365 research outputs found

    Quantitative PET image reconstruction employing nested expectation-maximization deconvolution for motion compensation

    Get PDF
    Bulk body motion may randomly occur during PET acquisitions introducing blurring, attenuation-emission mismatches and, in dynamic PET, discontinuities in the measured time activity curves between consecutive frames. Meanwhile, dynamic PET scans are longer, thus increasing the probability of bulk motion. In this study, we propose a streamlined 3D PET motion-compensated image reconstruction (3D-MCIR) framework, capable of robustly deconvolving intra-frame motion from a static or dynamic 3D sinogram. The presented 3D-MCIR methods need not partition the data into multiple gates, such as 4D MCIR algorithms, or access list-mode (LM) data, such as LM MCIR methods, both associated with increased computation or memory resources. The proposed algorithms can support compensation for any periodic and non-periodic motion, such as cardio-respiratory or bulk motion, the latter including rolling, twisting or drifting. Inspired from the widely adopted point-spread function (PSF) deconvolution 3D PET reconstruction techniques, here we introduce an image-based 3D generalized motion deconvolution method within the standard 3D maximum-likelihood expectation-maximization (ML-EM) reconstruction framework. In particular, we initially integrate a motion blurring kernel, accounting for every tracked motion within a frame, as an additional MLEM modeling component in the image space (integrated 3D-MCIR). Subsequently, we replaced the integrated model component with a nested iterative Richardson-Lucy (RL) image-based deconvolution method to accelerate the MLEM algorithm convergence rate (RL-3D-MCIR). The final method was evaluated with realistic simulations of whole-body dynamic PET data employing the XCAT phantom and real human bulk motion profiles, the latter estimated from volunteer dynamic MRI scans. In addition, metabolic uptake rate Ki parametric images were generated with the standard Patlak method. Our results demonstrate significant improvement in contrast-to-noise ratio (CNR) and noise-bias performance in both dynamic and parametric images. The proposed nested RL-3D-MCIR method is implemented on the Software for Tomographic Image Reconstruction (STIR) open-source platform and is scheduled for public release

    Image Reconstruction via Deep Image Prior Subspaces

    Full text link
    Deep learning has been widely used for solving image reconstruction tasks but its deployability has been held back due to the shortage of high-quality training data. Unsupervised learning methods, such as the deep image prior (DIP), naturally fill this gap, but bring a host of new issues: the susceptibility to overfitting due to a lack of robust early stopping strategies and unstable convergence. We present a novel approach to tackle these issues by restricting DIP optimisation to a sparse linear subspace of its parameters, employing a synergy of dimensionality reduction techniques and second order optimisation methods. The low-dimensionality of the subspace reduces DIP's tendency to fit noise and allows the use of stable second order optimisation methods, e.g., natural gradient descent or L-BFGS. Experiments across both image restoration and tomographic tasks of different geometry and ill-posedness show that second order optimisation within a low-dimensional subspace is favourable in terms of optimisation stability to reconstruction fidelity trade-off

    Isotropic inverse-problem approach for two-dimensional phase unwrapping

    Full text link
    In this paper, we propose a new technique for two-dimensional phase unwrapping. The unwrapped phase is found as the solution of an inverse problem that consists in the minimization of an energy functional. The latter includes a weighted data-fidelity term that favors sparsity in the error between the true and wrapped phase differences, as well as a regularizer based on higher-order total-variation. One desirable feature of our method is its rotation invariance, which allows it to unwrap a much larger class of images compared to the state of the art. We demonstrate the effectiveness of our method through several experiments on simulated and real data obtained through the tomographic phase microscope. The proposed method can enhance the applicability and outreach of techniques that rely on quantitative phase evaluation
    corecore