14,299 research outputs found

    Iterative learning control of crystallisation systems

    Get PDF
    Under the increasing pressure of issues like reducing the time to market, managing lower production costs, and improving the flexibility of operation, batch process industries thrive towards the production of high value added commodity, i.e. specialty chemicals, pharmaceuticals, agricultural, and biotechnology enabled products. For better design, consistent operation and improved control of batch chemical processes one cannot ignore the sensing and computational blessings provided by modern sensors, computers, algorithms, and software. In addition, there is a growing demand for modelling and control tools based on process operating data. This study is focused on developing process operation data-based iterative learning control (ILC) strategies for batch processes, more specifically for batch crystallisation systems. In order to proceed, the research took a step backward to explore the existing control strategies, fundamentals, mechanisms, and various process analytical technology (PAT) tools used in batch crystallisation control. From the basics of the background study, an operating data-driven ILC approach was developed to improve the product quality from batch-to-batch. The concept of ILC is to exploit the repetitive nature of batch processes to automate recipe updating using process knowledge obtained from previous runs. The methodology stated here was based on the linear time varying (LTV) perturbation model in an ILC framework to provide a convergent batch-to-batch improvement of the process performance indicator. In an attempt to create uniqueness in the research, a novel hierarchical ILC (HILC) scheme was proposed for the systematic design of the supersaturation control (SSC) of a seeded batch cooling crystalliser. This model free control approach is implemented in a hierarchical structure by assigning data-driven supersaturation controller on the upper level and a simple temperature controller in the lower level. In order to familiarise with other data based control of crystallisation processes, the study rehearsed the existing direct nucleation control (DNC) approach. However, this part was more committed to perform a detailed strategic investigation of different possible structures of DNC and to compare the results with that of a first principle model based optimisation for the very first time. The DNC results in fact outperformed the model based optimisation approach and established an ultimate guideline to select the preferable DNC structure. Batch chemical processes are distributed as well as nonlinear in nature which need to be operated over a wide range of operating conditions and often near the boundary of the admissible region. As the linear lumped model predictive controllers (MPCs) often subject to severe performance limitations, there is a growing demand of simple data driven nonlinear control strategy to control batch crystallisers that will consider the spatio-temporal aspects. In this study, an operating data-driven polynomial chaos expansion (PCE) based nonlinear surrogate modelling and optimisation strategy was presented for batch crystallisation processes. Model validation and optimisation results confirmed this approach as a promise to nonlinear control. The evaluations of the proposed data based methodologies were carried out by simulation case studies, laboratory experiments and industrial pilot plant experiments. For all the simulation case studies a detailed mathematical models covering reaction kinetics and heat mass balances were developed for a batch cooling crystallisation system of Paracetamol in water. Based on these models, rigorous simulation programs were developed in MATLAB®, which was then treated as the real batch cooling crystallisation system. The laboratory experimental works were carried out using a lab scale system of Paracetamol and iso-Propyl alcohol (IPA). All the experimental works including the qualitative and quantitative monitoring of the crystallisation experiments and products demonstrated an inclusive application of various in situ process analytical technology (PAT) tools, such as focused beam reflectance measurement (FBRM), UV/Vis spectroscopy and particle vision measurement (PVM) as well. The industrial pilot scale study was carried out in GlaxoSmithKline Bangladesh Limited, Bangladesh, and the system of experiments was Paracetamol and other powdered excipients used to make paracetamol tablets. The methodologies presented in this thesis provide a comprehensive framework for data-based dynamic optimisation and control of crystallisation processes. All the simulation and experimental evaluations of the proposed approaches emphasised the potential of the data-driven techniques to provide considerable advances in the current state-of-the-art in crystallisation control

    Multi-objective optimization and model-based predictive control using state feedback linearization for crystallization

    Get PDF
    The ongoing Quality-by-Design paradigm shift in the pharmaceutical industry has sparked a new interest in exploring advanced process control techniques to aid the efficient manufacture of high value products. One important process in the manufacturing is crystallization, a key process in purification of active pharmaceutical ingredients (APIs). There has been little crystallization control research in the area of global input/output linearization, otherwise referred to as state-feedback linearization (SFL). The global linearization allows a nonlinear model to be linearized over the whole domain for which the model is valid and can be embedded into a model predictive controller (MPC). MPC allows the control of a process based on a model which captures the physical understanding and constraints, but a widely reported challenge with the SFL technique is the poor ability of explicitly handling the plant constraints, which is not ideal for a highly regulated production environment such as pharmaceutical manufacturing. Therefore, the first purpose of this research is to explore the use of SFL and how it can be applied to controlling batch and continuous MSMPR crystallization processes with the incorporation of plant constraints in the MPC (named SFL-Plant constraints). The contribution made from this research is the exploration of the SFL MPC technique with successful implementation of SFL-Plant constraints. The novelty in this method is that the technique builds on existing SFL-MPC frameworks to incorporate a nonlinear constraints routine which handles plant constraints. The technique is applied on numerous scenarios of batch and continuous mixed suspension mixed product removal (MSMPR) supersaturation control of paracetamol in water, both seeded and unseeded, which all show that the SFL-Plant constraints technique indeed produces feasible control over crystallization subject to constraints imposed by limitations such as heat transfer. The SFL-MPC with SFL-Plant constraints was applied to single-input single-output (SISO) and multiple-input multipleoutput (MIMO) systems, demonstrating consistent success across both schemes of control. It was also determined that the SFL-Plant constraints do increase the computational demand by 2 to 5 times that of the SFL when unconstrained. However, the difference in absolute time is not so significant, typically an MPC which acted on a system each minute required less than 5 seconds of computation time with inclusion of SFL-Plant constraints. This technique 5 presents the opportunity to use the SFL-MPC with real system constraints with little additional computation effort, where otherwise this may have not been possible. A further advancement in this research is the comparison between the SFL-MPC technique to an MPC with a data-driven model - AutoRegression model with eXogenous input (ARX) – which is widely used in industry. An ARX model was identified for batch supersaturation control using a batch crystallization model of paracetamol in isopropyl alcohol (IPA) in gPROMS Formulated Products as the plant, and an ARX model developed in an industrial software for advanced process control – PharmaMV. The ARX-MPC performance was compared with SFL-MPC performance and it was found that although the ARX-MPC performed well when controlling a process which operated around the point the ARX-MPC was initially identified, the capability of tracking the supersaturation profile deteriorated when larger setpoints were targeted. SFL-MPC, on the other hand, saw some deterioration in performance quantified through an increase in output tracking error, but remained robust at tracking a wide range of supersaturation targets, thus outperforming the ARX-MPC for trajectory tracking control. Finally, single-objective and multi-objective optimization of a batch crystallization process is investigated to build on the existing techniques. Two opportunities arose from the literature review. The first was the use of variable-time decision variables in optimization, as it appears all pre-existing crystallization optimization problems to determine the ideal crystallization temperature trajectory for maximising mean-size are constructed of piecewise-constant or piecewise-continuous temperature profiles with a fixed time step. In this research the timestep was added as a decision variable to the optimization problem for each piecewise continuous ramp in the crystallization temperature profile and the results showed that for the maximisation of mean crystal length in a 300-minute batch simulation, when using 10 temperature ramps each of variable length resulted in a 20% larger mean size than that of 10 temperature ramps, each over a fixed time length. The second opportunity was to compare the performance of global evolution based Nondominated Sorting Genetic Algorithm – II (NSGA-II) with a deterministic SQP optimization method and a further hybrid approach utilising first the NSGA-II and then the SQP algorithm. It was found that for batch crystallization optimization, it is possible for the SQP to converge a global solution, and the convergence can be guaranteed in the shortest time with little compromise using the hybrid 6 method if no information is known about the process. The NSGA-II alone required excessive time to reach a solution which is less refined. Finally, a multi-objective optimization problem is formed to assess the ability to gain insight into crystallization operation when there are multiple competing objectives such as maximising the number weighted mean size and minimizing the number weighted coefficient of variation in size. The insight gained from this is that it is more time efficient to perform single-objective optimization on each objective first and then initialize the multi-objective NSGA-II algorithm with the single-objective optimal profiles, because this results in a greatly refined solution in significantly less time than if the NSGA-II algorithm was to run without initialization, the results were approximately 20% better for both mean size and coefficient of variation in 10% of the time with initialization

    Modelling and control of crystallization process

    Get PDF
    Batch crystallizers are predominantly used in chemical industries like pharmaceuticals, food industries and specialty chemicals. The nonlinear nature of the batch process leads to difficulties when the objective is to obtain a uniform Crystal Size Distribution (CSD). In this study, a linear PI controller is designed using classical controller tuning methods for controlling the crystallizer outlet temperature by manipulating the inlet jacket temperature; however, the response is not satisfactory. A simple PID controller cannot guarantee a satisfactory response that is why an optimal controller is designed to keep the concentration and temperature in a range that suits our needs. Any typical process operation has constraints on states, inputs and outputs. So, a nonlinear process needs to be operated satisfying the constraints. Hence, a nonlinear controller like Generic Model Controller (GMC) which is similar in structure to the PI controller is implemented. It minimizes the derivative of the squared error, thus improving the output response of the process. Minimization of crystal size variation is considered as an objective function in this study. Model predictive control is also designed that uses advanced optimization algorithm to minimize the error while linearizing the process. Constraints are fed into the MPC toolbox in MATLAB and Prediction, Control horizons and Performance weights are tuned using Sridhar and Cooper Method. Performances of all the three controllers (PID, GMC and MPC) are compared and it is found that MPC is the most superior one in terms of settling time and percentage overshoot

    Index to 1984 NASA Tech Briefs, volume 9, numbers 1-4

    Get PDF
    Short announcements of new technology derived from the R&D activities of NASA are presented. These briefs emphasize information considered likely to be transferrable across industrial, regional, or disciplinary lines and are issued to encourage commercial application. This index for 1984 Tech B Briefs contains abstracts and four indexes: subject, personal author, originating center, and Tech Brief Number. The following areas are covered: electronic components and circuits, electronic systems, physical sciences, materials, life sciences, mechanics, machinery, fabrication technology, and mathematics and information sciences

    Improving of Crystal Size Distribution Control Based on Neural Network-Based Hybrid Model for Purified Terephthalic Acid Batch Crystallizer

    Get PDF
    A main difficult task in batch crystallization is to control the size distribution of crystal products. Complexity and highly nonlinear dynamic behavior directly affect to model-based control strategies which heavily depend on the rigorous knowledge of crystallization. In this work, neural network-based model predictive control and inverse neural network control strategies are proposed and integrated with an optimization based on neural network-based hybrid model to control temperatures of a purified terephthalic acid batch crystallizer. A neural network-based hybrid model of the batch crystallizer is developed to provide nonlinear dynamic responses used in optimization algorithm for finding an optimal temperature profile related to the quality of a crystal product. Then, the obtained optimal profile is used as set points of the proposed control strategies for improving the crystal product quality. The performances and robustness of the proposed controllers are evaluated in several cases such as for set point tracking and plant/model mismatches. Simulation results show that the neural network-based model predictive control gives the best control performance among the inverse neural network control and a conventional PID controller in all cases.A main difficult task in batch crystallization is to control the size distribution of crystal products. Complexity and highly nonlinear dynamic behavior directly affect to model-based control strategies which heavily depend on the rigorous knowledge of crystallization. In this work, neural network-based model predictive control and inverse neural network control strategies are proposed and integrated with an optimization based on neural network-based hybrid model to control temperatures of a purified terephthalic acid batch crystallizer. A neural network-based hybrid model of the batch crystallizer is developed to provide nonlinear dynamic responses used in optimization algorithm for finding an optimal temperature profile related to the quality of a crystal product. Then, the obtained optimal profile is used as set points of the proposed control strategies for improving the crystal product quality. The performances and robustness of the proposed controllers are evaluated in several cases such as for set point tracking and plant/model mismatches. Simulation results show that the neural network-based model predictive control gives the best control performance among the inverse neural network control and a conventional PID controller in all cases

    Neural Network Based Modeling and Control for a Batch Heating/Cooling Evaporative Crystallization Process

    Get PDF
    Crystallization processes have been widely used for separation in many fields to provide a high purity product. In this work, dynamic optimization and neural network (NN) have been applied to improve the quality of the product: citric acid. In the dynamic optimization, optimization problems maximizing both crystal yield and crystal size have been formulated. The neural networks have been developed to provide NN models to be used in the formulation of not only neural network inverse control (NNDIC) but also neural network model predictive control (NNMPC) strategies. The Levenberg Marquadt algorithm has been used to train the network and optimal neural network architectures have been determined by a mean squared error (MSE) minimization technique. In addition, a neural network model has been designed to provide estimates of the temperature and the concentration of the crystallizer. These estimates have been incorporated into the NNMPC controller. In the NNDIC controller, another neural network model has been applied to predict the set point of jacket temperature. The simulation results have shown that the obtained crystal size is increased by 19% and 30% compared to that by cooling and evaporation methods respectively and the obtained yield is increased more than 50%. The robustness of the proposed controller is investigated with respect to parameters mismatches. The results have shown that the NNMPC controller provides superior control performances in all case studies

    User Needs, Benefits, and Integration of Robotic Systems in a Space Station Laboratory

    Get PDF
    The methodology, results and conclusions of all tasks of the User Needs, Benefits, and Integration Study (UNBIS) of Robotic Systems in a Space Station Laboratory are summarized. Study goals included the determination of user requirements for robotics within the Space Station, United States Laboratory. In Task 1, three experiments were selected to determine user needs and to allow detailed investigation of microgravity requirements. In Task 2, a NASTRAN analysis of Space Station response to robotic disturbances, and acceleration measurement of a standard industrial robot (Intelledex Model 660) resulted in selection of two ranges of microgravity manipulation: Level 1 (10-3 to 10-5 G at greater than 1 Hz) and Level 2 (less than equal 10-6 G at 0.1 Hz). This task included an evaluation of microstepping methods for controlling stepper motors and concluded that an industrial robot actuator can perform milli-G motion without modification. Relative merits of end-effectors and manipulators were studied in Task 3 in order to determine their ability to perform a range of tasks related to the three microgravity experiments. An Effectivity Rating was established for evaluating these robotic system capabilities. Preliminary interface requirements for an orbital flight demonstration were determined in Task 4. Task 5 assessed the impact of robotics

    A Practical Guide to Surface Kinetic Monte Carlo Simulations

    Get PDF
    This review article is intended as a practical guide for newcomers to the field of kinetic Monte Carlo (KMC) simulations, and specifically to lattice KMC simulations as prevalently used for surface and interface applications. We will provide worked out examples using the kmos code, where we highlight the central approximations made in implementing a KMC model as well as possible pitfalls. This includes the mapping of the problem onto a lattice and the derivation of rate constant expressions for various elementary processes. Example KMC models will be presented within the application areas surface diffusion, crystal growth and heterogeneous catalysis, covering both transient and steady-state kinetics as well as the preparation of various initial states of the system. We highlight the sensitivity of KMC models to the elementary processes included, as well as to possible errors in the rate constants. For catalysis models in particular, a recurrent challenge is the occurrence of processes at very different timescales, e.g. fast diffusion processes and slow chemical reactions. We demonstrate how to overcome this timescale disparity problem using recently developed acceleration algorithms. Finally, we will discuss how to account for lateral interactions between the species adsorbed to the lattice, which can play an important role in all application areas covered here.Comment: This document is the final Author's version of a manuscript that has been peer reviewed and accepted for publication in Frontiers in Chemistry. To access the final edited and published work see https://www.frontiersin.org/articles/10.3389/fchem.2019.00202/abstrac

    Aerospace medicine and biology: A continuing bibliography with indexes (supplement 299)

    Get PDF
    This bibliography lists 96 reports, articles, and other documents introduced into the NASA scientific and technical information system in June, 1987

    Chord length distribution based modeling and adaptive model predictive control of batch crystallization processes using high fidelity full population balance models

    Get PDF
    The control of batch crystallizers is an intensively investigated topic as suitable crystallizer operation can reduce considerably the downstream operation costs and produce crystals of desired properties (size, shape, purity, etc.). Nevertheless, the control of crystallizers is still challenging. In this work the development of a fixed batch time full population balance model based adaptive predictive control system for cooling batch crystallizers is presented. The model equations are solved by the high resolution finite volume algorithm involving fine discretization, which provides a high fidelity, accurate solution. A physically relevant crystal size distribution (CSD) to chord length distribution (CLD) transformation is also developed making possible the direct, real-time application of the focused beam reflectance measurement (FBRM) probe in the control system. The measured CLD and concentration values are processed by the growing horizon estimator (GHE), whose roles are to estimate the unmeasurable system states (CSD) and to readjust the kinetic parameters, providing an adaptive feature for the control system. A repeated sequential optimization algorithm is developed for the nonlinear model predictive control (NMPC) optimization, enabling the reduction of sampling time to the order of minutes for the one-day long batch. According to the simulation results, the strategy is highly robust to parametric plant-model mismatch and significant concentration measurement noise, providing very good control of the desired CLD
    corecore