans. Power Sys., vol. 28, no. 2, pp.
940–951, May 2013.

[8] N. Sadeghianpourhamami, J. Deleu, and C. Develder, “Achieving scal-
able model-free demand response in charging an electric vehicle fleet
with reinforcement learning,” in Proc. 9th ACM Int. Conf. Future Energy
Systems (e-Energy 2018), 12–15 Jun. 2018.

[9] M. Riedmiller, “Neural fitted Q iteration – first experiences with a data
efficient neural reinforcement learning method,” in Proc. 16th Eur. Conf.
Machine Learning (ECML 2005), vol. 3720, Porto, Portugal, 3–7 Oct.
2005, pp. 317–328.

[10] J. Hu, H. Morais, T. Sousa, and M. Lind, “Electric vehicle fleet
management in smart grids: A review of services, optimization and
control aspects,” Renew. Sust. Energ. Rev., vol. 56, pp. 1207–1226, Apr.
2016.

[11] Z. Yang, K. Li, and A. Foley, “Computational scheduling methods for
integrating plug-in electric vehicles with power systems: A review,”
Renew. Sust. Energ. Rev., vol. 51, pp. 396–416, Nov. 2015.

[12] J. R. Vázquez-Canteli and Z. Nagy, “Reinforcement learning for demand
response: A review of algorithms and modeling techniques,” Appl.
Energ., vol. 235, pp. 1072–1089, Feb. 2019.

[13] W. Shi and V. W. S. Wong, “Real-time vehicle-to-grid control algorithm
under price uncertainty,” in Proc. IEEE Int. Conf. Smart Grid Commun.
(SmartGridComm 2011), Brussels, Belgium, 17–20 Oct. 2011, pp. 261–
266.

[14] A. Chis, J. Lundén, and V. Koivunen, “Reinforcement learning-based
plug-in electric vehicle charging with forecasted price,” IEEE Trans.
Veh. Technol., vol. 66, no. 5, pp. 3674–3684, May 2017.

[15] S. Vandael, B. Claessens, D. Ernst, T. Holvoet, and G. Deconinck,
“Reinforcement learning of heuristic EV fleet charging in a day-ahead
electricity market,” IEEE Trans. Smart Grid, vol. 6, no. 4, pp. 1795–
1805, July 2015.

[16] N. Sadeghianpourhamami, N. Refa, M. Strobbe, and C. Develder,
“Quantitive analysis of electric vehicle flexibility: A data-driven ap-
proach,” Int. J. Electr. Power Energy Syst., vol. 95, pp. 451–462, 2018.

[17] B. J. Claessens, P. Vrancx, and F. Ruelens, “Convolutional neural
networks for automatic state-time feature extraction in reinforcement
learning applied to residential load control,” IEEE Trans. Smart Grid,
vol. 9, no. 4, pp. 3259–3269, 2018.

[18] M. Riedmiller, “10 steps and some tricks to set up neural reinforcement
controllers,” in Neural networks: Tricks of the trade, 2nd Ed., G. Mon-
tavon, G. B. Orr, and K.-R. Müller, Eds. Springer, 2012, ch. 30, pp.
735–757.

[19] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran,
D. Wierstra, S. Legg, and D. Hassabis, “Human-level control through
deep reinforcement learning,” Nature, vol. 518, pp. 529–533, 2015.

[20] P. J. Huber, “Robust estimation of a location parameter,” Ann. Math.
Statist., vol. 35, no. 1, pp. 73–101, Mar. 1964.

[21] R. McFarlane, “A survey of exploration strategies in reinforcement
learning,” McGill University, 2018. [Online]. Available: http://www.cs.
mcgill.ca/∼cs526/roger.pdf

[22] M. Jin and J. Lavaei, “Stability-certified reinforcement learn-
ing: A control-theoretic perspective,” arXiv e-prints, Oct. 2018,
arXiv:1810.11505.

https://www.vlaio.be/nl/andere-doelgroepen/flanders-innovation-entrepreneurship
http://www.freepik.com
http://www.cs.mcgill.ca/~cs526/roger.pdf
http://www.cs.mcgill.ca/~cs526/roger.pdf

June 6, 2019 12

Nasrin Sadeghianpourhamami obtained the B.
Eng. degree (First Class Hons.) in electronics, ma-
joring in telecommunications, and the M.Sc. degree
in engineering science from the Faculty of Engineer-
ing, Multimedia University, Cyberjaya, Malaysia, in
2007 and 2011 respectively, and the Ph.D. degree in
computer science from the Faculty of Engineering,
Ghent University, Ghent, Belgium, in 2018. From
2011 to 2014, she was a Lecturer with the Faculty
of Engineering, Multimedia University. In Jan. 2015,
she joined the research group IDLab in the Depart-

ment of Information Technology (INTEC) at Ghent University - imec, Ghent,
Belgium, as a PhD student. As a part of the smart grid team in IDLab, she
developed solutions using statistical modeling, machine learning, and deep
reinforcement learning, to facilitate practical demand response algorithms for
residential customers and electric vehicles in the smart power grid. Her Ph.D.
research led to seven international publications.

Johannes Deleu received the degree of Master
of Science in computer science engineering from
Ghent University, Belgium, in 2005. He then joined
the research group IDLab in the Deptartment of
Information Technology (INTEC), Ghent University
- imec. He is a senior research engineer working
on topics of information retrieval and extraction,
machine learning, and in particular deep learning
applied to natural language processing (NLP). He
has participated in multiple research projects. This
has resulted in several real-world applications for

automatic content enrichment, nowadays in commercial use by several players
in the Flemish media sector.

Chris Develder (SM’99) is associate professor with
the research group IDLab in the Dept. of Infor-
mation Technology (INTEC) at Ghent University -
imec, Ghent, Belgium. He received the M.Sc. degree
in computer science engineering and a Ph.D. in
electrical engineering from Ghent University, Ghent,
Belgium, in 1999 and 2003 respectively, as a fellow
of the Research Foundation (FWO). From January
2004 to August 2005, he worked for OPNET Tech-
nologies, on (optical) network design and planning.
In September 2005, he re-joined INTEC as a post-

doctoral researcher, with a fellowship of the FWO in 2006–2012. In October
2007 he obtained a part-time, and since February 2010 a fulltime professorship
at Ghent University. He has stayed as a research visitor at UC Davis, CA,
USA (Jul.-Oct. 2007) and at Columbia University, NY, USA (Jan. 2013 –
Jun. 2015). He was and is involved in various national and European research
projects (e.g., FP7 Increase, FP7 C-DAX, H2020 CPN).

Chris currently leads two research teams within IDLab, one on converting
text to knowledge (i.e., NLP, mostly information extraction using machine
learning), the other on data analytics and machine learning for smart grids.
He also has a substantial track record in optical networking (dimensioning,
modeling, optimization, especially for grid/cloud computing). He has co-
authored over 200 refereed publications in international conferences and
journals. He is Senior Member of IEEE, Member of ACM, and Member of
ACL.

	Introduction
	Related Work
	Markov Decision Process (MDP)
	State Space
	Action Space
	Cost function
	System Dynamics
	Learning Objective: State-Action Value Function

	Batch Reinforcement Learning
	Fitted Q-iteration
	The size of the state-action space

	Experiment setup
	Data Preparation
	Algorithm Settings
	Creating set F
	Neural network architecture

	Performance Evaluation

	Experimental results
	Learning the Charging Coordination (Q1–Q2)
	Variance of performance over time (Q3)
	Generalization to Larger Scales (Q4)

	Conclusion
	References
	Biographies
	Nasrin Sadeghianpourhamami
	Johannes Deleu
	Chris Develder

