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Abstract 

The ongoing Quality-by-Design paradigm shift in the pharmaceutical industry has sparked a 

new interest in exploring advanced process control techniques to aid the efficient 

manufacture of high value products. One important process in the manufacturing is 

crystallization, a key process in purification of active pharmaceutical ingredients (APIs). There 

has been little crystallization control research in the area of global input/output linearization, 

otherwise referred to as state-feedback linearization (SFL). The global linearization allows a 

nonlinear model to be linearized over the whole domain for which the model is valid and can 

be embedded into a model predictive controller (MPC). MPC allows the control of a process 

based on a model which captures the physical understanding and constraints, but a widely 

reported challenge with the SFL technique is the poor ability of explicitly handling the plant 

constraints, which is not ideal for a highly regulated production environment such as 

pharmaceutical manufacturing.  

Therefore, the first purpose of this research is to explore the use of SFL and how it can be 

applied to controlling batch and continuous MSMPR crystallization processes with the 

incorporation of plant constraints in the MPC (named SFL-Plant constraints). The contribution 

made from this research is the exploration of the SFL MPC technique with successful 

implementation of SFL-Plant constraints. The novelty in this method is that the technique 

builds on existing SFL-MPC frameworks to incorporate a nonlinear constraints routine which 

handles plant constraints. The technique is applied on numerous scenarios of batch and 

continuous mixed suspension mixed product removal (MSMPR) supersaturation control of 

paracetamol in water, both seeded and unseeded, which all show that the SFL-Plant 

constraints technique indeed produces feasible control over crystallization subject to 

constraints imposed by limitations such as heat transfer. The SFL-MPC with SFL-Plant 

constraints was applied to single-input single-output (SISO) and multiple-input multiple-

output (MIMO) systems, demonstrating consistent success across both schemes of control. It 

was also determined that the SFL-Plant constraints do increase the computational demand 

by 2 to 5 times that of the SFL when unconstrained. However, the difference in absolute time 

is not so significant, typically an MPC which acted on a system each minute required less than 

5 seconds of computation time with inclusion of SFL-Plant constraints. This technique 



5 
 

presents the opportunity to use the SFL-MPC with real system constraints with little additional 

computation effort, where otherwise this may have not been possible.  

A further advancement in this research is the comparison between the SFL-MPC technique to 

an MPC with a data-driven model - AutoRegression model with eXogenous input (ARX) – 

which is widely used in industry. An ARX model was identified for batch supersaturation 

control using a batch crystallization model of paracetamol in isopropyl alcohol (IPA) in 

gPROMS Formulated Products as the plant, and an ARX model developed in an industrial 

software for advanced process control – PharmaMV. The ARX-MPC performance was 

compared with SFL-MPC performance and it was found that although the ARX-MPC 

performed well when controlling a process which operated around the point the ARX-MPC 

was initially identified, the capability of tracking the supersaturation profile deteriorated 

when larger setpoints were targeted. SFL-MPC, on the other hand, saw some deterioration in 

performance quantified through an increase in output tracking error, but remained robust at 

tracking a wide range of supersaturation targets, thus outperforming the ARX-MPC for 

trajectory tracking control.   

Finally, single-objective and multi-objective optimization of a batch crystallization process is 

investigated to build on the existing techniques. Two opportunities arose from the literature 

review. The first was the use of variable-time decision variables in optimization, as it appears 

all pre-existing crystallization optimization problems to determine the ideal crystallization 

temperature trajectory for maximising mean-size are constructed of piecewise-constant or 

piecewise-continuous temperature profiles with a fixed time step. In this research the time-

step was added as a decision variable to the optimization problem for each piecewise 

continuous ramp in the crystallization temperature profile and the results showed that for 

the maximisation of mean crystal length in a 300-minute batch simulation, when using 10 

temperature ramps each of variable length resulted in a 20% larger mean size than that of 10 

temperature ramps, each over a fixed time length.  The second opportunity was to compare 

the performance of global evolution based Nondominated Sorting Genetic Algorithm – II 

(NSGA-II) with a deterministic SQP optimization method and a further hybrid approach 

utilising first the NSGA-II and then the SQP algorithm. It was found that for batch 

crystallization optimization, it is possible for the SQP to converge a global solution, and the 

convergence can be guaranteed in the shortest time with little compromise using the hybrid 



6 
 

method if no information is known about the process. The NSGA-II alone required excessive 

time to reach a solution which is less refined. Finally, a multi-objective optimization problem 

is formed to assess the ability to gain insight into crystallization operation when there are 

multiple competing objectives such as maximising the number weighted mean size and 

minimizing the number weighted coefficient of variation in size. The insight gained from this 

is that it is more time efficient to perform single-objective optimization on each objective first 

and then initialize the multi-objective NSGA-II algorithm with the single-objective optimal 

profiles, because this results in a greatly refined solution in significantly less time than if the 

NSGA-II algorithm was to run without initialization, the results were approximately 20% 

better for both mean size and coefficient of variation in 10% of the time with initialization.   
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1 Introduction 

1.1 Background 

The pharmaceutical industry has traditionally been based on flexible batch processes which 

have been operated primarily based on past human experience, observation and testing. The 

pharmaceutical product development pipeline consists of four stages. The first stage is the 

initial research and drug discovery where hundreds or thousands of drug candidates are 

screened and based on criteria that feedback from clinical trial requirements, many drug 

candidates will be eliminated as potential drugs. The second phase is the clinical trials where 

the most promising drugs will be tested in increasing numbers of patients. This stage will 

usually bring the number of drug candidates down to one which is put forward for the third 

phase, regulatory review. During the clinical trials, further research and consideration will be 

given to developing manufacturing methods to produce the drugs, and the scale of 

production will increase from tens of volunteers to thousands, requiring a robust procedure 

to manufacture the drug in larger equipment or with a greater throughput. The final phase is 

the post approval research and monitoring once the drug enters production and is released 

to market. Underlying in these four phases are extensive costs from researching thousands of 

candidates, the clinical trials and building robust manufacturing techniques in the existing 

manufacturing paradigm. This can lead to drugs becoming approved for a therapy but the 

manufacturing methods for the efficiently producing the drug are seldom considered because 

there is a great reliance on existing batch production techniques in the industry. However, 

there are greater efficiencies and other benefits to be seen by investing in continuous 

manufacturing. These issues have invoked a paradigm shift in the way drug research and 

development is being undertaken in industry, and specifically when considering the 

manufacturing process, a greater appreciation has been gained for continuous manufacturing 

techniques in place of batch. The preliminary analysis of continuous manufacturing methods 

in the industry appear to offer benefits such as streamlining drug production processes and 

thus reduce plant size/footprint, production times and to increase purity, yield and efficiency; 

leading to an overall reduction in cost. Although these are the theoretical benefits of 

continuous manufacturing, given the principles of production at a theoretical steady state, 

there are numerous challenges that must be overcome for regulatory compliance and for 

purity and drug efficacy compliance. It is important to quantify how sensitive these 
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production methods are to disturbances and to ensure that the defined steady state is also 

compliant. This is steadily bringing a need for robust and advanced process control strategies 

and collectively this is bringing a paradigm shift to the pharmaceutical industry known as 

Quality by Design (QbD). The focus of this research is to explore optimization advanced 

process control applications in pharmaceutical manufacturing with the aim to contribute 

towards the advancement into QbD. 

1.2 Research methodology 

The research undertaken in this thesis is based in-silico using modelling, simulation, 

optimization and control techniques to address the optimization and controllability of 

nonlinear chemical processes such as pharmaceutical crystallization. Recent and ongoing 

advancement of computer processing capabilities has enabled further exploration of 

numerical optimization and control methods in research. This research builds on a global 

input-output feedback linearization technique which is used to transform a nonlinear input-

output model into a linear one through a coordinate transformation of the model into a new 

domain. The technique is then applied to realistic control scenarios in the pharmaceutical 

industry such as controlling a batch supersaturation trajectory through a full batch or 

maintain a continuous MSMPR number-weighted mean crystal size at steady state. The 

linearization technique is applied to continuous MSMPR crystallization models for different 

input/output objectives, and the resulting linearized model is embedded into a model 

predictive controller. The MPC is used to execute control over a process by making informed 

changes to the process using the model to predict the process behaviour. The inherent 

functionality of a traditional MPC is the ability to handle constraints of the system, such as in 

a crystallization process the cooling or heating rate will not exceed specified limits due to heat 

transfer limitations, but this is a greater challenge for the SFL based MPC because the 

coordinate transformation results in loss of plant visibility in the MPC – this will be overcome 

with the development of a routine that builds on existing constraints handling routines that 

have been used for SFL-MPC elsewhere. The methodology is focussed on using mathematical 

computation software that is widely available in the research environment – MATLAB – and 

exploring potential new capabilities of existing numerical techniques. Finally, a comparative 

study is also considered to compare the SFL-MPC to a data-driven technique. The purpose of 

this is to assess the performance benefit of using SFL-MPC, and to introduce mismatch by 
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implementing a low-order model in the SFL-MPC and a higher order model solved using finite 

volume method in an external software, which is to be controlled using industrial advanced 

process control software.  

1.3 Aims and objectives 

The aim of this research is to investigate the development of an advanced process control 

technique based on a global linearization method, and its applicability in the effective control 

of pharmaceutical crystallization processes. The objectives were: 

1. Develop single and multi-objective optimization strategies for crystallization to: 

a. Explore the use of time steps as decision variables in place of fixed time steps 

which are commonplace in literature for crystallization. Identify if there is a 

benefit to variable time-steps, such a larger number-weighted crystal mean-

size in a maximization optimization problem. 

b. Compare the performance and quality of optimal solution from the stochastic 

Nondominated Sorting Genetic Algorithm – II (NSGA-II) compared to a 

deterministic sequential quadratic programming (SQP) algorithm and a hybrid 

approach which begins with NSGA-II to provide SQP with an initial guess which 

will be refined.  

c. Explore the performance of multi-objective optimization and determine if the 

quality of the optimal solution can be improved in a shorter time by initializing 

the NSGA-II multi-objective optimization problem to maximize the crystal 

mean-size and minimize the coefficient of variation in size.  

2. Develop a state feedback linearization model predictive controller (SFL-MPC) for a 

single-input single-output (SISO) crystallization processes.  

3. Extend the state feedback linearization MPC capabilities by exploring the ability to 

implement valid constraints (SFL-Plant constraints) on the control problem and 

determine the performance and feasibility of using MPC with the SFL-Plant Constraints 

method. 

4. Extend and validate the state feedback linearization MPC to multiple-input multiple-

output crystallization processes and apply the SFL-Plant constraints technique to 

assess feasibility of MPC.  
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5. Develop a data-driven autoregression model with exogenous input (ARX) for use in 

MPC and compare the ARX-MPC with SFL-MPC on a batch seeded crystallization 

system to assess the performance benefits of SFL-MPC.  

1.4 Main contribution of this work 

This research has three main novelties. The first is in applying the global input/output state 

feedback linearization technique and applying it to model predictive control for continuous 

MSMPR crystallization. The SFL-MPC has already been applied to batch crystallization 

elsewhere. The implementation in SISO continuous number-weighted mean-size control is 

also a novelty. The insights gained from tuning the batch and continuous MSMPR SFL-MPC 

for supersaturation control also has not been reported elsewhere.  

The developed SFL-Plant constraints technique is a nonlinear constraints routine which has 

been developed based on pre-existing an SFL constraints-handling framework for MPC, but 

the routine that was developed for directly handling plant constraints in an SFL-MPC is novel. 

This work primarily bridges a gap in using global input/output linearization on crystallization 

and implementing the linearized model in an MPC. Various attempts have been made at 

constraints handling with compromises from either generating infeasible constraints due to 

the coordinate transformation from SFL, computational inefficiency of nonlinear constraints 

routines. The proposed method in this research is usable in real-time applications. The 

application of the constraints on SISO and MIMO configurations of batch and continuous 

MSMPR crystallization for supersaturation and mean-size control is a new contribution.  

A comparative study on the performance comparison of ARX-MPC and SFL-MPC is also a new 

contribution, applied to batch crystallization in an industrial simulation environment using an 

industrial advanced process control software – PharmaMV.  

Finally, minor contributions include the insights gained in the comparison of global-stochastic 

and local-deterministic optimization methods applied to batch crystallization optimization by 

introducing a new set of decision variables that does not appear to have been used previously. 

The most common optimization problems appear to optimize a piecewise-constant or 

piecewise-continuous temperature profile to maximise the crystal size in a process, but the 

piecewise profiles tend to have a fixed time-step. In this case the time-step was introduced 

as a decision variable to explore if the optimal mean-size of the same model and same batch 
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length can be improved. Furthermore, insights were gained into the performance and quality 

of optimization solution between the NSGA-II, SQP and hybrid optimization when applied to 

batch crystallization to maximise the mean-size. Also, in the use of true multi-objective 

optimization of batch crystallization process to determine the optimum crystallization 

trajectory for maximising crystal mean size whilst also minimising the coefficient of variation 

of size, it was realised that initialization with single-objective optimization can play an 

important role in obtaining a better optimization result in shorter computation time. 

1.5 Thesis structure 

The following is a summary of the remaining chapters in this thesis: 

Chapter 2. Literature review: This chapter introduces and reviews: pharmaceutical 

crystallization process; the kinetics and mechanisms with associated modelling techniques; 

the population balance model and solution techniques; batch and continuous MSMPR 

crystallization modelling; subsequent optimization in single and multi-objective forms for 

batch crystallization; process control applications with a focus on model predictive control; 

and applications of state-feedback linearization and constraints techniques of SFL both in 

crystallization and other fields to explore the research opportunities of implementing 

techniques used elsewhere to crystallization.  

Chapter 3. Multi Objective Optimization of Batch Crystallization: An introductory study is 

conducted on optimization applications for crystallization using piecewise-constant and 

piecewise-continuous decision variables. The uses of local (SQP), global (NSGA-II) and hybrid 

optimization methods are considered for offline optimization. The results from the three 

approaches are compared and assessed for potential use in online control systems. Multi-

objective optimization using a global NSGA-II is also used to assess how the competing 

objectives in crystallization will impact the operation and performance of crystallization, while 

initialization is used in multi-objective optimization to establish if optimization can be 

performed more efficiently and yield improved optimization results. 

Chapter 4. Single-Input Single-Output State Feedback Linearization, Tuning and SFL-Plant 

Constraints for Crystallization: The use of input-output linearization with state-feedback is 

used to linearize the nonlinear crystallization model, and the new model is then used for 

control in an MPC. This chapter introduces how to perform this linearization for a single-input 
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single-output (SISO) system and applies the technique to the crystallization model. The MPC 

is also introduced in detail and the SFL is embedded into the MPC with the introduction of the 

SFL-MPC framework. The challenges in performing this transformation and various drawbacks 

to using this as a model for control are also discussed. A comprehensive tuning is performed 

on the SFL-MPC system to complete the controller design. The method for constraints 

handling is developed and discussed. The SFL-Plant constraints routine is then tested in a 

series of short crystallization scenarios to establish if they technique can be applied to batch 

and continuous MSMPR crystallization to produce feasible control. Finally, the SFL-MPC 

technique is implemented for batch supersaturation control and continuous MSMPR 

supersaturation control and mean-size control, with the discussion focussed on control of the 

crystallization process. 

Chapter 5. Multiple-Input Multiple-Output Model Predictive Control with State Feedback 

Linearization and Decoupling for Crystallization: The MIMO SFL technique which extends the 

SISO SFL technique is described, introducing a decoupling procedure. A continuous MSMPR 

crystallization process is used for supersaturation and mean size control by manipulation of 

jacket temperature and seed loading in the MIMO SFL MPC. The SFL-Plant constraints 

technique described in chapter 4 is applied to the MIMO system to assess the applicability of 

the technique to MIMO SFL MPC.  

Chapter 6. Comparative Study of SFL-MPC and ARX-MPC applied to Seeded Batch 

Crystallization: A comparison is made between the SFL-MPC already developed in previous 

chapters, and an industrially adopted modelling technique used in MPC – the data driven ARX 

modelling. The two models are then implemented through an industrial software for 

advanced process control – PharmaMV – to control a batch seeded crystallization plant 

running in gPROMS Formulates Products which is solved using a finite volume method, thus 

introducing some mismatch between the plant and model. The ARX model is identified at a 

supersaturation of 1.1, and then applied to control a batch to a relative supersaturation target 

of 1.1, 1.25 and 1.4 to be compared with SFL-MPC at the same conditions.  
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2 Literature review 

2.1 Introduction 

The purpose of this chapter is to investigate and review the field of crystallization modelling, 

simulation, optimization and control to understand the advances in the field and to identify 

research opportunities that will be explored in this research. The crystallization process and 

the underlying kinetic mechanisms are introduced to discuss the methods and approaches 

used for modelling crystallization. Model-based crystallization optimization and control 

techniques are also reviewed. The chapter is concluded with the identified research 

opportunities that will be investigated further in the following chapters.  

2.2 Crystallization, Solubility and Supersaturation 

Crystallization is a phase change of atoms or molecules from a dissolved liquid state in 

solution into a solid and highly ordered crystalline state; crystallization is primarily used as a 

purification process to recover a desired material from a solution, usually with the presence 

of impurities (Mullin, 2001; Ulrich et al., 2001; Veesler and Puel, 2015). The solubility is a 

thermodynamic equilibrium state defined as the maximum quantity of solute that can be 

dissolved in a solvent at a defined temperature and pressure. When the quantity of solute in 

solution is equal to the solubility, the solution is saturated with solute. To perform 

crystallization, it is first necessary to identify the solubility curve of a chosen solute and 

solvent system.  

The solubility curve is dependent upon the solute, solvent(s) and type of crystallization 

process. The solubility curve is obtained experimentally by establishing how much solubility 

of solute at multiple different conditions (Hefter and Tomkins, 2003). For example, a cooling 

crystallization solubility curve will be determined by establishing how much solute can be 

dissolved in solvent at multiple pre-determined temperatures, then these points are used to 

construct a continuous function which represents the solubility for the system (Mullin, 2001; 

Veesler and Puel, 2015; Gao et al., 2017). For the purposes of modelling and simulation of 

crystallization, the solubility curve will not be determined experimentally in this research, but 

rather, a candidate crystallization system will be chosen whose solubility curve is already 

provided and validated in literature.  
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The solubility curve is most often represented as a second order polynomial or as an 

exponential function of temperature, as per equations Equation 2-1 and Equation 2-2.  

 
𝐶∗ = 𝐴0 + 𝐴1𝑇 + 𝐴2𝑇

2 
 

Equation 2-1 

 
𝐶∗ = 𝐴0 exp𝐴1𝑇 

 
Equation 2-2 

 

The driving force behind crystallization is supersaturation, where the solution is driven from 

a stable under-saturated or completely saturated condition into a state of being 

thermodynamically over-saturated. At this point, the mass of solute that remains dissolved in 

the system is greater than theoretical solubility at the same conditions. The supersaturation 

can be represented as a function of solute concentration and the solubility, and can either be 

the absolute supersaturation Equation 2-3, the supersaturation ratio Equation 2-4, or the 

relative supersaturation as defined in Equation 2-5.  

 
𝑆 = 𝐶 − 𝐶∗ 

 
Equation 2-3 

 𝑆𝑟 =
𝐶

𝐶∗
 

 
Equation 2-4 

 
𝜎 =

𝐶 − 𝐶∗

𝐶∗
 

 
Equation 2-5 

 

where 𝐶 is the concentration of solute in solution and 𝐶∗ is the solubility at the same 

temperature, 𝑆 is absolute supersaturation and 𝑆𝑟 is supersaturation ratio, and 𝜎 is the 

relative supersaturation. There are multiple modes of operating crystallization from a 

solution: cooling, anti-solvent and evaporative are three examples. In cooling crystallization, 

supersaturation can be created by cooling the solution (Ulrich et al., 2001), in anti-solvent 

crystallization it is created by adding anti-solvent to the solution thus reducing the solubility 

of solute in the solution mixture, and in evaporative crystallization the solvent is evaporated 

thus creating a supersaturated solution by increasing solute concentration through reduction 

of solvent mass. There exists a large body of research on anti-solvent and cooling 

crystallization, and some authors have also studied the combination of both methods (Yang 

and Nagy, 2014b, 2014a), which will be referenced throughout the discussion, but the focus 
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of this research will be on cooling crystallization. This decision was made when reviewing the 

literature to select a candidate crystallization system for the optimization and control 

activities in this research, it was found that a couple of cooling crystallization system models 

were used extensively for prediction, optimization and control activities, these will be detailed 

later.  

The crystallization process is often represented in a phase diagram, for cooling crystallization 

this diagram is a plot of concentration vs temperature as shown in Figure 2-1.  

 

Figure 2-1 Crystallization Phase Diagram regions  

The solubility curve is the boundary between the undersaturated and supersaturated regions, 

where the former is below and to the right, and the latter is above and to the left. The 

supersaturated region for crystallization can be further split into a meta-stable zone and a 

labile region, whose boundary (black curve) is the meta-stable limit and is determined by the 

crystallization kinetic mechanisms. The significance of this is that operating in the meta-stable 

zone allows for better control of the crystal size distribution by preferentially growing existing 

crystals and suppressing the nucleation of new crystals (Zhang et al., 2015; Xiong et al., 2018). 

Conversely, if the crystallization process enters into the labile region the dominant kinetic 

mechanism will be nucleation. The operating profile curve in Figure 2-1 is an example of a 

Undersaturated 

Meta-stable 

Zone 

Labile 

region 
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cooling crystallization trajectory operating in the meta-stable zone, where the starting point 

is at 314.5 K and the process is cooled to 304 K.   

Choosing a candidate crystallization system for the basis of this research is important to 

ensure all the necessary model parameters for chemical and physical properties of the 

crystallization system are available for simulation. One popular crystallization system is 

paracetamol in water (P/W), whose parameter identification has been performed by (Nagy, 

Fujiwara, et al., 2008). The identification was for nucleation and size independent growth, 

both in the form of power law kinetics, and the identified parameters were the constants and 

exponents of the nucleation and growth rate equations (kinetic equations are introduced in 

2.2.1 and 2.2.2). This model has been used extensively in further research by Nagy et al. 

(2008a) for comparing the performance of temperature and concentration crystallization 

control, further by Brown and Ni (2012) in a continuous oscillatory baffled crystallizer (COBC) 

to determine meta-stable zone width, particle size and number density using a video imaging 

technique, and also by Acevedo et al. (2017) to evaluate the performance of direct nucleation 

control (DNC) of a continuous mixed-suspension mixed-product removal (MSMPR) 

crystallizer. Paracetamol crystallization kinetic parameter identification has also been 

reported in isopropyl alcohol (IPA) (Granberg and Rasmuson, 1999), ethanol (Mitchell and 

Frawley, 2010), and IPA/water mixture (Hojjati and Rohani, 2006a, 2006b). Data for other 

pharmaceutical APIs including ibuprofen have also been reported (Manrique and Martinez, 

2007; Kitak et al., 2015), therefore there are multiple systems available to choose from. 

However, the extensive use of the paracetamol/water crystallization system in literature has 

led to the selection of this system. The model for this system has been validated with 

crystallization experiments, and the model has also been used for control in an MPC (Nagy et 

al. 2008a). The model for this system will be used for simulation, optimization and control 

studies.  

Now the crystallization process has been described, the mechanisms for crystallization will be 

introduced with a review on kinetic models that have been reported in literature. There are 

four main kinetic mechanism that determine the crystal size distribution at the end of the 

process; nucleation, growth, agglomeration and breakage (Mullin and Nývlt, 1988). Every 

unique solute and solvent/mixture system is also uniquely impacted by each of the four 

kinetics.  
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2.2.1 Nucleation 

Nucleation is the formation of a new phase in a system. In crystallization, it is when the solid 

crystalline material is first formed from dissolved solute. However, as described by Mullin 

(2001), it is not immediately possible to determine when nucleation occurs because the 

phenomenon occurs on a size scale that is beyond the lower detection limit of widely used 

sensors and analytical devices (Mitchell, Frawley and Ó’Ciardhá, 2011).  There are two 

commonly accepted theories of how nuclei form in solution. The first is the classical theory, 

where molecules are constantly interacting with each other in solution and begin to amass 

until a critical mass is reached, at which point a crystal is formed. The second is the theory 

that a cluster of free-moving molecules forms in solution and when a critical size is reached, 

the cluster then rearranges into a highly ordered structure to form a crystal (Mohan & 

Myerson 2002; Izmailov et al. 1999).   

Nucleation is split into primary homogeneous, primary heterogeneous and secondary 

homogeneous nucleation. Primary homogeneous nucleation is the spontaneous nucleation 

of crystals in a supersaturated solution absent of other crystals or foreign particles or surfaces. 

Therefore, the driving force for crystal formation is solely the supersaturation of the system 

(Pöllänen et al., 2006). Conversely, primary heterogeneous nucleation is induced by foreign 

particles but not crystals of the desired material. The foreign particles provide a surface upon 

which nucleation can occur more readily than in homogeneous nucleation (Garside, 1982). 

Secondary nucleation is the formation of new crystals in the presence of existing crystals of 

the desired material.  

 

 Mechanism Equation Reference 

1 Primary 
Homogeneous 

𝐵 = 𝑘𝑏𝑆
𝑏  (Mullin and 

Nývlt, 1988) 

2 Primary 
Homogeneous 

𝐵

= 𝑘𝑏,ℎ𝑜𝑚 exp(−
16𝜋𝜎3𝜈2

3𝑘3𝑇3(𝑙𝑛(𝜎𝑠 + 1))2
) 

(Mullin, 2001) 

3 Primary 
Heterogeneous 

𝐵

= 𝑘𝑏,ℎ𝑒𝑡 exp(−
16𝜋𝜎3𝜈2𝑓(𝜑)

3𝑘3𝑇3(𝑙𝑛(𝜎𝑠 + 1))2
) 

(Söhnel and 
Garside, 1988) 

4 Secondary  𝐵 =  𝑘𝑏𝑆
𝑏𝜇2 (Garside and 

Davey, 1980) 
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5 Secondary 
𝐵 = 𝑘𝑏 exp (−

𝛥𝐸

𝑇
)𝜎𝑠

𝑏𝜇3
𝑘 

(Helt and 
Larson, 1977) 

6 Secondary 𝐵 = 𝑘𝑏𝜎𝑠
𝑏  𝜇3(𝐿𝑚𝑖𝑛)𝑗 (Matthews, 

Miller and 
Rawlings, 1996) 

Table 2-1 – Summary of Nucleation Kinetic Equations 

Nucleation mechanisms can be represented by kinetic equations in a crystallization model. 

There are multiple forms of primary and secondary nucleation kinetics, the most notable are 

shown in Table 2-1. In this table, 𝐵 is the nucleation rate, 𝑆 and 𝜎 are previously defined forms 

of supersaturation. The second equation in the table includes parameters 𝑣 for the molecular 

volume and 𝑇 for solution temperature, as well as the Boltzmann constant 𝑘. The third 

equation extends the second by inclusion of a function 𝑓(𝜑) as a correction factor for the 

presence of foreign surfaces. The fourth equation is an extension of the first by inclusion of 

the second moment; 𝜇𝑖 are the 𝑖𝑡ℎ moments (introduced in section 2.5); for a surface area 

dependent nucleation rate. Furthermore, equation 5 is an Arrhenius-type equation capturing 

the activation energy Δ𝐸, and finally the last equation contains a length attribute 𝐿𝑚𝑖𝑛, as a 

minimum length for which secondary nucleation will occur. All other parameters are fitting 

parameters whose values are identified by using experimental data and parameter estimation 

techniques.  

For a given crystallization system, it is first important to determine which form(s) of 

nucleation are most prevalent, to aid in equation selection. Then it is also important to 

consider the kinetic parameters that must also be identified as parameter identification can 

lead to a significantly large number of experiments (Matthews, Miller and Rawlings, 1996), 

which may not be possible to perform due to limitations in time and material availability.   

The occurrence of secondary nucleation is important when considering potential nucleation 

in a seeded system (Chianese, Di Berardino and Jones, 1993; Bakar, Nagy and Rielly, 2009). 

One of the challenges with this form of nucleation is the newly formed crystals are much 

smaller than those which existed already in the system. As noted by Beck et al. (2009), the 

size distribution has adverse effects on downstream processes such as a larger pressure 

requirement during filtration. Therefore, reducing and controlling secondary nucleation is 

important particularly when crystallization processes are seeded.  
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Selection of a suitable equation for use in simulation will be based on the dominant 

mechanisms for the chosen P/W system. Primary homogenous nucleation has reported, 

therefore primary heterogeneous nucleation will not be considered. Primary homogeneous 

and secondary homogeneous equations will be important for the cases of unseeded and 

seeded crystallization, these two forms of nucleation do occur in the chosen crystallization 

system as it was reported by Nagy, Fujiwara et al. (2008) that when determining the kinetics 

for primary nucleation, there will be some uncertainties in the results due to the potential 

presence of secondary homogeneous nucleation. The identified model for primary nucleation 

reported by Nagy et al. (2008a) shows the use of equation 1 in Table 2-1. Therefore, this 

equation will be adopted for this research. Conversely, secondary nucleation has not been 

studied as extensively with the P/W system and consequently, equation 4 in Table 2-1 has 

been considered which is also a power law, with the addition of a new term, the second 

moment which is introduced in section 2.4. The secondary nucleation equation will be used 

for seeded systems while accepting the results may not exactly replicate a real system 

undergoing secondary nucleation. However, this decision is made with some confidence 

because of the way a seeded crystallization is operated, the aim of this type of crystallization 

is to grow the seed crystals and suppress nucleation. Therefore, the effects of secondary 

nucleation will ideally be reduced enough that they will not significantly impact the overall 

simulation results.   

2.2.2 Growth 

If a system is supersaturated and crystals are present, the crystals will grow. A widely accepted 

mechanism for growth is two stage crystal growth as described by (Mullin, 2001). The first 

stage is the transportation of solute to an available growth sites on the surface of a crystal. 

The second is the adsorption of solute onto the crystal. This two-stage mechanism results in 

crystal growth generally being rate limiting in crystallization. A simple schematic of where 

crystal growth can occur is shown in Figure 2-2. This schematic shows the face of a crystal 

being developed where A is a flat surface of the face, B is a step between faces and C is a kink 

on each step. Solute molecules can be considered as blocks, and when a solute block is 

transported to the surface, it may either adsorb onto the surface directly (D), it could occupy 

a vacancy in the edge (E), adsorb to a kink (C) or fill a surface vacancy (F). How the solute block 

joins onto the surface though is largely governed by the solute orientation and position.  
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Figure 2-2. Schematic of crystal surface growth showing flat surfaces (A), steps (B), kinks (C), surface-adsorbed growth units 

(D), vacancies in edges (E) and vacancies in surfaces (F) (Mullin, 2001) 

A couple of first principle models that are discussed by Mullin (2001) include the diffusion 

rate controlled kinetic equation (Equation 2-6). 

 𝑑𝑚

𝑑𝑡
= 𝑘𝑚𝐴(𝑆) Equation 2-6 

where 𝑚 is the mass of solids deposited on the surface of the crystal, 𝐴 is the surface area of 

the crystal and 𝑘𝑚 the coefficient of mass transfer. The mass transfer coefficient is very large 

for small boundary layers, leading to very high growth rate predictions. An alternative is the 

two-step model for mass transport (Equation 2-7) and adsorption (Equation 2-8) (Ulrich et al., 

2001). 

   

 𝑑𝑚

𝑑𝑡
= 𝑘𝐷𝐴(𝐶 − 𝐶𝑖) Equation 2-7 

 𝑑𝑚

𝑑𝑡
= 𝑘𝑟𝐴(𝐶𝑖 − 𝐶∗) Equation 2-8 

where 𝐶 is the concentration in the bulk of the solution, 𝐶𝑖 is the concentration at the 

boundary layer from the crystal surface, 𝐶∗ is the crystal surface concentration, 𝑘𝐷 is the 

coefficient of mass transfer by diffusion and 𝑘𝑟 is the rate constant for surface reaction. 

However, further issues with these equations are the difficulty in measuring 𝐶𝑖 and the 

suggested linear gradient across the stagnant boundary layer to the surface of the crystal as 

defined by Equation 2-8, this is highly unlikely to be the case (Coulson et al., 1964). 

Fortunately, there are empirical equations which can be used to model the growth kinetics. 
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As shown in Table 2-2, multiple different forms of equations are available in literature and 

have been used in various studies of crystal growth.  Equation 1 is an empirical power law 

equation to represent growth (𝐺) as a function of supersaturation (𝑆). This is only suitable for 

size independent growth, but this equation was later extended to equation 2 with a further 

parameter 𝛾, and the length of the crystal 𝐿, to incorporate size dependent growth. The third 

equation also include size dependent growth by inclusion of the crystal length, but this time 

raised to an exponent 𝑝 which is another fitting parameter. The final equation is another 

Arrhenius type equation, similar to the fifth equation in Table 2-1 for nucleation. All other 

parameters are fitting parameters whose values are again obtained through a parameter 

identification technique using experimental data.  

 Mechanism Equation Reference 

1 Size 
Independent 
Growth 

𝐺 = 𝑘𝑔𝑆𝑔 (Beckmann and 
Randolph, 1977; 
Choong and Smith, 
2004) 

2 Size 
Dependent 
Growth 

𝐺 = 𝑘𝑔𝑆𝑔(1 + 𝛾𝐿) (Garside and Jančić, 
1978; Ma, Tafti and 
Braatz, 2002; 
Granberg and 
Rasmuson, 2005) 

3 Power Law 
Growth 

𝐺 = 𝑘𝑔𝑆𝑔𝐿𝑝 (Garside, 1984) 

4 Arrhenius type 
growth   

𝐺 = 𝑘𝑔 exp [−
Δ𝐸𝐺

𝑅𝑇
]𝜎𝑠

𝑔
 

(Rawlings, Miller 
and Witkowski, 
1993) 

Table 2-2 – Summary of Growth Kinetic Equations 

There are also other growth kinetic equations that have also emerged, one from Larsen et al. 

(2006) which incorporates surface defects into the equation, but the defects are not easy to 

measure in practice. Further from Rawlings et al. (1993) there is a semi-empirical Arrhenius-

type equation which incorporates activation energy and temperature. The concluding 

remarks on the rate equation selection are similar to that of primary homogeneous 

nucleation. Empirical models have been used in research mainly due to limitations of 

measuring some of the parameters required for theoretical and first principle models, and in 

many cases the empirical models appear to be sufficiently accurate over the intended 

operating ranges.  
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In selecting the growth equations to use, there are two examples for paracetamol 

crystallizations in water (Nagy, Fujiwara, et al., 2008), and paracetamol crystallization in 

solvent mixtures of water, acetone and toluene (Granberg and Rasmuson, 2005) which use 

equation 1 in Table 2-2. This equation will be used for further studies.   

2.2.3 Agglomeration 

The physical combining of multiple existing crystals into a larger mass in a crystallization 

system is called agglomeration. The main mechanism by which agglomeration occurs is when 

crystals in the system experience different degrees of shear, causing crystals to collide and 

shear against each other and combine together (Mumtaz et al., 1997; David et al., 2003; Porru 

and Özkan, 2017). The surface shearing can cause adsorption of molecules between the 

crystals, such as a molecule on one crystal’s face adheres to the neighbouring crystal, or when 

some dissolved solute is trapped between the two faces it may also adsorb onto both faces 

simultaneously (Mumtaz et al., 1997). When monitoring changes to a crystal size distribution 

(CSD), agglomeration has a dual effect as agglomeration of two or more crystals will result in 

an agglomerate whose size is much greater than the original crystals, but also the number of 

particles is reduced because two or more crystals combine into one agglomerate. When 

modelling a crystal size distribution with a population balance model (introduced in section 

2.4), the most common way of handling agglomeration is to split the CSD into size intervals 

or bins, and then perform a balance on each bin (Georgieva, Meireles and Feyo de Azevedo, 

2003; Faria et al., 2008). Then, agglomeration of small crystals into larger crystals will be seen 

as a death of the smaller crystals from their original bin sizes and a birth of the larger crystal 

in its corresponding size bin. Number based population balances will not be sufficient here 

because multiple crystals will merge together to form one larger crystals, so the birth and 

death rates must be quantified in a quantity that is conserved, such as mass (Hulburt and Katz, 

1964; Georgieva, Meireles and Feyo de Azevedo, 2003).  

While agglomeration is a reported issue with paracetamol crystallization (Fujiwara et al., 

2002), the parameters for agglomeration have seldom been reported because the mechanism 

is likely dependent on shear rates which are system specific and not included in typical 

crystallization models. There have been some investigations of paracetamol agglomeration in 

pure and mixed solvent systems (Ålander, Uusi-Penttilä and Rasmuson, 2004; Ålander and 

Rasmuson, 2005), the most notable is by Alander et al. (2004), but has been seldom-used for 
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further modelling and simulation. For this reason, agglomeration will not be considered in the 

crystallization model. 

2.2.4 Breakage 

The final crystallization kinetic mechanism is breakage, the destruction of one crystal into 

smaller crystals or fragments. Crystal breakage can be common in crystallization, especially 

where an agitated vessel is used because the impeller speed required to suspend crystals and 

maintain a homogeneous mixture is often also enough to cause a crystal to fracture if the 

crystal is impacted by the impeller (Mazzarotta, 1992; Cornehl et al., 2014; Szilágyi, Agachi 

and Lakatos, 2015). Similarly, collisions between crystals at high speeds can also cause 

fracture. In some cases where crystals have a needle-like morphology where one dimension 

is significantly longer than the others, they can also experience high levels of shear stress 

along the length of the crystal and these torqueing forces can also be enough to break the 

crystals (Lekhal et al., 2004; Antonyuk, Palis and Heinrich, 2011; Grof et al., 2011). Breakage 

is undesirable in a crystallization process, much like agglomeration, because it results in 

undesirable changes to the CSD such as the production of fines or broadening a narrow or 

unimodal crystal size distribution (Randolph, 1969).  

Modelling the breakage is similar to the modelling of agglomeration, however in the case of 

breakage a single large crystal results in two or more smaller crystals. Therefore, the breakage 

of a large crystal results in the death of a crystal from a large size bin and the birth of two or 

more crystals in smaller bins. Paracetamol crystal breakage is another mechanism that is 

rarely reported and is also highly dependent on the operating conditions such as the crystal 

concentration, or number of crystals in the system, as well as fluid shear rate and agitation 

rate which increases the likelihood of collisions of crystal to crystal, crystal to wall and crystal 

to impeller (Kadam, Kramer and ter Horst, 2011; Kulkarni, Meekes and Ter Horst, 2014; 

Briuglia, Sefcik and ter Horst, 2018). Typically, the shapes of crystals that are prone to 

breakage under the aforementioned conditions generally are crystals which are long and thin, 

needle-like. This information along with the few reports of paracetamol breakage in 

crystallization give the indication that breakage is likely not a dominant mechanism given P/W 

is a low concentration system. For this reason, breakage is also not considered in the model 

for P/W crystallization.  
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2.3 Modelling Crystallization Processes  

Models are used to mathematically represent a process, and models have a variety of uses 

from predictive control systems (García, Prett and Morari, 1989b), to simulating a process and 

even being used as a surrogate to a process for estimating process properties that would 

otherwise be difficult to measure from the real process (Boukouvala and Ierapetritou, 2013). 

In chemical process, models can be in the form of steady state models or dynamic models. 

Steady state models are used to determine where a continuous process will operate at steady 

state, whereas dynamic models are useful to represent how a continuous process will respond 

to changes in operation, or how a batch process will change with time. Crystallization 

modelling has been reported widely. Typically, crystallization model equations are selected 

and certain parameters in the model require identification. The identification can be 

performed from a small selection of experiments, to explore the design space of the 

crystallization process.  This use of models can lead to further process understanding or 

decision making in silico, reducing the requirement for performing many experiments thus 

reducing cost and waste of material. For models that can converge fast results, there is an 

added benefit of reducing time to obtain results.  

Models can be formulated purely from theoretical understanding, be derived purely from 

empirically derived relationships, or a combination of both. Formulating models from 

theoretical understanding encapsulates as much generality as possible in the model (Tulleken, 

1993). This provides the most comprehensive model structure for a process and can be 

applied for production of any material. However, this type of model encapsulates every 

mechanism for the process and in most cases, not all mechanisms are required, so this 

approach leads to an over-engineered model. This is especially the case for the chosen P/W 

system where nucleation and growth kinetic equation have been determined as the dominant 

mechanisms. First principle models also require resources and time to develop, and 

parameter identification can also be impractical or impossible using conventional 

experimental techniques and technologies. Some examples of information that is impossible 

to quantify are: the exact onset of nucleation, the exact number of crystals in a system, the 

exact crystal size distribution in a system. These data are currently only measured in situ using 

a probe or sensor in a fixed point. The alternatives, empirical or semi-empirical models 

derived from experimental work, are a favourable modelling option in this instance 
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(Matthews, Miller and Rawlings, 1996).  Empirical models are completely derived from 

experimental relationships, consequently the validity of these models does not extend 

beyond the design space or operating region over which the model was identified (Akaike, 

1974; Johansson, 1993). Furthermore, the model will be system-specific and may not be 

transferrable to other systems. The semi-empirical approach balances the empirical approach 

with the first principles approach using a modular structure, whereby the model structure can 

be standardised using a set of general equations, but the kinetic equations can be system-

specific and transferrable. Then, when the solute/solvent system is changed, the pertinent 

kinetics can be identified and incorporated into the model.  

The models that have been widely accepted for reliably modelling a crystallization process 

include a population balance, mass and energy balances, and the relevant kinetic equations 

for the solute and solvent, given the type of crystallization (Beckmann and Randolph, 1977; 

Ma and Braatz, 2003).  

2.4 Population Balance Modelling 

It may be sufficient in some cases to model a crystallization process using the traditional mass 

and energy balances, and limited system information such as the crystal yield can be obtained 

from such a simplified model. However, an important property in crystallization is the actual 

crystal size distribution (CSD). The size, shape and distribution of crystals will have an impact 

on the downstream unit operations (Beck et al., 2009; Benyahia, Lakerveld and Barton, 2012).  

Therefore, when considering the modelling of crystallization processes, capturing the 

evolution of the crystal size distribution (CSD) or the statistical moments of the CSD is 

important. One of the challenges with modelling CSDs is that there can be millions of crystals 

in small volume systems and tracking the size of every crystal will be computationally 

demanding and unrealistic to model in real time. One of the most widely accepted methods 

of tracking the size distributions of disperse phases is using the population balance equation 

(PBE) (Randolph and Larson 1971). The PBE has been adopted by the crystallization 

community to model a CSD, and the balance is written in terms of a property of the crystal 

system, usually a crystal length or volume (Ramkrishna, 2000), referred to as the internal 

coordinate for the PBE. There are multiple ways to perform crystallization, and each system 

will also have unique kinetics for nucleation, growth, agglomeration and breakage. Hence, a 

one-model-fits-all approach is not viable, especially when considering controllability of mean 
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crystal size or the entire CSD in crystallization. Therefore, using the semi-empirical approach 

for population balance modelling allows compatibility with as many or few kinetic equations 

as required. Another consideration for modelling the CSD is to consider the time taken to 

converge results; it is important to solve the model in a short time without compromising on 

accuracy of results or time to simulate, predict and control a process (Rawlings, Miller and 

Witkowski, 1993; Matthews, Miller and Rawlings, 1996).  

Modelling, of size distributions and otherwise, can be achieved with three different 

approaches (Groppi et al., 1995; Jang et al., 2014): 

1) Fully distributed parameter modelling where the system is split into many small parts 

and each is solved separately.  

2) Compartmentalised lumped parameter models where a system is split into multiple 

discrete parts which each have their own model, useful in cases where there are 

distinct zones of a process whose dominant mechanism is different from adjacent 

zones.  

3) Overall lumped parameter model which only require the solution of a small set of 

integro-PDEs. This approach is computationally fast, which is usually critical for control 

applications on real systems.   

 𝜕𝑓𝑛(𝐿)

𝜕𝑡
=  𝛿(𝐿 − 𝑟0)𝐵 +

𝜕[𝐺(𝐿)𝑓𝑛(𝐿)]

𝜕𝐿
 + ∫ 𝑏(𝐿, 𝜆)𝑔(𝜆)𝑓𝑛(𝜆)𝑑𝜆

∞

𝐿

  

+
𝐿2

2
∫

𝐹 [(𝐿3 − 𝜆3)
1
3, 𝜆] 𝑓𝑛 [(𝐿3 + 𝜆3)

1
3] 𝑓𝑛(𝜆)

(𝐿3 − 𝜆3)
2
3

𝑑𝜆

 

𝐿

0

 

−𝑔(𝐿)𝑓𝑛(𝐿)  − 𝑓𝑛(𝐿)∫ 𝐹(𝐿, 𝜆)𝑓𝑛(𝜆)𝑑𝜆
∞

0

 

Equation 2-9 

 

The PBE is shown in Equation 2-9, and is valid for a well-mixed batch crystallization system. 

Here, 𝑓𝑛(𝐿) is the number density function, which is the number of crystals within a size range 

(0,∞) per unit mass or unit volume of solvent/solution. 𝐵 is the nucleation rate and 𝐺 the 

growth rate, 𝐹 is the aggregation kernel, 𝑔 the breakage kernel and 𝑏 the daughter particle 

distribution, 𝛿(𝐿 − 𝑟0) is the Dirac delta function. The PBE forms a framework for modelling 

particulates in processes such as crystallization. Furthermore, coupling PBEs with mass and 
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energy balances provides a suitable framework for modelling crystallization for control 

(Rawlings et al., 1992). The PBE will be used to model crystal size distribution in this research 

alongside the nucleation and growth mechanisms. The next step is to determine the best 

method to solve the PBE.  

2.5 Numerical techniques for solving the PBEs 

There are many numerical techniques that can be used to solve the population balance 

equation. Each have their benefits and drawbacks and three selected techniques that have 

been commonly used in published research will be discussed: 

1. Standard method of moments (SMOM) 

2. Quadrature method of moments (QMOM) 

3. Direct numerical solutions using finite volume method 

2.5.1 Standard method of moments 

The standard method of moments (SMOM) is simple and widely used as a solution for PBEs. 

Moments are a statistical way of representing some of the main CSD attributes (Diaconis, 

1987). Often for crystallization, only the first four moments are used for convenience, because 

when the characteristic length (length of a single crystal dimension) is chosen to be the PBE 

internal coordinate, 𝜇0 represents the total number of crystals, 𝜇1 the sum of the 

characteristic length of all the crystals, 𝜇2 the total surface area and 𝜇3 the total volume 

occupied by all the crystals (Ramkrishna, 2000; Vollmer and Raisch, 2006). The moments may 

also be represented as quantities per unit volume or per unit mass of solvent, as seen in 

research from Nagy et al., (2008). The SMOM method transforms the PBE from Equation 2-9 

by multiplying the equation by 𝐿𝑘 and integrating between the bounds of 0 and ∞; thus, the 

kth moment is defined as: 

 
𝜇𝑘(𝑡) = ∫ 𝑓𝑛(𝐿, 𝑡)𝐿𝑘𝑑𝐿

∞

0

 where 𝑘 = 0, 1, 2, … ,∞ Equation 
2-10 

This transformation allows the PBE to be represented by a set of moment equations 

(Randolph and Larson 1971; Hulburt and Katz 1964). By performing this transformation, the 

PBE transforms into the following form, for the kth moment:  
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 𝑑𝜇𝑘

𝑑𝑡
= ∫ 𝐿𝑘𝐵𝛿(𝐿 − 𝑟0)𝑑𝐿 + ∫ 𝑘𝐿𝑘−1𝐺(𝐿)𝑓𝑛(𝐿)𝑑𝐿

∞

0

∞

0

 

+ ∫ 𝐿𝑘
∞

0

∫ 𝑔(𝜆)𝑏(𝐿, 𝜆)𝑓𝑛(𝜆)𝑑𝜆𝑑𝐿
∞

0

 

− ∫ 𝐿𝑘𝑔(𝐿)𝑓𝑛(𝐿)𝑑𝐿 
∞

0

 

+
1

2
∫ 𝑓𝑛(𝐿)

∞

0

∫ 𝐹(𝐿, 𝜆)(𝐿3 + 𝜆3)
𝑘
3𝑓𝑛(𝐿)𝑑𝜆𝑑𝐿 

∞

0

 

−∫ 𝐿𝑘
∞

0

𝑓𝑛(𝐿)∫ 𝐹(𝐿, 𝜆)𝑓𝑛(𝐿)𝑑𝜆𝑑𝐿
∞

0

 

 

Equation 2-11 

In Equation 2-11, the first term is nucleation and second is growth, following by birth due to 

breakage, death due to breakage, birth due to aggregation and death due to aggregation. In 

this form, the PBE is more difficult to solve as the closure cannot be found for the equation, 

but there is a simple case of crystallization for which this PBE can also be simplified. For a 

crystallization where nucleation and size independent growth are declared as the dominant 

kinetics, the breakage and aggregation kinetics can be considered as negligible. Subsequently, 

applying the SMOM results in closure of Equation 2-11 and reduces the PDE into a system of 

ODEs. The chosen nucleation and growth mechanism equations defined in the prior 

discussion indeed fits these requirements, so the SMOM is a viable approach for solving the 

PBE in this research. For batch crystallization, the first four moment equations from this 

closure are the system of ODEs shown in Equation 2-12 to Equation 2-15.  

 𝑑𝜇0

𝑑𝑡
= 𝐵 Equation 2-12 

 𝑑𝜇1

𝑑𝑡
= 𝐺𝜇0 + 𝐵𝑟0 Equation 2-13 

 𝑑𝜇2

𝑑𝑡
= 2𝐺𝜇1 + 𝐵𝑟0

2 Equation 2-14 

 𝑑𝜇3

𝑑𝑡
= 𝐺𝜇2 + 𝐵𝑟0

3 Equation 2-15 
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The moments of the distribution are obtained using this method and can provide useful 

information about the crystallization system. However, there are further limitations, the first 

of which is the reconstruction of the real distribution from these moments is not numerically 

stable. Obtaining a reliable CSD shape using SMOM is therefore not possible because it 

requires the solution of every moment from 0 to infinity, thus an infinite number of ODEs 

must be solved. Inversion approaches have been proposed (Randolph and Larson 1971) but 

are seldom used, and alternative approaches combining the moments with method of 

characteristics have also shown success in rebuilding the CSD (Aamir et al., 2009; Aamir, 2010) 

but would require further computational effort in calculating the method of characteristics. 

However, contrary to the absence of the full CSD, with the lower order moments it is possible 

to quantity some important characteristics of the CSD. Some of these include (Shen, Chiu and 

Wang, 1999): 

1. Variance 

 
𝜎𝑣𝑎𝑟

2 =
𝜇2

𝜇0
−

𝜇1
2

𝜇0
2 Equation 2-16 

 

2. Coefficient of variation  

 
𝑐. 𝑣. =

𝜎𝑣𝑎𝑟

𝐿𝑚
= √

𝜇0𝜇2

𝜇1
2 − 1 Equation 2-17 

 

3. Number-based mean size or L10 

 𝐿10 =
𝜇1

𝜇0
 Equation 2-18 

 

4. Weight-based mean size or L43 

 𝐿43 =
𝜇4

𝜇3
 Equation 2-19 

These quantities can allow the tracking of average crystal size and the width of the crystal size 

distribution for unimodal distributions in one characteristic size dimension. These quantities 

may not be desirable for representing multi-modal CSD. Furthermore, for single dimension 
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PBE, the crystal shape cannot be accurately represented. However, modelling crystal shape is 

not important for paracetamol crystals in a P/W system (Meimaroglou, Roussos, and 

Kiparissides 2006; Randolph and Larson 1971). The most significant limitation with this 

method is that crystallization systems are quite complex; primary and secondary nucleation 

and size independent growth is a very limiting case because there will likely be agglomeration 

and breakage as well as size dependent growth in many crystallization systems. The ability to 

model these effects is therefore lost using the SMOM technique and the subsequent model 

predictions may also be unreliable. On the other hand, this method is useful for obtaining a 

simple model for crystallization to perform optimization and investigate control applicability. 

Moreover, for the P/W crystallization system, results using this method have been reported 

frequently in publications so the method will also be used in this research. For crystallization 

systems where other mechanisms need to be considered, another moments-based solution 

can be used; the quadrature method of moments (QMOM) as described next. 

2.5.2 Quadrature method of moments  

The QMOM was first proposed by McGraw (1997). It is a specific case of the generic weighted 

residual approach which uses the Gaussian quadrature approximation from quadrature 

theory to approximate integrals in terms of a set of weights (𝑤𝑖) and abscissas (𝐿𝑖), e.g. the 

moments may be written as:  

 
𝜇𝑗(𝑡) = ∫ 𝑓𝑛(𝐿, 𝑡)𝐿𝑗𝑑𝐿

∞

0

= ∑𝑤𝑖𝐿𝑖
𝑘

𝑁𝑠

𝑖=1

 where 𝑗 = 0, 1, 2, … ,∞ Equation 2-20 

A solution method for Equation 2-20 was proposed by McGraw (1997), based on the product 

difference algorithm (PDA) (Gordon, 1968) and allows an explicit calculation of the weights 

from the moments, which averts the closure problem from SMOM for cases involving 

agglomeration and breakage. The PDA calculates the weights (𝑤𝑖) and abscissas (𝐿𝑖) from 

moments by solving Equation 2-20, where 𝑁 is the number of quadrature points. Alternatively 

these can be determined by direct solution of the set of non-linear equations using a 

differential-algebraic equation (DAE) solver (Gimbun, Nagy and Rielly, 2009).  

The application of QMOM to the PBE results in Equation 2-21. Here, the closure problem is 

eliminated and this equation has been used by Marchisio et al. (2003a), Marchisio et al. 

(2003b) and Marchisio & Fox (2005) in aggregation and breakage processes coupled with 
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computation fluid dynamics (CFD). It has also been used with the method of characteristics 

by Aamir et al. (2009) and Aamir (2010) to track the evolution of the full crystal size 

distribution. From the perspective of monitoring a process, these techniques do work in 

tracking the full CSD, but the challenges lie in using this technique for process control. The 

ability to control the exact CSD is difficult in a crystallization process (Liu et al., 2011) because 

the exact size and number distribution cannot be measured accurately enough, in situ.  

An infinite number of quadrature points would lead to the weights and abscissas tracking 

every point on the CSD. Therefore, with a greater number of quadrature points, it is likely that 

the solution will also be more accurate, but conversely calculating a solution becomes more 

computationally intensive and hence a trade-off needs to be made because the PDA becomes 

infeasible to use when 𝑁 is greater than 8 (John and Thein, 2012).   

 

 𝑑𝜇𝑘

𝑑𝑡
= 𝛿(0, 𝑘)𝐵 + 𝑘 ∑𝑤𝑖𝐿𝑖

𝑘−1𝐺(𝐿𝑖)

𝑁

𝑖=1

+ ∑𝑤𝑖𝑔(𝐿𝑖)𝑏(𝑘, 𝐿𝑖)

𝑁

𝑖=1

 

 

+
1

2
∑𝑤𝑖

𝑁
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∑𝑤𝑗(𝐿𝑖
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𝑘
3𝐹(𝐿𝑖, 𝐿𝑗)

𝑁
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− ∑𝑤𝑖𝑔(𝐿𝑖)𝐿𝑖
𝑘

𝑁
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− ∑𝑤𝑖𝐿𝑖
𝑘

𝑁

𝑖=1

∑𝑤𝑗𝐹(𝐿𝑖, 𝐿𝑗)

𝑁

𝑗=1

 

Equation 2-21 

While it has already been discussed how crystals can be distributed in size, they can also be 

distributed in shape. For crystal shape characterisation and tracking, it is possible to extend 

the PBE to two dimensions with two internal coordinates, one used to characterise a length 

and the other to characterise width, and the QMOM can be used to solve this form of PBE. 

These types of models with more than one internal coordinate will be referred to as multi-
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dimensional models. The QMOM has been used by Qamar et al. (2009) for solving a batch 

crystallization model with nucleation, size-dependent growth, agglomeration, breakage and 

dissolution. The case studies presented by the author included nucleation and growth with 

fines dissolution simulation, as well as pure agglomeration, pure breakage and combined 

agglomeration and breakage. While it is difficult to assess the author’s claim that all results 

performed similar to those when using a finite volume scheme, the results for each problem 

do follow the trends one would expect from theoretical principles, such as increases in the 

value of the first moments due to agglomeration, and decrease in the same moments due to 

breakage. Furthermore, The QMOM was used by Szilágyi et al. (2015) recently for the 

simulation of two-dimensional (2D) analysis of crystal shape. In particular, the author 

discusses the development of the 2D population balance model for continuous cooling 

crystallization of high aspect ratio crystals. Primary and secondary nucleation, non-linear size 

dependent growth and size dependent breakage along the crystal length (the first internal 

coordinate) are presented. Using a 2D PBE, they determine a nonlinear and unclosed moment 

equations system for bivariate mixed moments of length and width of crystals which are 

closed using the QMOM. This is an important advancement because the earlier modelling of 

crystallization systems was primarily focussed on the accuracy of methods like QMOM. The 

results show a wider applicability to more realistic crystallization modelling by considering the 

crystal shape. Continuing along this line of research, QMOM is a useful method to extend the 

model capabilities in capturing real system information. There are few examples of QMOM 

based models in controllers. The QMOM is slightly more computationally expensive than the 

SMOM but is still efficient for lumped parameter systems as compared to higher resolution 

schemes such as finite volume method.  

The concluding remarks on QMOM is that while it would be useful to demonstrate a control 

application with this solution method, the additional complexity created by inclusion of the 

PDA far outweighs the system it is being used to predict and control. While the ability to 

include agglomeration and breakage is useful, these mechanisms have not been characterised 

for the chosen P/W system to a great level of accuracy. Consequently, it appears that using 

the SMOM in place of the QMOM is the better solution for the P/W system, but QMOM 

should be considered for crystallization systems where agglomeration or breakage 
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mechanisms are dominant, and where the parameters of the kinetic equations for these 

mechanisms have been identified to a suitable degree of accuracy.   

2.5.3 Finite Volume Method  

The finite volume method (FVM) is one of many direct numerical solution approaches to 

solving the PBE. Other direct numerical solution approaches include the finite difference and 

finite element method, as well as high resolution algorithms (Gunawan et al. 2004) and the 

lattice Boltzmann method (Majumder et al. 2012a; Majumder et al. 2012b; Majumder & Nagy 

2013), but the FVM is a technique that has been used extensively for solving partial 

differential equations (Eymard, Gallouët and Herbin, 2000; Peiró and Sherwin, 2005). The 

FVM was first introduced by Koren (1993) as an upwind advection solution method. The FVM 

discretises the spatial domain into a set of nodes and uses piecewise functions to approximate 

derivatives of the distribution function. The method was developed from the finite difference 

method (FDM) to achieve a more accurate mass balance. The interval over which the PDE is 

to be calculated is first discretised to form a set of points, this is common to both techniques, 

and each point in the discretisation is called a node. The FVM performs calculations using the 

mid-points between adjacent nodes as opposed to using the node itself as in the FDM. The 

FVM uses a flux limiter, which is used in high resolution schemes to prevent the effects of 

discontinuities, shocks and sharp changes in the solution between nodes, thus improving the 

mass balance accuracy. This method can be applied to multiple dimensions as required but 

each new dimension increases the order of magnitude of calculations required (Ma et al. 

2002; Gunawan et al. 2004). The FVM enables tracking of the entire crystal size distribution, 

and with the increases in computation efficiency in recent years, using FVM in controllers for 

real-time operation could be a strong possibility in the future. However, for the case of 

exploring control applications in the chosen P/W crystallization system, the use of this 

technique would over-estimate the accuracy of the solution and it would not be possible to 

verify the actual CSD evolution in-situ. Therefore, the additional computational effort in 

simulating and calculating a whole CSD to ultimately find the values of simplified parameters 

such as a CSD mean size and width/variance would be impractical.  

Concluding the discussion on the use of PBE modelling and applications on crystallization, 

using SMOM to solve the PBE for the chosen system is the selected approach because: 
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1) The dominant mechanisms in the P/W system are suitable for use with SMOM 

2) The computation cost of using QMOM or FVM is greater, for a greater accuracy in a 

solution which cannot be practically verified from either publications or in-situ in 

experiments, so a higher quality of result cannot be guaranteed using these 

techniques 

3) The research aims to focus on optimization and control; the compatibility of the 

chosen technique is important. SMOM offers a simple solution for the PBE which has 

been used for optimization and control, as will be discussed in the following sections. 

In comparison, the inclusion of a PDA for QMOM, or coupling with method of 

characteristics, or a higher order FVM schemes will be more computationally 

demanding.  

2.6 Batch Cooling Crystallization Modelling 

In the literature, the most commonly used model for batch crystallization using SMOM is 

defined by Equation 2-22 to Equation 2-31 (Shen, Chiu and Wang, 1999). The first four 

equations are the moments balances for a constant volume system, obtained by solving the 

population balance using SMOM. The remaining equations are the mass and energy balances, 

nucleation and growth kinetic equations and the solubility equation which is represented as 

a second order polynomial function of temperature.  

 𝑑𝜇0

𝑑𝑡
= 𝐵 

 

Equation 2-22 

 𝑑𝜇1

𝑑𝑡
= 𝐺𝜇0 + 𝐵𝑟0 

 

Equation 2-23 

 𝑑𝜇2

𝑑𝑡
= 2𝐺𝜇1 + 𝐵𝑟0

2 

 

Equation 2-24 

 

 𝑑𝜇3

𝑑𝑡
= 3𝐺𝜇2 + 𝐵𝑟0

3 

 

Equation 2-25 

 

 𝑑𝐶

𝑑𝑡
= −𝑘𝑣𝜌𝑐(3𝐺𝜇2 + 𝐵𝑟0

3) 

 

Equation 2-26 

 

 𝑑𝑇

𝑑𝑡
=  −

3𝜌𝑐𝑘𝑣𝐺𝜇2∆𝐻

𝜌𝑐𝑝
−

𝑈𝐴𝑐

𝜌𝑉𝑐𝑝
(𝑇 − 𝑇𝑗) 

 

Equation 2-27 
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 𝐵 = 𝑘𝑏(𝑆)𝑏 Equation 2-28 

 
 𝐺 = 𝑘𝑔(𝑆)𝑔 Equation 2-29 

 
 𝑆 = 𝐶 − 𝐶∗ Equation 2-30 

 
 𝐶∗(𝑇) = 𝐴0𝑇

2 − 𝐴1𝑇 + 𝐴2 Equation 2-31 

 
This is a lumped parameter model, which is accurate based on the following assumptions: 

• The batch vessel is well-mixed and thus every unit volume of the batch reactor will 

contain the same chemical, thermodynamic and particulate composition; each 

element experiencing the same nucleation and growth rates.  

• The volume constant throughout the batch; the volume of crystals generated in the 

solution will not significantly change the working volume.  

These assumptions are valid for P/W system because Paracetamol has a relatively low 

solubility in water, but for highly soluble systems, the change in volume from crystallization 

can also be modelled using a volumetric balance equation.   

In batch crystallization, the nucleation and growth rates can be highly nonlinear, especially 

nucleation which can have a very large exponent in the power law. This crystallization model 

also contains time varying conditions, the supersaturation and heat transfer will not be 

constant throughout the batch, resulting in changes nucleation and growth as the batch 

crystallization advances. In large systems where the well-mixed assumption cannot be upheld, 

these properties may also vary with position in a system (Mullin and Nývlt, 1988; Bakar, Nagy 

and Rielly, 2009). 

2.7 Continuous Cooling Crystallization Modelling 

Continuous methods of crystallization have existed for many years, but the optimization and 

control of these methods for pharmaceutical processing is relatively new (Nagy and Braatz, 

2012). The main applications of PBE with continuous crystallization have been for mixed 

suspension mixed product removal (MSMPR) and continuous oscillatory baffled crystallizers 

(COBCs) (Powell et al., 2015; Yang and Nagy, 2015; Liu et al., 2019). The MSMPR is a vessel 

with continuous flow in and out, and is modelled under the following assumptions: 

1. The volume is constant volume, which can be maintained provided that in and out 

volumetric flows are equal (perfect level control) 
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2. The vessel is well-mixed so the concentration can be assumed as uniform throughout 

the volume and the out-flow concentration is equal to system concentration. The 

crystals will also be fully fluidised and the out-flow crystal size distribution is 

considered to be the same as the CSD in the vessel.  

The COBC on the other hand is a tubular reactor with baffles and uses axial oscillations to 

generate near-plug-flow behaviour; plug flow theoretically has perfect radial mixing zones 

which move along the axial direction with little to no axial diffusion (Ni and Liao, 2008). Perfect 

plug flow is an ideal case for continuous crystallization and should in theory produce a 

consistent CSD when the process is at steady state with constant feed and operating 

conditions and absence of disturbances. Without a baffled oscillatory setup, plug flow 

requires very high flow rates in a tubular system and the time limitations of crystal growth 

would mean the process would have to also be very long to achieve a good product yield 

(Lawton et al., 2009; Brown and Ni, 2012; Onyemelukwe et al., 2018). The COBC is designed 

to reduce the system length and achieve some representative results, but is also suffers from 

some axial dispersion (Onyemelukwe et al., 2018). In crystallization modelling, the COBC has 

been modelled as a series of MSMPR systems with dispersive transport between each MSMPR 

in the series to account for the oscillatory behaviour (Jiang et al. 2012; Powell et al. 2015; Su 

et al. 2015; Ochsenbein et al. 2015). In summary, there are already a couple of continuous 

crystallization systems to investigate and some reliable models have been provided for these 

systems but these models would require further development for the COBC systems due to 

their uniqueness. The MSMPR system models are a version of a continuous stirred tank 

reactor (CSTR) with a particle suspension. As CSTR models have been widely used and 

accepted as reliable, the MSMPR models are likely to also be the most reliable among the 

options available for continuous crystallization. The MSMPR model equations are defined 

here, where the structure is the same as for the batch crystallization system, this form reduces 

to the batch system when the volumetric flow in 𝐹𝑖𝑛 and out 𝐹𝑜𝑢𝑡 are set to 0: 

 𝑑𝜇0

𝑑𝑡
= 𝐵 +

𝐹𝑖𝑛 

𝑉
𝜇0𝑖𝑛 −

𝐹𝑜𝑢𝑡

𝑉
𝜇0 

Equation 2-32 

 𝑑𝜇1

𝑑𝑡
= G𝜇0 + 𝐵𝑟0 +

𝐹𝑖𝑛 

𝑉
𝜇1𝑖𝑛 −

𝐹𝑜𝑢𝑡

𝑉
𝜇1 

Equation 2-33 
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 𝑑𝜇2

𝑑𝑡
= 2G𝜇1 + 𝐵𝑟0

2 +
𝐹𝑖𝑛 

𝑉
𝜇2𝑖𝑛 −

𝐹𝑜𝑢𝑡

𝑉
𝜇2 

Equation 2-34 

 

 𝑑𝜇3

𝑑𝑡
= 3G𝜇2 + 𝐵𝑟0

3 +
𝐹𝑖𝑛 

𝑉
𝜇3𝑖𝑛 −

𝐹𝑜𝑢𝑡

𝑉
𝜇3 

Equation 2-35 

 

 𝑑𝐶

𝑑𝑡
= −kv𝜌𝑐(3G𝜇2 + 𝐵𝑟0

3) +
𝐹𝑖𝑛 

𝑉
𝐶𝑖𝑛 −

𝐹𝑜𝑢𝑡

𝑉
𝐶 

Equation 2-36 

 

 𝑑𝑇

𝑑𝑡
=  −

3𝜌𝑐𝑘𝑣𝐺𝜇2∆𝐻

𝜌𝑐𝑝
−

𝑈𝐴𝑐

𝜌𝑉𝑐𝑝
(𝑇 − 𝑇𝑗) +

𝐹𝑖𝑛

𝑉
 𝑇𝑖𝑛 −

𝐹𝑜𝑢𝑡

𝑉
𝑇 

Equation 2-37 

 

 𝑑𝑉

𝑑𝑡
=  𝐹𝑖𝑛 − 𝐹𝑜𝑢𝑡  

Equation 2-38 

 

2.8 Optimization methods for crystallization  

Optimization techniques can be split into local approaches and global approaches. These two 

approaches serve different purposes, local approaches are usually deterministic approaches 

and often gradient based, which converge to a local maxima or minima. The following is a 

definition of an optimization problem: 

 min
𝑢

𝐽 = 𝑓(𝑢)  

Subject to:  𝐴𝑢 = 0 
𝐵𝑢 ≤ 0 
𝑐(𝑢) = 0 
𝑑(𝑢) ≤ 0 

 

 

Where, 𝐽 is the cost that is to be minimised using the decision variables or inputs 𝑢, and the 

cost is some function of the input 𝑓(𝑢). The cost function is subject to four constraint where 

𝐴 is a matrix of scalars which defines a linear equality constraint, 𝐵 is a matrix of scalars which 

defines a linear inequality constraint, 𝑐(𝑢) defines a nonlinear equality constraint function 

and 𝑑(𝑢) defines a nonlinear inequality constraint function. Considering a minimisation cost, 

the path is usually determined by first evaluating a cost function for a user-supplied initial 

guess or starting point. The surrounding points are then evaluated and whichever direct 

appears to be reducing the cost function (in a minimisation problem) is then chosen by the 

optimizer. This path is followed until subsequent points cease to reduce the cost, then the 

optimizer terminates and returns the current point as the minimum. The greatest drawback 
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with this method is that even if the design space is small, a local solution cannot be considered 

to be the global solution for a cost function unless it is validated against a global optimization 

problem, unless if it is known that only one minimum exists (Törn and Žilinskas, 1989; Pardalos 

and Romeijn, 2013). Therefore, if the target is to find an optimal solution and be highly 

confident that it is global, a global optimization technique must be used in most cases. 

One established global optimization approach is the genetic algorithm (GA), which is a class 

of evolutionary optimization algorithms, and although there are other forms of global 

optimization algorithm, they broadly follow similar principles in finding a solution. One 

particular GA, Non-Dominated Sorting Genetic Algorithm (NSGA-II), randomly generates a 

population of initial points across the whole design space and this population is referred to as 

the first generation (Davis, 1991). Once the objective function is evaluated for every individual 

in this population, the first generation will have a spread of cost function values. The 

minimum cost value of this first generation is then used to generate a new second generation 

of points using the same population size, which will be clustered closer to where the minimum 

cost appears to be, thus refining the solution. This process is repeat until the cost function 

value returns a global solution which satisfies a set of conditions set for the optimization 

problem, or until a predefined maximum number of generations, defined by the user, have 

been evaluated. The algorithm evolves through the design space to converge onto the global 

minimum (Deb et al., 2000).  

Although the global solution may be of interest, consideration should be given to how critical 

it is to find this in place of a local solution because global optimization techniques like NSGA-

II are only viable in offline optimization. Global techniques are computationally expensive 

because they involve a random evolving search. In contrast the deterministic approaches 

already are following an intuitive path to the minimum and can do so with fewer function 

evaluations, resulting in shorter evaluation time, which is desirable for control (Suh and 

Hollerbach, 1987; Pardalos and Romeijn, 2013). Therefore, the deterministic approaches will 

be preferred for online optimization in a control system, but either approach could be chosen 

for offline analysis. The comparison between local and global approaches have been 

performed in fields outside crystallization and pharmaceutical production such as for robotic 

manipulators (Kazerounian and Wang, 1987) and oil wells (McDonald et al., 2007) but there 

appears an opportunity to explore this comparison when applied to a crystallization process.  
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It is widely reported that the critical quality attributes (CQAs) in crystallization are purity, 

yield, morphology and size distribution (Gao et al., 2017). These CQAs are routinely quantified 

in practice, and there are often one or multiple operating profiles in a crystallization process 

that will result in a product with desirable characteristics but finding these experimentally can 

be a laborious and expensive process. Often, the APIs being investigated are also of very high 

value so to avoid waste, having as few experiments as possible is ideal. Optimization using a 

crystallization model is one route to finding the optimal production trajectory, where a model 

can be identified from a few experiments and then used to find an optimal solution to 

maximise one or more CQAs. The optimal solution can then be implemented in an experiment 

for validation (Sarkar, Rohani and Jutan, 2006; Trifkovic, Sheikhzadeh and Rohani, 2008).  

In this way, optimization approaches can be employed to maximise purity, yield, crystal size 

or to minimise cost, ideally resulting in an operating profile that can be used for production 

and lead to the same or comparable CQAs. However, there are numerous drawbacks to 

modelling and despite the increased understanding in this research area, there are many 

challenges to overcome (Nagy, Chew, et al., 2008a; Castagnoli et al., 2010; Nagy et al., 2013). 

Firstly, there are no mechanistic models that truly and fully encapsulate every quality 

attribute and important measurable property in a crystallization process. Morphology is still 

only approximated by two-dimensional growth modelling and using an aspect ratio to 

determine general shape differences in crystals (Eggers et al., 2009; Schorsch, Vetter and 

Mazzotti, 2012; Yang, Ma and Wang, 2012; Borsos, Majumder and Nagy, 2014). The effects 

of an impurity on CSD have been modelled by Borsos (2015) where the author selected a 

preferred impurity adsorb onto a crystal face and inhibit growth, thus successfully controlling 

the crystal shape. However, there is still a demand for a model which characterises how 

localised and undesirable impurities are captured within the crystal structure and the 

subsequent impact on the CSD. Impurities are likely to exist in real systems that would 

become incorporated into the crystal structure, this is an undesirable outcome and is difficult 

to quantify in a crystallization model.  

Models in crystallization have been used for predicting and optimizing crystallization process 

behaviour and while there are many advances that will still need to be made for models to be 

more reliable and accurate, overall the use of these crystallization models in optimization has 

yielded reliable prediction of process behaviour, supported with experimental results.  
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2.9 Multi-Objective Optimization for Crystallization 

The use of the NSGA-II can be extended to multi-objective optimization. This form of 

optimization is one where there is a set of two or more competing objectives, and it is desired 

to discover how both objectives can be met.  The main outcome will be the set of 

nondominated solutions known as Pareto set; a set of the best trade-offs or compromise 

solutions for the two objective functions. Graphically, the Pareto front defines the boundary 

of the feasible region of the optimization problem, as shown in Figure 2-3.  

 

Figure 2-3 – Feasible region and Pareto front 

In Figure 2-3 is an arbitrary representation for pareto output to provide further context of 

how this form of optimization can be useful. The red pareto front will host the set of solutions 

from the optimization problem and defines the boundary of the feasible region for the two 

objectives. The blue markers represent each of the Pareto optimal solutions.  

The use of multi-objective optimization for seeded batch crystallization was explored by 

Sarkar et al. (2006) and is the most notable example in crystallization optimization research. 

The volume-based mean size was calculated from the moments Equation 2-19, and similarly 

the volume-based coefficient of variation in size was expressed using Equation 2-17. A third 

moment was also expressed in terms of nucleation and seed growth. Three constrained multi-

objective optimization problems were explored to: 

1) Maximise the volume-based mean size and minimise the third moment due to 

nucleation.  

2) Maximise the volume-based mean size and minimise batch operation time.  

3) Maximise the volume-based mean size and minimise the coefficient of variation.  
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In all cases the temperature profile and mass of seed were the decision variables and there 

were constraints imposed on the temperature profile limits and seed mass, and the 

temperature profile was piecewise linear, defined by Equation 2-36.  

 
𝑇(𝑡) = 𝑇(𝑘) +

𝑇(𝑘 + 1) − 𝑇(𝑘)

𝑡𝑓/𝑃
(𝑡 − 𝑡𝑘) 

Equation 2-39 

where 𝑘 is the interval, 𝑡 is time and 𝑃 is the number of equal intervals in the profile. The 

temperature profile over the range [0, 𝑡𝑓] was divided into 𝑃 equal intervals. The results 

demonstrated how each scenario presented a Pareto set of solutions. However, there is an 

opportunity to explore the multi-objective optimization problem by incorporating the interval 

length into the decision variables rather than enforcing equal time intervals, because the 

cooling profiles in the results appeared to follow a nonlinear cooling profile constructed of 

piecewise linear temperatures. Observing the optimal cooling profile for a P/W system 

disclosed by Nagy et al. (2008a), the optimal solution appears to be smooth and the same 

smoothness cannot be achieved from the fixed time period for each temperature gradient. 

Furthermore, a comprehensive study of citric acid anhydrate crystallization (Hemalatha et al., 

2018) includes a similar multi-objective optimization to maximise the number weighted mean 

size and minimise the coefficient of variation, subject to cooling rate and limit constraints. 

One profile from the Pareto set was then implemented as a cooling policy in a citric acid 

anhydrate batch crystallization, and the results showed good agreement between the 

predicted mean size and coefficient of variation with those that were obtained from the 

batch. However, the authors opted to use a piecewise constant temperature profile as the 

decision variables for the multi-objective optimization, despite the prior research which used 

a piecewise linear profile the piecewise constant profiles hold the temperature of the 

crystallization process at a fixed value over each successive time period.  

A further study on the multi-objective optimization of seeded anti-solvent crystallization in 

isothermal conditions (Trifkovic, Sheikhzadeh and Rohani, 2008) also uses the same approach 

of applying a multi-objective optimization to establish the cooling profile for a seeded batch 

crystallization process to obtain desired CSD characteristics, and the optimal profile was 

implemented in an experiment which yielded comparable results. Finally, multi-objective 

optimization for targeting crystal shape and size of paracetamol and potassium dihydrogen 
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phosphate (KDP) were also studied by Acevedo et al. (2015) with a similar outcome where 

the experimental results supported the optimization output. 

In conclusion, single objective and multi-objective optimization have been on crystallization 

optimization and two opportunities identified are investigating the difference between local 

and global single-objective optimization on the P/W system using the optimal profile from 

Nagy et al. (2008a) as a point of reference, to observe the difference between the optimal 

piecewise-constant and piecewise-linear cooling obtained using a global single-objective 

optimization, and to incorporate the time period for the piecewise-linear cooling profile as a 

decision variable in single and multi-objective optimization. 

2.10 Control methods for crystallization  

There are two main forms of control methods in crystallization literature: model-free and 

model based. Model free methods use existing data from the crystallization system to follow 

a trajectory and require little computation effort. The manipulated variables are able to be 

changed quickly. Supersaturation control has proven to be a good way of controlling a 

crystallization process in the phase diagram as supersaturation drives nucleation and growth, 

the two main crystallization mechanisms in the P/W system (Bakar et al. 2009a; Bakar et al. 

2009b). The use of supersaturation control in a model-free approach has been investigated 

and proved to be a suitable control implementation (Saleemi 2011; Saleemi et al. 2012a; A. 

Saleemi et al. 2012b). Another form of control for crystallization is direct nucleation control 

(DNC) where a focussed-beam reflectance measurement (FBRM) probe is used to monitor the 

change in number of crystals in the system and if there is a sharp increase in crystals. DNC 

works by heating the process to dissolve the most recently generated crystals, then 

subsequently cooling to produce further growth, with the aim being to obtain a unimodal and 

narrow crystal size distribution and dissolving any secondary nucleation and fines as they 

appear. Though this approach is useful, it lacks the ability to forward predict behaviour, so 

the product that will exit the unit at the end of the process cannot be predicted from this type 

of control approach, it is a reactive control approach. This is an important limitation because 

the CSD from crystallization will affect downstream processes, so maintaining a consistent 

product is important to ensure consistent downstream productivity and regulatory 

compliance of the product. Another drawback with specific types of model-free controllers 

such as PID controllers is the requirement to tune the controller. Often it is difficult to tune 
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these types of controller as the tuning parameters cannot be derived through intuition and 

must be found from testing and qualification.  

Early work in crystallization control by Shen et al. (1999) forms a comparison between three 

types of model based and one model-free controller. The model-based controllers are a 

globally linear controller (GLC), a generic model controller (GMC) and a multi-model MPC, 

meanwhile the model-free controller is a PI controller. An optimal cooling profile was 

determined based on a weighted cost function to maximise the weight-based mean size 

whilst minimising secondary nucleation in the seeded system and reducing the coefficient of 

variation, to obtain an optimal cooling profile. The profile is then used in each of the 

respective controllers to track the temperature trajectory. The outcome saw that all the 

model-based approaches performed significantly better than the model-free PI approach.  

Nagy (2008) presented an important comparison between the performance of temperature 

control and concentration control of a batch crystallization process. Using temperature 

control, the end of the batch is more sensitive to the variation in the nucleation exponent 

which can lead to undesirable nucleation and fines, also the temperature profile must be 

optimized and is a time dependent curve with a specified end-time. However, concentration 

control only depends on the temperature of the process and can therefore have variable 

batch end-times leading to a more consistent yield between batches. In lab experiments, the 

temperature disturbances resulted in an immediate difference between the two control 

methods, and concentration control appeared to be a better strategy because it was not fixed 

to follow a strict temperature profile. The modelling, optimization and subsequent 

implementation of optimal control profiles from the model-based approach in this paper lead 

well into the implementation of model predictive control implementations for concentration 

control.   

There are many examples which also show the advantages of model-predictive approaches 

over model-free, each suggesting the advantages occur because there exists an underlying 

relationship that is captured in a reliable model that can better inform the controller of the 

actions that should be taken (García, Prett and Morari, 1989a; Nagy and Braatz, 2003; Damour 

et al., 2010; Yang and Nagy, 2015). Model prediction is used to predict the controlled output 

trajectory over a future horizon, based on current state of the system and future inputs. This 



57 
 

is important when considering integrated processes and how the crystal size distribution will 

look at the outlet of the crystallizer. If the shape of the distribution can be predicted 

accurately, the properties for downstream processing may be correlated to the CSD and could 

inform the time required for subsequent process operations. Similarly, with accurate models, 

the CSD may be controlled to within pre-defined boundaries to ensure the CSD at the outlet 

is always consistent and will almost guarantee consistent filtration performance (Benyahia et 

al., 2012). Another key advantage would be unlocking further information about 

compromises that can be made in the process. For example, there is a drive to produce 

crystals that are as monodisperse as possible with large size and narrow CSD as this is believed 

to give the best filtration properties. However, with greater process information, it may not 

be necessary to form crystals as big as possible with as narrow CSD as possible as this may 

lead to undesirably long crystallization times and may require other downstream activities 

such as milling to regulate the crystal sizes down for blending, granulation and tableting. 

Therefore, an integrated system of multiple unit operations being combined into a single 

control scheme with an MPC could be used to optimization process characteristics such as 

minimization of production time whilst maintaining high purity and yield. These are all areas 

that should be explored, specifically to establish what criteria should be put in place to ensure 

high productivity and consistent steady-state performance in industrial continuous 

crystallization. 

2.11 Model Predictive Control 

Model predictive control is one of the more popular forms of model-based advanced process 

control and has been applied to pharmaceutical production over multiple processes in recent 

years. (Antwerp & Braatz 2000; Braatz 2004; Forgione et al. 2015; Mesbah et al. 2009). The 

dynamic optimization problem can be of the following form: 

 

min
𝑢

𝐽 = 𝑄 ∑(𝑦𝑖 − 𝑦𝑖,𝑠𝑒𝑡𝑝𝑜𝑖𝑛𝑡)
2

𝑁𝑝

𝑖=1

+ 𝑅 ∑∆𝑢𝑙
2

𝑁𝑐

𝑙=1

  

Subject to:  𝐴𝑢 = 0 
𝐵𝑢 ≤ 0 
𝑐(𝑢) = 0 
𝑑(𝑢) ≤ 0 

 

This optimization problem includes some dynamic information from a model, where the 

model input is 𝑢 and output is 𝑦. The output error is defined as the difference between the 
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output and the setpoint, in this cost function the difference is squared to ensure a positive 

magnitude of error but similarly the absolute error can be used. The cost function then 

evaluates the output error over a time period or prediction horizon of size 𝑁𝑝 and where 

necessary also includes a cost associated with changing the input value (Δ𝑢) over an input 

horizon 𝑁𝑐. The latter is useful when input changes may involve mechanical parts which are 

prone to wear and failure. Given there are two components to the cost function, the 

weighting matrices 𝑄 and 𝑅 are introduced to complete the cost function, allowing the ability 

to change the influence of the output error or input changes on the overall cost. Finally, 

because dynamic optimization involves prediction of future output and input trajectories, this 

cost function uses the model (which captures the input-output behaviour) to optimize the 

future inputs in order to minimise the output error, thus converging the output onto a 

reference or target trajectory. 

Garcia et al. (1989) have formed the first major review of linear MPC and its application mainly 

to the oil and gas industry. Applications of nonlinear MPC (NMPC) for nonlinear processes 

such as polymerisation and nonlinear batch processes like crystallization were also 

investigated (Nagy & Agachi, 1997), demonstrating successful control in tracking temperature 

profiles to a reference trajectory in polyvinyl chloride polymerisation, as well as temperature 

and concentration tracking in crystallization (Nagy & Agachi 1997; Nagy & Braatz 2003; Nagy 

& Braatz 2012). Since then, NMPC has gained momentum in crystallization with a variety of 

methods of NMPC emerging including the use of an efficient direct multiple shooting 

algorithm, which was compared to other NMPC techniques for solving a distillation column 

control problem (Diehl et al. 2002; Allgöwer et al. 2004; Nagy 2003; Nagy & Braatz 2003; Raff 

et al. 2006). NMPC has been investigated for batch crystallization, some forms of continuous 

MSMPR and even for multi-objective optimization and control for shape and size, all with 

much success (Acevedo, Tandy and Nagy, 2015).  

One dynamic optimization approach that is an alternative to MPC is Pontryagin’s Maximum 

Principle (PMP). This method is used to find the best possible control input to advance a 

process or system from one state to the next in the presence of state and input constraints 

(Vollmer and Raisch, 2003), but the challenge is to define a system in a structure that can be 

solved using PMP. Vollmer and Raisch (2003) discuss the properties of a batch cooling 

crystallization model, defining how using a scaled time instead of real time transforms the 
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model into one which exhibits orbital flatness whilst retaining physical meaning from the 

process. Hofmann and Raisch (2010) used this model structure to then define an optimization 

problem using PMP. The crystallization problem they solved was to obtain a specified crystal 

mass (defined by the third moment) at the end of a batch in as short a time as possible, by 

growing seed crystals and suppressing secondary nucleation. They apply an assumption that 

the mass of secondary nucleation crystals will be so small that it will have negligible impact 

on the overall mass balance, and from their results it is clear that for most cases of their 

crystallization system, this assumptions is valid. The other notable benefit of this method is 

the very fast computational time, in which they state an implementation in MATLAB solves a 

single optimization problem within 0.04 seconds.  

The extensive research in this area does leave some unexplored avenues, including an area of 

linear MPC which can be further explored too. In 2011 and since, some research emerged 

using linear MPC and a global linearization method applied to the nonlinear system. The 

global linearization method is an input/output linearization discussed in the next sub-section 

of this literature review (Jansens and Hof, 2009; Jansen, 2011; Vissers, Jansen and Weiland, 

2011). The authors linearized a batch crystallization process and implemented the model into 

an MPC for supersaturation control, and demonstrated that the MPC was capable of tracking 

the supersaturation profile despite model uncertainties and growth parameter uncertainty. 

However, the greatest limitation of this technique is that it was only applied to a single-input 

single-output system and was unable to handle bounds or constraints from the crystallizer. 

This is an important limitation for crystallization control because the heat transfer to large 

volume systems is limited, so achieving large temperature changes in short time is not 

possible.  

Industrial applications often rely on process data and statistics (Qin and Badgwell, 2003) and 

for continuous processes operating at steady state, data driven models can be used for model 

predictive control. Data-driven models are typically identified from plant testing (Tulleken, 

1993) by treating a process as a black box and subjecting the plant to a set of input changes 

while observing the outputs, thus establishing the cause-effect relationships on the process. 

The dynamic data collected from plant can be used to identify low-order regression models, 

one example is an AutoRegressive model with eXogenous input (ARX) (Jansson, 2003), and 

the model can then be qualified for use in control of critical parameters on the plant. This 
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type of MPC has been used in wastewater treatment, oil and gas, fine chemicals and 

consumer packed goods industries (Qin and Badgwell, 1997), with emerging use in 

pharmaceutical manufacturing, therefore there is an opportunity to explore this type of MPC 

in pharmaceutical crystallization control. 

There are other noteworthy uses of advances predictive control and MPC are firstly the use 

of an iterative learning control which utilises batch to batch variability to update the operating 

profile for future batches to meet a desired crystallization end-point (Sanzida and Nagy, 

2013). The supersaturation profile is successfully adjusted after each batch, but it is not clear 

how sensitive this adjustment in profile is to batch variability, particularly in the case of a 

single bad batch which produces poor produce due to unintentional seeding, poor raw 

material quality or unusually high impurity. Furthermore, an application of MPC on combined 

cooling and anti-solvent 2-stage MSMPR crystallization has also been explored, to control 

crystal size and yield (Yang and Nagy, 2014b, 2014a).  The MIMO system controlled was 

controlled by PID and NMPC, where the NMPC was found to have a superior performance 

particular with regards to disturbance rejection. Despite these success cases some areas 

remain unexplored, such as the COBC style continuous crystallization MPC, and higher 

dimensional population balance models for accurate shape control. The research into MPC 

and NMPC thus far has primarily been used SMOM. Therefore, more complex systems with 

QMOM or FVM could also be explored using these methods, providing bounds and constraints 

can be applied successfully. Therefore, this is a balance between the benefit of time saving 

from the linearized MPC and the time used to formulate the MPC to see if it is truly a better 

approach than NMPC.  

2.12 Linearization techniques 

2.12.1 Local Linearization 

Linearization methods are categorised into either local or global. Local techniques linearize 

around a defined operating point and are commonly used because they can be implemented 

with minimal effort (Hartman, 1963). However, the main drawback for this technique is a 

reduced accuracy in predicting the behaviour of a nonlinear system at conditions that are far 

from the operating point used for linearization. This drawback can also be accentuated by the 

degree of nonlinearity in the dynamics, i.e. the more nonlinear the system dynamics the more 
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inaccurate the prediction will be. This can be detrimental to process control given the control 

decisions are made using the linearized system. Fortunately, global linearization techniques 

exist which can alleviate the concerns of using a linear model for controlling nonlinear 

processes.  

2.12.2 Global Linearization 

Global linearization methods were first applied onto nonlinear systems by Gilbert and Ha 

(1984). They considered state variable transformations using a state feedback control law. 

The method transforms a nonlinear input-state process into a linear input-state model. The 

terminology used here, nonlinear input-state, simply implies the relationship of the process 

input to states is nonlinear. However, there is a drawback in that a linear input-state model 

does not guarantee reliable output prediction because the state-output system may also be 

nonlinear. This drawback led to an alternative feedback linearization framework developed 

by Kravaris and Chung (1987) for single-input single-output (SISO) systems by considering the 

input-output. The aim was to develop a framework for global linearization for solving control 

problems. Applying this linearization to a nonlinear system, a new linear system can be 

identified as shown in Figure 2-4 (Mesbah et al., 2010). The state feedback linearization (SFL) 

block contains a control law which uses the states of the nonlinear plant, 𝑥, with the input to 

the linear system, 𝑣, to obtain the input to the plant, 𝑢. The plant may also be affected by 

disturbances or uncertainties (𝑑) and the output of the plant is 𝑦. The SFL and nonlinear plant 

together create a linear system, which can be controlled by MPC. However, the SFL is the 

states of the plant and the inputs to the plant are within the linear system and are not 

intuitively accessed directly by the MPC.  

 

Figure 2-4 Linearization schematic of a nonlinear plant using state-feedback linearization 

The output from the nonlinear system is mapped to the MPC input 𝑣 using the states and the 

plant input 𝑢 using Lie derivatives. The transformation means the states are not accessible in 

𝒚 
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the MPC because they are inside the linear system, and this is the system that the MPC would 

control. Therefore, the MPC would find the changes in 𝑣 required to converge output 𝑦 to a 

reference trajectory.  

This linearization technique has been applied to the batch crystallization model and MPC 

performance has been evaluated by Jansen (2011) and Vissers, Jansen and Weiland, (2011). 

The output of the system was supersaturation, and the input to the plant was the 

temperature of the coolant in the jacket. They evaluated the performance of the controller 

with a growth parameter mismatch and uncertainty between the MPC and process model 

which mimicked the crystallization system, to establish if MPC was sufficiently robust to 

control the process. The results show that the MPC is able converge the supersaturation 

trajectory onto the reference throughout the simulation, but the input profile varies 

significantly based on the growth parameter and uncertainty. Furthermore, there was an 

unsuccessful attempt made to calculate constraints on feedback linearization input, 𝑣. 

For multiple-input multiple-output control with linearization, there have been 

implementations of MIMO control with SFL outside pharmaceutical crystallization, namely in 

proton exchange membrane fuel cells (Chang and Chen, 2014) resulting in the successful 

proportional-integral control of the process. Similarly, there is a MIMO implemented on 

MSMPR crystallization but again using a PID controller in place of an MPC (Quintana-

hernandez et al. , 2012), the control objectives were to stabilize the third moment and 

crystallization temperature, and both were successfully achieved with the model-free 

controller. This shows the possibility of extending the SFL to a MIMO system for 

crystallization.   

2.12.3  Methods for Applying Constraints to Global Linearization  

If a global linearization is to be used for MPC, an important requirement is the ability to 

translate the real process constraints to the MPC, so as to not lose an important function of 

MPC, the ability to accurately model and predict feasible future input moves for a process.  In 

literature, a few successful attempts have been made on applying constraints to a feedback 

linearization optimization problem. Two techniques introduced by Kurtz and Henson (1996) 

and further detailed by Kurtz and Henson (1998) discuss how the SFL control law can be used 

to identify the state-dependent constraints at each interval that the MPC is executed. In the 
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first technique, named constant constraint technique (CCT), the constraints are calculated for 

the next immediate MPC input, 𝑣, using the most recent states, 𝒙,and these constraints are 

applied on 𝑣 across the entire horizon. The second technique named variable constraint 

technique (VCT) uses the horizon of 𝑣 from the previous time the MPC was executed to 

estimate the future states, 𝒙. These future states make it possible to calculate the future 

inputs into the process (𝑢), using the SFL control law. In both techniques, the constraints on 

the first input in the horizon will be correct and given that this is the only input from the MPC 

that is implemented onto the plant, this trade-off has been accepted knowing that the horizon 

prediction may not be accurate or reliable. However, this is a major drawback for MPC 

because the important characteristic of MPC is the ability to predict how the trajectory will 

evolve over the future horizon. Therefore, infeasible horizon prediction is arguably of little to 

no use.  

Kurtz and Henson (1996) also disclose that the method to ensure exact constraints would be 

to create a constraint calculation strategy which uses the nonlinear system’s real states but 

this route wasn’t chosen by the authors as it would be relatively computationally inefficient 

compared to even nonlinear MPC, hindering the real-time capabilities. This claim can now be 

challenged with advances in computational efficiency, as it may now be possible to form a 

more computationally demanding constraints calculation strategy whilst also maintaining the 

ability for real-time operation.  

Further advances have since been made by Van Soest, Chu and Mulder (2006) in using a 

similar technique to CCT and VCT, using the constraint techniques on a MIMO SFL with 

decoupling. Deng, Becerra and Stobart (2009) also explored the capabilities of constraint 

implementation using artificial neural networks (ANN), but the technique appears 

computationally demanding and requires large training sets of data to train the ANN, even 

then the constraint selection was not reliable. Furthermore, this application was in the 

aerospace domain and the viability of using ANNs in pharmaceutical crystallization control 

would require new datasets to be formed.  

The most recent advance by Schnelle and Eberhard (2015) introduces a constraint mapping 

technique for SFL again based on VCT but they introduce the use of recursively calculating the 

future plant states and using them to dynamically update the VCT constraints technique with 
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the constraints on the MPC input. The advantage of this technique is that the constraints will 

be valid throughout the entire horizon, which means the prediction horizon will be the most 

accurate of all the previous techniques discussed. However, this method could be improved 

upon if there was a method to directly constrain the plant states and inputs without the need 

to convert them into the MPC input constraints. 

One solution to implementing plant constraints across the entire prediction horizon could lie 

in the use of the Sequential Quadratic Programming (SQP) algorithm in optimization. Boggs 

and Tolle, (1995) introduce the SQP algorithm and state that SQP has the ability to solve 

nonlinear control problems with nonlinear constraints by using an iterative approach which 

is capable of converging a feasible optimal solution. This optimization algorithm therefore 

presents an opportunity to address the problem of handling real plant constraints, by coupling 

the SFL transformation with the nonlinear state space system into nonlinear constraints 

function. The SQP algorithm can then be employed to solve the control problem on the state 

feedback linearized system subject to the nonlinear constraints function.  

In summary, this method for linearization poses some complications with bounding and 

constraints on the real inputs to the nonlinear system, but there is sufficient motivation to 

explore this area and find a solution. This form of linearization would make it possible to use 

MPC with a globally linearized model for crystallization and the offline linearization method 

would only need to be performed once. This is advantageous over local linearization around 

one or multiple operating points. The ability to linearize a model over its whole design space 

is an appealing idea for control application.  

2.13 Conclusions 

Although there are a lot of modelling and control applications for crystallization already, many 

are quite simple and applied to batch crystallization, meanwhile the more advanced 

applications are very niche. There are a lot of publications with NMPC and relatively few with 

MPC on crystallization. Research into using continuous MSMPR is also becoming more 

prevalent. There is still a lot of space in the field for more advanced modelling techniques to 

be applied in higher dimensions to construct cases of more realistic problems, addressing 

complex crystals shapes and breakage/aggregation problems. There is also scope to 

incorporate a lot of the computationally demanding approaches such as FVM which were too 
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expensive a few years ago but now could be viable given the performance increases of 

computers. Further, in terms of model-based control there are gaps for controlling modelled 

crystallization approaches with greater than 1 dimension. There are very few papers in the 

field on multi-objective optimization, especially in regard to crystallization.  

Based on this review, the areas that have been chosen for the main focus of subsequent 

research are firstly the further exploration of multi-objective optimization by exploring the 

optimization of cooling crystallization temperature trajectory and incorporating a decision 

variable that allows the interval of the temperature profile ramp rate to be optimized per 

piecewise linear cooling stage. The other area of focus is the use of global input-output 

linearization for batch and continuous crystallization, the constraint applications of this 

technique in both SISO and MIMO control problems, and the application of this technique in 

a model predictive controller. Furthermore, as the linearization approach is global, an 

investigation into global vs local optimization is also important to determine which approach 

should be used for optimization in the MPC.   
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3 Multi Objective Optimization of Batch Crystallization 

In this chapter, three optimization studies are performed on batch crystallization to address 

the opportunities that were realised in the literature review. The first is a study on piecewise 

constant and piecewise linear decision variables for optimization of a batch crystallization 

temperature profile, to compare how the two forms of decision variable affect the batch 

temperature trajectory and the number based mean size of the CSD at the end of the batch. 

The second optimization study compares three optimization techniques, the first is the 

Nondominant Sorting Genetic Algorithm – II, the second is deterministic sequential quadratic 

programming optimization, and the final is a hybrid combination, to again assess the 

differences in batch crystallization optimization. The final study is a multi-objective 

optimization to obtain a Pareto set for maximising the number weighted mean size and 

minimising coefficient of variation of the CSD, using a previously unused combination of 

decision variables to define the temperature profile – the temperature gradients and time 

steps per gradient.  

3.1 Materials and methods 

A model-based optimization technique requires a mathematical model and the formulation 

of the optimization problem which requires a cost function and a set of constraints. This 

section will first introduce the mathematical model of the crystallization process, and 

subsequently discuss the selection of decision variables to maximise the number-weighted 

mean crystal length (referred to as L10 or mean length). Also discussed are the optimization 

problems for a single objective using local, global and a multi-objective optimization. 

3.2 Batch crystallization modelling approach 

In chapter 2 various methods of modelling and solving a crystallization system have been 

discussed which can be applied to batch cooling crystallization. The model for batch cooling 

crystallization is a system of differential and algebraic equations (DAEs) comprising a 

population, mass and energy balance, kinetic equations for crystallization mechanisms and 

thermodynamic relationships for solubility (Shen, Chiu and Wang, 1999; Nagy, Chew, et al., 

2008b).  

A population balance is used to quantify and track the crystal size distribution (CSD). The 

standard method of moments (SMOM) is chosen as the method of quantifying and tracking 
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the CSD. The main drawback is that the SMOM is only valid for nucleation and size 

independent growth rates, but this is acceptable for the chosen crystallization system. The 

paracetamol in water (P/W) system which has been modelling, identified and optimized in 

literature by Nagy et al (2008) is chosen because the product and process remain relevant 

within the pharmaceutical industry at the time of writing. The kinetic data for nucleation and 

size independent growth have been provided for this system (Nagy, et al., 2008). The batch 

crystallization moments equations are shown from Equation 3-2 to Equation 3-5 for the first 

to fourth moments and Equation 3-6 shows the mass balance. 

 𝜕(n(L))

𝜕𝑡
=  𝛿(𝐿 − 𝑟0)𝐵 +

𝜕[𝐺(𝐿)𝑛(𝐿)]

𝜕𝐿
 

Equation 3-1 

 

 𝑑𝜇0

𝑑𝑡
= 𝐵 

Equation 3-2 

 

 𝑑𝜇1

𝑑𝑡
= 𝐺𝜇0 + 𝐵𝑟0 Equation 3-3 

 𝑑𝜇2

𝑑𝑡
= 2𝐺𝜇1 + 𝐵𝑟0

2 Equation 3-4 

 𝑑𝜇3

𝑑𝑡
= 3𝐺𝜇2 + 𝐵𝑟0

3 Equation 3-5 

 𝑑𝐶

𝑑𝑡
= −𝑘𝑣𝜌𝑐(3𝐺𝜇2 + 𝐵𝑟0

3) Equation 3-6 

 

In Equation 3-1, the breakage and agglomeration functions have been excluded given they 

are not required for SMOM. In these equations, 𝑛 is the number distribution, 𝐿 is the length 

of crystals, 𝑟0 is the initial nucleus radius, 𝐵 is the nucleation rate, 𝐺 is the growth rate and 𝜇0, 

𝜇1, 𝜇2 and 𝜇3 are the zeroth to third moments respectively, and are defined per unit mass of 

solvent. The concentration 𝐶 is the concentration of paracetamol in solution, 𝑘𝑣 is the shape 

factor of paracetamol which is 0.24 and 𝜌𝑐  is the crystal density 1296 kg/m3 (Nagy, Fujiwara, 

et al., 2008). The moments represent the properties of the CSD. The first four moments 

(zeroth to third) are used here. The first, second and third moments represent the total 

length, total surface area and total volume of the crystals respectively, all per mass of solvent. 
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Dividing these by the zeroth moment obtains more useful information such as the L10 mean 

size of crystals, the average surface area per crystal and average volume per crystal, 

respectively.   

No energy balance has been included in this model because the optimization will be on the 

crystallization temperature trajectory. This can also be viewed as if there is perfect heat 

transfer to the crystallizer. This case study considers unseeded systems, so the initial 

conditions of all the moments are 0. The initial condition of concentration is 0.256 g/g 

(paracetamol/water). The nucleation and growth kinetics are defined by the power laws 

shown in Equation 3-7 and Equation 3-8. The supersaturation (S) is calculated using Equation 

3-9 where 𝐶 is the concentration from the model and 𝐶∗ is the solubility. The solubility is 

simplified to a second order polynomial relationship with temperature as shown in Equation 

3-10 (Nagy et al., 2008b). This relationship is applicable for the temperature range of 

crystallization from 320 K to 290 K. All temperature in the optimizations of this case study are 

set to start at 315 K and end at 295 K.  In the power law Equation 3-7, the value for 𝑘𝑏 is 𝑒45.8 

min-1 g-1 and 𝑏 is 6.2. In Equation 3-8, 𝑘𝑔 is 𝑒−4.1 m min-1  and 𝑔 is 1.5 (Nagy, Fujiwara, et al., 

2008). 

 𝐵 (𝑚𝑖𝑛−1𝑔−1) =  𝑘𝑏(𝑆)𝑏 Equation 3-7 

 𝐺(𝑚 𝑚𝑖𝑛−1) = 𝑘𝑔(𝑆)𝑔 Equation 3-8 

 𝑆 (𝑔/𝑔) = 𝐶 − 𝐶∗ Equation 3-9 

 𝐶∗(𝑔/𝑔) = 1.5846 × 10−5𝑇2 − 9.0567 × 10−3𝑇 + 1.3066 Equation 3-10 

 

3.3 Dynamic optimization methods  

Three main optimization techniques will be used, a stochastic genetic algorithm (NSGA-II) 

(Deb et al., 2000), a deterministic gradient based method and a hybrid method which utilises 

first the NSGA-II to begin the optimization, and feeds the solution of this into the initial guess 

of the deterministic approach. Each method is used to solve the same optimization problem 

which is to maximise the crystal mean size for given start and end temperatures for 
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crystallization of paracetamol in water. The cooling rates and temperature limits are bounded 

and where possible the optimization configuration is also set to be identical in all cases.  

3.3.1 Genetic Algorithm (stochastic) 

The first optimization method which will be used is the NSGA-II. This method requires no input 

or initial guess for a temperature profile and uses the entire decision variables domain defined 

by the upper and lower bounds for the temperature. The genetic algorithm adopts the 

principles of biological evolution and selection to solve an optimization problem. Firstly, the 

decision space is defined by specifying the bounds and constraints on the decision variables. 

The NSGA-II requires specification of the population size, the maximum number of 

generations and optimization tolerance; the generations and tolerance define the 

optimization end criteria. The population size is the number individuals representing the 

decision variables that will be used to evaluate the cost function in each generation, which 

initially are randomly generated by the NSGA-II algorithm. After evaluating the cost function 

for the whole population of the first generation, the DVs in the population which give the 

minima (or maxima) are then used as parents to generate new individuals for the next 

generation (offspring), the decision variable with improved characteristics. Subsequent 

generations will be generated according to same principle. If successful, the process will 

converge to the global minimum or maximum where the best individual in the last population 

represents the optimal set of the decision variables (Deb et al., 2000). 

In the optimization problem of the crystallization process, each member or individual of the 

population is a temperature profile that runs for 300 minutes, begins at 315 K and ends at 

295 K, set according to the profiles disclosed by Nagy et al. (2008a). The generations will then 

evolve the population by refining and reducing the domain until a global temperature profile 

is found which maximises the crystal mean size. In the event of a nonconvex optimization 

problem, there is a chance that the previous population’s minimum cost value was at a local 

minimum, presenting a possible risk of converging to that solution. This is usually not an issue 

with the genetic algorithm because of a property called ‘diversity’ (Winston, 2015). A higher 

diversity will enable the genetic algorithm to randomly generate individuals in each 

population that aren’t based on the parent but are actually in other areas in the domain. So, 

if the algorithm is not already converging onto the global solution, with enough generations 

there is a greater chance that this diversity effect will eventually find the global minimum. 
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Many preliminary test runs of the genetic algorithm have determined that the default settings 

for MATLAB’s genetic algorithm (2014b) are sufficient for exploring the entire domain for the 

purposes of crystallization optimization. This process continues for a user-defined number of 

generations, a large number of generations are preferred (Sarkar, Rohani and Jutan, 2006), 

until finally an optimized profile is obtained. This is computationally demanding but the 

advantage is that no input guess is required and the entire domain is searched with 

convergence onto the global optimum.  

3.3.2 Deterministic method 

In contrast to the genetic algorithm, a deterministic approach requires a valid initial guess 

which determines the outcome of the final solution. As a result, the deterministic method 

requires some prior knowledge of the system for an informed initial guess in order to 

converge to the global solution, otherwise the optimization process will converge to local 

solutions particularly if the problem possesses the property of non-convexity, i.e. the 

objective space has many local solutions. Several methods can be used to solve constrained 

optimization problems such as the interior point and sequential quadratic programming (SQP) 

(Boggs and Tolle, 1995). An optimization tool or function called fmincon in MATLAB, which 

allows several optional local deterministic optimization methods, is used to solve the 

optimization problem (Equation 3-12 and Equation 3-13), the sequential quadratic 

programming (SQP) algorithm is used to solve the optimizations in this study.   The main 

advantage of this method over NSGA-II is the lower number iterations required and as a result 

is not as computationally intensive (Törn and Žilinskas, 1989). 

3.3.3 Hybrid optimization technique  

The adopted hybrid method is a combination of the NSGA-II with SQP in fmincon. The 

method first employs the genetic algorithm to randomly generate the population of initial 

profiles, and each is evaluated using the optimization function to narrow down the search 

space and begin to converge onto the global solution. Then there is a handover phase once 

the genetic algorithm has evaluated, the best final profile is used as the initial guess for SQP 

to refine the optimal solution (Deb, Lele and Datta, 2007). This has been chosen as a test 

method to combine the advantages of the genetic algorithm’s convergence to a global 

solution without any prior guesses or user input, with the computationally inexpensive SQP 

approach that should use the genetic algorithm result as an initial guess and almost guarantee 
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faster convergence to the global solution as compared to a pure genetic algorithm 

optimization (Gao et al., 2008). The decision must be made on how many individuals will be 

considered in the population and through how many generations the genetic algorithm will 

evolve. The hybrid optimization will be used to explore the advantages gained from both 

methods and the benefits will be quantified mainly through difference in computation time 

differences with the other two methods. 

3.4 Decision Variables Comparison for Optimization 

There are two types of decision variables (DVs) used to construct the temperature profile. 

The first is a pairing of time steps and constant temperatures (Hemalatha et al., 2018), the 

second is a pairing of time steps and linear cooling ramps (Sarkar, Rohani and Jutan, 2006). 

These are defined as piecewise-constant (PC) and piecewise-linear (PL) respectively. The PC 

approach uses an optimizer to find the optimal sequence of constant temperatures for each 

time step in the batch crystallization, and the temperature profile is then constructed, as 

shown in Figure 3-1a. The temperature step changes at each time step are only bounded by 

the maximum and minimum temperatures and the optimizer is set up such that the 

temperature is held or reduced but heating Is not allowed. The PL approach uses an 

alternative approach with a sequence of gradients (𝛼) with the corresponding time periods 

for which each temperature ramp is active (Figure 3-1a, blue). Similarly to PC, the ramp rate 

is held for the respective time period, and it is ensured that the ramps will not exceed the 

lower bound temperature of 295 K by imposing the following condition:  

 ∑𝛼𝑖𝛥𝑡𝑖 = 315 𝐾 − 295 𝐾

𝑖

 
Equation 3-11 

In this equation 𝛼𝑖 is the gradient for which a positive value is a cooling ramp and a zero value 

is to hold temperature (as seen in Figure 3-1b) over the time period Δ𝑡𝑖 (1 interval) so by 

multiplying both together it is possible to obtain the temperature change over the time period 

of Δ𝑡𝑖. Summing the entire sequence of gradients over each respective time period can then 

ensure that the sum does not exceed the difference between the start and end temperatures. 

Further as there is a constraint on the gradient to prevent heating, so all the values of 𝛼𝑖 in 

the summation will always be greater than or equal to 0, thus the profile will always cool from 

315 K to 295 K.  
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Figure 3-1 a) Piecewise constant vs piecewise linear for a whole profile (left), b) Defining piecewise continuous gradients for 
one time interval (right). 

The method of optimization that will be used for decision variable selection is the NSGA-II 

because a global solution is desired for both problems. Additionally, with the DVs being so 

different, using a deterministic approach would require two unique initial guesses for the 

optimizer, one for each DV case, which will not be identical. There is also a chance that one 

or both of these optimization problems are nonconvex in the feasible region, and the 

nonconvexity affects the ability to find the global optimum with a deterministic approach 

(Henrion and Lasserre, 2004). The purpose of this test is to see how step changes in the 

temperature profile will affect the final number weighted (L10) mean length in this simple 

batch cooling crystallization problem, and moreover to understand the benefits to employing 

a more robust cooling profile with gentle ramp rates as opposed to sharp step changes in 

temperature as will be experienced with the PC approach.  

3.4.1 DV Comparison Optimization Case Study 

For this optimization study the crystallization process will run for 300 minutes in every 

simulation, with a fixed time step of 30 minutes. This means that the optimization has 10 

equal sized time steps which require 10 decision variables that must be optimized (one for 

each time step); for piecewise-constant these DVs are 10 constant temperature values, and 

for piecewise-linear trajectory the DVs are 10 gradients for cooling. The optimization problem 

for the PC is as follows:  

 max
𝜇1

𝜇0
  

Equation 3-12 

 

𝑠. 𝑡.  295 ≤ 𝑇(𝐾) ≤ 315 

𝑇(𝑡0) = 315 𝐾 

α 
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𝑇(𝑡𝑒𝑛𝑑) = 295 𝐾 

𝑇(𝑡𝑖) ≤ 𝑇(𝑡𝑖−1) 

Similarly, the optimization problem for PL is: 

 max
𝜇1

𝜇0
  

Equation 3-13 

 

𝑠. 𝑡. 295 ≤ 𝑇(𝐾) ≤ 315 

𝑇(𝑡0) = 315 𝐾 

𝑇(𝑡𝑒𝑛𝑑) = 295 𝐾 

0 ≤ 𝛼 ≤ 30 

The optimization will maximise the L10 mean length and the NSGA-II parameters are 

summarised in Table 3-1. 

 

Case Optimization Method Population size (GA) Generations (GA) Absolute 
Tolerance 

PC NSGA-II 150 50 1 x 10-5 

PL NSGA-II 150 50 1 x 10-5 

Table 3-1 – NSGA-II Optimization Parameters for PC vs PL Comparison 

The settings above were determined by performing optimization under a range of settings to 

gain insight into how set up the NSGA-II to solve this problem. The model allows tracking of 

some statistics which are related to the CSD and quantified using the moments such as the 

final average crystal size and the width of the distribution quantified by coefficient of 

variation. In the ideal case, the final crystal mean size (L10) will be large whilst maintaining a 

narrow coefficient of variation in size. Also, any large nucleation rates that occur after the 

first instance of nucleation event will be considered undesirable and should be avoided to 

prevent the generation of fines which would be reflected by a larger coefficient of variation 

in the moments. It is desired to see the growth kinetic dominate nucleation, which can be 

confirmed by tracking the L10 trajectory which should increase throughout the crystallization 

process, a decrease in L10 in a supersaturation system would signify that nucleation of new 

smaller particles are resulting in a reduction of the number weighted mean size (when 

breakage is not an active mechanism). The criteria used for determining which decision 

variables are best for this offline optimization problem are: 
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• The DVs which result in the best overall mean size at the end of the batch, 

• The optimal solution which reduces the occurrences of large spikes in the nucleation 

rate throughout the batch.  

The best decision variables will then be taken forward to the next section which aims to 

compare the local and global optimization approaches for an identical optimization problem.  

3.4.2 Decision Variable Comparison Results 

The optimization solution for the PC temperature profile case is shown in Figure 3-2 and the 

final L10 mean size was 76 µm. The solution for PL case is shown in Figure 3-3 and the final 

optimization length was 106 µm. The PC case shows a series of step changes in temperature 

with the first step change being the largest from just under 315 K to 309 K as seen in Figure 

3-2h. This results in a sharp increase in nucleation rate seen in Figure 3-2e at 50 minutes. Each 

subsequent step change in temperature also results in a further nucleation event which can 

be seen by the sharp peaks in Figure 3-2e. These nucleation events could result in a multi-

modal CSD, though this cannot be verified using the SMOM. Another indication of multiple 

peaks in the CSD is the zeroth moment data in Figure 3-2a. Each time the line plateaus, nuclei 

have been formed and held until the next spike in nucleation rate. Looking at this in 

conjunction with Figure 3-2b (mean size), and Figure 3-2f (growth plot), there is crystal growth 

occurring throughout the batch after the initial nucleation event, therefore during each 

plateau of the zeroth moment curve all the crystals will continue to grow. The global solution 

is different for PC than for PL and this is why the final L10 is so small in comparison to the PL 

optimization. If the number of DVs are increased towards an infinite number, the optimization 

would be more comparable with PL because an infinite number of step changes would likely 

lead to numerous gradual step changes as opposed to the large and aggressive step changes 

seen in this case, thus giving the appearance of a smoother temperature profile.  

The PL optimization results were directly comparable to published work and therefore were 

validated against the work by Nagy et al (2008). In Figure 3-3h, the temperature profile 

reaches 295 K within 250 minutes. Figure 3-3b shows that the L10 mean size also seems to 

plateau towards the end. The nucleation and growth rates in Figure 3-3e and Figure 3-3f 

respectively have similar trends to each other which is unsurprising given that both kinetic 

equations are power law functions of the supersaturation. The main difference is that initially 
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the zeroth moments (representing number of crystals) is 0 so nucleation must first occur to 

generate some crystals and increase the zeroth moment. Subsequently, the optimum 

temperature profile appears to favour growth, making this the dominant mechanism over 

nucleation for the remainder of the simulation. The most apparent advantage over the PC 

case is that PL results in a smoother cooling profile with fewer DVs and as a result the phase 

diagram in Figure 3-3g appears to show one large nucleation event which is succeeded 

predominantly by growth. There are a few further maxima in the nucleation curve in Figure 

3-3e but these do not result in the same characteristic increases in the zeroth moment that 

were seen in Figure 3-3e for PC. These nucleation spikes do appear to occur whenever the 

rate of cooling changes. The behaviour can be attributed to the correlation of ramp rate to 

change in supersaturation, which affects the nucleation rate. One possible solution to prevent 

these nucleation spikes would be to decrease the time step and increase the number of 

temperature ramps (DVs) with the overarching aim to refine the temperature profile and 

reduce large step changes in temperature. Alternatively, from observing the optimum profile 

from Nagy et al. (2008a), it appears that the optimum cooling profile is nonlinear and smooth, 

and by fixing the time step for each ramp it may not be possible to obtain such a smooth 

profile. Therefore, instead of enlisting more ramps in the DV, it may be better to consider 

incorporating the time periods for each ramp as a DV instead. The optimizer may be allowed 

the freedom to then alter the duration of each ramp and obtain an overall smoother cooling 

profile.   

The computational time for both optimizations was approximately 15 minutes, but the PL 

approach resulted in a much smoother temperature profile and significantly larger L10 mean 

size. This coupled with the nucleation trends in the PC results determine that the PL results 

are preferable. In order to a similar result from the PC approach, the number of decision 

variables would have to be increased and coupled with a shorter time period between 

temperature changes. However, the computation time would likely increase because 50 

generations of 150 may not be sufficient to converge on the global solution when increasing 

the number of decision variables. This was observed in prior optimizations when determining 

the settings for this optimization test. Finally, the temperature profile optimized here is that 

of the crystallization solution. As such, some of the large temperature step changes from the 

PC optimal solution would be difficult to achieve in reality because typically crystallization 
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temperature is controlled by manipulating fluid temperature in the vessel’s jacket and 

achieving large changes in temperature are heat transfer limited. So, although this case 

performs less desirably, replicating it in practice would also be difficult.   

3.4.3 Decision Variable Comparison Conclusion 

Overall, when comparing the two decision variables as used in these two cases, the PL case is 

the best option. The temperature profile is achievable, and the smoother temperature profile 

also results in a smooth supersaturation profile for the batch. To achieve a significantly 

smoother temperature profile from the PC approach, the number of decision variables would 

have to be increased, leading to greater computation time. For the optimization case studies, 

the PL approach will be used and the time periods will be included as decision variables to 

allow the optimizer to further refine the temperature profile in search of the optimal solution. 
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Figure 3-2 – Piecewise constant optimization output:  a) Zeroth moment vs time, b) L10 mean size profile (maximisation objective), c) Mean surface area profile, d) Mean crystal volume profile, 
e) Nucleation rate profile, f) Growth rate profile, g) Crystallization phase diagram trajectory, h) Optimized temperature profile. 



78 
 

 

Figure 3-3 – Piecewise continuous optimization output:  a) Zeroth moment vs time, b) L10 mean size profile (maximisation objective), c) Mean surface area profile, d) Mean crystal volume profile, 
e) Nucleation rate profile, f) Growth rate profile, g) Crystallization phase diagram trajectory, h) Optimized temperature profile
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3.5  Batch Crystallization Optimization Study 

A comparison will be made between the 3 optimization methods on the same objective 

function and model using identical options for the optimizations where possible. The genetic 

algorithm requires no initial guess. Here, the time periods have also been incorporated as 

decision variables. Therefore, there are 50 DVs comprised of 25 time periods and 25 

temperature gradients. This new optimization problem allows the time periods to be varied 

so if there are long periods of time where it would be ideal to hold the temperature in the 

crystallizer, the optimizer can achieve this with 1 temperature gradient observed over 1 long 

time period, allowing the remaining DVs to be used to refine the temperature profile. A new 

linear equality constraint is added to ensure that all time steps always add up to 300 minutes. 

The optimization will run for 250 generations for a population size of 600.  

The SQP optimization is used with the same constraints but with two initial guesses, whose 

values are provided in Table 3-2. 

Initial guess 𝜶 𝚫𝒕 

1 𝛼1,25 = 0.8 Δ𝑡1−25 = 12 

2 𝛼1,25 = 0.8 Δ𝑡1−24 = 1     Δ𝑡25 = 276 
Table 3-2 – Initial guesses for Two SQP Optimization Cases 

The initial guesses are both linear cooling profiles with a fixed gradient. The first cooling 

profile consists of 25 equal time periods. The second initial guess consists of the first 24 time-

steps being equal and 1 minute long, followed by one very long time step at the end at 276 

minutes (totalling 300 minutes). These initial conditions were chosen to exploit any potential 

local solutions that may be converged using this deterministic optimization approach. The 

prior results from decision variable analysis section showed the global solution temperature 

profile from the PL case appears to be nonlinear where the initial half of the batch cools at a 

slower rate than the final half of the batch. The second initial guess is to test the SQP 

optimization algorithm and see when the majority of the batch time is subject to a fixed ramp, 

if the optimizer can reduce this time significantly enough to converge the same solution as 

the first SQP case, or even the global solution. Finally, the hybrid method starts without the 

initial guess and uses the NSGA-II for 10 generations comprised of 100 individuals to create 

an initial guess for the SQP optimization which then completes the optimization, ideally 
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converging to the global solution. All optimization parameters have been summarised in Table 

3-3. 

Case Optimization Method Population size (GA) Generations (GA) Absolute 
Tolerance 

1 Genetic Algorithm 250 600 1 x 10-5 

2 SQP - - 1 x 10-5 

3 SQP - - 1 x 10-5 

4 Genetic Alg. + SQP 100 10 1 x 10-5 

Table 3-3 – Summary of settings for optimization test problem 

The performance criteria for this study is first the time to converge a solution and secondly 

the quality of solution. The quality of the solution relates to how well the mean size is 

maximised and then looking at other data such as undesired spikes in the nucleation trend, 

total number of crystals in the crystallizer at the end of the process and if the growth remains 

the dominant mechanism after the initial nucleation. The aim is to produce few and large 

crystals so these key performance indicators are sufficient to decide which approach is best 

for online optimization in a real-time control system too. 

3.5.1 Optimization Case Study Results  

The key performance indicators from the results of each optimization case in this study are 

summarised in Table 3-4. 

Case Optimization 
Computation Time 

(mins) 

L10 Mean Size Maximum Rate of 
Nucleation  
(min-1 g-1) 

Zeroth Moment 
at end of batch 

1 300 117 280 19900 

2 25 125 225 16100 

3 25 80 3050 6700 

4 30 125 225 16100 

Table 3-4 Summary of KPI values from all four cases. 

3.5.1.1 Genetic Algorithm Optimization Results 

The optimization results obtained with the genetic algorithm optimization are shown in Figure 

3-4. This optimization required 300 minutes (5 hours) of computing time. There is one initial 

peak in nucleation between 50 and 100 minutes with multiple less prominent increases in 

nucleation rate throughout the batch (Figure 3-4e). The ideal scenario would be the zeroth 

moment increasing to a plateau resulting from the peak in nucleation and subsequently 

dropping to a low and fixed value until the end of the process. This would give confidence 
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that the CSD would be unimodal with small coefficient of variation in size. However, the 

zeroth moment in this result is increasing throughout the crystallization process due to the 

sustained nucleation rate throughout the process. The mean length increases almost linearly 

after the initial nucleation and at end of crystallization the final mean size is 117 µm (Figure 

3-4b). Comparing this to the PL optimal solution from the DV comparison case study where 

the time steps were fixed, the added flexibility of allowing the optimizer to use time steps as 

decision variables has indeed resulted in a larger mean size. Furthermore, in the phase 

diagram (Figure 3-4g), the crystallization trajectory does not reach the solubility curve at the 

end so the final state of the batch is still supersaturated and further growth may indeed have 

been possible. The final temperature constraint to achieve a system temperature of 295 K 

was satisfied but an increased hold time would be necessary to fully crystallize the remaining 

material which results in the batch ending in a supersaturated state. One improvement to this 

would be to incorporate a yield target for the batch as has been implemented in other studies 

(Sarkar, Rohani and Jutan, 2006). 

3.5.1.2 Deterministic Optimization Results 

In comparison to NSGA-II, when using SQP with the first set of initialization values in Table 

3-1, the optimizer converges a solution (Figure 3-5) within 25 minutes of computation time. 

The solution is similar to that of the genetic algorithm, though the resulting temperature 

profile here is smoother it is assumed that the initial guess has converged onto the global 

optimal solution. The optimized temperature profile (Figure 3-5h) shows faster cooling from 

315 K to 312.5 K at the start of batch when compared to the prior case. The batch also ends 

at the low temperature constraint of 295 K but the system is still supersaturated so further 

growth occurs until the end of the 300-minute process. There is one dominant nucleation 

event early in the batch (Figure 3-5e) thereafter the nucleation rate drops drastically and 

stabilises at a much lower rate. The zeroth moment does not plateau (Figure 3-5a) but is very 

smooth compared to the solution using the NSGA-II; it is suspected that the continuous 

nucleation of new crystals will be broadening the distribution but it is likely to remain more 

unimodal than for the temperature profile produced by the genetic algorithm because of this 

smoothness. However, this cannot be confirmed from the current results using SMOM. The 

growth rate after the first nucleation peak is close to constant (Figure 3-5f) and the mean size 

evolves almost linearly to a final size of 126 μm (Figure 3-5b).  
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Figure 3-6 shows the optimization result in the case the optimizer is provided with the second 

initial guess from Table 3-1. The temperature profile (Figure 3-6h) shows that the final time 

step was decreased from 276 mins to under 200 minutes, but as the temperature profile does 

not match the results from the prior 2 cases, this is likely not converging onto the global 

solution. The initial supersaturation led to a single dominant nucleation peak (Figure 3-6g and 

e) which is an order of magnitude greater than the previous 2 solutions. The growth rate is 

also not uniform beyond the first nucleation event (Figure 3-6f) which translates into a final 

mean size of 80 µm, much lower than the global solution. However, it is observed that the 

zeroth moment (Figure 3-6a) did reach a plateau in this local solution, so after an initial burst 

of nucleation the optimizer was able to prioritise maximisation of crystal size. In the phase 

diagram (Figure 3-6g) the batch supersaturation trajectory also operated closer to the 

saturation curve after the initial nucleation peak. 

3.5.1.3 Hybrid Optimization Results 

The hybrid method required 30 minutes of computation to converge and the final results are 

shown in Figure 3-7. The results are exactly as shown for the first guess using SQP. The 

interpretation of this that as the genetic algorithm will be converging to the global minimum, 

and the point where the NSGA-II terminate, the best individual which is provided to the SQP 

as the initial guess will begin near the global solution, so it gives confidence that this result is 

indeed the global optimal solution for the optimization problem. Furthermore, the additional 

time required by the hybrid method appears to be a good compromise when there is not 

enough information known about the system to determine a reliable starting guess for SQP.  

3.5.2 Batch Crystallization Optimization Conclusion 

The selected optimization problems lead to the conclusion that for optimizations on systems 

with little or no prior knowledge, the hybrid method is likely the best approach, but with 

systems that are well understood or well researched, SQP is a reliable alternative for single 

objective optimization when it is desired to converge onto the global solution. The long time 

period for the genetic algorithm paired with the relatively coarse results shown in this study 

is not considered desirable for optimization despite running to a global solution without an 

initial guess. However, the advantages of the genetic algorithm will be seen when extending 

the study from single-objective to multi-objective optimization, as will be discussed next.  
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Figure 3-4 – NSGA-II  Optimization Output:  a) Zeroth moment vs time, b) L10 mean size profile (maximisation objective), c) Mean surface area profile, d) Mean crystal volume profile, e) Nucleation 
rate profile, f) Growth rate profile, g) Crystallization phase diagram trajectory, h) Optimized temperature profile.
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Figure 3-5 – SQP Case 1 Optimization Output:  a) Zeroth moment vs time, b) L10 mean size profile (maximisation objective), c) Mean surface area profile, d) Mean crystal volume profile, e) 

Nucleation rate profile, f) Growth rate profile, g) Crystallization phase diagram trajectory, h) Optimized temperature profile.



85 
 

 

Figure 3-6 – SQP Case 2 Optimization Output:  a) Zeroth moment vs time, b) L10 mean size profile (maximisation objective), c) Mean surface area profile, d) Mean crystal volume profile, e) 

Nucleation rate profile, f) Growth rate profile, g) Crystallization phase diagram trajectory, h) Optimized temperature profile.
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Figure 3-7 – Hybrid Optimization Output:  a) Zeroth moment vs time, b) L10 mean size profile (maximisation objective), c) Mean surface area profile, d) Mean crystal volume profile, e) Nucleation 
rate profile, f) Growth rate profile, g) Crystallization phase diagram trajectory, h) Optimized temperature profile. 
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3.6 Multi-objective Optimization 

The discussion thus far has focussed on single objective optimization, but in reality there are 

many CQAs in pharmaceutical production and it would be desirable to target more than one 

objective from optimization and control. Single-objective optimization can be used when it is 

known to what extent each of the different objectives should be achieved, by using a 

weighted optimization approach, one example of this is seen in Shen et al. (1999) where a 

cost function is introduced with a weighted objectives on the mean size, crystal mass and 

suppression of nucleation. However, qualitative understanding of a process can be gained by 

an alternative method of multi-objective optimization where objectives are competing or 

contradictory and an ideal solution cannot be found. The aim of multi-objective optimization 

is to find a set of trade-off solutions and thus understand the many ways in which two or more 

competing objectives can be achieved. The NSGA-II is capable of performing multi-objective 

optimization, and the algorithm will be used to maximise crystal length and minimise the 

crystal size distribution width because these two are known to be competing objectives 

(Benyahia et al., 2011; Acevedo, Tandy and Nagy, 2015; Hreiz et al., 2015; Lakerveld et al., 

2015). The outcome of this optimization will not lead to one unique solution but many 

compromise or a trade-off solutions. In MATLAB, the function gamultiobj is based on the 

NSGA-II, and is used to solve the multi-objective optimization problem.  

One option that is available with the genetic algorithm is seeding. As seeding is terminology 

that is also used for crystallization, to avoid conflict of terms, seeding of a genetic algorithm 

will be referred to as initialisation. Initialisation is the process of providing the initial 

population of the genetic algorithm with one or more defined individuals. The remaining 

individuals in the population are generated through the random selection performed by the 

algorithm.  

3.6.1 Multi-objective Optimization Case Study 

This case study consists of 2 optimization problems and the population size and generations 

are specified in Table 3-5. There are 50 DVs (25 time periods and 25 corresponding 

temperature gradients). The first case is without initialisation, whereas the second case is 

initialised with two profiles. The two profiles are obtained by performing a single objective 

optimization first on the maximisation of mean size, and secondly on the minimization of 
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coefficient of variation, using the same DVs but using the SQP method and the first initial 

guess from Table 3-2. 

Case Population size (GA) Generations (GA) Absolute 
Tolerance 

1 200 60 1 x 10-5 

2 200 60 1 x 10-5 

Table 3-5 – Summary of settings for optimization test problem 

The second multi-objective genetic algorithm case is initialised with these two profiles to 

determine if initialisation shows a performance benefit when using multi-objective 

optimization, such as an improved solution or reduced time to converge a solution. The CSD 

width is quantified by the coefficient of variation which can be obtained by the zeroth, first 

and second moments as shown in Equation 3-14 (Shen et al, 1999, Aamir, 2010). This together 

with maximising the number weighted mean size will define the optimization problem for this 

case study.  

𝑐. 𝑣. =
𝜎𝑣𝑎𝑟

𝐿𝑚
= √

𝜇0𝜇2

𝜇1
2 − 1 Equation 3-14 

 

The optimization problem is defined in Equation 3-15. 

 max
𝜇1

𝜇0
  

min√
𝜇0𝜇2

𝜇1
2 − 1 

Equation 3-15 

 

𝑠. 𝑡. 295 ≤ 𝑇(𝐾) ≤ 315 

𝑇(𝑡0) = 315 𝐾 

𝑇(𝑡𝑒𝑛𝑑) = 295 𝐾 

𝑡𝑓 = 300 𝑚𝑖𝑛𝑠 

0 ≤ 𝛼𝑖 (−
𝐾

𝑚𝑖𝑛
) ≤ 30 

1 ≤ Δ𝑡𝑖(𝑚𝑖𝑛𝑠) ≤ 300 
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3.6.2 Multi-objective results and discussion 

The multi-objective optimization results for the first case without initialisation are presented 

in Figure 3-9. Here, a Pareto fraction value of 35% is used which means from all the individuals 

in a given generation, the best 35% are plotted in the Pareto plot. For each generation, the 

Pareto front (the boundary on which the Pareto set lies in Figure 3-8) should move closer to 

the boundary of the feasible region for these two objectives until a final Pareto set is found 

with no further improvement to both objectives. The two Pareto points on the extremes of 

the Pareto front are known as the anchor points, which should be comparable to the single-

objective optimization solution of each respective objective.  

 

Figure 3-8 - The multi-objective Pareto plot for maximising crystal mean size and minimising coefficient of variation 

The results show how increasing crystal size results in an increasing distribution width, 

quantified by coefficient of variation. Specifically, the maximum mean size seen here is 104 

μm for which the coefficient of variation is 0.27, whereas the minimum coefficient of variation 

of 0.198 results in a corresponding mean size of larger than 90.6 μm. This information can be 

used to select an operating profile based on one of these Pareto points for further analysis or 

experimental validation. One drawback of this approach is that the Pareto required 4 hours 

of computation to achieve the results shown in Figure 3-8, but the best mean size result of 

104 μm was significantly lower than the previously seen values of 117 μm for the genetic 

algorithm with single objective optimization.  
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In an attempt to improve on this result, the second multi-objective optimization is initialised 

with the temperature profiles resulting from two single-objective optimizations, one for 

maximising L10 mean size and the other for minimising coefficient of variation. The single-

objective optimizations were performed with lower tolerances on error than the previous 

case study to reduce the time to converge a solution. The initialised multi-objective genetic 

algorithm converged the results shown in Figure 3-9 in 40 minutes of computation time, 30 

minutes of this time was used for both single objective optimization and 10 minutes for the 

multi-objective optimization. With a new maximised mean size of 124 μm and minimised 

coefficient of variation of 0.16, initialisation of the multi-objective optimization with single-

objective optimization profiles would be the preferred way to handle this optimization 

problem, as can be seen in the Pareto front in Figure 3-9. This Pareto solution is much further 

to the right in the objective space than the Pareto from the previous multi-objective case and 

it is suspected that the first case was also evolving towards the solution of the second case 

but was terminated soon before it could reach the same Pareto due to the number of 

individuals and generations not being sufficiently large enough. However, with a time of 4 

hours to converge the previous case, and 40 minutes for the current case, it appears that the 

current approach to multi-objective optimization is a better use of resources and time. 

 

Figure 3-9 – Multi-objective Pareta plot when initialised with single-objective optimization profiles 

The temperature profiles for the Pareto set of the second case are provided in Figure 3-10. 

The insight gained from these trends is that the initial cooling phase differs between the two 
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objectives. The dark blue profile was obtained from single-objective optimization of mean 

size, and the red profile from coefficient of variation reduction. After the initial 50 minutes of 

the simulation, the remaining profiles from the Pareto appear to be bounded by the two 

single objective profiles for much of the temperature profile except for the initial 50 minutes 

prior to nucleation. 

 

Figure 3-10 – Temperature profiles for the Pareto set obtained from Multi-Objective Optimization with Initialisation – Blue 
profile from single objective maximisation of mean size, Red profile from single-objective minimisation of coefficient of 

variation, Cyan profiles from intermediate points in the Pareto front. 

A further consideration to be made here is that while the Pareto plot can be used to 

determine the region in which the process can be operated to give the best compromise 

solution of these two objectives, there would also need to be some profile selection criteria 

in place if automatic selection of a profile is desired, such as for real-time control. For systems 

with higher degree of nonlinearities and objective functions whose correlation isn’t as 

obvious as for this system, it may be useful to use multi-objective optimization to highlight 

any nonconvexity in the Pareto too. However, for this simple batch crystallization simulation, 

a weighted single-objective approach would suffice in selecting an operating profile and using 

the deterministic SQP would also be sufficient in place of the NSGA-II. 

3.7 Conclusion 

Three areas of optimization are considered in this chapter; the selection of decision variables, 

the method of single objective optimization and the use of multi-objective optimization. 
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Piecewise-constant and piecewise-linear decision variables were used to optimize a cooling 

crystallization temperature profile. The initial and final temperatures were constrained to 

fixed values with a fixed total time of 300 minutes for the batch, to compare optimization 

results for maximising the mean crystal length (number weighted). The PL decision variables 

were found to give a much smoother crystallization profile which appeared to prevent 

undesired nucleation events in simulation. However, the temperature profiles were subject 

to fixed time steps which appeared to limit the final mean size obtained, so a new approach 

was implemented to allow the time steps to be decision variables in the optimization. The 

resulting difference was a mean size increase from 106 to 117 µm.  

The comparison was then made between a global stochastic genetic algorithm optimizer, a 

local deterministic SQP algorithm and a hybrid combination of both to understand benefits 

and drawbacks of each and whether a deterministic or hybrid approach would be sufficient 

to converge the global solution in short times to be considered for a real-time approach. It 

was found that in the case of cooling batch crystallization optimization, the local approach 

converged fast results but in both cases the solutions were different. The first case was found 

to be the global solution, confirmed after the hybrid optimization obtained the same results. 

Additionally, the genetic algorithm required more time on average and didn’t converge to the 

same exact solution as the deterministic of hybrid method, but rather a coarser solution that 

appeared to require further refinement. This comparison revealed that using the SQP 

algorithm for optimization with a suitable initial guess will provide a fast optimization result 

with little compromise on the quality of the solution.   

Finally, the multi-objective optimization for crystal mean size and coefficient of variation using 

the genetic algorithm provides a Pareto that is useful for understanding the relationship 

between the two objectives, but the optimization approach is computationally demanding 

taking over 4 hours to converge before terminating because 60 generations had been 

surpassed. Performing single-objective optimizations first and injecting the profiles as a 

starting point for the multi-objective optimization yielded optimization results in a shorter 

period of time and the Pareto was closer to the feasible region boundary than the previous 

case. Determining these relationships between quality attributes is important, but it should 

be restricted to being an offline activity as it is unlikely to be a feasible to implement this form 
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of optimization in real-time without some decision-making criteria for selecting a profile in 

the Pareto.  
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4 Single-Input Single-Output State Feedback Linearization, Tuning 

and SFL-Plant Constraints for Crystallization 

4.1 Introduction 

This chapter explores the use of state-feedback linearization (SFL) with a model predictive 

control (MPC) policy to control batch and continuous crystallization processes, while 

introducing a novel nonlinear constraints function for the MPC that can be implemented using 

a sequential quadratic programming (SQP) optimization algorithm to provide feasible 

constrained solutions. The single-input single-output (SISO) control problem in this study is 

for supersaturation control of crystallization. Supersaturation control is chosen as the control 

policy based on insights gained from Nagy et al. (2008) who disclose that temperature profile 

tracking is sensitive to disturbances or changes in operating conditions. While others have 

used properties of the CSD to formulate the objective function  (see Chapter 5 for an example 

of this approach), obtaining accurate live CSD information in-situ remains a measurement 

challenge in crystallization, so for control purposes, using supersaturation control is 

comparatively more transferrable to a real batch process.  

The global linearization technique developed by Kravaris and Chung (1987) will be introduced 

and applied to transform a nonlinear input-output crystallization model into a linear input-

output model and a state-feedback control law for MPC. The MPC will be introduced and the 

input-output model from SFL-MPC declared. The developed MPC will then be iteratively 

tuned to achieve a desirable output response from batch and continuous modes of operation, 

gaining insight into how tuning parameters affect controller performance of the globally 

linearized model. Finally, the constraints handling technique, named SFL-Plant constraints, 

will be introduced and tested in further batch and continuous control scenarios. The outcome 

will be to assess if SFL-Plant constraints have been implemented successfully by validating the 

inputs are all feasible, and to further assess differences in controller performance, as defined 

by tracking errors of the controller (Shen et al, 1999).  

4.2 State-Feedback Linearization for SISO systems 

The SFL is an offline technique that can be applied to single-input single output (SISO) systems. 

The desired input and output variables must be selected to perform this technique, because 

it is designed for input-output linearization (Kravaris and Chung, 1987). This technique was 
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specifically devised for control systems in which input-output linearization was desired, 

because the pre-existing technique of input-state linearization did not guarantee in input-

output linearization if there were nonlinearities between the states and outputs. The state 

space form is used throughout for model and control representation. To begin, the nonlinear 

model of the process can be represented in nonlinear state-space form: 

 �̇� = 𝒇(𝒙) + 𝒈(𝒙)𝒖 

𝒚 = 𝒉(𝒙) 

 

Equation 4-1 

where 𝒙 is the vector of states, 𝒚 is the vector of output and 𝒖 is the vector of inputs, 𝒇(𝒙), 

𝒈(𝒙) and 𝒉(𝒙) are vector functions. The system can be represented in continuous state-space 

form or in a discrete form. Discrete state space is useful for when data is not continuously 

obtained but is instead obtained at discrete time points, ideally with a constant time step. 

This type of data is often referred to as time-series data. The discrete state space form is 

(Haddad, 2008): 

 𝒙(𝑘 + 1) = 𝒇(𝒙(𝑘)) + 𝒈(𝒙(𝑘))𝒖(𝑘) 

𝒚(𝑘) = 𝒉(𝒙(𝑘)) 

 

Equation 4-2 

Where 𝑘 is the discrete time point in the time-series. The next step is to perform a 

transformation which aims to linearize the output of the system (𝒚) to the input (𝒖), hence 

the name input-output linearization. The methodology for input-output linearization requires 

the introduction of: 

• Lie derivatives – to be performed for determining the input-output linearization 

• Relative order – this is the order of the input-output linearization 

• Control law – constructed using both the Lie derivatives and the relative order; also 

includes the tuning parameters for input-output control.   

Generally, Lie derivatives are used in differential geometry, a branch of mathematics, to 

evaluate the changes in a tensor field along the flow defined by a vector field.  In the context 

of input-output linearization, Lie derivatives are the changes of the output 𝒉(𝒙) with respect 

to each of the states multiplied by the dynamics matrix 𝒇(𝒙), or the input matrix 𝒈(𝒙) (more 

details can be found in Kravaris & Chung (1987)): 
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𝐿𝑓𝒉(𝒙) =  ∑

𝜕𝒉

𝜕𝑥𝑖

𝑁

𝑖

𝑓(𝑥𝑖) Equation 4-3 

Where 𝑁 is the number of states in the vector 𝒙. Similarly, for 𝐿𝑔: 

 
𝐿𝑔𝒉(𝒙) =  ∑

𝜕𝒉

𝜕𝑥𝑖

𝑁

𝑖

𝑔(𝑥𝑖) Equation 4-4 

This is a special case of vector multiplication where one of the vectors is a state-based 

derivative vector. In both cases, the derivative vector is the derivative of 𝒉(𝒙) with respect to 

each element of 𝒙. Hence the Lie derivative, when expanded, results in the following 

equation: 

 
𝐿𝑓𝒉(𝒙) =  

𝜕𝒉

𝜕𝑥1
𝑓(𝑥1) +

𝜕𝒉

𝜕𝑥2
𝑓(𝑥2) + ⋯+

𝜕𝒉

𝜕𝑥𝑁
𝑓(𝑥𝑁) Equation 4-5 

The Lie derivative can be performed successively too, so much like with 𝒉(𝒙), the derivative 

vector can be developed with respect to another vector such as the previous Lie derivative 

𝐿𝑓ℎ. This expands into the following (Oguchi, Watanabe and Nakamizo, 2002): 

 
𝐿𝒇𝐿𝑓𝒉(𝑥) =  

𝜕𝐿𝑓𝒉

𝜕𝑥1
𝑓(𝑥1) +

𝜕𝐿𝑓𝒉

𝜕𝑥2
𝑓(𝑥2) + ⋯+

𝜕𝐿𝑓𝒉

𝜕𝑥𝑁
𝑓(𝑥𝑁) Equation 4-6 

And with this the 𝑘𝑡ℎ derivative can also be defined: 

 
𝐿𝑓𝐿𝑓

𝑘𝒉(𝒙) =  
𝜕𝐿𝑓

𝑘𝒉

𝜕𝑥1
𝑓(𝑥1) +

𝜕𝐿𝑓
𝑘𝒉

𝜕𝑥2
𝑓(𝑥2) + ⋯+

𝜕𝐿𝑓
𝑘𝒉

𝜕𝑥𝑁
𝑓(𝑥𝑁) Equation 4-7 

The same can be applied for the vector 𝒈(𝒙) in place of 𝒇(𝒙). This gives the ability to 

successively find Lie derivatives, which are used for input-output linearization.  

The relative order, 𝑟, is the minimum number of successive Lie derivatives required to obtain 

an explicit and non-zero relationship between the input and output (Kravaris and Chung, 

1987). The relative order is therefore unique to a model input-output combination. There are 

two conditions that must be met to determine the relative order:  

 𝐿𝑔𝐿𝑓
𝑘𝒉(𝒙) =  0 𝑘 = 0, 1, … , 𝑟 − 2 Equation 4-8 
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 𝐿𝑔𝐿𝑓
𝑟−1𝒉(𝒙) ≠ 0  Equation 4-9 

The first condition is in place to ensure that 𝑟 is obtained from the minimum number of 

derivatives. The second condition ensures when 𝑟 is determined and implemented, the Lie 

derivative of relative order 𝑟 results in a non-zero value thus ensuring an input-output 

relationship. The use of the 𝒈(𝒙) and 𝒇(𝒙) matrices are in an affine-in-control representation 

because the aim is to find the relationship between the input and output, hence the input 

vector function is isolated in the nonlinear state space formulation. From the state space 

system, the function 𝒈(𝒙) is related to the input, and 𝒉(𝒙) is defined as the output. The states 

in a state space formulation define the relationship between the inputs and outputs. Hence 

the definition of the Lie derivative can be interpreted here as when the output is 

differentiated with respect to each state and multiplied by the respective input that affects 

each state, what is obtained is how the output varies with respect to changes in the input; 

which can also be regarded as the output sensitivity to the inputs, coupled with the state-

derived dynamics of the process. Therefore, a zero value would appear if either of the 

following happens for all the terms in the Lie derivative: 

1) The output is not sensitive to changes in a state 

2) The states which do show output sensitivity are not affected by the input  

Then, if a non-zero value appears, there is a connection between the output and the input 

through the states. As the states play an important role in forming this relationship, they must 

also be used in the control law, hence the state-feedback linearization. When the above 

conditions are not satisfied for the first Lie derivative, the next Lie derivative must be found, 

and this is where the 𝒇(𝒙) matrix is introduced. The 𝒇(𝒙) in state space is the dynamics 

matrix, it is used to describe how the states change with respect to their existing values and 

inputs. Consequently, if the output is not directly affected by the input through the states 

alone, the dynamic changes in states will be used to determine if there exists an input-output 

relationship for the system. It is also possible that a relationship may not exist, to prevent this 

from occurring it is best to perform plant tests and cause-effect analysis or sensitivity analysis 

to ensure the selected inputs would indeed have an effect on the outputs. Finally, given the 

order of the system is 𝑟, the control law can be established. The control law (𝜑) is (Kravaris 

and Chung, 1987):  
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𝑢 = 𝜑(𝒙, 𝑣) =

𝑣 − ∑ 𝛽𝑘𝐿𝑓
𝑘𝒉(𝒙)𝑟

𝑘=0

𝛽𝑟𝐿𝑔𝐿𝑓
𝑟−1𝒉(𝒙)

 Equation 4-10 

Where 𝑢 is the plant input, 𝑣 is the model input and 𝛽 are controller tuning parameters. The 

𝛽 parameters are have two important roles in this approach in that they determine the effects 

of the model input 𝑣 on the plant input 𝑢, because the 𝛽 parameters are linked to the state-

feedback parameters in the control law. Furthermore, this transformation will be used to 

determine a state-feedback linearized model in section 4.3, where it is shown that the 𝛽 

parameters form the linear state-space model that is used in the MPC. This is because the 

transformation captures the plant input and plant state information in the linearization to 

form a system using a new arbitrary input, the MPC input 𝑣, and the 𝛽 parameters which 

together capture the evolution of the process output 𝑦. Therefore, selection of appropriate 

values for these parameters is critical to the MPC performance and control law. The plant and 

model inputs are scalars in the control law because one value of model input is used to obtain 

one plant input. This control law is an explicit equation which determines the plant input from 

the model input and plant states. The control law is used to convert the MPC model input into 

the plant input. The MPC model is the linear state space model derived using the 

aforementioned SFL methodology and the MPC uses the model to optimize the future plant 

inputs to keep the output for the process on track to a trajectory or setpoint. The introduction 

and functionality of MPC is discussed in section 4.3.  

There are certain conditions which must be met for the SFL to be used for process control; 

the control law should be non-zero and the SFL should have a relative order greater than 0. 

To guarantee this, the input must cause some effect on the output. Fortunately, the 

identification of a suitable input and output is possible using techniques such as sensitivity 

analysis (Fysikopoulos et al., 2018) to ensure input-output controllability. Moreover, 

supersaturation control was selected for the study because of the abundance of successful 

supersaturation control in literature (Vissers, Jansen and Weiland, 2011; Saleemi, Rielly and 

Nagy, 2012). 
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4.2.1 Crystallization Model Linearization  

The continuous MSMPR seeded crystallization model is described by Equations 4-11 to 4-20. 

In this model, the absolute supersaturation 𝑆 is the controlled or output variable and the 

manipulated or input variable is the jacket temperature 𝑇𝑗. 

𝑑𝜇0

𝑑𝑡
= 𝐵 +

𝐹𝑖𝑛 

𝑉
𝜇0𝑖𝑛 −

𝐹𝑜𝑢𝑡

𝑉
𝜇0 

 

Equation 4-11 

𝑑𝜇1

𝑑𝑡
= G𝜇0 + 𝐵𝑟0 +

𝐹𝑖𝑛 

𝑉
𝜇1𝑖𝑛 −

𝐹𝑜𝑢𝑡

𝑉
𝜇1 

 

Equation 4-12 

𝑑𝜇2

𝑑𝑡
= 2G𝜇1 + 𝐵𝑟0

2 +
𝐹𝑖𝑛 

𝑉
𝜇2𝑖𝑛 −

𝐹𝑜𝑢𝑡

𝑉
𝜇2 

 

Equation 4-13 

 

𝑑𝜇3

𝑑𝑡
= 3G𝜇2 + 𝐵𝑟0

3 +
𝐹𝑖𝑛 

𝑉
𝜇3𝑖𝑛 −

𝐹𝑜𝑢𝑡

𝑉
𝜇3 

 

Equation 4-14 

 

𝑑𝐶

𝑑𝑡
= −kv𝜌𝑐(3G𝜇2 + 𝐵𝑟0

3) +
𝐹𝑖𝑛 

𝑉
𝐶𝑖𝑛 −

𝐹𝑜𝑢𝑡

𝑉
𝐶 

 

Equation 4-15 

 

𝑑𝑇

𝑑𝑡
=  −

3𝜌𝑐𝑘𝑣𝐺𝜇2∆𝐻

𝜌𝑐𝑝
−

𝑈𝐴𝑐

𝜌𝑉𝑐𝑝
(𝑇 − 𝑇𝑗) +

𝐹𝑖𝑛

𝑉
 𝑇𝑖𝑛 −

𝐹𝑜𝑢𝑡

𝑉
𝑇 

 

Equation 4-16 

 

𝐵 = 𝑘𝑏(𝑆)𝑏 Equation 4-17 

 
𝐺 = 𝑘𝑔(𝑆)𝑔 Equation 4-18 

 
𝑆 = 𝐶 − 𝐶∗ Equation 4-19 

 
𝐶∗(𝑇) = 𝐴0𝑇

2 − 𝐴1𝑇 + 𝐴2 Equation 4-20 

 
 

where F is the volumetric flow, V is the volume of the crystallizer, 𝜇𝑖𝑛  are the moments of the 

seed distribution, 𝑈 is the heat transfer coefficient, 𝐴 is the surface area for heat transfer, 𝑐𝑝 

is the specific heat capacity of the crystallization system, 𝜌 is the density of the solvent and 

Δ𝐻𝑐 is the heat of crystallization. This model is used to represent the continuous MSMPR and 

batch crystallizers in a series of control scenarios. When the flow rates are set to 0, the model 

is valid for batch crystallization. The crystallization model can be represented in the nonlinear 

state space form previously disclosed in Equation 4-1, where the system vectors are as 

follows: 
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 𝒙 = [𝜇0 𝜇1 𝜇2 𝜇3 𝐶 𝑇]𝑇 Equation 4-21 

 𝒖 = [0 0 0 0 0 𝑇𝑗]
𝑇

 Equation 4-22 

   

 

𝒇(𝒙) =  

[
 
 
 
 
 
 
 
 
 
 
 
 𝐵 +

𝐹𝑖𝑛 

𝑉
𝜇0𝑖𝑛 −

𝐹𝑜𝑢𝑡

𝑉
𝜇0

G𝜇0 + 𝐵𝑟0 +
𝐹𝑖𝑛 

𝑉
𝜇1𝑖𝑛 −

𝐹𝑜𝑢𝑡

𝑉
𝜇1

2G𝜇1 + 𝐵𝑟0
2 +

𝐹𝑖𝑛 

𝑉
𝜇2𝑖𝑛 −

𝐹𝑜𝑢𝑡

𝑉
𝜇2

3G𝜇2 + 𝐵𝑟0
3 +

𝐹𝑖𝑛 

𝑉
𝜇3𝑖𝑛 −

𝐹𝑜𝑢𝑡

𝑉
𝜇3

−kv𝜌𝑐(3G𝜇2 + 𝐵𝑟0
3) +

𝐹𝑖𝑛 

𝑉
𝐶𝑖𝑛 −

𝐹𝑜𝑢𝑡

𝑉
𝐶

−
3𝜌𝑐𝑘𝑣𝐺𝜇2∆𝐻

𝜌𝑐𝑝
−

𝑈𝐴𝑐

𝜌𝑉𝑐𝑝
(𝑇) +

𝐹𝑖𝑛

𝑉
 𝑇𝑖𝑛 −

𝐹𝑜𝑢𝑡

𝑉
𝑇
]
 
 
 
 
 
 
 
 
 
 
 
 

 Equation 4-23 

 

𝒈(𝒙) =  

[
 
 
 
 
 
 

0
0
0
0
0

𝑈𝐴𝑐

𝜌𝑉𝑐𝑝]
 
 
 
 
 
 

 Equation 4-24 

 𝑦 = 𝒉(𝒙) = 𝐶 − 𝐶∗(𝑇) Equation 4-25 

This is in the continuous nonlinear form. The SFL technique described will now be applied to 

the batch and continuous MSMPR crystallization model. The control problem for 

supersaturation control will be considered, where the temperature of the coolant will be used 

as the manipulated variable. The absolute supersaturation is defined as the output, as per 

Equation 4-26. 

 𝑦 = 𝒉(𝒙) = 𝐶 − 𝐶∗ Equation 4-26 

 

The crystallizer solution concentration, 𝐶, is the fifth state, 𝑥5, and the solubility 𝐶∗ is a 

function of the crystallizer temperature which is the sixth state, 𝑥6, (Equation 4-21). The 

relative order must be found by satisfying the following two conditions (Kravaris and Chung, 

1987): 
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 𝐿𝑔𝐿𝑓
𝑘𝒉(𝒙) =  0 𝑘 = 0, 1, … , 𝑟 − 2  

 𝐿𝑔𝐿𝑓
𝑟−1𝒉(𝒙) ≠ 0  

 
 

Therefore, beginning with 𝑘 = 0: 

 𝐿𝑔𝐿𝑓
0𝒉(𝒙) = 𝐿𝑔𝒉(𝒙) 

𝐿𝑔𝒉(𝑥) =  ∑
𝜕𝒉

𝜕𝑥𝑖

𝑁

𝑖

𝑔(𝑥𝑖) 

 
where N = 6 because there are 6 states, and expanding gives 

𝐿𝑔𝒉(𝒙) =
𝜕𝒉

𝜕𝑥1
𝑔(𝑥1) +

𝜕𝒉

𝜕𝑥2
𝑔(𝑥2) +

𝜕𝒉

𝜕𝑥3
𝑔(𝑥3) +

𝜕𝒉

𝜕𝑥4
𝑔(𝑥4) +

𝜕𝒉

𝜕𝑥5
𝑔(𝑥5)

+
𝜕𝒉

𝜕𝑥6
𝑔(𝑥6) 

 

Given 𝒈(𝒙) =  

[
 
 
 
 
 
 

0

0

0

0

0
𝑈𝐴𝑐

𝜌𝑉𝑐𝑝]
 
 
 
 
 
 

, substituting into the above equation results in: 

 

𝐿𝑔𝒉(𝒙) = 0 + 0 + 0 + 0 + 0 +
𝜕𝒉

𝜕𝑥6

𝑈𝐴𝑐

𝜌𝑉𝑐𝑝
  

 
And substituting 𝒉(𝒙) = 𝐶 − 𝐶∗(𝑇), 

𝜕𝒉

𝜕𝑥6
= −

𝑑𝐶∗

𝑑𝑇
= 2𝐴0𝑇 + 𝐴1 

Hence, the first Lie derivative results in a non-zero value: 

𝐿𝑔𝒉(𝒙) = (2𝐴0𝑇 + 𝐴1) × 
𝑈𝐴𝑐

𝜌𝑉𝑐𝑝
≠ 0 

Therefore when 𝒌 = 𝟎, the final condition of 𝑳𝒈𝑳𝒇
𝒓−𝟏𝒉(𝒙) ≠ 𝟎 is satisfied.  

 

   
This concludes that for supersaturation control using jacket temperature, the relative order 

of the system is 𝑟 = 1, because the first Lie derivative results in a non-zero value. Specifically, 

the input-output linearization has transformed the nonlinear model defined by Equations 4-

11 to 4-20 into a linear input-output model with a relative order of 1. Hence, the control law 

becomes: 

 
𝑢 = 𝜑(𝒙, 𝑣) =

𝑣 − ∑ 𝛽𝑘𝐿𝑓
𝑘ℎ(𝑥)𝑟

𝑘=0

𝛽𝑟𝐿𝑔𝐿𝑓
𝑟−1ℎ(𝑥)

=
𝑣 − 𝛽0ℎ(𝑥) − 𝛽1𝐿𝑓ℎ(𝑥)

𝛽1𝐿𝑔ℎ(𝑥)
 

 

Equation 4-27 
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The Lie derivative 𝐿𝑓𝒉(𝒙) is found using the same procedure as above, by substituting the 

𝒇(𝒙) vector in place of the 𝒈(𝒙) vector.  Now it is clear that there are two 𝛽 parameters in 

conjunction with one MPC input 𝑣 that will form the linear state-space model for the MPC 

(shown in section 4.3.2). It is now possible to represent the SFL model in a linear state-space 

form, but because the linear model will be used for control in a model predictive controller, 

the MPC will be introduced first.  

4.3 Model Predictive control 

A linear model predictive controller has been developed for SFL and the full structure of the 

MPC is described in this section. The structure for SISO MPC without bounds or constraints 

will first be introduced, then further expanded to incorporate bounds and constraints. 

Traditional linear MPC has the inherent capability of handling bounds and constraints (García, 

Prett and Morari, 1989b), so loss of this functionality is not desirable for advanced process 

control. This is the main reason for the emphasis on constraints handling in this research.  

The requirements to build an MPC and the objectives of an MPC are first described here. To 

construct an MPC, first a mathematical model is identified and validated to accurately and 

reliably predict the behaviour of a real system which is to be controlled (Matthews, Miller and 

Rawlings, 1996). The model is presented in a linear state-space form compatible with the 

MPC. Once the model is integrated into the MPC, the process states 𝒙 and measured outputs 

𝒚 are transferred to the controller from the plant. The MPC then uses the model and an 

optimizer to determine the optimal inputs 𝒖 for the future. The optimal path depends on the 

control problem, represented as the optimizers cost function. Typically, the control problem 

will be to follow the reference trajectory of the output 𝒚𝒓𝒆𝒇, which is achieved by comparing 

the predicted output from the MPC (prediction horizon) to the reference and minimizing the 

error between them. The sequence of inputs (control horizon) will be returned from the 

optimisation, the first input from this control horizon is implemented on the plant. Thus, the 

controller has two stages, an optimisation stage and an implementation stage.    
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Figure 4-1. Schematic for discrete-time Model Predictive Control 

 

The method of implementing or scheduling an MPC is now described (García, Prett and 

Morari, 1989b), aided with the schematic of MPC shown in Figure 4-1. Assuming the current 

time is 𝑘, the past and current information about the inputs and outputs are known, in 

addition to any other measured information from the process (states). When the controller is 

invoked at time 𝑘, the data is passed to the controller to begin the optimisation stage. Once 

the objective function is minimised and a control horizon is obtained, the controller will then 

implement the first of the inputs from the control horizon onto the plant until time 𝑘 + 1. 

This procedure is repeated at each interval of 𝑘, 𝑘 + 1, 𝑘 + 2,… , 𝑘 + 𝑛. Usually the 

optimization step requires a significant amount of computation time and uses a discrete state-

space model of the system. The time interval (sample time in Figure 4-1) which determines 

how often the controller is invoked will be decided based on the plant, model and controller’s 

computational efficiency. This feature of the MPC also results in the capability to reject 

process disturbances.  

The continuous linear state-space form of the MPC model is: 

 �̇�𝒎 = 𝐴𝑐𝒙𝒎 + 𝐵𝑐𝒖 Equation 4-28 

 𝒚 = 𝐶𝑐𝒙𝒎 Equation 4-29 

Here, 𝐴𝑐, 𝐵𝑐 and 𝐶𝑐 are matrices of scalars for the continuous model (denoted by the subscript 

𝑐) resulting in a linear system, 𝒙𝒎 is a vector of states 𝒙 with the value of 𝒚 appended to the 
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end of the vector. Usually, the MPC input and output are measurable variables, but the states 

may not be directly measured. One solution to this is to implement a state observer in order 

to calculate or approximate the values of the states in the system. In this research a state 

observer has not been implemented, as it is assumed that the state information is accessible 

via direct measurement. This is a reasonable assumption for crystallization concentration and 

temperature states which are commonly measured from solution, but for the method of 

moments states this would be more difficult to measure directly. It may also be possible to 

use process analytical technologies to approximate particle size in-situ and thus deduce the 

states of the moments. It is understood that this is a limitation and for application on a real 

system, a state observer would be beneficial. 

Sophisticated linearization approaches such as SFL have enabled the transformation and 

control of nonlinear processes without the need for elaborate nonlinear MPC algorithms that 

are substantially more computationally demanding (Corriou and Rohani, 2002). These 

continuous state space formulations use the ODE forms of the state equations directly. The 

systems can be converted to discrete-time state space by applying a discretization in the time 

domain, such as setting a time period. The discrete-time approach is convenient when a 

controller must wait for new process measurements before actuating changes to the process. 

For example, if new process data is measured at 30 s intervals, setting the time period to be 

less than 30 s will mean the controller will actuate a new input before the changes from the 

last input have been observed through new measurements. Furthermore, the model defined 

in Equation 4-28 and Equation 4-29 is an absolute model which uses the absolute values of 

the states and inputs to determine the output. A better approach is to use a relative or 

incremental model which observes the changes in states and inputs instead (Haber, 1992). 

The linearized system discrete-time state-space formulation is introduced by first defining the 

changes in states ∆𝒙 and changes in input ∆𝒖: 

 ∆𝒙(𝑘 + 1) = 𝒙(𝑘 + 1) − 𝒙(𝑘) Equation 4-30 

 ∆𝒖(𝑘) = 𝒖(𝑘) − 𝒖(𝑘 − 1) Equation 4-31 

 𝒙𝒎(𝑘) = [∆𝒙(𝑘)𝑇 𝒚(𝑘)]𝑇 Equation 4-32 
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Here, ∆𝒙(𝑘 + 1) is the change in the states from instant 𝑘 to 𝑘 + 1, and similarly for  ∆𝒖(𝑘) 

this is the change in 𝒖 from 𝑘 − 1 to 𝑘, these can also be referred to as incremental states 

and inputs. The ∆𝒖  can also be called the move because it is the amount by which the 

previous value of 𝒖 is moved. Additionally, 𝒙𝒎(𝑘) refers to the vector of state changes 

(∆𝒙(𝑘)) and also includes the output 𝒚(𝑘), at instant 𝑘. Based on these definitions, the 

discrete-time state space formulation of Equation 4-30 and Equation 4-31 are: 

 𝒙𝒎(𝑘 + 1) = 𝐴𝒙𝒎(𝑘) + 𝐵∆𝒖(𝑘) Equation 4-33 

 𝒚(𝑘) = 𝐶𝒙𝒎(𝑘) Equation 4-34 

In the discrete form, the 𝐴, 𝐵 and 𝐶 matrices differ from the continuous form but can be 

obtained through conversion. Moreover, these matrices are not the same as those for a linear 

state-space model because as shown in Equation 4-32 the vector 𝒙𝒎 is not the same as 𝒙; this 

will be revisited when the SFL MPC framework is introduced in section 4.4. There is a function 

built into MATLAB for this conversion (c2dm) and variants of this function also exist in the 

field of signal processing and are well defined and widely accepted (Tretter, 1976; Ogata, 

1995). The c2dm function uses a defined time-step to convert a continuous form state space 

model’s 𝐴𝑐, 𝐵𝑐 and 𝐶𝑐 matrices to discrete form 𝐴, 𝐵 and 𝐶 respectively. Furthermore, 

𝒙𝒎(𝑘 + 1) is the value of the states at the next point in the horizon, the future prediction. 

This can be extended to the length of the output prediction horizon 𝑁𝑝. Additionally, the 

number of control points in the control horizon (𝑁𝑐) is usually less than 𝑁𝑝. The full horizon 

of inputs will range from 𝛥𝒖(𝑘) to 𝛥𝒖(𝑘 + 𝑁𝑐). The vector of 𝛥𝒖 is the control horizon. The 

output vector is 𝒚 = [𝑦(𝑘), 𝑦(𝑘 + 1)…  𝑦(𝑘 + 𝑁𝑝)]. This is also determined from the state 

vector 𝒙𝒎 using the matrix 𝐶.  

The linear state space form can be used to calculate each value in the prediction horizon 

directly, and can subsequently be simplified for the output prediction. For the output 

prediction, the following equations can be used to find the predicted outputs: 

 𝒚(𝑘 + 1|𝑘) = 𝐶𝐴𝒙(𝑘) + 𝐶𝐵∆𝒖(𝑘) Equation 4-35 

 𝒚(𝑘 + 2|𝑘) = 𝐶𝐴2𝒙(𝑘) + 𝐶𝐴𝐵∆𝒖(𝑘) + 𝐶𝐵∆𝒖(𝑘 + 1) Equation 4-36 
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 𝒚(𝑘 + 3|𝑘) = 𝐶𝐴3𝒙(𝑘) + 𝐶𝐴2𝐵∆𝒖(𝑘) + 𝐶𝐴𝐵∆𝒖(𝑘 + 1)

+ 𝐶𝐵∆𝒖(𝑘 + 2) 

Equation 4-37 

 Or more generally:  

 𝒀 = 𝑭𝒙(𝑘) + 𝜱∆𝑼 Equation 4-38 

 Where  

 𝒀 = [𝒚(𝑘 + 1|𝑘) 𝒚(𝑘 + 2|𝑘)…𝒚(𝑘 + 𝑁𝑝|𝑘)]
𝑇
  

Equation 4-39 

 ∆𝑼 = [∆𝒖(𝑘) ∆𝒖(𝑘 + 1)… ∆𝒖(𝑘 + 𝑁𝑐 − 1)]𝑇 Equation 4-40 

As shown, the output horizon 𝒚 can be linked directly to the current states 𝒙(𝑘) and the 

current and future input changes used as decision variables by the optimizer. This means no 

further future states are required for the prediction horizon calculation and thus the 

computation burden can also be reduced by calculating the prediction horizon in a single 

matrix-multiplication calculation shown in Equation 4-39. One important point on the use of 

𝛥𝒖 instead of 𝒖 is that this is the change in input from the previous to current step. Given 

that the time step is constant, 𝛥𝒖 is the rate of change of input and the 𝛥𝒖 vector will be 

optimised in the traditional MPC approach. Furthermore, constraints can be applied directly 

on 𝛥𝒖 to ensure rates of change on the input are not violated, which is useful for when the 

input is the temperature of a cooling jacket where the rate of change in temperature is limited 

by heat transfer (Sarkar, Rohani and Jutan, 2006). Also, the time period is known so 𝛥𝒖 can 

be used to obtain 𝒖, thus there is an ability to bound 𝒖 within limits to avoid infeasible values, 

such as temperatures being outside the feasible range for the coolant. Equation 4-35 to 

Equation 4-37 and further can be simplified into the form shown in Equation 4-38 where 𝒀 is 

related to 𝒙(𝑘) and 𝛥𝑼 by the matrices 𝑭 and 𝜙. These matrices are shown here: 

 

𝑭 =

[
 
 
 
 

𝐶𝐴
𝐶𝐴2

𝐶𝐴3

⋮
𝐶𝐴𝑁𝑝]

 
 
 
 

 

Equation 4-41 



107 
 

 

𝜱 =

[
 
 
 
 

𝐶𝐵 0 0 ⋯ 0
𝐶𝐴𝐵 𝐶𝐵 0 ⋯ 0
𝐶𝐴2𝐵 𝐶𝐴𝐵 𝐶𝐵 ⋯ 0

⋮ ⋮ ⋮ ⋱ ⋮
𝐶𝐴𝑁𝑝−1𝐵 𝐶𝐴𝑁𝑝−2 𝐵 𝐶𝐴𝑁𝑝−3𝐵 ⋯ 𝐶𝐴𝑁𝑝−𝑁𝑐𝐵]

 
 
 
 

 

Equation 4-42 

 

These matrices can be obtained from the already identified state-space model as each 

element of 𝑭 and 𝜱 are simply multiples of 𝐴, 𝐵 and 𝐶 matrices (Wang, 2009a). Calculating 

these matrices from the discrete state-space model in the MPC will enable the calculation of 

the prediction horizon and optimization of the control horizon in an MPC. Therefore, the next 

step is to define the discrete state-space model for crystallization.  

4.3.1 Linear State-Space Models for Control  

The linear discrete state-space SFL model is now defined given the control law has been 

determined and the MPC model form has been discussed. The symbols used here are 

different to that of the nonlinear state-space form to differentiate the inputs and states in the 

SFL model from the plant model. 

 𝝃(𝑘 + 1) = 𝐴𝑑𝝃(𝑘) + 𝐵𝑑𝒗(𝑘) 

𝒚(𝑘) = 𝐶𝑑𝝃(𝑘) 

 

Equation 4-43 

where, 𝝃 is the state vector, 𝒚 the output and 𝒗 the input. The expanded continuous form of 

this model is shown in Equation 4-44 and Equation 4-45, this form is used to identify the 

matrices of the continuous form state-space model first because the SFL parameters can 

substituted into the model.  

 

�̇� =

[
 
 
 
 
 
 

0 1 ⋯ 0 0 0
⋮ ⋮ ⋱ ⋮ ⋮ ⋮
0 0 ⋯ 1 0 0
0 0 ⋯ 0 1 0
0 0 ⋯ 0 0 1

−
𝛽0

𝛽𝑟
−

𝛽1

𝛽𝑟
−

𝛽2

𝛽𝑟
⋯ −

𝛽𝑟−2

𝛽𝑟
−

𝛽𝑟−1

𝛽𝑟 ]
 
 
 
 
 
 

𝝃 +

[
 
 
 
 
 
 
0
⋮
0
0
0
1

𝛽𝑟]
 
 
 
 
 
 

𝒗 

 

Equation 4-44 

 𝒚 = [1 0 0 ⋯ 0 0 ]𝝃   Equation 4-45 

The 𝛽 tuning parameters appear in the model as well as the control law. As stated by Kravaris 

and Chung (1987), these parameters must be tuned to achieved a desired controller 
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performance and control response, but the values are arbitrary and selection is not as routine 

as that of other control techniques such as PID. However, as shown by Shen et al. (1999), the 

input-output behaviour of the closed loop system is governed by: 

 
∑ 𝛽𝑘

𝑑𝑘𝑦

𝑑𝑡𝑘  
= 𝑣  

𝑟

𝑘=0

 Equation 4-46 

Applying the transfer function to this form gives the transfer function of the closed loop 

system (Vissers et al., 2011) as shown: 

 
𝐺𝑙(𝑠) =

𝑦(𝑠)

𝑣(𝑠)
=

1

𝛽𝑟𝑠
𝑟 + 𝛽𝑟−1𝑠

𝑟−1 + ⋯+ 𝛽1𝑠 + 𝛽0
 Equation 4-47 

The denominator is set equal to 0 to determine the poles of the system, therefore the 𝛽 

parameters define the poles of the system and to ensure controller stability, one requirement 

is that the poles must have negative real parts. Thus, the 𝛽 tuning parameters must be 

positive real numbers. This is the only condition that has been defined in literature. Further 

challenges lie with selecting values for the parameters because they exist in the model’s 

dynamics matrix 𝐴 as well as the control law.  

One notable limitation of the SFL model is the inability to capture the state information of the 

process. The SFL model is identified entirely from the input-output relationship, but the 

output alone forms the model along with the tuning parameters. The model does not capture 

the dynamics of the process that traditional MPC models would. Moreover, the control input 

𝑣 is used to determine the plant input 𝑢 but the latter is state-dependent, thus 𝑣 does not 

directly correlate to 𝑢 resulting in difficulties to implement of bounds and constraints from 

the real system into the SFL model (Kurtz and Henson, 1996); this is addressed in section 4.8.  

4.3.2 Linearized SFL Model for Crystallization Supersaturation Control 

The SFL model for continuous seeded MSMPR crystallization that is used in the MPC is defined 

by Equation 4-43 where 𝛽0 and 𝛽1 are the tuning parameters, based on the relative order 𝑟 

equal to 1, valid for supersaturation control using the coolant temperature of the crystallizer 

as the manipulated variable (Equations 4-11 to 4-20). 
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𝜉(𝑘) = [−
𝛽0

𝛽1
] 𝜉(𝑘−1) + [

1

𝛽1
] 𝑣(𝑘) 

𝑦(𝑘) = [1] 𝜉(𝑘−1) 

Equation 4-48 

4.4 SISO MPC with SFL 

The single-input single-output MPC with SFL framework will now be introduced. To remain 

consistent with the state space equations already defined for SFL, the MPC state space 

equations are rewritten using the same variables from the SFL. The schematic for MPC with 

SFL is shown in Figure 4-2. In this schematic, the SFL control law and nonlinear plant are 

considered together as an overall linear system whose output is controlled by the MPC and 

the input to the linear system is the input to the SFL control law 𝑣. Two further changes are 

made to the state space equation. Firstly, the state space defined by Equation 4-33 and 

Equation 4-34 have been expanded to show how 𝐴, 𝐵 and 𝐶 matrices are defined from the 

discrete model matrices from Equation 4-43. The expanded forms are in Equation 4-49 and 

Equation 4-50 (Wang, 2009b). The SFL model’s state space equations also have their own 

expanded controllable form because the states are different, this results in the expanded 

form shown in Equation 4-51 and Equation 4-52, which can be used interchangeably with the 

original form.  

 

Figure 4-2  Schematic of MPC with the linearized system 

 
[
∆𝑥(𝑘 + 1)
𝑦(𝑘 + 1)

] = [
𝐴𝑑 𝑜𝑚

𝑇

𝐶𝑑𝐴𝑑 1
] [

∆𝑥(𝑘)
𝑦(𝑘)

] + [
𝐵𝑑

𝐶𝑑𝐵𝑑
] ∆𝑢(𝑘) Equation 4-49 

 
𝑦(𝑘) =  [𝑜𝑚

𝑇 1] [
∆𝑥(𝑘)
𝑦(𝑘)

] Equation 4-50 

 
[
∆𝜉(𝑘 + 1)

𝑦(𝑘)
] = [

𝐴𝑑 0
𝐶𝑑 𝐼

] [
∆𝜉(𝑘)

𝑦(𝑘 − 1)
] + [

𝐵𝑑

0
] ∆𝑣(𝑘) Equation 4-51 
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𝑦(𝑘) =  [𝐶𝑑 𝐼] [

∆𝜉(𝑘)

𝑦(𝑘 − 1)
] Equation 4-52 

The main difference between these two state space forms other than the state space matrices 

is that the output defined in Equation 4-50 expands out to 𝑦(𝑘) = 𝑦(𝑘) which is often stated 

for completeness. The output is traditionally obtained from Equation 4-49 instead because 

this equation holds the dynamics and input data which is used to calculate the output. 

However, for the SFL model the output is obtained directly from the output equation 

(Equation 4-52).  This is because 𝑦(𝑘) is now dependent on the state changes ∆𝜉(𝑘) where 

in the prior case it was not a function of ∆𝑥(𝑘) because 𝑜𝑚
𝑇  is a vector of zeros (Wang, 2009b). 

So Equation 4-52 can be read as the new output (𝑦(𝑘 + 1)) which is obtained from the 

changes in output (𝛥𝜉(𝑘) =
𝑑𝑦𝑘

𝑑𝑡
) added to the previous output (𝑦(𝑘)). This now defines the 

full structure of the MPC with SFL that can be used for controlling a nonlinear plant. For the 

crystallization model for supersaturation control, the system equations can be populated 

since it is known that the relative order is 1:  

𝜉(𝑘) = [
1 1
0 −𝛽0/𝛽1

] 𝜉(𝑘−1) + [
0

1/𝛽1
] Δ𝑣(𝑘) 

𝑦(𝑘) = [1 1] 𝜉(𝑘−1) 

 

Equation 4-53 

The SLF MPC algorithm requires initialisation with Equation 4-53 before the MPC can begin to 

control the plant. To complete the definition of the MPC, the objective function must be 

defined and the tuning parameters must be selected.  

4.5 MPC with SFL Objective Function 

The MPC Equation 4-54 shows the cost function 𝐽 used by the optimization algorithm for MPC:  

 

𝐽 = 𝑄 ∑(𝑦𝑖,𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 − 𝑦𝑖,𝑠𝑒𝑡𝑝𝑜𝑖𝑛𝑡)
2

𝑁𝑝

𝑖=1

+ 𝑅 ∑∆𝑣𝑙
2

𝑁𝑐

𝑙=1

 Equation 4-54 

where 𝑄 and 𝑅 are weighting matrices that facilitate the prioritisation of minimising the error 

in output prediction and minimising the changes to the input, respectively. This is one of the 

advantages for using MPC; the input changes are a part of the optimization problem and if 

large changes in the input are undesirable, as is the case for mechanical equipment where 

excessive changes can lead to wear and failure, the objective function weightings can be 
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tuned to prevent excessive changes to the inputs. The weighting of 𝑅 is determined through 

tuning, and the weight of 𝑅 can be tuned relative to 𝑄 in such a way that the cost function 

will be more influenced by the input changes Δ𝑣, which usually results in a slower 

convergence of the output onto a reference trajectory. Conversely, a larger relative weight of 

𝑄 results in the cost function prioritising setpoint convergence and thus, large changes in 

input may be made by the MPC. Although 𝑢 is the real plant input, recalling from Figure 4-2, 

the MPC acts upon the linear system which includes the coupled control law with the plant. 

Therefore, the actual input from the MPC is 𝑣 (through calculation of Δ𝑣) which is then used 

to calculate 𝑢 using the control law 𝜑(𝒙, 𝑣). The objective function which defines the MPC 

control problem is Equation 4-55.  

 

min
𝑣

𝐽 = 𝑄 ∑(𝑦𝑖 − 𝑦𝑖,𝑠𝑒𝑡𝑝𝑜𝑖𝑛𝑡)
2

𝑁𝑝

𝑖=1

+ 𝑅 ∑∆𝑣𝑙
2

𝑁𝑐

𝑙=1

 Equation 4-55 

Subject to:  𝑢𝑚𝑖𝑛 ≤ 𝑢 = 𝜑(𝒙, 𝑣) ≤ 𝑢𝑚𝑎𝑥  
 

Δ𝑢𝑚𝑖𝑛 ≤ Δ𝑢 = 𝜑(𝒙𝒊, 𝑣𝑖) − 𝜑(𝒙𝒊+𝟏, 𝑣𝑖+1)  ≤ Δ𝑢𝑚𝑎𝑥 
 

 

Given:  𝒙 
�̇� = 𝒇(𝒙) + 𝒈(𝒙)𝒖 

 

In this objective function, there are real plant constraints in 𝒖 which must be satisfied and can 

be done so by applying the inverse transformation of the control law, 𝜑−1. To perform this 

transformation, the objective function is also supplied with the states of the real plant, 𝒙 as 

well as the nonlinear plant. The use of this will be explained in section 4.8 when SFL-Plant 

constraints are introduced.  

4.6 Simulation data 

Table 4-1 shows the data used for all crystallization simulations. The data used were obtained 

from the paracetamol crystallization system described by Nagy et al (2008).  

Constant Value Units 

  𝒌𝒃 𝑒45.8 min-1g-1 

𝒃 6.2 - 

𝒌𝒈 𝑒−4.1 m min-1 
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𝒈 1.5 - 

𝒓𝟎 0 m 

𝒌𝒗 0.24 - 

𝝆𝒄 1296 kgm-3 

𝑽 1 L 

𝑼𝑨𝒄 545.21 J min-1 K-1 

Table 4-1 – Parameter values used to represent Crystallization Properties 

 

Constant Value Units 

𝑪𝒊𝒏 0.0256 g/g 

𝑪𝒊𝒏𝒊𝒕𝒊𝒂𝒍 0.0256 g/g 

𝑻𝒊𝒏𝒊𝒕𝒊𝒂𝒍 315 K 

𝚫𝒕 1 min 

𝑵𝒑  5 - 

𝑵𝒄 5 - 

Table 4-2 – Supplementary Crystallization Control Simulation Data  

Further data for the simulation are provided in Table 4-2 for variables and parameters which 

are constant across all simulation scenarios. The prediction horizon 𝑁𝑝 and control horizon 

𝑁𝑐 are both set to 5 based on a trade-off between having enough points to determine the 

output prediction trajectory and reducing the computation cost. Typically, the horizon is set 

to the number of samples over which a closed-loop response converges to the setpoint and 

from performing some initial simulations it was found that the shortest closed loop response 

occurred in 5 samples from the point the MPC was active. The horizon lengths are also 

typically set prior to tuning the MPC weights, hence they have been specified now, prior to 

simulation. A larger prediction and control horizon result in more decision variables in the 

optimization stage of the MPC and a longer trajectory whose errors must be calculated to be 

minimised. The remaining simulation data are not included in these two tables, as they are 

scenario-specific and are disclosed with each simulation scenario in the following sections.    
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4.7 Tuning of the SFL-MPC parameters  

This section focusses on the selection of the SFL 𝛽 tuning parameters for batch and start-up 

of continuous MSMPR crystallization alongside tuning the cost function weighting matrices 𝑄 

and 𝑅. The former are important for determining the controller dynamics, whereas the latter 

are important for tuning the controller objective. Typically, the tuning of an MPC would entail 

tuning the cost function weights of the inputs and outputs as well as tuning the horizon 

lengths, because a longer prediction and control horizon will result in a larger computation 

cost. The purpose of the prediction and control horizon is to allow sufficient prediction into 

the future to establish the direction of the process output. However, this section primarily 

aims to tune the 𝛽 parameters whose tuning is not trivial, so in this case a horizon of 5 is 

chosen for both because it offers a trade-off between fast computation and enough future 

points to determine the trajectory of the predicted output.  

The 𝛽 parameters were identified using an iterative approach because as stated by Kravaris 

and Chung (1987), these parameters are arbitrary. Others who have used the SFL technique 

for control, namely Shen et al. (1999) and Vissers et al. (2011) all appear to have used an 

iterative approach for selection of these parameters. It is possible to ensure the control 

response is stable by ensuring the tuning parameters are selected such that the poles of the 

closed loop system have negative real parts. Stability is therefore guaranteed by ensuring the 

tuning parameters have positive real values, as discussed previously. Two sets of scenarios 

have been devised to establish how the tuning parameters affect the controller response; one 

for a batch crystallization and one for continuous crystallization. Furthermore, for each set of 

scenarios there are also response tests for when the objective function weights (𝑄 and 𝑅) are 

adjusted. The scenarios will be used for tuning parameter selection first using an iterative 

approach for selecting the 𝛽 parameters based on selection criteria to be defined in section 

4.7.2. Once the best 𝛽 parameters are selected, they will be used to select the objective 

function weights for the controller based on another separate criterion. This same procedure 

is applied for batch crystallization and continuous crystallization tuning. The purpose of using 

this approach is to gain greater insight into 𝛽 parameters and how they affect the controller 

response.  
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4.7.1 Crystallization Scenarios 

The purpose of each scenario is to observe how the tuning parameters affect the ability of 

the MPC to converge onto a fixed absolute supersaturation setpoint of 0.0002g/g for batch 

and 0.0006 g/g for continuous MSMPR crystallization. For each scenario, the crystallization is 

first initialised according to the parameters in Table 4-1 and Table 4-2, and the system will 

run in open loop for 2 time periods (each time period is Δ𝑡) to generate measured data that 

can be used in the SFL MPC initialisation. The 2 time periods of data are required because the 

changes in output are required, and the change can only be calculated when 2 points have 

been measured. From the third time period the plant will be in closed loop control with the 

SFL MPC. The output response will be considered from the beginning of simulation.  

4.7.2 Controller Response and Tuning Selection Criteria 

The criteria for tuning parameter selection are based on two properties: overshoot and 

settling time. In this study, the reference trajectory is a fixed absolute supersaturation value 

that is scaled in order to be considered as 100%, and there is a band that is defined between 

95% to 105% of the reference trajectory which will be referred to as the acceptance region. If 

the output trajectory enters and remains within this region the output will be regarded as 

converged onto the reference trajectory. The overshoot is defined as the output response 

exceeding its target, in this case the target is the reference trajectory. For tuning parameter 

selection, overshoot is considered as a state that either does occur or does not occur, though 

it can be quantified too (Shinskey, 1996), the decision was made to refer to overshoot as a 

state because the aim is to prevent overshoot for supersaturation control. The importance of 

this is supersaturation overshoot can lead to the crystallization trajectory entering the labile 

region resulting in nucleation and generation of fines. To avoid this, overshoot must be 

avoided. The occurrence of overshoot in this study is defined as the instance where the output 

response exceeds both the reference trajectory and acceptance region limit (Figure 4-3).  
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Figure 4-3 Overshoot, Settling time and Acceptance Region  

 

The settling time is defined as the time required for the output response to be within pre-

defined limits; it is the time until the output is considered to be converged onto the target or 

reference trajectory (Shinskey, 1996). In this study the limits are defined by the boundaries 

of the acceptance region. The overshoot and settling time are shown diagrammatically in 

Figure 4-3; the overshoot occurs because the output trajectory exceeded the upper limit. The 

criteria for tuning parameter selection are: 

1) The tuning parameters must prevent overshoot of the output trajectory with respect 

to the reference trajectory, thus the output response must either be critically damped 

or over-damped.  

2) The tuning parameters must minimise the output settling time.  

Moreover, the tuning parameters 𝛽0 and 𝛽1 must be tuned independently, but to compare 

the performance of each pair of 𝛽 parameters, the decision was made to also define a ratio 

of tuning parameters (Equation 4-56) because it captures the value of both parameters. The 

settling time is then plotted against tuning parameter ratio to gain further insight into how 

settling time is affected by each pair of 𝛽 parameters. 

 𝑇𝑢𝑛𝑖𝑛𝑔 𝑃𝑎𝑟𝑎𝑚 𝑅𝑎𝑡𝑖𝑜 = 𝛽1/𝛽0 Equation 4-56 
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Further to tuning parameter section, the objective function weights for the reference 

trajectory tracking, 𝑄, and input moves weight, 𝑅, must also be determined. The criterion for 

these weights is: 

• Minimise the output settling time whilst also considering the relative weight of 𝑄 and 

𝑅. One weight should not dominate the other for a small reduction settling time.  

To compare the settling time with respect to a unified objective function weighting, the values 

of both weights are combined into the objective function weighting ratio (Equation 4-57). The 

settling time is plotted against this ratio when assessing the above criterion.  

 𝑊𝑒𝑖𝑔ℎ𝑡𝑖𝑛𝑔 𝑅𝑎𝑡𝑖𝑜 = 𝑄/𝑅 Equation 4-57 

   

The equation for output error is defined in Equation 4-58. The KPIs are introduced in Table 

4-3. 

4.7.3 Controller Key Performance Indicators 

The key performance indicators (KPIs) often used for assessing and comparing controller 

performance are based on the error of the controller, which is defined in Equation 4-58 as the 

error between the measured output and the reference trajectory. A list of the common KPIs 

and the equations for each are shown in Table 4-3. The integral square error will be used as 

the primary KPI, but others will be referenced as necessary when used. The use of these KPIs 

is commonplace when comparing performance of controllers and has been used by Shen et 

al. (1999) when comparing performance of different types of MPC.  

 𝜺 = 𝒚𝒎𝒆𝒂𝒔 − 𝒚𝒓𝒆𝒇 Equation 4-58 

 KPI Equation Comments 

Integral 
Square Error 

(ISE) 
 

∫ 휀2 𝑑𝑡
𝑡

0

 

The ISE is sensitive to setpoint error due 
to the squared term. Large values of ISE 
will result if the output does not 
converge to the reference trajectory. 

Integral 
Absolute Error 

(IAE) 
 

∫ |휀| 𝑑𝑡
𝑡

0

 

The IAE is less sensitive than the ISE. The 
IAE can provide the absolute error for 
comparison between scenarios. 

Integral Time 
Absolute Error 

(ITAE) 
 

∫ 𝑡|휀| 𝑑𝑡
𝑡

0

 

The ITAE is the time weighted version of 
the IAE and has greater sensitivity to 
errors that occur later in the process. This 
will be useful to determine if the output 



117 
 

trajectory deviated from reference late 
in the simulation. 

Standard 
Deviation of 

the Error (SDE) 
 

𝜎 = √Σ𝑖=1
𝑛 (𝑦𝑖 − 𝑦𝑖,𝑠𝑒𝑡𝑝𝑜𝑖𝑛𝑡)

2

𝑛 − 1
 

The standard deviation of the output 
error, to measure the variability of the 
output error over the simulation 

Settling time 
(𝑡𝑠𝑒𝑡) 

- As defined in the prior section. 

Table 4-3 – Key Performance Indicators 

4.7.4 Batch Crystallization SFL-MPC Tuning  

The tuning parameters were determined iteratively for batch seeded crystallization using the 

settings defined in Table 4-4, additionally the seed loading was 0.5 gL-1 with a number 

weighted mean size of 10 µm, both values were converted to moments to determine the 

initial values for the moment equations in the plant model (Equations 4-11 to 4-15). The 

supersaturation setpoint is set to 0.0002 g/g. Fourteen scenarios were required for the tuning 

parameter selection starting from the 𝛽0 and 𝛽1 parameters in scenario 1 and changing the 

value of one parameter in each subsequent scenario until scenario 14 where a value of 2.5 is 

selected 𝛽0 and 5 for 𝛽1 were selected. This scenario satisfied the criteria for no overshoot 

and shortest settling time of 11 minutes. Some insights into the effects of tuning parameter 

ratios on settling time are shown in Figure 4-4. Of the first 14 scenarios, it was possible to 

determine the tuning parameter ratios and then plot these according to the absolute value 

of 𝛽1 for which 3 unique values were used; 1, 5 and 10, as per Figure 4-4. The markers are 

coloured red where there was an overshoot and green where there was no overshoot. 

Scenario 𝜷𝟎 𝜷𝟏 𝜷𝟏/𝜷𝟎 𝑸 𝑹 ISE 
Settling 

time 
(mins) 

Overshoot 

1 1 1 1 1 1 1.37E-06 8 Yes 

2 1 5 5 1 1 1.64E-06 16 Yes 

3 1 10 10 1 1 2.06E-06 24 Yes 

4 5 1 0.2 1 1 1.37E+68 - Yes 

5 2 1 0.5 1 1 7.73E-05 26 Yes 

6 5 5 1 1 1 1.39E-06 25 No 

7 5 10 2 1 1 1.62E-06 26 No 

8 10 5 0.5 1 1 3.95E-06 72 Yes 

9 10 10 1 1 1 1.73E-06 76 No 

10 4 10 2.5 1 1 1.66E-06 18 No 

11 3 10 3.33 1 1 1.87E-06 12 No 

12 2 10 5 1 1 1.74E-06 22 Yes 
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13 0.5 5 10 1 1 1.48E-06 17 Yes 

14 2.5 5 2 1 1 1.45E-06 11 No        

  

15 2.5 5 2 5 1 1.35E-06 7 No 

16 2.5 5 2 10 1 1.33E-06 6 No 

17 2.5 5 2 1 5 1.48E-06 32 No 

18 2.5 5 2 1 10 1.86E-06 58 No 
 

Table 4-4 Summary of Batch Scenarios for Tuning SFL Parameters and Objective Function Weights  

 

 

Figure 4-4 Effects of Tuning Parameter Ratio on Settling Time for Batch Crystallization 

The information gained from this trend is that for each value of 𝛽1 there exists a tuning 

parameter ratio at which the settling time is the shortest. Where the value of 𝛽1 is 5, the 

shortest settling time is 11 minutes and occurs at a tuning parameter ratio of 2. Similarly, 

where 𝛽1 is 10, the shortest settling is 12 minutes at a tuning parameter ratio of 3.33. The 

ratio for minimum settling time is not conclusively determined for 𝛽1 = 1. Of all the scenarios 

with no overshoot, the ISE for scenario 6 was shorter than scenario 14, but the settling time 

was longer by 14 minutes in scenario 6, this is because the MPC increased the output close to 

the setpoint in two time steps but then had a very sluggish response as it converged onto the 

setpoint. The output response from scenario 14 is shown in  Figure 4-5, where the 
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supersaturation (output) trajectory is shown plotted against the coolant temperature (input) 

for the first 100 minutes of simulation. The simulation begins at a supersaturation less than 0 

because the initial condition of the batch seeded system is under-saturated. When the system 

enters closed-loop control at 3 minutes, there is a large drop in the input temperature to drive 

the process into a supersaturated state. In the subsequent time steps, the temperature 

increases to reduce the rate of change in supersaturation and settle on the reference 

trajectory of 0.0002 g/g, then the temperature profile gradually decreases as the batch 

progresses because the supersaturation is being consumed for crystal growth until the end of 

the 100-minute simulation.  

 

 Figure 4-5 Output Response from Scenario 14 showing Output (Supersaturation) Response and Input (Coolant Temperature) 
profile from MPC for 𝛽0 = 2.5 and 𝛽1 = 5   

Scenarios 15 to 18 in Table 4-4 were used in conjunction with scenario 14 to identify the 

objective function weights that satisfy the objective weight criterion. The trend in Figure 4-6 

shows the settling time against the objective function weighting ratio. There were no 

overshoots when changing the weightings and it can be concluded that by increasing the 

weight of 𝑄 relative to 𝑅, the settling time of the controller can be decreased to a limit. It is 

assumed that the limit will be at a value where 𝑄 is infinitely large compared to 𝑅; in a 
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scenario where 𝑅 is close or equal to 0. The selected values of 𝑄 and 𝑅 are 5 and 1, 

respectively, from scenario 15. Indeed, scenario 16 evaluated the shortest settling time of 6 

minutes as opposed to 7 minutes for scenario 15, but it was decided that the relative increase 

in 𝑄 from 5 to 10, for a 1-minute gain in settling time does not satisfy the criterion. With the 

chosen weightings, the objective function is therefore prioritising reference trajectory 

tracking, but there is still a significant weighting on the MPC input moves.  

 

Figure 4-6 – Settling Time against Objective Function Weighting Ratio (Q/R) for Batch Crystallization 

4.7.5 Continuous Crystallization SFL-MPC Tuning  

The continuous seeded MSMPR crystallization tuning for the 𝛽 parameters required 12 

scenarios (Table 4-5) with the same procedure as for batch crystallization. The seed loading 

and seed size were also the same as for batch. The feed flow rate and temperature are also 

disclosed in Table 4-5, the feed concentration is provided in Table 4-2 and the feed also has a 

seed distribution with the same loading of 0.5 gL-1 and 10 µm mean crystal size, again 

converted to moments for initializing the crystallizer model. The initial jacket temperature is 

at 350 K. Scenario 12 shows the chosen values of 0.5 for 𝛽0 and 1 for 𝛽1, resulting in the lowest 

settling time of all scenarios with no overshoot. The ISE in this case was also smallest for 

scenario 12, showing the overall best performance in converging onto the supersaturation 
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setpoint and maintaining it throughout the simulation. The effects of tuning parameter ratios 

on settling time are shown in Figure 4-7, with the markers coloured in red where there was 

an overshoot and green where there was no overshoot. The tuning parameter ratios were 

again categorised based on the value of 𝛽1 being equal to 1, 5 and 10.  

Scenario 𝜷𝟎 𝜷𝟏 
𝜷𝟏

𝜷𝟎 
 𝑸 𝑹 

Feed 
flow 

rate (ml 
min-1) 

Feed 
Temp. 

(K) 
ISE 

Settling 
Time 

(mins) 

Over-
shoot 

1 1 1 1 1 1 70 305 5.83E-07 9 No 

2 1 5 5 1 1 70 305 6.08E-07 11 No 

3 1 10 10 1 1 70 305 6.84E-07 14 No 

4 5 1 0.2 1 1 70 305 2.78E+62 - Yes 

5 2 1 0.5 1 1 70 305 2.09E-05 26 Yes 

6 5 5 1 1 1 70 305 1.66E-06 27 No 

7 5 10 2 1 1 70 305 1.79E-06 30 No 

8 10 5 0.5 1 1 70 305 4.95E-06 72 No 

9 10 10 1 1 1 70 305 4.73E-06 77 No 

10 0.5 10 20 1 1 70 305 6.05E-07 13 No 

11 0.5 5 100 1 1 70 305 5.40E-07 11 No 

12 0.5 1 2 1 1 70 305 4.69E-07 7 No 
           

13 0.5 1 2 5 1 70 305 4.14E-07 6 No 

14 0.5 1 2 10 1 70 305 4.02E-07 5 No 

15 0.5 1 2 1 5 70 305 6.79E-07 9 No 

16 0.5 1 2 1 10 70 305 8.01E-07 11 Yes 
Table 4-5 Summary of Continuous Crystallization Scenarios for Tuning Parameter Selection 

The trend differs to that of the batch tuning scenarios and there did not appear to be a ratio 

at which the settling time was shortest. Instead, increasing the tuning parameter ratio 

decreases the settling time for a given value of 𝛽1 within the range of values that were testing 

in the 12 scenarios. However, one similarity with the batch tuning scenarios is that at a given 

tuning parameter ratio, the settling time is short for smaller values of 𝛽1. No settling time was 

obtained from scenario 4 because the output response was unstable, as quantified by the 

value of ISE which is significantly larger than that of the other scenarios. The output response 

from scenario 12 is shown in Figure 4-8 with the output (supersaturation) trajectory shown 

with the corresponding input (coolant temperature) profile as manipulated by the MPC. 
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Figure 4-7 Effects of Tuning Parameter Ratio 𝛽1/𝛽0 on Settling Time for Continuous Crystallization 

 

Recalling the first 2 minutes of the simulation are in open-loop, the initial increase in the 

supersaturation occurs because the feed temperature of 305 K is lower than the initial 

conditions in the MSMPR at 315 K resulting in an immediate cooling of the crystallizer 

contents.  When the MPC is activated at the 3rd interval, it establishes the rate of increase in 

the output trajectory and responds by increasing the temperature input to slow down the 

rate of change. However, the initial step in this unconstrained simulation results in a very 

large change in temperature which reduces supersaturation for 1 time-interval before 

continuing to converge onto the supersaturation setpoint. For the remaining 100 minutes, 

the temperature of the coolant steadily decreases to a steady state temperature, this 

decrease is caused by the transience in the crystallizer because the initial state is different to 

the steady state due to the operating conditions. 
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Figure 4-8 Output Response from Scenario 12 

Scenarios 13 to 16 were used in conjunction with scenario 12 to identify the objective function 

weights that satisfy the objective weight criterion. The trend in Figure 4-9 shows the settling 

time against the objective function weighting ratio. Although an overshoot was observed in 

scenario 16, it was not a significant overshoot (Figure 4-10). The trend has a similar inverse 

relationship between the output and input weights as the batch results. It can be concluded 

that by increasing the weight of 𝑄 relative to 𝑅, the settling time of the controller can be 

decreased, as should be expected. The selected values of 𝑄 and 𝑅 are 5 and 1, respectively, 

from scenario 13. A similar justification is made as the prior case, whereby increasing 𝑄 from 

5 to 10, for a 1-minute gain in settling time does not satisfy the criterion. The objective 

function is again prioritising reference trajectory tracking but the MPC input moves are also 

weighted.  
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Figure 4-9 Settling Time against Objective Function Weighting Ratio for Continuous Crystallization 

 

 

Figure 4-10 – Continuous MSMPR Seeded Crsytallization Output (Supersaturation) Response and Corresponding Input 
(Coolant Temperature) Profile for Scenario 16  
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4.7.6 SFL-MPC Tuning Conclusions 

Using an iterative tuning approach, it was possible to select values for the SFL 𝛽 parameters 

and objective functions for the batch seeded and continuous MSMPR seeded crystallization 

systems that were linearized with SFL. It was also possible to determine how different pairs 

of 𝛽 tuning parameters affected the controller response to converging the crystallization 

process onto a setpoint. There do remain some areas to explore later, including the effects of 

disturbances on the continuous crystallization feed, or the effects of changes in the seed 

distribution, which will be explored in the next chapter. The selected parameters that will be 

used for the batch and continuous SISO SFL MPC for supersaturation control using the coolant 

temperature are declared in Table 4-6. The constraints handling will be discussed next and 

using the tuning parameters obtained from this section, it will be determined if these 

parameters can be used universally for the respective batch and continuous MSMPR 

crystallization control with different crystallization seed conditions. 

 𝜷𝟎 𝜷𝟏 𝑸 𝑹 
Batch 2.5 5 5 1 

Continuous 0.5 1 5 1 
 

Table 4-6 – Results from Batch and Continuous Tuning Parameter Selection 

 

4.8 SFL Bounds and Constraints Handling 

This section will discuss one of the key developments in this research which is a new method 

of handling bounds and constraints on an SFL system. The main background has already been 

given on this area in section 2.12.3. It was discussed how Kurtz and Henson (1996, 1998) 

introduced the methods for constant constraints technique (CCT) and variable constraint 

technique (VCT) which were later adopted and improved by others. The main drawback which 

can be explained further now is the uncertainty in the constraints beyond the horizon. The 

SFL model as shown in Equation 4-48 is again shown here: 

 𝝃(𝑘 + 1) = 𝐴𝑑𝝃(𝑘) + 𝐵𝑑𝒗(𝑘) 

𝒚(𝑘) = 𝐶𝑑𝝃(𝑘) 

 

Equation 4-48 

With this structure in mind, and also expanding the vector 𝝃: 
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𝝃 = [𝑦,

𝑑𝑦

𝑑𝑡
,
𝑑2𝑦

𝑑𝑡2
, … ,

𝑑𝑟𝑦

𝑑𝑡𝑟
] 

 

Equation 4-59 

The model is formed of SFL tuning parameters and the derivatives of the outputs. Other than 

the plant output 𝑦, there is no other information from the plant in the SFL model, but there 

is in the control law (Kravaris and Chung, 1987): 

 
𝑢 =

𝑣 − ∑ 𝛽𝑘𝐿𝑓
𝑘ℎ(𝑥)𝑟

𝑘=0

𝛽𝑟𝐿𝑔𝐿𝑓
𝑟−1ℎ(𝑥)

=
𝑣 − 𝛽0ℎ(𝑥) − 𝛽1𝐿𝑓ℎ(𝑥)

𝛽1𝐿𝑔ℎ(𝑥)
 

 

Equation 4-60 

 

Therefore, the main method for constraints handling has leveraged the inverse of the control 

law to use the plant input and states and determine the inputs on the MPC input 𝑣 through 

transformation. However, the plant states are measured variables and time-varying, so the 

Lie derivatives are also time-varying, thus even if the bounds or constraints on 𝑢 are fixed, it 

does not result in a fixed set of bounds or constraints for 𝑣 (Kurtz and Henson, 1998). In the 

CCT technique, the strategy is to use the current measured states of the plant and use the 

control law to transform the constraints on 𝑢 to 𝑣 using the current measurement, and apply 

it over the whole horizon. This guarantees that the constraints on the first input in the horizon 

is always valid, because it is obtained using the current plant state, but the future states which 

are not known will likely be different and therefore the horizon constraints may be unreliable. 

In contrast, the VCT technique uses an alternative approach where the inputs from the last 

sampling time are used to calculate the constraints at the current sampling time by 

propagating the inputs and current measured states through the control law to determine 

the values of 𝑢, and then performing an optimization to obtain the constraints of 𝑣 using the 

constraint on 𝑢.  

The CCT and VCT techniques both guarantee the first input in the horizon will be feasible, and 

because that is the only input in an MPC that is implemented, the techniques enable the use 

of model-based control on a process, even though the constraints applied beyond the first 

value of the horizon are likely to be unreliable. One important statement from Kurtz and 

Henson (1997) is that the VCT technique could be achieved through an iterative and nonlinear 

program, but this approach would not be computationally efficient. However, recent 

developments show that iterative approaches are now more usable than at the time of the 
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original writing because of the advances in computational efficiency. This has led to the use 

of artificial neural networks (ANNs) to map nonlinear constraints in single input and multiple-

input SFL (Deng et al. 2009), and more recently by Schnelle and Eberhard (2015) the use of 

iterative techniques to calculate the constraints using state estimators and future state 

predictions (Chang and Chen, 2014).  There is a possibility of using an iterative approach with 

the SQP algorithm (Boggs and Tolle, 1995), with two important features of the SQP being the 

ability to apply a nonlinear constraints function which can be supplied with parameters 

beyond the traditional states and inputs in traditional optimization, but also can be initialised 

at an infeasible point and can iteratively find a feasible route to an optimal solution. The 

importance of these is that the SQP algorithm can be supplied with any set of 𝑣 regardless of 

whether the initial vector is feasible. Moreover, the nonlinear constraints function does not 

need to be used to constrain 𝑣, but can be supplied with the values of 𝑣 from the optimizer, 

and have an iterative routine which incorporates the nonlinear plant, current states 𝒙 and 

MPC inputs 𝒗 to calculate the future plant inputs 𝒖 using the control law, and therefore 

constrain the plant states and plant inputs directly. The iterative routine is shown in Figure 4-

11 The output of the function is the feasibility of the solution, so the structure for the SFL 

MPC scheme with SFL-Plant constraints appears as shown in Figure 4-12, and this scheme is 

structurally similar to that which was provided by Schnelle and Eberhard (2015) 

 

Figure 4-11 – Iterative Routine for Constraints handling using Nonlinear Plant  

 

1. Optimizer creates a set of 𝒗  
a. Constraints handling function is supplied with: 

i. The set 𝒗(𝑘,  𝑘 + 𝑁𝑐) 
ii. 𝒙(𝑘) from the nonlinear plant 

b. Calculates 𝑢(𝑘) using control law and 𝒗(𝑘) and 𝒙(𝑘) 
c. Uses 𝑢(𝑘) to calculate 𝒙(𝑘 + 1) at the next time step 
d. Iterates through steps 2 and 3 until 𝑣(𝑘 + 𝑁𝑐) by which point: 

i. 𝑥(𝑘) to 𝑥(𝑘 + 𝑁𝑐) are calculated 
ii. 𝑢(𝑘) to 𝑢(𝑘 + 𝑁𝑐) are calculated 

e. Checks all 𝒙 and 𝒖 for feasibility against constraints on 𝒙 and 𝒖 
respectively and returns feasibility to optimizer 

2. Optimizer evaluates the objective function  
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Figure 4-12 – SFL-MPC Scheme with SFL-Plant Constraints 

This strategy for constraint handling will be referred to as SFL-Plant constraints, so named 

because the SFL model and the plant model are combined to calculate the plant inputs and 

states and determine the feasibility of the MPC input over the whole horizon.  The 

optimization cost function will also be modified now to represent the SFL-Plant constraints. 

Traditional optimisation problems with constraint handling often appear in a form where the 

inputs and states are subject to the constraints.  

 max
𝑥,𝑢

𝑓(𝑥) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 𝑔(𝑥, 𝑢) ≥ 0 

ℎ(𝑥, 𝑢) = 0 

Equation 4-61 

In the objective function in Equation 4-61 the inequality function 𝑔(𝑥) and the equality 

function ℎ(𝑥) can either be explicit linear constraints on the values of 𝑥 and 𝑢 or they can be 

some nonlinear function of 𝑥 and 𝑢. This is the traditional method of constraints handling. 

Applying this same objective function to the SFL would yield the following:  
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 max
𝑣

𝑦 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 𝑔(𝜉, 𝑣) ≥ 0 

ℎ(𝜉, 𝑣) = 0 

Equation 4-62 

With the new SFL-Plant constraints, the new optimization function with constraints changes 

to the following form: 

 max
𝑣

𝑦 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 𝑘(𝑥, 𝑢) ≥ 0 

𝑙(𝑥, 𝑢) = 0 

�̇� = 𝑓(𝑥) + 𝑔(𝑥)𝑢 

𝑦 = ℎ(𝑥) 

 

Equation 4-63 

There is a drawback to this method in that each step in the optimization now has an iterative 

nonlinear programming strategy to calculate the feasibility of the MPC input with plant inputs 

and constraints, which adds to the computational effort for control. However, for the ability 

to determine an accurate horizon and apply real constraints to a crystallization control, as 

intended by MPC, this extra computation is an acceptable trade-off because it makes possible 

the ability to find feasible control solutions which are paramount to a successful control 

strategy. Furthermore, the prediction and control horizons which were previously 5 samples 

have been increased to 10 (10 minutes using a time step of 1 minute) because in preliminary 

tests at the shorter horizon length a solution was found in a very short time for each instant 

the MPC was invoked. The increase in horizon length resulted in slightly longer time to 

converge a solution but not to the detriment of the controller, it could still be applied in real-

time, but also it was possible to gain a better trajectory of the prediction horizon in simulation. 

This constraints method and implementation appears to be unique at time of writing and thus 

will be assessed to see if it is a reliable method of constraint handling for SFL applications on 

crystallization.  

4.9 SFL-MPC Performance with SFL-Plant Constraints 

In this section a series of test scenarios are devised to assess the SFL-MPC performance 

between unconstrained crystallization control and SFL-Plant constrained crystallization 

control. The test scenarios are split into two sets, one set for batch crystallization and one set 

for continuous MSMPR crystallization from start-up.  
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4.9.1 Key Performance Indicators for SISO MPC with SFL 

Key performance indicators (KPIs) are used to quantify the performance of each scenario in 

the batch and continuous SFL-MPC scenarios with SFL-Plant constraints. Two sets of 

comparison are made using the KPIs: 

1) The difference in KPI values of all scenarios based on a selected reference scenario.  

2) The relative difference in KPI values of SFL-Plant constraints scenarios relative to their 

unconstrained counterpart scenarios. 

The reference scenarios are used as a way of standardising the results of all scenarios based 

on a fixed reference. The scenario chosen for this standardisation is that which was used to 

identify the tuning parameters and objective function weights. Therefore, it was scenario 15 

from the batch tuning study and scenario 13 from the continuous tuning study. These were 

chosen as the reference because they were originally used to determine the tuning. The 

comparison between the constrained and unconstrained studies is performed by solving the 

same control problem in 2 scenarios, one with constraints and one without constraints. The 

KPIs from the constrained scenario are divided by the respective KPIs from the unconstrained 

to show the difference between the two control problems which arose from implementation 

of SFL-Plant constraints. A difference in KPIs will result from a difference in evaluating the 

control problem.  

4.9.2 SFL-MPC Control Problem 

The SFL-MPC control problems are described in Equation 4-64 for batch and continuous 

MSMPR unconstrainted crystallization, Equation 4-65 for batch crystallization with SFL-Plant 

constraints and Equation 4-66 for continuous MSMPR crystallization with SFL-Plant 

constraints. Furthermore, for the scenarios with SFL-Plant constraints, successful constraint 

implementation will be determined based on feasible input profiles which satisfy the 

following criteria: 

1) The plant input is bounded and the upper and lower limits are provided as Plant 

constraints. The plant input profile must not exceed the limits. 

2) The plant input moves (changes in plant input over sample times) are bounded and 

the upper and lower limits provided as Plant constraints. The plant input moves must 

not exceed the move limit.  
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The unconstrained objective function is defined as follows using the previously determined 

values for 𝑄 and 𝑅:  

 
min

𝑣
𝐽 = 5∑(𝑦𝑖 − 𝑦𝑖,𝑠𝑒𝑡𝑝𝑜𝑖𝑛𝑡)

2
5

𝑖=1

+ ∑ ∆𝑣𝑘
2

5

𝑘=1

 
Equation 4-64 

Meanwhile, the SFL-Plant constraints function for batch crystallization is:  

 
min

𝑣
𝐽 = 5∑(𝑦𝑖 − 𝑦𝑖,𝑠𝑒𝑡𝑝𝑜𝑖𝑛𝑡)

2
5

𝑖=1

+ ∑ ∆𝑣𝑘
2

5

𝑘=1

 
Equation 4-65 

 

Subject to:  273 𝐾 ≤ 𝑢 = 𝜑(𝒙, 𝑣) ≤ 340 𝐾  
 

−1 ≤ Δ𝑢(𝐾𝑚𝑖𝑛−1) = 𝜑(𝒙𝒊, 𝑣𝑖) − 𝜑(𝒙𝒊+𝟏, 𝑣𝑖+1)  ≤ 1 
 

 

Given:  𝒙 
�̇� = 𝒇(𝒙) + 𝒈(𝒙)𝑢 

 

 

Finally, for SFL-Plant constraints for continuous MSMPR crystallization: 

 
min

𝑣
𝐽 = 5∑(𝑦𝑖 − 𝑦𝑖,𝑠𝑒𝑡𝑝𝑜𝑖𝑛𝑡)

2
5

𝑖=1

+ ∑∆𝑣𝑙
2

5

𝑙=1

 
Equation 4-66 

Subject to:  273 𝐾 ≤ 𝑢 = 𝜑(𝒙, 𝑣) ≤ 360 𝐾 
 

−1 ≤ Δ𝑢(𝐾𝑚𝑖𝑛−1) = 𝜑(𝒙𝒊, 𝑣𝑖) − 𝜑(𝒙𝒊+𝟏, 𝑣𝑖+1)  ≤ 1 
 

 

Given:  𝒙 
�̇� = 𝒇(𝒙) + 𝒈(𝒙)𝑢 

 

The difference between the batch and continuous unconstrained objective functions is the 

upper limit on 𝑢 which is 340 K for batch and 360 K for continuous, selected based on the 

dynamics of each respective system because the continuous crystallization temperature is 

affected by the feed conditions too, and may require a higher temperature in the jacket to 

maintain the supersaturation target. Though this may not be directly applicable to a real 

system whose coolant temperature will have a truly fixed limit on upper and lower bounds, a 

specific coolant medium has not been defined, but it is assumed that this range of 

temperature would be possible for a system using water as a coolant.  
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4.9.3 SFL-MPC and SFL-Plant Constraint Scenarios 

A set of batch and continuous scenarios are presented where the batch scenarios have 

different initial conditions, and the continuous scenarios have different operating conditions. 

The purpose of this is to introduce some variation into the control scenarios and observe if 

the designed SFL-MPC is capable of controlling the problem. The same procedure is followed 

as prior where the first 2 minutes of simulation are open-loop to initialise the SFL-MPC, and 

from the 3rd minute each process enters closed loop control. The simulation time is 100 

minutes in total for each scenario.  

4.9.4 Batch Supersaturation SFL-MPC Scenarios and Results 

The batch crystallization scenarios consist of 16 scenarios as described in Table 4-7. The first 

8 scenarios are unconstrained and the last 8 have SFL-Plant constraints. Scenarios 1, 2, 9 and 

10 are unseeded, while the remaining scenarios are seeded, and the seed moments are 

calculated from the seed size and loading. Scenario 3 is used as the reference batch for the 

first performance comparison. There is a larger supersaturation setpoint (𝑦𝑠𝑒𝑡𝑝𝑜𝑖𝑛𝑡) for the 

unseeded systems because they need to generate crystals through nucleation, whereas the 

nucleation must be suppressed in the seeded systems.   

Scenario 
Seed mean 
size (µm) 

Seed loading 
(g L-1) 

𝒚𝒔𝒆𝒕𝒑𝒐𝒊𝒏𝒕 (g/g) 
SFL-Plant Input 

Constraints Active 

1 0 0 0.0005 No 

2 0 0 0.0008  No 

3 (Ref.) 10 0.5 0.0002  No 

4 10 1 0.0002  No 

5 20 0.5 0.0002  No 

6 50 2 0.0002  No 

7 100 5 0.0002  No 

8 50 5 0.0002  No 

9 0 0 0.0005 Yes 

10 0 0 0.0008  Yes 

11 10 0.5 0.0002  Yes 

12 10 1 0.0002  Yes 

13 20 0.5 0.0002  Yes 

14 50 2 0.0002  Yes 

15 100 5 0.0002  Yes 

16 50 5 0.0002  Yes 
 

Table 4-7 – Summary of all Batch Supersaturation Control Scenarios 
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The results of the KPIs for all batch scenarios are shown in Table 4-8. The results show that 

scenario 10, the unseeded batch with the higher setpoint target of 0.008 g/g and SFL-Plant 

constraints is the only one that had an overshoot in the output response, which also led to 

the longest settling time of 24 minutes.  The other unseeded batch with SFL-Plant constraints 

was scenario 9 which had a setpoint of 0.0005 g/g and the second longest settling time. This 

suggests that the tuning parameters, which were identified from a seeded unconstrained 

scenario, can be applied to unseeded batch crystallization scenarios but the output response 

will be different from that which was obtained during tuning. Additionally, the only difference 

between scenarios 9 and 10 is the setpoint, but for the higher supersaturation setpoint there 

was an overshoot and longer settling time, so the choice of setpoint also appears to affect the 

controller response.  

Scenario 

Seed 
mean 
size 
(µm) 

Seed 
loading 
(g L-1) 

ISE IAE ITAE 
𝒕𝒔𝒆𝒕 

(min) 
Over-
shoot 

𝒕𝒔𝒊𝒎 (s) 

1 0 0 9.51E-07 2.29E-03 7.00E-03 9 No 15.2 

2 0 0 2.40E-06 3.64E-03 1.12E-02 9 No 15.1 

3 (Ref.) 10 0.5 1.62E-07 9.38E-04 3.09E-03 9 No 15.5 

4 10 1 1.63E-07 9.65E-04 5.21E-03 9 No 18 

5 20 0.5 1.61E-07 9.34E-04 2.90E-03 9 No 15.8 

6 50 2 1.61E-07 9.34E-04 2.90E-03 9 No 15.5 

7 100 5 1.62E-07 9.34E-04 2.91E-03 9 No 15.6 

8 50 5 1.63E-07 9.36E-04 2.89E-03 9 No 17.5 

9 0 0 2.00E-06 4.68E-03 2.57E-02 14 No 31.5 

10 0 0 5.90E-06 9.18E-03 6.58E-02 24 Yes 34.4 

11 10 0.5 2.68E-07 1.50E-03 6.75E-03 12 No 41.4 

12 10 1 2.80E-07 1.80E-03 3.30E-02 12 No 44.44 

13 20 0.5 2.67E-07 1.49E-03 6.52E-03 12 No 31.5 

14 50 2 2.67E-07 1.49E-03 6.54E-03 12 No 32.1 

15 100 5 2.68E-07 1.50E-03 6.59E-03 12 No 30.2 

16 50 5 2.72E-07 1.53E-03 6.81E-03 12 No 31.9 
Table 4-8 – Batch Scenarios – KPI data for all results 

All unconstrained scenarios had the same settling time and a simulation time (𝑡𝑠𝑖𝑚) of 15 to 

18 seconds to compute the 100-minute simulation. The settling time for all seeded scenarios 

with SFL-Plant constraints was consistent at 12 minutes. In all cases with SFL-Plant constraints, 

the input profiles were all feasible too, meaning the constraints were satisfied throughout the 

simulation. This is shown in a selection of output responses from scenarios in the order 9, 1, 



134 
 

10, 2, 12 and 4 have been provided from Figure 4-13 to Figure 4-18, respectively. This order 

is provided to show the SFL-Plant constraints solution with the unconstrained solution for the 

same crystallization system. In the figures related to the unconstrained system, the output 

response (supersaturation) and input profile (coolant temperature) are shown. The same 

plots are shown for the SFL-Plant constraints scenarios with an additional trend for the change 

in input Δ𝑢 which is also constrained. The constraint limits in the SFL-Plant scenarios are also 

plotted as red dashed lines. 

 

Figure 4-13 Batch Scenario 9 – Unseeded and reference setpoint 0.0005 g/g with SFL-Plant constraints 

The trajectory of the output in scenario 9 (Figure 4-14) is much smoother with the SFL-Plant 

constraints present than that of scenario 1 (Figure 4-15), this smoothness is attributed to the 

temperature profile which changes more gradually in scenario 9 due to the controller 
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reaching the constraint limits on rate of change of the input. The output trajectory does 

increase beyond the reference but does not overshoot beyond the acceptance limits. This 

behaviour can be explained from the input profile because the crystallizer is cooling to 

increase the supersaturation when it is under target, but 5 minutes before the 

supersaturation enters the acceptance region, the MPC begins to heat the jacket to reduce 

the rate of increase in supersaturation and land on the reference trajectory. It appears that 

the limit on the input change Δ𝑢 hinders slow-down of the output change, causing it to pass 

the reference before then settling on the reference trajectory. Comparing this to scenario 1, 

as soon as the MPC comes online in the third minute there is an instantaneous temperature 

drop to increase the supersaturation, followed by subsequent increases to converge onto the 

reference.  

 

Figure 4-14 Batch Scenario 1 – Unseeded and reference setpoint 0.0005 g/g without constraints 

The results from scenario 9 also apply to scenario 10 as seen Figure 4-15, the input profile is 

cooling the system to increase the supersaturation as quickly as feasible given the SFL-Plant 

constraints and the input change limits are reached. However, the larger supersaturation 

setpoint results in a larger decrease in temperature to drive the supersaturation up to target 

in a short period of time. Therefore, when the MPC’s model prediction sees the 
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supersaturation begin to approach the reference trajectory 5 minutes before entering the 

acceptance region, the overshoot is inevitable because the rate of change in supersaturation 

is already very big and heating the jacket at the fastest rate of 1 K/min will not slow the 

supersaturation rate of increase enough to prevent the overshoot. Comparing this to scenario 

2 in Figure 4-16 shows how the unconstrained system has almost an identical output 

trajectory to that of scenario 1, achieved by a larger heating and cooling rate in the input 

profile. 

 

Figure 4-15 Batch Scenario 10 – Unseeded and reference setpoint 0.0008 g/g with SFL-Plant constraints 
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Figure 4-16 Batch Scenario 2 – Unseeded and reference setpoint 0.0008 g/g without constraints

 

Figure 4-17– Batch Scenario 12 – 10 µm seed and 1 g L-1 seed loading with SFL-Plant constraints 
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Finally, scenario 12 is shown in Figure 4-17 because it too exhibited a unique output response 

which converged to the reference trajectory quickly but then after 90 minutes began to 

diverge. This scenario was seeded with a large seed loading of 1 g/L of small seeds with a 

mean size of 10 µm. The significance of this is that the supersaturation is a function of 

concentration, which itself is a function of the growth rate and second moment. The second 

moment is a measure of the crystal surface area and for a defined mass loading of crystals, if 

the mean crystal size is smaller there will be a larger surface area of crystals and therefore a 

larger 2nd moment. This results in a faster rate of change of dissolved solute, so to keep the 

supersaturation on target a faster cooling rate is also required. At 82 minutes, the rate of 

change in the cooling rate reaches the lower limit, and subsequently at 91 minutes the coolant 

temperature reaches its lower limit. At this point it is not possible to cool the system further 

to maintain the supersaturation, so the supersaturation begins to drop and diverge from the 

reference trajectory. Comparing this to scenario 4 which is the same system without 

constraints in Figure 4-18, the cooling rate progressively becomes faster at the end of the 

100-minute simulation and the temperature drops to 240 K, far lower than the lower limit of 

273 K defined in the SFL-Plant constraints. The resulting output trajectory also remains on the 

reference throughout although towards the end the trajectory does begin to diverge slightly, 

thus showing the importance of the constraints in a real system and also demonstrating how 

the SFL-Plant constraints method has indeed produced feasible control.  

Onto the comparisons of the KPIs, Table 4-9 shows the results of the first comparison with 

scenario 3 as the reference. The KPIs from each scenario have been divided by the same KPI 

value from scenario 3 and presented in this table. The first conclusion that is drawn here is 

that all KPI values for scenarios 4 to 8 (unconstrained) are close to 1. This suggests that for 

the seeded batch crystallization the controller performance is consistent across a wide range 

of seed size and loading. The notable difference is for scenario 4 the ITAE is 1.69 and this is a 

consequence of the seed loading, the slight divergence of the output trajectory from the 

reference towards the end of the simulation is captured in the ITAE value because of the time 

weighting on the error.  
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Figure 4-18 – Batch Scenario 4 – 10 µm seed and 1 g L-1 seed loading without constraints  

 

Scenarios 
(Standaridised) 

SD SP 
Error 

ISE IAE ITAE 𝒕𝒔𝒆𝒕 𝒕𝒔𝒊𝒎 

1 2.43 5.89 2.44 2.27 1.00 0.98 

2 3.85 14.86 3.88 3.63 1.00 0.97 

4 1.00 1.01 1.03 1.69 1.00 1.16 

5 1.00 1.00 1.00 0.94 1.00 1.02 

6 1.00 1.00 1.00 0.94 1.00 1.00 

7 1.00 1.00 1.00 0.94 1.00 1.01 

8 1.00 1.01 1.00 0.94 1.00 1.13 

9 3.42 12.35 4.99 8.32 1.56 2.03 

10 5.86 36.49 9.79 21.28 2.67 2.22 

11 1.27 1.66 1.60 2.18 1.33 2.67 

12 1.27 1.73 1.92 10.67 1.33 2.87 

13 1.26 1.65 1.59 2.11 1.33 2.03 

14 1.27 1.65 1.59 2.12 1.33 2.07 

15 1.27 1.66 1.60 2.13 1.33 1.95 

16 1.27 1.68 1.63 2.20 1.33 2.06 
 

Table 4-9 – Continuous Scenarios – Relative Performance to reference scenario 1 

The unseeded scenarios 1, 2, 9 and 10 have significantly larger errors than the seeded 

scenarios mainly because the supersaturation setpoints are larger for the unseeded systems 

and require more time to converge onto these setpoints, also resulting in larger errors at the 
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beginning of the batch. The scenarios with SFL-Plant constraints consistently have a larger 

error than the reference scenario as expected, and these results can be explained when 

comparing the provided output response and input profile results as has already been 

explained for scenarios 9, 10 and 12. The SFL-Plant constraints impose strict limits on the 

input profile and input moves, so the larger input steps seen in the unconstrained scenarios 

will not be achieved, resulting in longer time to achieve the setpoints and thus greater error.  

For the second comparison between the SFL-Plant constraints scenarios and their counterpart 

unconstrained scenarios, the comparison in KPIs is presented in Table 4-10. The scenarios are 

labelled as “𝑥 𝑣𝑠 𝑦” where the KPIs in scenario 𝑥 are divided by those of scenario 𝑦, and the 

results disclosed in the table. The relative errors for seeded batch systems is consistent, so 

the SFL-Plant constraints scenarios appear to have very similar impact on error irrespective 

of the seeding conditions for a given set of initial seed conditions. The exception to this trend 

is scenario 12 where the ITAE is significantly larger than the other seeded system, attributed 

to the divergence from setpoint as already discussed. 

 

Scenario 
SD SP 
Error 

ISE IAE ITAE 𝒕𝒔𝒆𝒕 (min) 𝒕𝒔𝒊𝒎 (s) 

9 vs 1 1.41 2.10 2.05 3.67 1.56 2.07 

10 vs 2 1.52 2.46 2.52 5.87 2.67 2.28 

11 vs 3 1.27 1.66 1.60 2.18 1.33 2.67 

12 vs 4 1.27 1.73 1.86 6.33 1.33 2.47 

13 vs 5  1.27 1.65 1.60 2.25 1.33 1.99 

14 vs 6 1.27 1.65 1.60 2.25 1.33 2.07 

15 vs 7 1.27 1.66 1.60 2.26 1.33 1.94 

16 vs 8 1.27 1.67 1.63 2.35 1.33 1.82 
Table 4-10 – Batch Scenario Relative Performance of SFL-Plant constraints vs Unconstrained 

For the unseeded systems, the relative errors of the SFL-Plant constraints were much greater 

but this can also be explained from the output responses. For scenario 10 (Figure 4-15), the 

rate of change in the input was at the move limit which caused an overshoot when compared 

to case 2 (Figure 4-16) where the input profile has larger steps. Finally, the SFL-Plant 

constraints scenarios took between 2 and 2.7 times longer to simulate the 100-minute batch 

control than the unconstrained system. However, in terms of real-time this difference was 

from 15 seconds to calculate 100 MPC moves as compared to 40 seconds with SFL-Plant 
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constraints. Consequently, SFL-Plant constraints appear to be a viable option for real-time 

MPC.  

4.9.5 Continuous Crystallization SFL-MPC Scenarios and Results 

The continuous crystallization scenarios shown in Table 4-11 consist of 12 scenarios which are 

all seeded. The first 6 scenarios are unconstrained while the last 6 have SFL-Plant constraints. 

Scenario 1 is used as the reference batch for the first performance comparison. The effects of 

disturbances to continuous operation have also been simulated as detailed in the table. The 

disturbances are applied to feed flow rate and/or feed temperature, where the disturbance 

type is a normally-distributed random disturbance within the specified boundaries in Table 

4-11. The disturbance interval is defined as the interval time between each disturbance, so 

an interval of 10 means the disturbance affects the process every 10th time-interval, or every 

10 minutes in this case because the time interval is set to 1 minute.  The disturbances are 

active from the beginning of startup and throughout the 100-minute simulation. 

  

 
Scena-

rio 

Seed 
mean 
size 
(µm) 

Seed 
loading 
(g L-1) 

Feed 
Flow 
rate 
(mL 

min-1) 

Feed 
Temp. 

(K) 
Disturb. 

type 

Disturb. 
interval 
(mins) 

𝒚𝒔𝒆𝒕𝒑𝒐𝒊𝒏𝒕 

(g/g) 

SFL-Plant Input 
Constraints 

Active 

1 (Ref.) 10 0.5 70 305 - - 0.0006 No 

2 10 1 70 305 - - 0.0006 No 

3 20 0.5 70 305 - - 0.0006 No 

4 10 0.5 70 ± 7 305 Random 10 0.0006 No 

5 10 0.5 70 305 ± 3 Random 10 0.0006 No 

6 10 0.5 70 ± 7 305 ± 2 Random 5 0.0006 No 

7 10 0.5 70 305 - - 0.0006 Yes 

8 10 1 70 305 - - 0.0006 Yes 

9 20 0.5 70 305 - - 0.0006 Yes 

10 10 0.5 70 ± 7 305 Random 10 0.0006 Yes 

11 10 0.5 70 305 ± 3 Random 10 0.0006 Yes 

12 10 0.5 70 ± 7 305 ± 2 Random 5 0.0006 Yes 
 

Table 4-11 – Summary of all Continuous Supersaturation Control Scenarios  

 

The results of the KPIs for all continuous scenarios are shown in Table 4-12. The settling times 

have not been calculated for the results with disturbances because at each interval the 
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disturbance causes the output trajectory to diverge from the reference. Scenario 8 did not 

settle in the acceptance region and hence a settling time was not determined. This was a 

result of the SFL-Plant constraints preventing the MPC from implementing large changes in 

the input profile which were necessary for the output to quickly converge onto the setpoint 

and remain converged. The results for scenario 8 are shown in Figure 4-19 that can be 

compared alongside  scenario 2 which is the equivalent but without constraints (Figure 4-20). 

There was a similar magnitude of error in the ISE, IAE and SDE between all scenarios. The SFL-

MPC controller produced feasible results in all cases with SFL-Plant constraints. Figure 4-19 

to Figure 4-24 are provided for scenarios 8, 2, 9, 3, 12 and 6 respectively.  

Scen-
ario 

Seed 
mean 
size 
(µm) 

Seed 
loading 
(g L-1) 

Feed 
flow 
rate 
(ml 

min-1) 

Feed 
Temp 

(K) 
ISE IAE ITAE SDE 𝒕𝒔𝒆𝒕 𝒕𝒔𝒊𝒎 

1 
(Ref.) 

10 0.5 70 305 4.14E-07 1.32E-03 3.54E-03 6.33E-05 6 18.3 

2 10 1 70 305 4.44E-07 1.39E-03 4.14E-03 6.56E-05 6 18.9 

3 20 0.5 70 305 4.03E-07 1.29E-03 3.24E-03 6.25E-05 6 19.1 

4 10 0.5 70±7 305 4.14E-07 1.33E-03 4.53E-03 6.33E-05 - 18.3 

5 10 0.5 70 305±3 4.14E-07 1.32E-03 3.54E-03 6.33E-05 - 18.2 

6 10 0.5 70±7 305±2 4.14E-07 1.34E-03 4.79E-03 6.33E-05 - 19.5 

7 10 0.5 70 305 3.67E-07 1.29E-03 3.71E-03 5.95E-05 7 78.5 

8 10 1 70 305 1.14E-06 8.49E-03 2.75E-01 6.54E-05 - 30.1 

9 20 0.5 70 305 3.25E-07 1.14E-03 3.10E-03 5.64E-05 6 99.4 

10 10 0.5 70±7 305 4.49E-07 2.91E-03 7.84E-02 6.25E-05 - 66.8 

11 10 0.5 70 305±3 1.06E-06 5.94E-03 2.95E-01 1.01E-04 - 61.4 

12 10 0.5 70±7 305±2 9.49E-07 6.50E-03 2.12E-01 8.95E-05 - 58.5 
Table 4-12 – Continuous Scenarios – KPI data for all results  

 

The effect of the high seed loading on the output trajectory is shown for scenario 8 in Figure 

4-19. From the beginning when MPC is active and the system is in closed-loop, the lower 

constraint limit on the input moves is reached, and while the MPC cools the system as fast as 

it can with the SFL-Plant constraints, the rate of consumption of supersaturation through 

growth is dominant. While the output trajectory does enter the acceptance region at 75 

minutes, shortly thereafter the lower limit for the input is also reached resulting in no further 

possibility of cooling the system, resulting in divergence from the reference. Though this 

performance is not ideal for crystallization control to the desired setpoint, the SFL-MPC 
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produces a feasible control inputs over the supersaturation trajectory given the SFL-Plant 

constraints which are imposed. This scenario demonstrates that operating under these 

conditions with the prescribed SFL-Plant constraints would result in a system where 

supersaturation control to this setpoint would be difficult to achieve.  Comparing this to the 

results from the same system without constraints in Figure 4-20 (scenario 2) it is clear that 

the system is indeed controllable by the MPC, but the temperature required to sustain the 

supersaturation is much lower than can be achieved with the SFL-Plant constraints on the 

input.  

 

Figure 4-19 – Continuous scenario 8 – 10µm seed size and 1 g L-1 seed loading with SFL-Plant Constraints 



144 
 

 

Figure 4-20 – Continuous scenario 2 – 10µm seed size and 1 g L-1 seed loading without constraints 

 

Figure 4-21– Continuous scenario 9 – 20µm seed size and 0.5 g L-1 seed loading with SFL-Plant  constraints 
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The output response for scenario 9 is shown in Figure 4-21 and with a larger seed size of 20 

µm and a smaller seed loading of 0.5 g/L; this system is more controllable than scenario 8. 

During the first two minutes in open-loop, the supersaturation in the system is increasing and 

this can be attributed to the feed temperature being at 305 K, lower than the initial 

temperature of the system. When the MPC is enabled, the input profile begins to heat the 

system to slow the rate of change in supersaturation and this does result in the output 

trajectory passing the reference trajectory but the controller is able to converge the output 

onto the setpoint. The input moves in the initial heating phase are also at the move limit, so 

the system was heating as quickly as feasible, it just was not sufficient to overcome the rate 

of increase in supersaturation to prevent the output exceeding the reference. Comparing this 

to the unconstrained scenario (3) of the same system in Figure 4-22, the results show a large 

change in temperature at the beginning of the batch followed by a smooth temperature 

profile to steady state. The output response shows the supersaturation decreases for one 

time period but this is a result of the sharp increase in temperature to slow down the rate of 

increase in the supersaturation.  

 

Figure 4-22– Continuous scenario 3 – 20µm seed size and 0.5 g L-1 seed loading without constraints 

Two final scenarios shown in Figure 4-23 and Figure 4-24 are scenario 12 and 6, respectively. 

These scenarios experienced a combination of feed flow and feed temperature disturbances 

at 5-minute intervals and were included in the study to establish how disturbances would 
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affect the SFL-MPC performance. Scenario 12 with the SFL-Plant constraints shows how the 

output trajectory does appear to be converging onto the reference despite the numerous 

disturbances affecting the process. The input profile shows the temperature is on an upward 

or downward ramp throughout the 100-minute simulation, and the temperature changes 

coincide with the disturbances to the feed. The input moves are constrained at the high and 

low limits for most of the simulation too, so the MPC has again shown a feasible control 

solution. At each point when a disturbance affects the system, the MPC is always attempting 

to bring the output back onto the reference trajectory, which is the expected behaviour. In 

scenario 6, the output trajectory is less affected by the same magnitude of disturbances, this 

is because the input profile makes large unconstrained step changes in the temperature at 

the occurrence of each disturbance, to immediately counteract the effects. Overall, this 

concludes that the SFL-MPC with SFL-Plant constraints has the capability for disturbance 

rejection. 

 

Figure 4-23– Continuous scenario 12 – feed flow rate and temperature disturbances with SFL-Plant constraints 
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Figure 4-24 – Continuous scenario 6 – feed flow rate and temperature disturbances without constraints 

The results from using scenario 1 as a reference to standardise the KPIs for all other scenarios 

are shown in Table 4-13. Scenarios 3 and 9 had a smaller error than scenario 1 which can be 

explained by scenarios 3 and 9 having a larger seed size. The interpretation of this is that the 

larger seed size at the same seed mass loading there will be fewer but larger crystals in the 

system. Therefore, the zeroth moment and the 2nd moment will both have a smaller value for 

scenarios 3 and 9 compared to the reference. Consequently, the mass balance which is also 

dependent on 2nd moment will result in a lower rate of crystallization, so maintaining the 

supersaturation trajectory would require less aggressive cooling.  Considering the errors of 

the SFL-Plant constraints scenarios relative to the reference, all errors are larger for the feed 

temperature disturbance scenarios 11 and 12, and scenario 8 with the higher seed loading. 

Finally, comparing the each SFL-Plant constraint scenario using the equivalent unconstrained 

scenario as a reference, the adjusted KPIs are shown in Table 4-14. One observation made 

here is that for scenarios 7 and 9, the SFL-Plant constraints simulations had a smaller error 

than scenarios 1 and 3 respectively. To understand this behaviour, scenarios 9 and 3 are 

provided in Figure 4-21 and Figure 4-22, respectively. The error differences can be explained 

by the output response for scenario 9 directly increasing from the start of simulation and 

converging onto the reference, whereas in scenario 3 the trajectory changes direction for 1 

time-step which increases the error. On the other hand, the SFL-Plant constraints error was 
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larger in the other simulations. Furthermore, the simulation time is anywhere between 3 and 

5.2 times longer for the SFL-Plant constraints calculation, but the longest overall time for the 

100-minute simulation was 99.4 seconds, so in the context of real-time applications with a 1-

minute plant interval, the SFL-Plant constraints remain a viable option for continuous MSMPR 

crystallization.  

Scenario ISE IAE ITAE SDE 𝒕𝒔𝒆𝒕 (-) 𝒕𝒔𝒊𝒎(-) 

2 1.07 1.05 1.17 1.04 1.00 1.03 

3 0.97 0.97 0.91 0.99 1.00 1.04 

4 1.00 1.01 1.28 1.00 - 1.00 

5 1.00 1.00 1.00 1.00 - 1.00 

6 1.00 1.02 1.35 1.00 - 1.06 

7 0.89 0.97 1.05 0.94 1.17 4.29 

8 2.76 6.43 77.71 1.03 12.67 1.64 

9 0.79 0.87 0.87 0.89 1.00 5.43 

10 1.09 2.20 22.14 0.99 - 3.65 

11 2.57 4.50 83.19 1.59 - 3.35 

12 2.29 4.92 59.84 1.41 - 3.19 
Table 4-13 – Continuous Scenarios – Relative Performance to reference scenario 1  

Scenario ISE IAE ITAE SDE 𝒕𝒔𝒆𝒕(-) 𝒕𝒔𝒊𝒎(-) 

7 vs 1 0.89 0.97 1.05 0.94 1.17 4.29 

8 vs 2 2.57 6.11 66.57 1.00 12.67 1.59 

9 vs 3 0.81 0.89 0.96 0.90 1.00 5.21 

10 vs 4 1.09 2.18 17.32 0.99 - 3.66 

11 vs 5 2.57 4.50 83.20 1.59 - 3.37 

12 vs 6 2.29 4.85 44.26 1.41 - 3.01 
Table 4-14 – Continuous Scenario Relative Performance of SFL-Plant constraints vs Unconstrained 

4.10 SISO SLF MPC Applied to Batch and Continuous Crystallization 

This section will focus on the use of the SISO SFL MPC with SFL-Plant constraints on a series 

of full batch and prolonged continuous MSMSPR crystallization scenarios. The focus in this 

section will be on the effects of the MPC on the overall crystallization process and the KPIs 

will be focussed on critical quality attributes of crystallization process. In addition to 

supersaturation control, the control of number-weighted mean-size control will also be 

performed.  

4.10.1 Crystallization Critical Quality Attributes (CQAs) 

In these crystallization studies, the CQAs that have been chosen are the mean crystal length 

(number weighted), coefficient of variation (COV) and yield. These three attributes have been 
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chosen because the mean size and COV provide two important characteristics of the CSD from 

the process, and the yield can be used to determine how much material is recovered from 

the process. The mean size can be calculated as follows: 

𝐿10 =
𝜇1

𝜇0
 

 

Equation 4-67 

Similarly, the coefficient of variation can be calculated: 

𝐶𝑂𝑉 = √
𝜇2𝜇0

𝜇1
2 − 1 

 

Equation 4-68 

The recovery is the amount of paracetamol that is recovered from the system as a percentage 

of the amount of paracetamol in the system, and can be calculated as follows: 

𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦 (%) =
𝐶𝑖𝑛𝑖𝑡𝑖𝑎𝑙 − 𝐶𝑓𝑖𝑛𝑎𝑙

𝐶𝑖𝑛𝑖𝑡𝑖𝑎𝑙
 

 

Equation 4-69 

Finally, the yield is the amount of paracetamol that is recovered in the desired form as a 

percentage of the theoretical amount which could theoretically be recovered at the same 

conditions, and can be calculated as follows: 

𝑦𝑖𝑒𝑙𝑑(%) =  
𝐶𝑖𝑛𝑖𝑡𝑖𝑎𝑙 − 𝐶𝑓𝑖𝑛𝑎𝑙

𝐶𝑖𝑛𝑖𝑡𝑖𝑎𝑙 − 𝐶𝑓𝑖𝑛𝑎𝑙
∗  

 
 

Equation 4-70 

In the context of batch crystallization, the CQAs will be calculated at the end of the batch. For 

the continuous crystallization they will be calculated when the process has reached steady-

state operation. In the continuous crystallization scenarios where disturbances are present, 

the CQAs will be represented as a mean-centred range of sizes, calculated from steady state. 

4.10.2 Crystallization Control Scenarios 

Three case studies are simulated using the SISO SFL MPC. The simulations will also address 

how the crystallization quality attributes differ across a series of simulations with and without 

SFL-Plant constraints. The following case studies will be considered: 

• Seeded batch supersaturation control 

• Seeded continuous MSMPR supersaturation control 

• Seeded continuous mean size control.  
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4.10.3 Batch supersaturation Control Scenarios 

The batch supersaturation control scenarios are detailed in Table 4-15 the SFL-MPC 

application on six scenarios will be shown. These scenarios are chosen because they show 

how the mean size, seed loading and constraints will affect the overall batch CQAs.  

Scenario 
Seed mean 
size (µm) 

Seed loading 
(g L-1) 

𝒚𝒔𝒆𝒕𝒑𝒐𝒊𝒏𝒕 (g/g) 
SFL-Plant Input 

Constraints Active 

1 10 0.5 0.0002  No 

2 10 0.5 0.0002  Yes 

3  10 0.75 0.0002  No 

4 10 0.75 0.0002  Yes 

5 20 0.5 0.0002  No 

6 20 0.5 0.0002  Yes 
 

Table 4-15 – Batch Supersaturation Control Scenarios for SFL-MPC with SFL-Plant Constraints 

 

There are no disturbances implemented in the batch seeded crystallization scenarios. The 

objective function for the unconstrained batch scenarios is:  

 
min

𝑣
𝐽 = 5∑(𝑦𝑖 − 𝑦𝑖,𝑠𝑒𝑡𝑝𝑜𝑖𝑛𝑡)

2
5

𝑖=1

+ ∑∆𝑣𝑙
2

5

𝑙=1

 
Equation 4-71 

 

 

And for the constrained batch scenarios the objective function is: 

 
min

𝑣
𝐽 = 5∑(𝑦𝑖 − 𝑦𝑖,𝑠𝑒𝑡𝑝𝑜𝑖𝑛𝑡)

2
5

𝑖=1

+ ∑∆𝑣𝑙
2

5

𝑙=1

 
Equation 4-72 

 

Subject to:  273 𝐾 ≤ 𝑢 = 𝜑(𝒙, 𝑣) ≤ 340 𝐾 
 

−1 ≤ Δ𝑢(𝐾𝑚𝑖𝑛−1) = 𝜑(𝒙𝒊, 𝑣𝑖) − 𝜑(𝒙𝒊+𝟏, 𝑣𝑖+1)  ≤ 1 
 

 

Given:  𝒙 
�̇� = 𝒇(𝒙) + 𝒈(𝒙)𝑢 
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The batch simulations have a definitive end-point, which is triggered when the system 

temperature drops to 295K, at which point the batch is ended by switching the 

supersaturation setpoint to 0 g/g thus ending the batch contents at the solubility curve, the 

switch in setpoint results in the jacket temperature increasing at the end of the batch to 

prevent the requirement for a long hold-time to end at the solubility curve.   

4.10.4 Batch Supersaturation Control Results and Discussion 

In all the batch scenarios, the results are shown in 4 plots. The middle plot is the 

supersaturation (output), the bottom plot is the corresponding MPC input profile, and the 

two graphs at the top of the figures show the evolution of the number-weighted crystal mean-

size (L10) and the phase diagram. In the first batch scenario results are shown in Figure 4-25. 

This unconstrained scenario resulting in the MPC successfully tracking the supersaturation 

trajectory for 142 minutes, at which point the end-point of the batch was triggered because 

the system temperature dropped to 295 K. Then the setpoint was changed to 0 g/g 

supersaturation to end the batch, and the batch crystallization process terminated at 160 

minutes. The system was seeded with 10 µm seed crystals with a loading of 0.5 g/L. In the 

phase diagram, the operating profile of the batch is shown to be very close to the solubility 

curve throughout production and there was little secondary nucleation throughout the 

process as a result. The crystals in the system did grow from the 10 µm seed size to 32 µm at 

the end of the batch. This may not appear to be significant growth, but the small seed size 

coupled with the seed loading results in many small seed crystals in the system, which results 

in a high surface area per mass of crystals when compared to a larger seed size for the same 

loading. Therefore, the growth to 33 µm is a reasonable outcome. Increasing the final seed 

size would be achievable through a smaller seed loading for the same size, or a larger seed 

size for the same loading.  
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Figure 4-25. – Batch Scenario 1 - 10µm seed size and 0.5 g L-1 seed loading unconstrained 

The second scenario shown in Figure 4-26 complements the results from the first scenario as 

it is the same crystallization system but with SFL-Plant constraints. The main differences seen 

here are that the plant input minimum temperature constraint is reached at 135 minutes, so 

no further cooling of the system is possible. The supersaturation profile coincidentally begins 

to diverge from the setpoint and the supersaturation is reduced as the dissolved 

concentration of paracetamol in the system continues to be consumed by growth. The system 

temperature does reach the 295 K end-point at 150 minutes, at which point the batch is 

ended. In this system, the crystal mean size also reached 33 µm from the initial 10 µm seed 

size, and a similar operating profile as scenario 1 is observed in the phase diagram plot, but a 

noticeable different is the mean-size trajectory from 135 to 150 minutes in scenario 2 appears 

to plateau smoothly and gradually, as compared to the almost instantaneous change seen in 

scenario 1.  
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Figure 4-26 – Batch Scenario 2 Results - 10µm seed size and 0.5 g L-1 seed loading with SFL-Plant constraints 

Scenario 3 shows a variation of scenario 1 where the seed loading is increased. Insights that 

can be gained from the model equations and the PBE would suggest then that for an increased 

mass of crystals in the same batch system, there would be more crystals and therefore a larger 

surface area and the resulting mean-size at the end of the batch should be smaller. 

Furthermore, the time to complete a batch should also be shorter because the growth rate is 

independent of size and dependent on supersaturation, thus dependent on concentration 

and the 2nd moment (related to surface area). This is clearly seen in the results for scenario 3 

in Figure 4-27, with a shorter batch time of 119 minutes and smaller mean-size of 29.5 µm.  

Comparing these results to scenario 4 in Figure 4-28 with the SFL-Plant constraints active, 

there is again a noticeable different in the operation of the batch. As the 2nd moment is larger 

in this system, therefore crystallization of dissolved paracetamol will be larger according to 
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the mass balance. So, when the low limit on the input temperature is reached at 108 minutes, 

the supersaturation diverges from the setpoint at a faster rate than in scenario 2. This batch 

also ends later than the unconstrained system, at 130 minutes, because the system 

temperature reaches 295 K at a later time than scenario 3. However, the mean-size is similar 

in scenario 3 and 4 so it appears there is little effect on the overall size of crystals at the end 

of the batch.  

 

Figure 4-27 – Batch Scenario 3 Results - 10µm seed size and 0.75 g L-1 seed loading unconstrained 
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Figure 4-28. – Batch Scenario 4 Results - 10µm seed size and 0.75 g L-1 seed loading with SFL-Plant constraints 

Scenario 5 is also similar to scenario 1 but the seed size is doubled from 10 µm to 20 µm with 

the same seed loading. The resulting seed conditions in the model have a smaller zeroth 

moment and 2nd moment, because the same mass of larger crystals results in fewer crystals 

in the system and a smaller surface area. Therefore, it is expected that the batch will require 

a longer time to complete to the same end-point as previous cases due to a relatively lower 

consumption of dissolved paracetamol in the system. Also, it is expected that the final mean 

size of crystals will be larger than the previous cases too. This is seen in the results in Figure 

4-29 where the batch time is 277 minutes and the final crystal size reached 65 µm.  

 



156 
 

 

Figure 4-29. – Batch Scenario 5 Results - 20µm seed size and 0.5 g L-1 seed loading unconstrained 

In the final batch scenario shown in Figure 4-30, a slightly longer batch time is observed from 

scenario 5 but because the consumption of supersaturation for growth is slower in this 

system, the SFL-Plant constraints do not have a significant effect on the overall batch time or 

supersaturation trajectory. It was possible for the SFL-MPC to maintain the supersaturation 

target and only reached the low limit for the input at 275 minutes, the batch ended at 278 

minutes. The input profile is certainly less aggressive towards the end of the batch in scenario 

6 than scenario 5. The mean size was also similar, but slightly larger again in the SFL-Plant 

constraints scenario. It is suspected that the increased batch time which results from reaching 

the MPC input limits results in more time for crystal growth and therefore marginally larger 

crystals at the end of the batch.  



157 
 

 

Figure 4-30. . – Batch Scenario 6 Results - 20µm seed size and 0.5 g L-1 seed loading with SFL-Plant constraints 

Finally, the CQAs for the six scenarios have been summarised in Table 4-16. The main 

conclusions from these KPIs are that the mean-size for the SFL-Plant constraints scenarios 

were marginally larger than their counterpart unconstrainted scenarios, and the COVs are the 

same, although in practice it would likely not be possible to distinguish the differences seen 

between scenarios 1 and 2 or 3 and 4 through in-line process measurements.  

Scenario 
Mean Size 

(µm) 
COV Recovery (%) Yield (%) 

1 33.15 0.022 47.30 100.00 

2 33.45 0.022 48.61 100.00 

3  29.29 0.024 48.32 100.00 

4 29.34 0.024 48.60 100.00 

5 65.82 0.013 46.22 100.00 

6 66.90 0.013 48.59 100.00 
 

Table 4-16 – Summary of KPIs for Batch Supersaturation Control Scenarios 
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The yield from all scenarios was 100 % because every batch ended at the solubility curve, but 

the recovery was between 46 % and 49 %. Therefore, a large quantity of paracetamol remains 

dissolved in the system at the end of the batch, but this is a good outcome for this batch 

crystallization system because the solubility curve that was used (Nagy 𝑒𝑡 𝑎𝑙., 2008a) is only 

feasible from system temperature of 320 K to 290 K, and the batch end-point was close to 

this limit. 

4.10.5 Continuous Supersaturation Control Scenarios 

The continuous MSMPR supersaturation control study consists of 7 scenarios detailed in Table 

4-17. The SFL-Plant constraints are active for all scenarios and the first three aim to compare 

the differences in continuous crystallization production based on differences in seed 

parameters, while the last four also consider the impacts of disturbances on the feed 

conditions.  

 
Scena-

rio 

Seed 
mean 
size 

(µm) 

Seed 
loading 
(g L-1) 

Feed 
Flow 
rate 
(mL 

min-1) 

Feed 
Temp. 

(K) 
Disturb. 

type 

Disturb. 
interval 
(mins) 𝒚𝒔𝒆𝒕𝒑𝒐𝒊𝒏𝒕 (g/g) 

1  10 0.5 70 305 - - 0.0006 

2 10 0.75 70 305 - - 0.0006 

3 20 0.5 70 305 - - 0.0006 

4 10 0.5 70 305 ± 2 Random 1 0.0006 

5 10 0.5 70 ± 7 305 ± 2 Random 1 0.0006 

 

Table 4-17 – Summary of all Continuous Supersaturation Control Scenarios  

The cost function for the continuous case is as shown in Equation 4-66 and the 

supersaturation setpoint is held throughout production.  

 
min

𝑣
𝐽 = 5∑(𝑦𝑖 − 𝑦𝑖,𝑠𝑒𝑡𝑝𝑜𝑖𝑛𝑡)

2
5

𝑖=1

+ ∑∆𝑣𝑙
2

5

𝑙=1

 
Equation 4-73 

Subject to:  273 𝐾 ≤ 𝑢 = 𝜑(𝒙, 𝑣) ≤ 360 𝐾 
 

−1 ≤ Δ𝑢(𝐾𝑚𝑖𝑛−1) = 𝜑(𝒙𝒊, 𝑣𝑖) − 𝜑(𝒙𝒊+𝟏, 𝑣𝑖+1)  ≤ 1 
 

 

Given:  𝒙 
�̇� = 𝒇(𝒙) + 𝒈(𝒙)𝑢 
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Each continuous MSMPR crystallization scenario is initialised at the same conditions as 

provided in section 4.6, and the initial conditions are not the same as the steady-state of each 

scenario, so there is a transient phase during the start of the simulation where the MPC 

converges the supersaturation profile to the setpoint and the system then converges to 

steady state operation. The disturbances applied to scenarios 4 through 7 are normally 

distributed and random disturbances to the feed conditions in the defined ranges in the Table 

4-17, and each disturbance has an interval of 1 so every minute of simulation, a new 

disturbance is experience in the system.  

4.10.6 Continuous Supersaturation Control Results  

The graphs for the continuous supersaturation control scenarios consist of 5 plots. The first 

row of plots are the feed flow rate and temperature trend and the phase diagram, followed 

by the supersaturation (output) trend, the temperature (input) profile and finally the crystal 

mean size. The results of the first scenario are shown in Figure 4-31. The feed conditions are 

constant in this scenario and the supersaturation target of 0.0006 g/g is reached quickly by 

the controller. The reason for this is because the feed temperature is at 305 K and during the 

first two minutes of open-loop simulation, the feed is reducing the temperature of the system 

and increasing the supersaturation. The system is initialised with the jacket temperature at 

350 K for this reason, to prevent the supersaturation of the open-loop simulation 

overshooting the reference trajectory before the MPC is enabled. Then, the input profile 

shows a steady decrease for the first 100 minutes over which the system is in a transient 

phase where the MPC is cooling the MSMPR to maintain the supersaturation trajectory, thus 

changing the point of steady state operation that would be converged in open-loop. The 

controller settles on steady-state production after 100 minutes. The transient period also 

results in a change in the crystal mean size from the seed size of 10 µm to 20.6 µm, so at 

steady state there is a mean growth of 10.6 µm experienced. Furthermore, the phase diagram 

shows the trajectory of the operating profile and unlike the long batch trajectories which end 

at a low temperature and saturated, the MSMPR converges to a point of operation at a 

temperature above 306 K and operates in a supersaturated location in the phase diagram, 

thus the amount of recovered paracetamol in a single stage MSMPR is much smaller than that 

of batch. 
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Figure 4-31 – Continuous MSMPR Supersaturation Control Scenario 1 - 10µm seed size and 0.5 g L-1 seed loading and no disturbances 
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Figure 4-32 – Continuous MSMPR Supersaturation Control Scenario 2  - 10µm seed size and 0.75 g L-1 seed loading no disturbances
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The next scenario shown in Figure 4-32 has a 50% larger seed loading than scenario 1. This 

again results in a higher depletion rate of supersaturation which requires a faster cooling rate 

to maintain the supersaturation target. As seen in the first 55 minutes of the simulation 

results, the output does not appear to converge onto the target immediately. This is caused 

by the SFL-Plant constraints which have an imposed move-limit on the inputs of 1 K/min, the 

system cannot cool fast enough to maintain the supersaturation rate. However, unlike the 

batch case, the continuous MSMPR production is at a steady-state position and the 

temperature limit of the system happens to be low enough that eventually steady state 

production will be reached and supersaturation control will be possible to the desired target. 

The feed flow rate is the same as the previous scenario so again the system reaches the steady 

state in a similar time after 100 minutes. The phase diagram also shows that this system’s 

steady state position is at a lower temperature but still supersaturated. This will result in a 

higher recovery of material. The crystal mean-size in the outlet of the MSMPR is also the same 

as the previous scenario, once steady state is reached.  

The final scenario without disturbances is scenario 3 (Figure 4-33) where the seed loading is 

the same as scenario 1 (0.5 g/L) but the seed size is doubled from 10 µm to 20 µm. The 

resulting system shows a slight overshoot in the supersaturation trajectory which is related 

again to a smaller 2nd moment because the seed size is increased for the same seed loading. 

Thus the rate of supersaturation consumption is smaller than scenario 1. This results in 

immediate heating of the system from the initial jacket temperature of 350 K. Furthermore, 

the steady state operating point is reached in the same time as the previous scenarios but the 

operating point is at a higher temperature in the phase diagram, over 312 K, thus the recovery 

of material will be low at steady state in this single-stage MSMPR. The crystal mean-size grows 

from the 20 µm seed to 30.6 µm crystals though. Overall, these scenarios that are absent of 

disturbances demonstrate the ability of SFL-MPC to control continuous MSMPR crystallization 

with SFL-Plant constraints and the output trajectories are reasonable. The next stage is to 

consider the four scenarios where feed disturbances are applied.  
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Figure 4-33 – Continuous Supersaturation Control Scenario 3  - 20µm seed size and 0.5 g L-1 seed loading no disturbances 
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Figure 4-34 – Continuous MSMPR Supersaturation Control Scenario 4  - 10µm seed size and 0.5 g L-1 seed loading with feed temperature disturbances
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Scenario 4 with the feed temperature disturbances for the 10 µm seed size and 0.5 g/L seed 

loading is shown in Figure 4-34. The main difference between this trajectory and that of 

scenario 1 is that the temperature disturbances in the feed have a significant impact on the 

supersaturation profile. The SFL-MPC does indeed converge onto the setpoint, but the 

converged appears to require more time than prior cases. The input moves are mostly at their 

move limit between each implementation of the MPC, which suggests that the cooling rate 

limit imposed on the inputs is not sufficient enough to completely counteract the 

disturbances, but is sufficient to ensure the process still operates around the same target 

supersaturation. The resulting system also appears to operate at a lower temperature in the 

phase diagram, but this cannot be concluded through the operating profile because the 

system temperature is fluctuating throughout operation. The crystal mean-size in the outlet 

does appear to be similar to that of scenario 1 but the mean-size fluctuates in the range of 20 

± 3 µm.  

Scenario 5 shown in Figure 4-35 aims to combine disturbances to both the feed temperature 

and feed flow rate to establish is the effects of multiple disturbances on the continuous 

process. The main conclusions from these results are that the process does not appear to 

require as long a time to settle near steady-state as scenario 4, but the effects of the 

combined disturbances do cause greater fluctuations in the supersaturation profile. However, 

the supersaturation remains centred on the setpoint, so given the limitations imposed by the 

SFL-Plant constraints on the inputs, the results in this scenario are also acceptable for the 

control problem. The outlet crystal mean size is also similar to that of scenario 4. 

Finally, the CQA results for continuous MSMPR crystallization control are disclosed in Table 

4-18. The results show that for the larger seed size, a larger mean size is obtained and a 

smaller COV is also achieved. For all scenarios with a 10 µm seed size, the outlet crystal 

number-weighted mean size appears to be similar and in the region of 20.6 µm. The yield also 

appeared to be larger for the 10 µm seeds size than for the scenario with a 20 µm seed size, 

and the recovery follows a similar trend too. This is expected though because the larger seed 

size will not consume as much supersaturation during the transient phase when at the 

supersaturation setpoint. This can be aided by adjusting the supersaturation setpoint based 

on the seed size and seed loading. To determine the best supersaturation setpoint to 

maximise the recovery and yield from given initial conditions, it is recommended to perform 
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an offline optimization to maximise recovery and/or yield given the seed conditions using the 

setpoint as the decision variable. Alternatively, a multi-stage MSMPR approach can also be 

used to increase the paracetamol recovery.  

 
Scenario 

Mean Size 
(µm) 

COV Recovery (%) Yield (%) 

1  20.59 0.515 22.7 90.6 

2 20.59 0.515 34.1 93.6 

3 30.59 0.347 5.5 70.3 

4 20.15 ± 2.99 0.496 ± 0.17 20.7 90.3 

5 20.38 ± 2.72 0.501 ± 0.19 23.5 90.3 
 

Table 4-18 – Summary of KPIs for all Continuous Supersaturation Control Scenarios  

Another approach is to select a different control problem and try to control one of the CQAs 

directly. This leads into the following section where instead of continuous MSMPR 

supersaturation control, the crystal mean-size will be used for control. The optimization of 

crystal mean-size in batch has been performed in chapter 3 of this research and by other 

authors too (Sarkar, Rohani and Jutan, 2006; Hemalatha et al., 2018). The crystal mean-size 

has also been used for control problems in various research, but the use of SFL-MPC to control 

mean-size has not been reported.  
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Figure 4-35 – Continuous supersaturation Control Scenario 5  - 10µm seed size and 0.5 g L-1 seed loading with feed temperature and flow disturbances
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4.10.7 SFL MPC for Mean Size Control 

The case of mean-size control requires a new SFL model which is obtained using the same 

procedure as earlier in this chapter. The following is disclosed regarding the mean-size control 

system. The output is (Ramkrishna, 2000):  

𝑦 = ℎ(𝑥) =
𝜇1

𝜇0
 

 

Equation 4-74 

Meanwhile, the plant input 𝑢 is the jacket temperature. The resulting linearization from the 

nonlinear model into an input-output linear model has a relative order of 2. Thus, the control 

law for the new system is defined: 

𝑢 =
𝑣 − 𝛽0ℎ(𝑥) − 𝛽1𝐿𝑓ℎ(𝑥) − 𝛽2𝐿𝑓

2ℎ(𝑥)

𝛽2𝐿𝑔𝐿𝑓ℎ(𝑥)
 

 

Equation 4-75 

Subsequent tuning of this system using the approach described in section 4.7 resulted in the 

tuning parameters detailed in Table 4-20: 

 𝜷𝟎 𝜷𝟏 𝑸 𝑹 
Continuous 1 10 5 1 

Table 4-19 – Summary of Continuous Mean Size Control Tuning Parameters 

Finally the cost function is defined as follows:  

 
min

𝑣
𝐽 = 5∑(𝑦𝑖 − 𝑦𝑖,𝑠𝑒𝑡𝑝𝑜𝑖𝑛𝑡)

2
5

𝑖=1

+ ∑∆𝑣𝑙
2

5

𝑙=1

 
Equation 4-76 

Subject to:  100 𝐾 ≤ 𝑢 = 𝜑(𝒙, 𝑣) ≤ 360 𝐾 
 

−2 ≤ Δ𝑢(𝐾𝑚𝑖𝑛−1) = 𝜑(𝒙𝒊, 𝑣𝑖) − 𝜑(𝒙𝒊+𝟏, 𝑣𝑖+1)  ≤ 2 
 

 

Given:  𝒙 
�̇� = 𝒇(𝒙) + 𝒈(𝒙)𝑢 

 

This information is sufficient to describe the full design of the SFL-MPC for mean size control 

which will be used later in the chapter.  

4.10.8 Continuous Mean Size Control Scenarios 

The SISO SFL MPC for continuous MSMPR mean-size control has been defined, and for this 

study two scenarios will be presented as shown in Table 4-20. Both scenarios are seeded with 

the same size seed at 20 µm and the same loading of 0.5 g/L. Scenario 2 is subjected to feed 
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temperature disturbances each minute. The aim of the SFL-MPC is to reach a setpoint of 40 

µm crystal size in the outlet. This is an ambitious target for the existing control problem as it 

was already seen that the 20 µm seed can grow to 30.6 µm crystals by operating close to the 

low temperature limit of the MPC input. For this reason, the control problem for mean-size 

control is relaxed to allow a wider temperature range and though this may not be realistic in 

practice, the aim of this study is to observe if mean-size control is a viable control problem 

for the SFL-MPC and to also assess if the SFL-Plant constraints are also upheld and if SFL-MPC 

control produces feasible results.   

 
Scena-

rio 

Seed 
mean 
size 

(µm) 

Seed 
loading 
(g L-1) 

Feed 
Flow 
rate 
(mL 

min-1) 

Feed 
Temp. 

(K) 
Disturb. 

type 

Disturb. 
interval 
(mins) 𝒚𝒔𝒆𝒕𝒑𝒐𝒊𝒏𝒕 (µm) 

1  20 0.5 70 305 - - 40 

2 20 0.5 70 305 ± 2 Random 1 40 

 

Table 4-20 – Summary of Continuous Mean Size Control Scenarios  

4.10.9 Continuous Mean-Size Control Results and Discussion 

The first scenario is absent of any feed condition disturbances to establish how the controller 

performs. The results in Figure 4-36 show that the process converges to steady at around 100 

minutes and does indeed achieve the 40 µm crystal size target. The input profile over the first 

100 minutes shows a cycling behaviour where the temperature change is at the move-limit of 

2 K/min for most of the first 100 steps. The coolant temperature reaches as low as 105 K, but 

eventually stabilises at 155 K, these temperatures are likely not feasible in crystallization 

coolant systems which concludes that the target mean size of 40 µm from a seed size of 20 

µm and loading of 0.5 g/L is likely not realistic. A feasible input profile may be possible at a 

lower seed loading, or using a cooling medium which has more effective heat transfer to the 

system and thus doesn’t need drop to such low temperatures seen in this simulation. 

However, the system temperature stabilises at 304 K, so the heat transfer parameters in the 

energy balance cause this large difference and may be overcome with a more effective 

method of heating and cooling the crystallizer. Initially the process is cooled quickly to 

converge the mean size onto the target, and there is a slight overshoot in size which causes 

the cycling of heating and cooling in the input profile until the mean-size is converged on the 

target.  
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The second scenario extends the first by including feed temperature disturbances each 

minute, in the range of 310 ± 3 K. This range was chosen to exaggerate the potential 

disturbances in the feed temperature and to observe the controllability of this system. The 

results shown in Figure 4-37 show the mean size appeared to be affected by disturbances 

with the outlet crystal size fluctuating in the range of 40 ±  2 μm. However, the mean size is 

indeed converged onto the setpoint within the first 100 minutes and appears to remain 

converged despite the effects of disturbances. Thus, the results show feasible control of 

continuous MSMPR mean-size using SFL-MPC with SFL-Plant constraints.  

Concluding the mean size control cases, it appears that the SISO SFL MPC is able to control a 

seed to a desired mean size in the presence of process disturbances, though careful 

considerations should be made about the target mean size so that it is attainable by the 

system and controller. The SFL MPC has been tested for multiple crystallization configurations 

in this chapter and in all cases the simulation results appear to follow the expected trends, 

the behaviour of the controller can be explained down to the low-level detail and changes, 

and the SFL-plant constraints method also holds up across a wide selection of cases. These 

results allow the conclusion to be made that the SISO SFL MPC is a suitable controller for 

crystallization where an accurately identified model for the crystallization system exists and 

where there are real world constraints that must be adhered.  



171 
 

 

Figure 4-36 – Continuous mean-size control case 1 without disturbances.  
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Figure 4-37 – Continuous mean-size control case 2 with temperature disturbance and input constraints of 2 K/min ramp. 
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4.11 Conclusion 

This chapter introduced state space modelling and detailed the methodology for transforming 

a nonlinear state-space model into a linear model using the global input/output state 

feedback linearization method (Kravaris and Chung, 1987). The SFL model structure was also 

identified model predictive control introduced. The implementation of the SFL model into the 

MPC was a key part of this chapter for SISO control of batch and continuous MSMPR 

crystallization supersaturation control by manipulating the coolant temperature.  

This chapter introduced the nonlinear crystallization model used for batch and continuous 

crystallization. Subsequent linearization of the model for supersaturation control successfully 

converted the nonlinear input-output model into a linear input-output model, using the SFL 

procedure. The subsequent linear model was implemented into the SFL-MPC. The tuning 

parameters for the SFL-MPC were selected iteratively with the aim to prevent overshoot in 

the output trajectory and reduce the settling time for output response. The selected 

parameters were used to identify objective function weights, and a set of tuning parameters 

and weights were obtained for batch and continuous MSMPR crystallization systems for 

supersaturation control.  

The difficulties of constraint handling in SFL-MPC is introduced and a novel method for 

handling constraints is described, name SFL-Plant constraints. The SFL-MPC tuning and weight 

parameters were then used in a study to establish controller performance and feasibility 

across a set of batch and continuous scenarios with and without SFL-Plant constraints. The 

first outcome was that the SFL-Plant constraints were successfully implemented, and every 

scenario produced feasible results subject to the constraints, satisfying both the input limit 

and input move limit criteria. Secondly, KPIs were used to quantify the differences in error 

between similar scenarios and it was found that the tuning parameters were transferrable 

across many different crystallization conditions of the same paracetamol/water batch and 

continuous crystallization system. Finally, the relative performance of the SFL-Plant 

constraints simulations against the unconstrained equivalent simulations was consistent 

throughout the results, with an average simulation time increase of between 2 to 6 times 

across all batch and continuous simulations.  
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This chapter demonstrates the successful application of SFL-Plant constraints for SISO 

supersaturation control on batch supersaturation control, continuous MSMPR 

supersaturation control and continuous MSMPR number-weighted mean size control. The 

SFL-MPC with SFL-Plant constraints in a SISO control strategy demonstrated feasible 

controller performance and stability for all simulated case studies presented in this chapter. 

The next step from the SISO control is to explore MIMO control because in a realistic control 

scenario it would be useful to control multiple outputs or quality attributes instead of one. 

The following chapter introduces the MIMO SFL technique and MPC for crystallization control.  
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5 Multiple-Input Multiple-Output Model Predictive Control with State 

Feedback Linearization and Decoupling for Crystallization 

5.1 Introduction  

The state feedback linearization technique demonstrated in a single input single output 

configuration (Kravaris and Chung, 1987) has been successful in controlling supersaturation 

and crystal mean size. This chapter extends the SISO controller to multiple-input multiple-

output (MIMO) systems (Kravaris and Soroush, 1990) to further explore the capabilities of the 

SFL MPC controller with the SFL-Plant constraints technique. The SFL extension to MIMO will 

first be defined and then applied to a continuous MSMPR crystallization problem. A similar 

MIMO control has been applied to the continuous MSMPR elsewhere which includes the use 

of agitation rate in the kinetic equations for growth and nucleation, and successfully 

demonstrates how the agitation rate and feed flow rate can be used to control the third 

moment and temperature of the system, but the application is not of an MPC controller but 

a PID (Quintana-hern, Tututi-avila and Hern, 2012). In this chapter, a MIMO MPC will be 

applied to the supersaturation and crystal mean size control by manipulation of crystallizer 

jacket temperature and seed loading and the overarching aim is to test the applicability of 

SFL-Plant constraints. 

5.2 State-Feedback Linearization MIMO 

The exploration of MIMO MPC stems from the desire to control multiple outputs in a process. 

The procedure for applying SFL to a MIMO system is a direct extension of the SISO SFL 

technique as detailed by Kravaris and Chung (1987) and the technique will be described here, 

this technique is fully described by Kravaris and Soroush (1990). To perform MIMO SFL, first 

the characteristic matrix must be defined (Ha and Gilbert, 1986):  

 

𝐶 =  [

𝐿𝑔1𝐿𝑓
𝑟1−1

ℎ1 ⋯ 𝐿𝑔𝑚
𝐿𝑓
𝑟1−1

ℎ1

⋮ ⋱ ⋮

𝐿𝑔1
𝐿𝑓
𝑟𝑚−1

ℎ𝑚 ⋯ 𝐿𝑔𝑚
𝐿𝑓
𝑟𝑚−1

ℎ𝑚

] 

 

Equation 5-1 

Where the Lie derivatives have their usual meanings. This matrix is valid for an 𝑚 × 𝑚 system 

of inputs and outputs. The characteristic matrix is used for decoupling every combination of 

input/output using the same technique described in chapter 4. An important condition must 

be met to define the characteristic matrix is that each output must have a relative order for 
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every input. Therefore, the relative orders 𝑟𝑖 must be found using the SFL technique for all 

possible input/output combinations. Plant testing techniques used for cause-effect analysis 

can be used to ensure that the selected inputs do indeed affect each of the outputs in the 

system, thus guaranteeing this condition is satisfied. When relative orders have been 

obtained to populate the characteristic matrix, the next stage is to decouple the system such 

that each output is controlled exactly by 1 unique input, the process of selecting the pairings 

of unique inputs to outputs will be described in the following section. A special form of the 

characteristic matrix Equation 5-1 is used for decoupling as shown here: 

 

𝐸 =  [

𝛽1,𝑟𝐿𝑔1𝐿𝑓
𝑟1−1

ℎ1 ⋯ 𝛽1,𝑟𝐿𝑔𝑚
𝐿𝑓
𝑟1−1

ℎ1

⋮ ⋱ ⋮

𝛽𝑚,𝑟𝐿𝑔1
𝐿𝑓
𝑟𝑚−1

ℎ𝑚 ⋯ 𝛽𝑚,𝑟𝐿𝑔𝑚
𝐿𝑓
𝑟𝑚−1

ℎ𝑚

] 

 

Equation 5-2 

Where the included 𝛽 parameters are identified using tuning, but follow the same rules as 

seen in the SISO SFL case. Thus, to guarantee closed-loop stability, these tuning parameters 

must have positive real values. The decoupling matrix shows that one value of relative order 

is used in each row of the matrix. This order is the lowest that exists for that output, which 

means if the first output 𝑦1( otherwise, ℎ1)  is linearized with respect to two inputs 𝑢1 and 

𝑢2, if the relative order for the linearization is 𝑟 = 1 and 2 respectively, the value of 1 is used 

in the row. The physical meaning of this is that the input which has the lowest relative order 

will have the greatest impact on the output, thus the output will be paired with the respective 

input for control. This can be proved by referring to the following conditions for input/output 

decoupling, where the relative order is found when the input/output linearization yields a 

non-zero value:  

 𝐿𝑔𝐿𝑓
𝑘𝒉(𝒙) =  0 𝑘 = 0, 1, … , 𝑟 − 2 Equation 5-3 

 𝐿𝑔𝐿𝑓
𝑟−1𝒉(𝒙) ≠ 0  Equation 5-4 

Extending the example above, when the relative order 𝑟 is 1 for 𝑢1 and 2 for 𝑢2, if the value 

of 1 is used in row of the decoupling matrix, the Lie derivative with respect to 𝑢2 will be 

reduced to 0, thus 𝑦1 will be controlled by 𝑢1 and decoupled from 𝑢2. This principle applies 

to all inputs and outputs in the decoupling matrix, and hence the inputs and outputs are 

decoupled (Ha and Gilbert, 1986) and set of pairings between inputs and outputs will emerge. 
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In cases where inputs have the same relative order when linearized to the same output, 

further selection criteria are required and then more advanced techniques such as input-

output selection (Van De Wal and De Jager, 2001) or sensitivity analyses (Saltelli et al., 2008; 

Fysikopoulos et al., 2018) can be performed.  

Once Equation 5-1 has been populated, it can be implemented into a control law that is 

specifically designed for MIMO systems but again is an extension of the SISO system. In fact, 

by setting the number of inputs and outputs to 1, the SISO SFL case will emerge, hence the 

SISO SFL system appears to be a special case of the MIMO system:  

 

𝑢 =  −𝐸−1

[
 
 
 
 
 
 
∑ 𝛽1𝑘

𝐿𝑓
𝑘𝑥1

𝑟1

𝑘=0

⋮

∑ 𝛽𝑛𝑘
𝐿𝑓
𝑘𝑥𝑛

𝑟𝑛

𝑘=0 ]
 
 
 
 
 
 

+ 𝐸−1𝑣 

 

Equation 5-5 

The MIMO SFL control law uses the inverted decoupling matrix is referred to herein as SFLD. 

For Equation 5-5 to be used to control, the decoupling matrix must be square and invertible 

(non-singular). The determination of the relationships between inputs and outputs are all 

performed offline and must be performed only once, following this the tuning can be 

performed as detailed in chapter 4. The tuning for MIMO is more laborious than for SISO 

because of the number of additional parameters involved in the SFLD. To simplify the tuning, 

each decoupled input/output pair will be tuned first in a SISO configuration which follows the 

method from chapter 4, and the resulting tuning parameters will be combined and applied 

for MIMO control. There is a drawback in this technique as described by Kravaris and Soroush 

(1990) which disclose the design of this MIMO linearization based on decoupling the closed-

loop response may not yield satisfactory control results, especially when the plant is ill-

conditioned or when the 𝛽 parameters are chosen to uphold closed-loop stability, there will 

be cases where process performance may deteriorate or yield undesirable results. However, 

the emphasis of using this technique remains on evaluation of the application of SFL-Plant 

constraints in MIMO SFLD MPC.  
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5.2.1 Lie derivatives and controller setup  

To populate the decoupling matrix 𝐸, first the inputs and outputs must be defined. In this 

case the outputs are supersaturation and number-weighted crystal mean-size and the first 

input is the jacket temperature because these have already been studied in the prior chapter. 

The second input requires some further knowledge of the system to understand the other 

properties that can be manipulated. From the plant model, the seed moments can be 

manipulated alongside the inlet conditions for temperature, flow rate and concentration. 

Considering the control of mean-size and the prior discussions of the results in chapter 4 

which describe the effects of seed size and loading on mean-size, it appears the seed loading 

will be a suitable input. The seed loading is represented in the plant as part of the seed 

moments, because the moments are defined on the basis of a gram of solvent. The SFL for all 

four combinations of input/output is performed and the relative orders are summarised in 

Table 5-1. The lowest order for mean size and supersaturation were both 1, therefore the 

value of 𝑟1 and 𝑟2 is set to 1 and the decoupling matrix is populated. Hence, the pairings of 

this MIMO system are the jacket temperature controlling supersaturation and seed loading 

controlling the mean size. Furthermore, once the decoupling matrix is populated it is then 

important to ensure the matrix is invertible for use in the SFLD control law, in this case it is 

invertible. The next step in this procedure is tuning but first some open-loop simulations will 

be performed on the plant model.  

 Mean Size Super-saturation 

Seed Loading 1 2 

Jacket 
Temperature 

2 1 

Table 5-1 – Summary of the relative order from SFL for every input/output pairing 

5.2.2 Open-Loop Input-Output Testing 

The plant model will be open-loop tested because it is known that the MIMO MPC has been 

decoupled using SFLD, but the impact of seed loading on mean size and supersaturation has 

not been established clearly. A simple study on an open-loop simulation of the MSMPR can 

be performed to assess how changing the jacket temperature and seed loading will affect the 

steady state position of the MSMPR in the phase diagram and thus the trajectories for the 

mean size and supersaturation can also be deduced. In the first case, the seed loading is held 

constant at 0.5 g/L and the jacket temperature set to a fixed value of 305 K, 310 K and 315 K. 
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The results of the open-loop MSMSPR start-up are shown in  Figure 5-1. The second case holds 

the jacket temperature at 310 K while the seed loading of 0.4, 0.5 and 0.6 g/L are used for the 

same MSMPR start-up, results shown in Figure 5-2. 

  

Figure 5-1 - Effect of coolant temperature on mean size and supersaturation 

 

Figure 5-2 -  Effect of seed loading on mean size and supersaturation 

In both cases it is evident that both inputs affect both outputs. The steady-state mean size 

and supersaturation values are determined from each case, and using 310 K and 0.5 g/L as 
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the base case, the change in mean size and supersaturation as a result of changes to seed 

loading and jacket temperature are shown in Table 5-2, to confirm that each input does 

indeed affect both outputs. This information is important when considering the closed-loop 

MIMO MPC with SFLD because although the MPC has decoupled the effects of these inputs, 

there does exist an interrelationship in the dynamics which will not be captured by the 

controller, which could lead to undesirable crystallization performance. 

 Δ mean size 
(m) 

Δ super-saturation 
(g/g) 

Δ seed loading 
(g/L) 

-0.0087 -0.3815 

Δ jacket 
temperature 

(K) 
-6.64E-08 -2.90E-06 

 

Table 5-2 – Summary of the sensitivity of mean size and supersaturation to changes in seed loading and jacket temperature. 

5.2.3 MIMO MPC with SFLD Control  

This section will detail the MIMO MPC with SFLD starting with defining the control problem 

and performing tuning on two SISO systems to then complete the tuning of the MIMO system 

and determine if the SFL-Plant constraints can be applied successfully; the criteria for 

successful constraint application is feasible input profiles.  

5.2.3.1 Objective Function and Constraints 

The objective function for the MIMO MPC with SFLD control problem is: 

 

min
𝑣

𝐽 = 𝑄1 ∑(𝑦1,𝑖 − 𝑦1,𝑖,𝑠𝑒𝑡𝑝𝑜𝑖𝑛𝑡)
2

𝑁𝑝

𝑖=1

+ 𝑅1 ∑∆𝑣1,𝑙
2

𝑁𝑐

𝑙=1

+ 𝑄2 ∑(𝑦2,𝑖 − 𝑦2,𝑖,𝑠𝑒𝑡𝑝𝑜𝑖𝑛𝑡)
2

𝑁𝑝

𝑖=1

+ 𝑅2 ∑ ∆𝑣2,𝑙
2

𝑁𝑐

𝑙=1

 

Equation 5-6 

Subject to:  273 ≤ 𝑢1 = 𝜑(𝒙, 𝑣) ≤ 360 
 

−2 ≤ Δ𝑢1(𝐾𝑚𝑖𝑛−1) = 𝜑(𝒙𝒊, 𝑣𝑖) − 𝜑(𝒙𝒊+𝟏, 𝑣𝑖+1)  ≤ 2 
 

0.25 ≤ 𝑢2 = 𝜑(𝒙, 𝑣) ≤ 2.5 
 

 

Given:  𝒙 
�̇� = 𝑓(𝑥) + 𝑔(𝑥)𝑢 
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Where 𝑢1 is the jacket temperature, 𝑢2 is seed loading, 𝑦1is the supersaturation and 𝑦2 is the 

crystal mean size. The SFL-Plant constraints are also applied to the absolute value and relative 

change of the jacket temperature, and also to the absolute value of the seed loading.  

The simulation data is from the P/W system as shown in Table 5-3 (Nagy, Chew, et al., 2008a; 

Nagy, Fujiwara, et al., 2008), meanwhile the initial conditions for the crystallizers are a 

temperature of 315 K, concentration of 0.0256 g/g initialised with seed moments 

corresponding to a mean-size of 20 µm and seed loading of 0.5 g/L.  

 
Value Units 

  𝒌𝒃 𝑒45.8 min-1g-1 

𝒃 6.2 - 
𝒌𝒈 𝑒−4.1 m min-1 

𝒈 1.5 - 
𝝆 1000 kgm-3 
𝒌𝒗 0.24 - 
𝝆𝒄 1296 kgm-3 

𝑽 1 L 

𝑪𝒊𝒏 0.0256 g/g 
𝑭𝒊𝒏/𝑭𝒐𝒖𝒕 0.07 L/min 

𝑲 0.1 - 
𝑼𝑨𝒄 54521 J min-1 K-1 

𝑻𝒊𝒏 305 K 
Table 5-3 – Crystallization Data  

 

 

5.2.3.2 Tuning MIMO MPC with SFLD using SISO MPC 

The tuning procedure used will first consider the two decoupled input/output systems as SISO 

systems to perform the tuning, and the chosen parameters will be combined for the MIMO 

MPC. The objective function weights for 𝑄 and 𝑅 are set to 1 for the SISO tuning.  

5.2.3.2.1 SISO Supersaturation Control Tuning 

The SISO supersaturation control tuning was fully detailed in chapter 4. The resulting tuning 

parameters values of 0.5 and 1 were used for 𝛽0 and 𝛽1, respectively.  

5.2.3.2.2 Seed loading 

The SISO case for seed loading and mean size has also been evaluated using a similar iterative 

approach. It was determined that the seed loading should not be less than 0.25 g/L or larger 
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than 2.5 g/L, thus these constraints were defined using the SFL-Plant constraints method.  The 

MPC objective function used for tuning is: 

 
min

𝑣
𝐽 = ∑(𝑦𝑖 − 𝑦𝑖,𝑠𝑒𝑡𝑝𝑜𝑖𝑛𝑡)

2
5

𝑖=1

+ ∑∆𝑣𝑙
2

5

𝑙=1

 
Equation 5-7 

Subject to:  0.25 ≤ 𝑢 = 𝜑(𝒙, 𝑣) ≤ 2.5 
 

 

Given:  𝒙 
�̇� = 𝑓(𝑥) + 𝑔(𝑥)𝑢 

 

The main results from this tuning were that the seed size appears to be very sensitive to the 

seed loading and many combinations of tuning parameters needed to be used to establish a 

stable and desirable control response. It was found that the value of 𝛽0 had significantly less 

impact on the overall control response than 𝛽1. For the latter, a value less than 25 resulted in 

significant oscillations in the seed loading throughout the simulation and values over 50 

resulted in a very slow response and convergence to setpoint, longer than the 300-minute 

simulation used for tuning. Three tuning simulations are shown where 𝛽1 is 30, 40 and 50 in 

Figure 5-3, Figure 5-4 and Figure 5-5 respectively.  

 

Figure 5-3 -  Mean size control – 𝛽1= 30 

The results in Figure 5-3 show the mean size of crystals increasing from 20 µm, overshooting 

the set-point of 40 µm and finally converging to within 2% of the target at 82 minutes and 

stabilized within 1% of the target after 125 minutes. The corresponding seed loading sees 
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some oscillations at the beginning, including saturation at the highest and lowest allowed 

seed loading as per the bounds, but this subsided after 15 minutes and was common to all 

three results that are presented here. The oscillation could not be avoided despite efforts to 

change the tuning parameters, this is one of the inherent difficulties with this form of 

input/output linearization; tuning parameters can be chosen to ensure a convergence but in 

comparison to traditional linear systems with linear MPC, the parameters cannot be chosen 

intuitively (Kravaris and Soroush, 1990; Kravaris, 1988). There is a transient change in the 

loading up to 82 minutes, beyond which the loading stabilizes with some minor oscillations. 

Finally, the trajectory is smooth after 125 minutes, simultaneously the output trajectory also 

stabilises. Though the result was considered acceptable as the mean size difference between 

the set-point and trajectory was 0.04 µm, other controller tuning parameters were tested to 

see if a value closer to 40 µm could be obtained.  

 

Figure 5-4 -  Mean size control – 𝛽1= 40 
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Figure 5-5 - Mean size control – 𝛽1= 50 

Subsequently, the results in Figure 5-4 show the best case for set-point convergence where 

𝛽1 is 40, the mean size was within 2% at 100 minutes and the trajectory finally stabilised to 

within 0.25% of the set-point at 130 minutes. In addition to requiring more time to reach 

steady state, the seed loading trajectory has a noticeably greater magnitude in oscillation 

which would require the seeding mechanism to change the loading every minute. The 

oscillations were more pronounced as compared to the previous tuning settings but 

eventually the input oscillations did stabilize and disappear after 250 minutes. For a final 

comparison, the case where 𝛽1 is 50 shows the mean size within 2% of the set-point at 135 

minutes and stabilizing within 1.25% after 190 minutes. In conjunction to this, the seed 

loading sees some oscillatory behaviour again followed by a transient change to seed loading 

through the start-up procedure in the first 120 minutes and the seed loading is stabilized at 

190 minutes. The larger value of 𝛽1 in this range resulted in longer time to reach steady state. 

There was no direct correlation between the tuning value to the set-point error, because 

when the value of 40 was chosen the mean size at steady state was closest to the set-point, 

but it was further from setpoint at 30 and furthest at 50.  

This decaying oscillatory response at the beginning of these simulations could be due to some 

plant-model mismatch which causes an instability in the control moves, but further actions 

could be taken to mitigate these. The first option would be to apply significantly larger input 

weights on the seed loading to prevent the oscillations. Another way to prevent the 
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oscillations would be to apply an input rate limit, thus preventing the seed loading from 

changing significantly from one-time step to the next. It is possible to facilitated these 

constraints in the constraints handling function. Furthermore, there may be a need for more 

complex linear models to capture the input/output behaviour for seed loading onto crystal 

mean size, and a further analysis on the plant-model mismatch is likely to indicate this; 

alternatively it may be more suitable to select a different input instead of seed loading to 

control the mean size.  

Though these results demonstrate the impact of the controller tuning parameters for SFL, the 

decision was made to use the value of 40 for 𝛽1 despite the oscillatory behaviour in the input 

trajectory. The SFL-Plant constraints applied to the seed loading in all three simulations were 

also satisfied, so all the input trajectories were again feasible. Therefore, with the two 

separate SISO test cases, a starting point for MIMO MPC with SFLD is now established.  

5.2.4 MIMO MPC with SFLD Framework 

The MIMO SFLD framework is an extended version of the SISO framework as seen in Figure 

5-6. The SFL control law is replaced with the SFLD law and for each input/output mapping 

there is a unique linearization model. The MPC handles these models internally and the 

optimisation for MIMO is handled as a single weighted objective function with all inputs and 

outputs integrated into one objective. The weightings require consideration to ensure that 

one objective isn’t favoured over another due to differences in the order of magnitude of the 

values.   
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Figure 5-6 – MIMO MPC with SFLD Framework 

5.2.5 MPC data 

The control set points, weightings and tuning parameters are summarised in Table 5-4. The 

initial conditions of the MSMPR consist of moments which are all equal to the seed moments 

obtained using the initial seed loading of 0.5 g L-1 for a 10 µm seed with 1 µm standard 

deviation, normally distributed.  The concentration is 0.0256 g/g and the temperature is 315 

K. The tuning parameters shown in the table are from the SISO results, but further tuning was 

required when they were implemented into the MIMO case so the changes have been 

indicated with (MIMO) in the table. the mean size 𝛽1 is adjusted in the results section to 

observe the impact on controllability of the crystallizer. The set-point for mean size (𝑦𝑟𝑒𝑓2) of 

21 µm and 20 µm are used and clearly indicated in the respective results discussion. The 

crystallizer volume is 1 L and with a flow rate of 0.07 L min-1, the resulting mean residence 

time is 14.28 mins. The prediction and control horizons are set to 10. 

 Value Units 

Supersaturation 𝜷𝟎 0.5 - 
Supersaturation 𝜷𝟏 1 - 
Mean size 𝜷𝟎 1 - 
Mean size 𝜷𝟏 40, 18 (MIMO) - 
𝑸 (supersat) 1 - 
𝑹 (supersat) 1 - 
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𝑸 (Mean size) 1 - 
𝑹 (Mean size) 1 - 
𝑸𝟏 (MIMO) 0.1 - 
𝑹𝟏 (MIMO) 50000 - 
𝑸𝟐 (MIMO) 0.1 - 
𝑹𝟐 (MIMO) 100000 - 

𝒚𝒓𝒆𝒇𝟏
 0.0006 g/g 

𝒚𝒓𝒆𝒇𝟐
 20, 21(MIMO) µm 

Table 5-4 – Controller data 

5.2.6 MIMO MPC with SFLD Results 

The objective function for the MIMO study combines the objectives of both outputs and 

inputs into a single cost function, the weighting matrices (𝑄1, 𝑄2, 𝑅1 𝑎𝑛𝑑 𝑅2) needed to be 

assigned with appropriate values to ensure the numerical values from one objective did not 

dominate the objective function. The weighting was first adjusted based on the magnitude of 

the inputs and outputs. For MIMO tuning, the parameter for  𝛽1 for the seed loading which 

was tuned to 40 resulted in instability for MIMO MPC. Therefore, while the SISO 

supersaturation tuning parameters were directly transferrable to MIMO, the mean size 

controller parameters were not, so further tuning of a 𝛽1 was required. Then to test the 

sensitivity of the mean size tuning parameter to changes in the setpoint, the mean size set-

point was changed from 20 µm to 21 µm. A greater change than this would not be suitable 

given the strong coupling between the supersaturation and mean size as determined from 

open-loop simulation. Three sets of results are shown whose tuning parameters are in Table 

5-5. 

Case 𝜷𝟎,𝒔𝒔 𝜷𝟏,𝒔𝒔 𝜷𝟎,𝒎𝒔 𝜷𝟏,𝒎𝒔 𝒚𝒓𝒆𝒇𝟏 𝒚𝒓𝒆𝒇𝟐 

1 0.5 1 1 18 0.0006 20 µm 
2 0.5 1 1 18 0.0006 21 µm 
3 0.5 1 1 24 0.0006 21 µm 

Table 5-5 – Overview of tuning parameters and setpoints for MIMO results 

The value of 𝛽1 for mean-size is referred to as 𝛽1,𝑚𝑠. After iteratively tuning 𝛽1,𝑚𝑠 for the 20 

µm setpoint, the value of 18 for was found to show good control with a reasonable seed 

loading profile. The results are shown in Figure 5-7. The supersaturation converged to within 

1% of the set-point after 50 minutes and remained there throughout the simulation, and the 

coolant temperature during start-up did reach the upper limit of 320 K but then gradually 

decreased as the system attempted to approach steady state. The mean size stabilized to 

within 3% of the set-point after 100 minutes but the seed loading exhibited small oscillatory 
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behaviour after 50 minutes. The seed loading appeared to be increasing at the end of the 

simulation, so the steady state of the MSMPR was likely not reached in the 450-minute 

simulation and will require more time to reach steady state. However, given the input changes 

were very small towards the end, the MSMPR was likely to be close to the steady state in the 

phase diagram. Consequently, the simulation was ended at 450 minutes. The SFL-Plant 

constraints were upheld throughout this simulation 

 

Figure 5-7 – MIMO control – 𝛽1= 18, 𝑦𝑟𝑒𝑓2= 20µm 

Using the same tuning parameters and changing the mean size target to 21 µm, the resulting 

simulation is shown in Figure 5-8. The main differences here from the previous simulation are 

that the seed loading immediately had oscillations which never converged to a stable value 

or trajectory, although the general shape of the trajectory is similar to that of the previous 

case. The input profile for the coolant temperature was smooth at the beginning but only up 

to 140 minutes, coincidentally this is where the upper limit of seed loading is encountered. 

When the seed loading is saturated at the upper limit, the coolant temperature profile is 

affected by some oscillatory behaviour, but the magnitude of these oscillations is likely limited 

by the rate of change constraint on the temperature input, therefore the SFL-Plant constraints 

are upheld. The supersaturation was within 1% of the set-point until the seed loading reached 

the high limit and then there were minor deviations throughout the remainder of the 
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simulation. The supersaturation did remain within 5% of the set-point despite the coolant 

temperature fluctuations. Similarly, the mean size was within 2% of the target at 140 minutes. 

These results suggest that as the MSMPR is cooling and crystal growth is taking place, there 

is an increase in the seed loading to increase the number of crystals being seeded into the 

system, the controller does this to remain close to the mean size target. There appear to be 

some coupled effects between the two input/output pairings and when one input reaches 

the constraint limit, the MPC appears to manipulate the second input more aggressively. 

Adding this to the difficulty of establishing adequate tuning parameters across a wider range 

of setpoints does make MIMO MPC with SFLD of this system a difficult control procedure to 

recommend. The sensitivity to these tuning parameters does suggest that there is a 

requirement for conditional tuning parameters with this MIMO MPC with SFLD. The 

suggested improvements from the previous section, including the addition of input rate limits, 

may be a better control approach for this system. 

In the final simulation (Figure 5-9) an attempt was made to re-tune the controller parameter 

for the mean size target of 21 µm and a value of 24 had the best control response for both 

mean size and supersaturation. The supersaturation was within 1% of target after 80 minutes 

and the mean size within 2% at the same time. The temperature profile performed a cooling 

ramp at the beginning of simulation, reaching the bottom limit, and then there was an 

increase in coolant temperature to 280.5 K where it stabilized after 190 minutes. Similarly, 

the seed loading decreased down to the lower limit but then exhibited some oscillatory 

behaviour throughout the process after 50 minutes. After 190 minutes, the seed loading 

remained within the range of 0.253 and 0.289 gL-1 for the remainder of the simulation. This 

set of results also shows that the temperature of the coolant is as low as the first case in 

Figure 5-7, but where the seed loading was increased to maintain 20 µm previously, it is now 

remaining low to maintain 21 µm target, which is reasonable. The controller performance for 

this case is therefore acceptable and the SFL-Plant constraints are again feasible. 
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Figure 5-8 – MIMO control – 𝛽1= 18, 𝑦𝑟𝑒𝑓2= 21µm 

 

Figure 5-9 – MIMO control – 𝛽1= 24, 𝑦𝑟𝑒𝑓2= 21µm 

In all the MIMO cases, it was not possible to achieve both output targets exactly given the 

highly coupled nature of supersaturation and mean size in the crystallization system being 

simulated, this is one of the disadvantages that was mentioned by Kravaris and Soroush 
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(1990). The decoupling in SFLD attempts to decouple as best possible the two input and 

output pairings, but when one of the inputs becomes saturated there has been an observed 

impact on the other input. The exact origin of this has not been determined mainly because 

with the presence of linearization, decoupling, control tuning and optimisation problem 

solving; it is very difficult to trace the cause. Overall, the results show the importance of 

selecting controller tuning and objective function weights in a MIMO MPC with SFLD scheme 

as these can have a significant impact on the simulation results, especially when seed loading 

is used to control mean size. Significant effort is also required to find the best tuning 

parameters and likely will not be transferable to different setpoints, which is a drawback to 

this technique. If a good set of tuning parameters exist for a decoupled system, they would 

best be found through a global optimisation method. Otherwise, a unique set of tuning 

parameters will need to be identified each time there is a change to setpoints. In all the cases 

of MIMO MPC with SFLD that were simulated, the SFL-Plant constraints were used 

successfully and therefore this technique for is indeed usable for SISO and MIMO SFL MPC.  

5.3 Conclusions 

This chapter covers the development process of a MIMO MPC with SFLD for a cooling MSMPR 

crystallization process. The development workflow begins with the MIMO SFLD methodology 

which extends the SISO SFL methodology from the previous chapter. Two inputs (jacket 

temperature and seed loading) and two outputs (supersaturation and crystal mean size) are 

then selected for performing SFLD, resulting in the pairing of jacket temperature to control 

supersaturation and seed loading to control mean-size. Subsequent open-loop simulations 

demonstrated the highly coupled relationship of seed loading and temperature to both 

outputs and the MIMO MPC was tuned.  

It was found that while it was possible to transfer the tuning parameters from SISO 

supersaturation control to MIMO, the transferal from the SISO mean-size control using seed-

loading did not yield stable results in a MIMO configuration. Thus, the MIMO MPC required 

retuning and it was found that the mean-size control was sensitive to changes in setpoint too 

of as little as 20 µm to 21 µm. Overall, these limitations were expected because various 

limitations were stated prior by Kravaris and Soroush (1990), but the successful application of 

MIMO SFLD on crystallization was shown by Quintana-Hernandez 𝑒𝑡 𝑎𝑙. (2015) for a system 

where agitation rate was also used in the model, so there may be other systems for which the 
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MIMO SFLD can be successfully applied without the limitations seen in the configuration 

detailed in this chapter. The main outcome from this chapter is that the SFL-Plant constraints 

were successfully applied to the MIMO SFLD framework and have shown the same success in 

application as for the SISO case, but it would be important to consider alternative control 

problems which either limit the seed loading input rate, or consider the use of a different 

input to control mean size. 
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6 Comparative Study of SFL-MPC and ARX-MPC applied to Seeded 

Batch Crystallization 

6.1 Introduction 

The contributions in previous chapters have focussed on the use of mechanistic models with 

successful application of the SFL MPC in SISO configurations for batch and continuous MSMPR 

crystallization with SFL-Plant constraints. This now leads into a comparison of the SFL MPC 

with other modelling and MPC techniques used in industry. Comparisons of MPC techniques 

for crystallization have been performed and the results disclosed in literature, the most 

significant publication relevant to crystallization MPC comparison was from Shen et al. (1999) 

who compared SFL (named global linearizing control) with multi-model MPC, generic model 

control with a PI regulator, and PID control. The focus of this chapter is to compare the SISO 

MPC with SFL against a data driven modelling technique that is commonly used for MPC in 

industrial applications (Qin and Badgwell, 1997, 2003). Furthermore, in all of the prior SFL 

MPC case studies disclosed in this research the plant and model were a perfect match and 

the MPC simulation was performed in MATLAB. This chapter will introduce the 

implementation of the SFL MPC in a new environment, to be used in an industrial software 

used for data analysis, optimization, monitoring and process control, PharmaMV (PMV), from 

Perceptive Engineering Ltd. The plant will be a batch crystallization simulation built in 

gPROMS Formulated Products (gFP), solved using a higher order finite volume method (FVM), 

thus introducing a plant-model mismatch. The use of separate platforms for MPC and plant 

simulation also introduces the need to form an interface between both platforms. This is a 

common requirement in industry when controlling process equipment through a distributed 

control system (DCS). The performance of the SISO MPC with SFL is compared with a SISO 

MPC with autoregression model with exogenous input (ARX) (Jensen, Lindholm and 

Henneberg, 1996).  

This chapter will begin by introducing the new crystallization system and the separate 

software platforms used for plant simulation and control. The model identification discussion 

will follow because the ARX model identification is performed using both software platforms.   
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6.2 Crystallization System 

The crystallization system in this study is paracetamol crystallization in isopropyl alcohol (IPA) 

referred to as P/IPA herein. As Granberg and Rasmuson (1999) reports, paracetamol has a 

higher solubility in IPA than in water, and is another common crystallization system for 

paracetamol, making the P/IPA system a good candidate system for this study. The chemical 

and thermodynamic data used for P/IPA is shown in Table 6-1 (Ålander, Uusi-Penttilä and 

Rasmuson, 2004). The solubility, heat capacity of the crystal (𝑐) and solvent (𝑠) and density 

of the solvent are determined using Euqation 6-1 to 6-4, respectively. 

 𝐶∗ = 𝐴0 + 𝐴1𝑇 + 𝐴2𝑇
2 Equation 6-1 

 𝑐𝑝,𝑐 = 𝐵0 + 𝐵1𝑇 Equation 6-2 

 𝑐𝑝,𝑠 = 𝐶0 + 𝐶1𝑇 Equation 6-3 

 𝜌𝑠 = 𝐷0 + 𝐷1𝑇 Equation 6-4 

Parameter Value Units 

Solubility Coefficients 

𝑨𝟎 1.03992 𝑘𝑔/𝑚3 

𝑨𝟏 -7.24E-03 𝑘𝑔/𝑚3𝐾 

𝑨𝟐 1.27E-05 𝑘𝑔/𝑚3𝐾2 

Heat capacity coefficients 

𝑩𝟎 531.04 𝐽/𝑘𝑔𝐾 

𝑩𝟏 6.458 𝐽/𝑘𝑔𝐾2 

𝑪𝟎 -403.71 𝐽/𝑘𝑔𝐾 

𝑪𝟏 1.31E+01 𝐽/𝑘𝑔𝐾2 

Density coefficients 

𝑫𝟎 1066.36 𝐽/𝑘𝑔𝐾 

𝑫𝟏 -8.96E-01 𝐽/𝑘𝑔𝐾2 
   

𝝆𝒄  1200 𝑘𝑔/𝑚3 

𝚫𝑯𝒄  0 J/kg 

𝒌𝒗 0.24  

Table 6-1 – Batch Crystallization Properties for Paracetamol/IPA 

The seeded batch crystallization plant model is a defined in Equation 6-5 to Equation 6-11. 

The full size-distribution is calculated using finite volume method with 50 grid points, and the 
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system only has growth kinetics and no nucleation. In this crystallization model it is the 

supersaturation ratio (𝑆𝑟) which is the output, changed to represent a new control problem, 

and furthermore the input is the coolant temperature (𝑇𝑗) 

 𝜕𝑓𝑛(𝐿)

𝜕𝑡
=  𝐺

𝜕[𝑓(𝐿)]

𝜕𝐿
  

 

Equation 6-5 

 

𝑑𝐶

𝑑𝑡
= −𝑘𝑣𝜌𝑐(3𝐺𝜇2 + 𝐵𝑟0

3) 

 

Equation 6-6 

 

𝑑𝑇

𝑑𝑡
=  −

3𝜌𝑐𝑘𝑣𝐺𝜇2∆𝐻

𝜌𝑐𝑝
−

𝑈𝐴𝑐

𝜌𝑉𝑐𝑝
(𝑇 − 𝑇𝑗) 

 

Equation 6-7 

 

𝐺 = 𝑘𝑔(𝑆)𝑔 Equation 6-8 

 
𝑆 = 𝐶 − 𝐶∗ Equation 6-9 

 
𝐶∗(𝑇) = 𝐴0 + 𝐴1𝑇 + 𝐴2𝑇

2 Equation 6-10 

 
 𝑦 = 𝑆𝑟 = 𝐶/𝐶∗ Equation 6-11 

 

6.3 Model Identification  

The aim of this study is to compare the performance of an ARX MPC and SFL MPC. The ARX 

modelling in PharmaMV is applied to input-output discrete-time data, obtained using a black 

box system identification approach, otherwise referred to as plant-testing, by applying some 

inputs to a process and observing the output at discrete points in time (Johansson, 1993). In 

this case the plant is the batch crystallization model defined in Equation 6-5 to 6-10 solved 

using the finite volume method and the input-output data is obtained from this virtual plant, 

but the same identification approach can be used on a real plant in practice. The following 

sub-sections will discuss ARX modelling.  

6.3.1 ARX Model  

The ARX is a polynomial input-output regression model used to describe dynamic systems and 

can be applied to discrete-time data. Identification of an ARX system model is commonplace 

for process dynamics and control analysis (Jensen, Lindholm and Henneberg, 1996) and has 

been used across the oil and gas, fine chemicals, wastewater treatment and pharmaceutical 

industries for system identification and modelling for process control (Swaanenburg et al., 

1985; García, Prett and Morari, 1989a; Simani, Fantuzzi and Beghelli, 2000; Casanova-Peláez 
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et al., 2012; Rincón, Roux and Lima, 2015). The widespread use of this technique is the reason 

for performing the comparison with SFL-MPC. A linear ARX model will be identified for the 

batch crystallization system. The ARX model is of the form shown in Equation 6-12. 

 𝑦𝑘 = Σ𝑖=1
𝑛𝑎 𝑎𝑖𝑦𝑘−𝑖 + Σ𝑖=1

𝑛𝑏 𝑏𝑖𝑢𝑘−𝑖 + 𝑒𝑘 Equation 6-12 

In this form, 𝑎𝑖 is the 𝑖𝑡ℎ coefficient for the output term and 𝑏𝑖 is the 𝑖𝑡ℎ coefficient for the 

input term, with the error residuals being stored in the error term, 𝑒, and 𝑛𝑏 is the number of 

past inputs (𝑢) used to determine the output prediction. The linear first order ARX model has 

one coefficient for 𝑎, thus 𝑛𝑎 is 1, but higher order ARX models can also be identified using 

this same method. This type of modelling requires input-output data which can collected by 

subjecting the plant to a series of inputs and observing the outputs (Mullen and Jebwab, 1995; 

Qin and Badgwell, 1997). The input and output data are time-aligned and using a least-

squares approach the coefficients of 𝑎 and 𝑏 are identified. The significance of both 

coefficients will now be discussed. 

The 𝑏 coefficient is the extent to which the inputs will affect the output. The 𝑎 coefficient 

represents the extent to which a model prediction is based on past values of the output, thus 

larger values of 𝑎 relative to 𝑏 will result in the model prediction being greatly influenced by 

the output value instead of the input. The significance of this is the ARX model has the ability 

to reject disturbances. This can be proved when compared to a simple Finite Impulse 

Response (FIR) model whose structure is shown in Equation 6-13 and can be achieved when 

the ARX coefficient 𝑎 is set to 0 in Equation 6-12. 

 𝑦𝑘 = Σ𝑖=1
𝑛𝑏 𝑏𝑖𝑢𝑘−𝑖 + 𝑒𝑘 Equation 6-13 

In the FIR model (Nikolaou and Vuthandam, 1998), the output prediction is solely dependent 

on the inputs and the coefficients of 𝑏𝑖, irrespective of the current measured output value. 

Consequently, when a fixed sequence of inputs is supplied to the FIR model, the output 

prediction will always be the same, whereas for an ARX model the output prediction will be 

different for the same set of inputs if the previous value of the output, 𝑦𝑘, is also different. 

This results in the ARX model having the ability to reject disturbances more effectively if 𝑎 is 
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nonzero, however there is a trade-off because very small values of 𝑎 will behave closer to an 

FIR model, whereas very large values of 𝑎 relative to 𝑏 will dominate the output prediction 

and the inputs will have virtually no influence on the output prediction (Wise and Ricker, 

1990).  

In a process where a clear input-output (or cause-effect) relationship can be determined, 

obtaining suitable parameters for the ARX model for control will be dependent on the quality 

of the data used for modelling and the discrete time interval specified for modelling. For the 

modelling in this system, every sample point will be used to ensure the dynamics of the 

process output are fully captured when input changes are made. The time interval of the 

measurements being obtained from the plant is also set equal to the MPC interval, thus 

ensuring the plant data is not over-sampled as would be the case if multiple measurements 

were taken between each MPC intervention.   

6.3.2 Input-Output Data Acquisition  

The input-output data is obtained by using conventional plant-testing methods on the plant 

(Johansson, 1993) and PharmaMV has adopted a plant testing method for identifying system 

dynamics –pseudo-random binary sequence (PRBS). The PRBS is a random number generator 

for a sequence of two numbers, a high value and a low value. This tool allows the black-box 

process input-output data collection to be automated and the technique has been used in 

literature for identification of models for process control (Mullen and Jebwab, 1995). Each 

input value in the binary sequence must be held for sufficient time to determine the dynamics 

of the output. For a dynamic batch process, it must be ensured that the duration of each input 

change is long enough to obtain sufficient output data and identify the dynamics, so if a 

change in input requires 2 samples before the output begins to change and a further 4 

samples for the output dynamics to be measured, a total of 6 samples would be required to 

define the input-output relationship. In this case it was determined that changing the input 

required a 1 sample delay before the output also began to change and by the 5th sample, the 

major dynamic changes in output had been fully observed. To clarify this further, in a batch 

crystallization if the cooling rate is set to 1 K/min the supersaturation change will indeed 

change at a nonlinear rate as the batch progresses due to the nonlinear supersaturation 

profile. However, if the cooling rate is suddenly changed to a heating rate of 1 K/min the 

supersaturation profile would quickly change direction and the dynamics of the direction 
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change will be captured. This is the information that will be used to identify the model.  

Multiple steps are necessary to capture any variability in the output response and gain 

statistical confidence in the model prediction (Marshall et al., 1998).  

The PRBS for the batch crystallization simulation is configured to target a crystallization 

temperature setpoint in the temperature controller, and the output is the supersaturation 

ratio which is calculated using the concentration and temperature information from the 

simulation. The PRBS is configured to apply temperature change rates of -1 and 1 K/min with 

a minimum time of 10 simulated minutes and the maximum time of 20 mins. The PRBS is run 

for a cycle of 15 changes in the ramp from -1 and 1 K/min. This configuration will ensure a 

sufficiently large dataset of dynamic data for modelling. Furthermore, the plant is initialised 

at a supersaturation ratio of 1.1 (see Table 6-5) and using the input conditions above, it was 

observed that the supersaturation profile remained centred around the region for a 

supersaturation ratio of 1.1; identifying the ARX model in this region will also allow a second 

comparison to be made with how the ARX-MPC performs when a model identified around 

supersaturation ratio target of 1.1 is applied to control the process at a supersaturation target 

up to 1.4.  

ARX Coefficients 

𝒂𝟏 -0.972 
  

𝒃𝟏 -0.0167 

𝒃𝟐 -1.3684 

𝒃𝟑 -0.0265 

𝒃𝟒 -0.0142 

𝒃𝟓 -0.0013 
Table 6-2 – ARX Coefficients identified for ARX Model using PRBS testing on Batch Crystallization System 

The ARX model coefficients are identified using a least squares algorithm in PharmaMV. The 

input and output data are provided to compute the ARX coefficients of the model. The 

sampling time for the model was set to 1 minute and is set based on the time that would be 

required to obtain new measured data from in-line sensors using in crystallization such as 

FBRM and other spectroscopic devices. The resulting ARX coefficients are shown in Table 6-

2. This model has a large coefficient for 𝑎1 and thus the supersaturation ratio prediction will 

be largely reliant on the previous value of supersaturation ratio. This is acceptable, because 

the same rate of cooling or heating can result in very different values of supersaturation ratio 
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depending on where the batch is currently operating. The supersaturation ratio trajectory for 

the crystallization process is a nonlinear curve in the phase diagram. 

Given the growth rate is a function of supersaturation, maintaining the supersaturation ratio 

target trajectory will result in a fixed growth rate throughout the batch process. Therefore, to 

maintain the supersaturation ratio target as the dissolved solute concentration in the batch 

is crystallised, a progressively faster cooling rate is required. This behaviour is captured in the 

ARX model which relies heavily on the current value of the supersaturation ratio alongside 

the past inputs to predict the supersaturation ratio trajectory in the future. 

6.3.3 SFL-MPC Model  

The SFL model identified in previous chapters for supersaturation control using jacket 

temperature is used in the SFL MPC. The tuning parameters were re-identified for the SFL-

MPC and it was found that for the new process model, a value of 1 and 80 are used for 𝛽0 and 

𝛽1, respectively. The paracetamol-IPA system has different parameters to the previously 

discussed P/W system, consequently the SFL model will use the new parameters in Table 6-

1. These data are sufficient to fully describe the SFL-MPC model.  

6.4 Batch Crystallization Simulation 

The software used for simulation is gPROMS Formulated Products (gFP). The batch 

crystallization model is created in gFP as shown in Figure 6-1. In the gFP environment, there 

is a flowsheet development environment and a set of blocks; the configured flowsheet is 

shown in the figure. The vessel block is the crystallizer. The blank_inlet and blank_output 

nodes attached to the vessel signify that there is no material entering or leaving the vessel, 

therefore it is a closed (batch) system. The global_spec block is a global specifications block 

holds the information for all the materials used in the flowsheet and contained all the 

thermodynamic data for the API and solvent used in this crystallization system. The TC block 

is a temperature controller attached to the vessel, allowing the vessel temperature to be 

controlled. There are two further blocks which are sensors: liquid_composition_sensor which 

is used to track the concentration of the batch solution, and the PSD_sensor to track the 

particle size distribution. This completes the flowsheet setup of the plant in the MPC 

framework.   
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Figure 6-1 – Batch Crystallization Flowsheet in gPROMS Formulated Products 

 

The paracetamol and isopropyl alcohol physical, chemical and thermodynamic parameters 

are shown in Table 6-1 and are contained within the global_spec block.  

The crystallization process is seeded and operated batchwise with a growth mechanism 

represented by a power law relationship as a function of absolute supersaturation; other 

crystallization mechanisms (nucleation, agglomeration and breakage) have been disabled. 

The parameters that must be defined in this block are the growth equation parameters, the 

seed parameters, working volume, impeller parameters and initial conditions, all summarised 

in Table 6-3.  

Batch Crystallizer Properties 

Vessel Volume 3 𝐿 

Impeller Diameter 0.1 𝑚 

Impeller Frequency 200 𝑟𝑝𝑚 

Impeller Power 
Number  

0.4  
 

  

Growth Rate 
Constant 

4.00E-06 𝑚/𝑠 

Growth Order 1  
 

  

Seed loading 0.5 𝑔/𝐿 

Seed Size  100 𝜇𝑚 
Table 6-3 – Batch Crystallizer Properties in gFP 
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In the TC block, the minimum and maximum heat transfer rate to the system can be defined 

as well as the type of control applied to the crystallizer temperature. In this case, a 

Proportional-Integral (PI) controller is used, which will receive a cooling or heating 

temperature ramp from the MPC and will apply this to the batch crystallization. The 

parameters in the TC block are summarised in Table 6-4.  

TC Properties 

TC Controller Type PI  

Maximum Heat 
Transfer Rate 

1000 W 

Bias 0 W 

Gain 1 W/K 

Integral Time 6 s 

Table 6-4 – TC Block Properties in gFP 

The liquid composition sensor will analyse the solute concentration of the system and the PSD 

sensor is an ideal particle analyser which will track the CSD during the batch, an inherent 

limitation of this system is that the CSD will cannot be tracked in-line in a real system the 

same way the PSD sensor tracks the CSD. Other parameters that can be obtained from the 

PSD sensor are the moments calculated from the CSD, these moments ensure compatibility 

with the SFL-MPC technique which uses a mechanistic model based on moments. The gFP 

batch crystallization is set to report at an interval of 1 minute, meaning every instance that 

the gFP simulation is triggered, it will simulate 1 minute of the batch and the states and 

outputs at the end of the 1 minute period will be the measured/sampled data that is fed into 

PMV control software to represent plant measurements. The PharmaMV controller will also 

transfer a new process temperature setpoint at 1-minute intervals to the temperature 

controller. Once sent, over the duration of the 1 minute plant simulation, the TC will 

implement the crystallizer temperature setpoint using the built-in PI temperature controller 

(Figure 6-2). During the testing phase of this plant simulation, it was discovered that the TC 

can achieve perfect temperature control over the 1 minute interval for a temperature change 

of up to 2 K/min with the parameters defined in Tale 6-4. It is also important to note this is a 

form of supervisory control, where the PI temperature controller in the gFP block is the low-

level controller to which the MPC sends supervisory setpoints of the temperature ramp rate. 

In this case 𝑦 is the supersaturation ratio and 𝑥 is the states which include the moments, 

temperature and concentration of the crystallizer. 
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Figure 6-2 – PharmaMV MPC – gFP TC Control structure  

 

6.5 Control Framework 

The control software is the PharmaMV platform, which has built-in functionality to trigger the 

simulation environment in gFP, execute the plant testing and model identification for the 

built-in MPC functionality, execute python functions, and exchange data between python and 

gFP. PharmaMV is used as the master platform to drive the simulation in gFP and the 

scheduling of the controllers, either built-in or in python. The data are acquired and visualised 

in PharmaMV too. The communications between the platforms are shown in Figure 6-3.  

 

Figure 6-3 – PharmaMV – gFP Communication and Interfacing  
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The SFL-MPC technique with SFL-Plant constraints that has been developed in this research 

has been implemented into PharmaMV via a python script, and the ARX MPC is identified and 

tuned on the platform directly. The scheduling of the simulation is handled by PharmaMV 

which triggers the crystallization simulation each minute. Thus, the MPC application here is 

executed in real-time.  

6.5.1 Case Study Comparing ARX and SFL MPC 

The case study will compare the performance of the ARX MPC and the SFL MPC using a 

supersaturation ratio target of 1.1, 1.25 and 1.4 in 3 separate scenarios per controller. The 

criteria for comparison are the setpoint tracking capability using the RMSE of the setpoint 

error as defined by Equation 6-14. Additionally, the KPIs for comparing performance between 

the SFL-MPC and ARX-MPC are batch time, yield (%), RMSE and particle size properties (mean, 

D50 and span). The simulations for each of the six scenarios will be initialised at the desired 

supersaturation ratio target, so the batches will be initialised with the concentrations shown 

in Table 6-5.  

 𝑅𝑀𝑆𝐸 = √Σ𝑖=1
𝑛 (𝑦𝑖 − 𝑦𝑟𝑒𝑓)

2

𝑛
 

Equation 6-14 

 

𝑺𝒓 Target Paracetamol (kg/kg) IPA (kg/kg) 

1.1 0.0720 0.9280 

1.25 0.0817 0.9183 

1.4 0.0915 0.9085 

Table 6-5 – Initial Conditions for Simulations Based on Supersaturation Target  

The performance criterion is quantified by the root mean square error shown in Equation 6-

14. It is expected that the SFL-MPC would be applicable over a wider operating range than 

the ARX-MPC because the former is a global linearization technique whereas the latter was 

identified around a local region of the phase diagram. However, the performance difference 

will depend on how well each model matches or predicts the plant behaviour. A greater 

tracking performance will be quantified through a smaller value for RMSE. The original ARX-

MPC has been identified over the region where the supersaturation ratio is close to 1.1, so it 

is suspected that the ARX-MPC will perform best at these conditions and the performance 

may deteriorate at a ratio of 1.4. All scenarios are described in Table 6-6.  
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Scenario Model Type Supersaturation Target 

1 SFL 1.1 

2 ARX 1.1 

3 SFL 1.25 

4 ARX 1.25 

5 SFL 1.4 

6 ARX 1.4 

Table 6-6  – SFL and ARX Control Scenarios  

 

6.6 Comparison of SFL-MPC and ARX-MPC – Results and Discussion 

The results from the MPC comparison will be presented with respect to the target 

supersaturation, comparing the performance at relative supersaturation of 1.1 followed by 

1.25 and finally at 1.4. The KPIs of the seeded batch crystallization MPC scenarios will be 

compared after the results have been discussed.  

6.6.1 Comparison of SFL-MPC and ARX-MPC at Supersaturation Ratio 1.1 

The results from the SFL-MPC and ARX-MPC control of the crystallization at supersaturation 

1.1 are shown with the phase diagram operating profiles in Figure 6-4 and 6-5, respectively. 

The operating profiles both follow the desired trajectory, which is to be expected given the 

ARX model was identified in a region where the supersaturation ratio was 1.1.  

 

Figure 6-4 – Phase Diagram for SFL MPC with Supersaturation = 1.1  
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Figure 6-5 – Phase Diagram for ARX MPC with Supersaturation = 1.1 

 

Figure 6-6 – Supersaturation Tracking Comparison for SFL and ARX at Supersaturation = 1.1 
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Figure 6-7 – Input Profile Comparison for SFL and ARX at Supersaturation = 1.1 

 

Comparing both trajectories, supersaturation trajectory is shown in Figure 6-6, while the 

corresponding input profile from the MPC is also seen in Figure 6-7. There is an overshoot in 

the SFL-MPC trajectory at the beginning of the batch which is not seen in the ARX-MPC 

trajectory, but after the first 20 minutes, the SFL-MPC appears to track the supersaturation 

trajectory much closer with less offset than the ARX-MPC. The ARX-MPC does recover after 

137 minutes and demonstrates similar tracking.  

In the input profile plot, the SFL-MPC has a much smoother profile than the ARX-MPC and the 

latter also has some significant spikes in the cooling rate profile. The origin of these are a 

result of delayed communication between the gFP and PharmaMV platforms as can be seen 

when the change in concentration from both scenarios is plotted as per Figure 6-8. All the 

data shown here are from PharmaMV, so the gFP data that is plotted is that which has been 

transferred to PharmaMV. It is worth noting that the gFP simulation trajectories did appear 

smooth when viewed using the gFP reporting tool built into the platform, hence it was 

concluded that the source of these discontinuities is the communication between platforms.  

The spikes occur where there is a large change in data in one interval followed by no change 

in the following interval. These are an anomaly caused by the co-simulation of the two 
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environments where one data point from gFP is missed, but subsequently datapoint is a 

repeat, which consequently results in a return of the operating trajectory to the expected 

trajectory for each simulation. The ARX-MPC is more sensitive to these changes than the SFL-

MPC, but the trajectories of each simulation have not been significantly affected by these 

anomalies, as will be shown in the results that follow. Therefore, the effects of these 

anomalies are not regarded as having a significant impact on the final outcome from this case 

study and the results are regarded as acceptable to form a conclusion in comparison of ARX-

MPC and SFL-MPC. 

 

Figure 6-8 – Trend of change in concentration to demonstrate communication issues  

 

Figure 6-9 – gFP temperature compared to SFL input temperature  
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The smoothness in the SFL input profile can be seen clearly in Figure 6-9 where the change in 

vessel temperature of the gFP plant is demonstrating the same spikes as the change in 

concentration in the prior figure, but the SFL input remains smooth. Overall, the SFL-MPC 

appeared to track the supersaturation closer than the ARX-MPC but both scenarios 

demonstrated acceptable control.  

6.6.2 Comparison of SFL-MPC and ARX-MPC at Supersaturation Ratio 1.25 

The phase diagram operating profiles for the SFL-MPC and ARX-MPC are shown in Figure 6-

10 and 6-11, respectively. The profile for SFL-MPC appears to track the supersaturation just 

as well as in the first scenario at the lower supersaturation target, but the ARX-MPC appears 

to deviate slightly from the reference profile. This is supported by the supersaturation profile 

comparison in Figure 6-12 which shows the tracking of both controllers. The SFL-MPC in this 

case appears to remain below the supersaturation target throughout and there is no 

overshoot, whereas for the ARX-MPC there is an overshoot at the beginning and then a larger 

offset from the target than the SFL-MPC. Though the ARX-MPC tracking does again improve 

towards the end of the batch, the improvement does not show better tracking performance 

than the SFL-MPC. In the corresponding input profiles shown in Figure 6-13, once again the 

SFL input trajectory is much smoother than the ARX input trajectory and the latter suffers 

from the spikes in the rate of change of cooling. These two scenarios show the superior 

performance of the SFL-MPC at the higher supersaturation setpoint with a deterioration in 

performance of the ARX-MPC when compared to the target of 1.1.  
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Figure 6-10 – Phase Diagram for SFL MPC with Supersaturation = 1.25 

 

 

Figure 6-11 – Phase Diagram for ARX MPC with Supersaturation = 1.25 
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Figure 6-12 – Supersaturation Tracking Comparison for SFL and ARX at Supersaturation = 1.25 

 

 

Figure 6-13 – Input Profile Comparison for SFL and ARX at Supersaturation = 1.25 
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6.6.3 Comparison of SFL-MPC and ARX-MPC at Supersaturation Ratio 1.4 

The final comparison is of the supersaturation tracking at a setpoint of 1.4, the phase diagram 

trajectory for SFL-MPC is shown in Figure 6-14 and the ARX-MPC is shown in Figure 6-15 In 

the SFL-MPC trajectory there does appear to be a slight deviation from the reference profile, 

but not as large a deviation as the one seen for ARX-MPC. The comparison of supersaturation 

tracking in Figure 6-16 shows again that the SFL-MPC tracks the supersaturation trajectory 

much closer than the ARX-MPC, but even in the case of SFL-MPC there is a sustained offset. 

The input profile (Figure 6-17) also shows a smooth SFL input profile and the same issues seen 

with the spikes in the ARX inputs. At these conditions the SFL-MPC shows a clear advantage 

over the ARX-MPC for tracking control, this will be confirmed in the following section when 

discussing the KPIs in the following section. 

 

 

Figure 6-14 – Phase Diagram for SFL MPC with Supersaturation = 1.4 
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Figure 6-15 – Phase Diagram for ARX MPC with Supersaturation = 1.4 

 

 

Figure 6-16 – Supersaturation Tracking Comparison for SFL and ARX at Supersaturation = 1.4 
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Figure 6-17 – Input Profile Comparison for SFL and ARX at Supersaturation = 1.4 

 

6.6.4 Comparison of KPIs from SFL-MPC and ARX-MPC 

The main KPI used for comparison of tracking performance is the RMSE which is shown in 

Figure 6-18. The RMSE at supersaturation of 1.1 is similar for both the SFL and ARX. The RMSE 

does increase for both MPC strategies as the supersaturation target is increased, but the rate 

of increase is much greater for ARX-MPC than SFL-MPC, thus allowing the conclusion to be 

made that the SFL-MPC is the superior strategy. The errors may be reduced for ARX-MPC if 

the model was identified at a higher supersaturation target, but that would require a new 

model to be identified to improve tracking performance. Considering the other KPIs, the yield 

is larger for lower supersaturation target and similar for both MPC strategies (Figure 6-19). 

Furthermore, the batch times are similar (Figure 6-20) between the two forms of MPC, as are 

the particle size characteristics shown in Table 6-7, finally all other KPIs are shown in Table 6-

8. Reverting to the comparison that was made by Shen et al. (1999), the author concluded 

that the global linearizing control (equivalent to SFL) was superior to PID control but 

outperformed by generic model control or multi-model MPC. From this study of batch 

crystallization, it appears that SFL-MPC performs better than data-driven low order model-

based controllers such as ARX-MPC.  
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Figure 6-18 - SFL-MPC vs ARX-MPC - RMSE Comparison  

 

 

Figure 6-19 – SFL-MPC vs ARX-MPC - Yield Comparison  

 

 

Figure 6-20 – SFL-MPC vs ARX-MPC -  Batch Time Comparison  
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Target S Model 
Particle Size Mean 

(𝑳𝟒/𝑳𝟑) Particle size D50 Particle Size CV 

1.1 
SFL 297.1 278.7 33.9 

ARX 297.2 278.8 33.9 

1.25 
SFL 284.1 266.7 34.2 

ARX 284.7 266.8 34.1 

1.4 
SFL 270.7 254.0 34.5 

ARX 271.3 254.1 34.4 
Table 6-7 – Particle Size Data from End of Batch for all Scenarios 

 

 

Target S Model Yield (%) ISE Time (mins) RMSE 

1.1 
SFL 98.1 0.00108 232 0.00216 

ARX 98.0 0.00151 236 0.00253 

1.25 
SFL 96.6 0.00210 102 0.00453 

ARX 96.7 0.0493 104 0.0218 

1.4 
SFL 95.9 0.00822 70 0.0108 

ARX 96.0 0.0984 70 0.0375 
Table 6-8 – Summary of KPIs for all Scenarios  

6.7 Conclusion 

This chapter forms a comprehensive comparison between SFL-MPC and ARX-MPC. The linear 

ARX is first identified from plant testing on the gFP plant, and the identified model is then 

used in a controller to perform supersaturation control at 3 targets of 1.1, 1.25 and 1.4. A 

plant mismatch is introduced between the SFL model and plant model because the plant-

model is a higher order PBE model solved using FVM to track the full-size distribution from 

which the moments are calculated, whereas the SFL model is solved using SMOM and only 

tracking the moments. A multi-platform control system is also configured using PharmaMV, 

an industrial process control software, and gPROMS Formulated Products, an industrial 

software for mechanistic modelling to represent the plant. The challenges of communication 

issues in interfacing were faced between the platforms and the ARX model appeared more 

sensitive to these changes than the SFL-MPC. The root mean square error was used as the 

main KPI to calculate the tracking error between the SFL-MPC and ARX-MPC, the results 

concluded that the SFL-MPC had the superior supersaturation tracking performance with 
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smaller offset from the desired supersaturation in all cases. The other KPIs included yield, 

batch time and particle size characteristics which were all similar between the two MPC 

strategies.  

Despite the direct comparison between strategies, it is worth noting that the SFL-MPC 

performance is subject to the identification of a reliable mechanistic model, so this control 

strategy may not be as widely applicable as the ARX-MPC. It is possible to identify an ARX-

MPC for any plant from which input (jacket temperature)-output (supersaturation ratio) data 

can be generated. Despite the reduction in tracking performance seen with the ARX-MPC, it 

is possible to also re-identify the model at different operating conditions too using the same 

general model structure. Therefore, there are some advantages for the ARX-MPC technique 

too.   
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7 Conclusions  

The research in this thesis focusses on optimization and control for batch and continuous 

(MSMPR) crystallization. The use of a global input/output linearization technique referred to 

as state-feedback linearization (SFL) triggered the initial study of whether a global 

optimization approach needs to be used in the controller or whether a local approach is 

capable on converging onto a global solution with great confidence and short time. This 

defined the first objective of the research to develop single and multi-objective optimization 

strategies for crystallization. After testing a global genetic algorithm against a local 

deterministic SQP approach and a combined hybrid approach, it was determined that the 

quality of the optimization solution from the local approach was better than the genetic 

algorithm alone, and the time of solution convergence was much shorter, hence giving 

confidence to recommend exploring the use of the SQP solver for optimization of a batch 

crystallization model. The benefits of multi-objective optimisation were also studied to 

understand if there existed a wider applicability of these techniques in control. As an offline 

optimisation approach the multi-objective optimization is useful for gaining insight into the 

process, and has been used in this way in published research from others, but for online or 

real-time application it is not an efficient optimization method to implement into a control 

system and would also require a decision-making process to select one of the Pareto profiles.  

With a suitable and efficient optimization technique (SQP) identified, the focus was then 

changed to model predictive control, particularly the use of SFL and the objective was to 

develop an SFL-MPC for both SISO and MIMO control schemes. A state-space nonlinear model 

of the crystallizer in continuous MSMPR and batch forms were then identified in the SFL form 

for supersaturation and mean size as outputs; and jacket temperature and seed loading as 

inputs in various SISO and MIMO configurations. Each were successfully identified, 

demonstrating the wide applicability of this technique on the model system that was chosen. 

The next and main objective with the SFL was to address the inherent and widely reported 

difficulties to hand constraints. The previous attempts at constraints handling had limitations, 

and all focussed on transforming the real system constraints onto the linearized system. Using 

the most recently published framework for constraints handling, it appeared possible that 

rather than transforming the real constraints to the transformed system, that it should be 

possible to use the MPC inputs of the transformed system to estimate future inputs using a 
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nonlinear constraints routine and then apply the constraints to the estimated plant, directly. 

This was the main objective from the SFL-MPC research, and it was found that the devised 

nonlinear constraints routine – name SFL-Plant constraints, because it couples the SFL model 

with the plant – was indeed a viable constraints handling approach. In all simulations of SISO 

and MIMO MPC disclosed, where the SFL-Plant constraints were implemented, the resulting 

simulation results were all feasible and did not violate the prescribed constraints. The use of 

SQP algorithm which facilitates the use a nonlinear constraints function plays an important 

role in the successful application of this technique. From a crystallization processing 

perspective, it was found that some scenarios did not demonstrate good control because SFL-

Plant constraints prevented the system from reaching or maintaining the setpoint, or the 

inputs required unrealistically low temperatures. However, these limitations can be 

overcome by ensuring appropriate setpoints are set for the system.  

The successful use of SFL-MPC on batch and continuous MSMPR simulations then drove the 

next and final objective which was to compare this mechanistically-derived technique to a 

data-driven technique that is commonly used in industry, and to extend the comparison by 

using a cross-platform setup such that there is one platform for the control environment and 

one for the simulated plant. This is more representative of applying control onto a real 

system. The data-driven approach that was used is a black-box modelling approach to 

determine an input-output relationship of system. In this case it was the jacket temperature 

as the input and the supersaturation ratio as the output for a batch crystallization system, 

and the model identified was an autoregressive model with exogenous input (ARX). The 

comparison focussed on the SFL-MPC and ARX-MPC abilities to track a batch supersaturation 

ratio setpoint across a full batch. The results demonstrated that the SFL-MPC had a similar 

performance to the ARX-MPC in tracking the supersaturation ratio at low target of 1.1, and 

that both models demonstrated deteriorating performance as the supersaturation ratio 

target was increased to 1.25 and further to 1.4. However, the SFL-MPC demonstrated a 

significantly smaller tracking error (root mean square error between the measured output 

and trajectory) than the ARX-MPC model. One noted benefit of SFL over a local linearization 

technique is that the global transformation should have wider applicability without loss of 

prediction reliability, and this benefit was demonstrated in the results, quantified by the 

smaller tracking error.  
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8 Recommendations and Future work 

This section discusses some areas for future work. The main recommendation from this thesis 

is the extension of these in-silico techniques to a real system. The chosen crystallization 

systems here are of paracetamol in water and paracetamol in isopropyl alcohol, using models 

which have been validated in literature. This allows for the ability to extend the SFL-MPC 

applications in this thesis directly onto the equivalent physical crystallization systems to 

further validate the SFL-Plant constraints and the general applicability of the SFL-MPC for 

control.  

The SISO application of SFL-MPC disclosed in this research will be immediately transferrable 

to a real system, but the MIMO application does present some limitations with regards to the 

tuning. Therefore, two areas could be explored for SFL-MPC. The first is to determine global 

tuning parameters through a global linearization technique such as the NSGA-II that was 

disclosed in the optimization work. This is recommended because even though it was found 

in the SISO systems that tuning parameters could be used over a wide operating range, for 

the MIMO system the tuning parameters for seed loading input to control mean size appeared 

to be very sensitive to small changes in the setpoint. The second recommendation is to use a 

different MSMPR model with different objectives that are less coupled than mean-size and 

supersaturation to the temperature and seed loading. One example would be the exploration 

of mean size control using impeller speed to control attrition, while maintaining 

supersaturation control using jacket temperature.  

In the comparison for SFL-MPC with ARX-MPC, this would also be useful to determine in a real 

system and be extended to other techniques of local linearization using the mechanistic 

model and using state of the art nonlinear MPC. It would be very useful to gain an 

understanding of the benefits and drawbacks in terms of tracking performance of these 

techniques, especially applied to a practical setup.  

 

  



 

220 
 

9 References 

Aamir, E. et al. (2009) ‘Combined Quadrature Method of Moments and Method of 

Characteristics Approach for Efficient Solution of Population Balance Models for Dynamic 

Modeling and Crystal Size Distribution Control of Crystallization Processes’, Ind. Eng. Chem. 

Res., 48, pp. 8575–8584. 

Aamir, E. (2010) Population Balance Model-Based Optimal Control of Batch Crystallisation 

Processes for Systematic Crystal Size Distribution Design, Loughborough University’s 

Institutional Repository. 

Acevedo, D. et al. (2017) ‘Model-Based Evaluation of Direct Nucleation Control Approaches 

for the Continuous Cooling Crystallization of Paracetamol in a Mixed Suspension Mixed 

Product Removal System’, Crystal Growth & Design. ACS Publications, 17(10), pp. 5377–5383. 

Acevedo, D., Tandy, Y. and Nagy, Z. K. (2015) ‘Multiobjective Optimization of an Unseeded 

Batch Cooling Crystallizer for Shape and Size Manipulation’, Industrial & Engineering 

Chemistry Research, 54(7), pp. 2156–2166. doi: 10.1021/acs.iecr.5b00173. 

Akaike, H. (1974) ‘A new look at the statistical model identification’, in Selected Papers of 

Hirotugu Akaike. Springer, pp. 215–222. 

Ålander, E. M. and Rasmuson, Å. C. (2005) ‘Mechanisms of crystal agglomeration of 

paracetamol in acetone− water mixtures’, Industrial & engineering chemistry research. ACS 

Publications, 44(15), pp. 5788–5794. 

Ålander, E. M., Uusi-Penttilä, M. S. and Rasmuson, Å. C. (2004) ‘Agglomeration of paracetamol 

during crystallization in pure and mixed solvents’, Industrial & engineering chemistry research. 

ACS Publications, 43(2), pp. 629–637. 

Allgöwer, F., Findeisen, R. and Nagy, Z. K. (2004) ‘Nonlinear Model Predictive Control : From 

Theory to Application’, J. Chin. Inst. Chem. Engrs., 35(3), pp. 299–315. 

Antonyuk, S., Palis, S. and Heinrich, S. (2011) ‘Breakage behaviour of agglomerates and 

crystals by static loading and impact’, Powder Technology. Elsevier, 206(1–2), pp. 88–98. 

Antwerp, J. G. Van and Braatz, R. D. (2000) ‘Model predictive control of large scale processes’, 



 

221 
 

Journal of Process Control, 10, pp. 1–8. 

Bakar, M. R. A. et al. (2009) ‘The Impact of Direct Nucleation Control on Crystal Size 

Distribution in Pharmaceutical Crystallization Processes’, Crystal Growth & Design, 9(3), pp. 

1378–1384. 

Bakar, M. R. A., Nagy, Z. K. and Rielly, C. D. (2009) ‘Seeded Batch Cooling Crystallization with 

Temperature Cycling for the Control of Size Uniformity and Polymorphic Purity of 

Sulfathiazole Crystals’, Organic Process Research & Development, 13(3), pp. 1343–1356. 

Beck, R. et al. (2009) ‘The effect of crystallization conditions, crystal morphology and size on 

pressure filtration of l-glutamic acid and an aromatic amine’, Separation and Purification 

Technology, 66(3), pp. 549–558. doi: 10.1016/j.seppur.2009.01.018. 

Beckmann, J. R. and Randolph, A. D. (1977) ‘Crystal size distribution and dynamics in a 

classified crystallizer. Part II. Simulated control of crystal size distribution’, American 

Institution of Chemical Engineers Journal, 23, pp. 510–520. 

Benyahia, B. et al. (2011) ‘Multicriteria dynamic optimization of an emulsion copolymerization 

reactor’, Computers and Chemical Engineering. Elsevier Ltd, 35(12), pp. 2886–2895. doi: 

10.1016/j.compchemeng.2011.05.014. 

Benyahia, B., Lakerveld, R. and Barton, P. I. (2012) ‘A plant-wide dynamic model of a 

continuous pharmaceutical process’, Industrial and Engineering Chemistry Research, 51(47), 

pp. 15393–15412. doi: 10.1021/ie3006319. 

Boggs, P. T. and Tolle, J. W. (1995) ‘Sequential Quadratic Programming’, Acta Numerica, 4, pp. 

1–51. doi: 10.1017/S0962492900002518. 

Borsos, A., Majumder, A. and Nagy, Z. K. (2015) ‘Multi-impurity adsorption model for 

modeling crystal purity and shape evolution during crystallization processes in impure media’, 

Crystal Growth & Design. ACS Publications, 16(2), pp. 555–568. 

Borsos, Á., Majumder, A. and Nagy, Z. K. (2014) ‘Model development and experimental 

validation for crystal shape control by using tailored mixtures of crystal growth modifiers’, in 

Computer Aided Chemical Engineering. Elsevier, pp. 781–786. 



 

222 
 

Boukouvala, F. and Ierapetritou, M. G. (2013) ‘Surrogate-based optimization of expensive 

flowsheet modeling for continuous pharmaceutical manufacturing’, Journal of 

Pharmaceutical Innovation, 8(2), pp. 131–145. doi: 10.1007/s12247-013-9154-1. 

Braatz, R. D. (2004) ‘Open-loop and closed-loop robust optimal control of batch processes 

using distributional and worst-case analysis processes using distributional and worst-case 

analysis’, Journal of Process Control, 14, pp. 411–422. doi: 10.1016/j.jprocont.2003.07.004. 

Briuglia, M. L., Sefcik, J. and ter Horst, J. H. (2018) ‘Measuring secondary nucleation through 

single crystal seeding’, Crystal Growth & Design. ACS Publications, 19(1), pp. 421–429. 

Brown, C. J. and Ni, X.-W. (2012) ‘Determination of metastable zone width, mean particle size 

and detectable number density using video imaging in an oscillatory baffled crystallizer’, 

CrystEngComm. Royal Society of Chemistry, 14(8), pp. 2944–2949. 

Casanova-Peláez, P. J. et al. (2012) ‘RBF–ARX model of an industrial furnace for drying olive 

pomace’, Energy conversion and management. Elsevier, 64, pp. 106–112. 

Castagnoli, C. et al. (2010) ‘Application of quality by design principles for the definition of a 

robust crystallization process for casopitant mesylate’, Organic Process Research & 

Development. ACS Publications, 14(6), pp. 1407–1419. 

Chang, L.-Y. and Chen, H.-C. (2014) ‘Linearization and Input-Output Decoupling for Nonlinear 

Control of Proton Exchange Membrane Fuel Cells’, Energies, 7(2), pp. 591–606. doi: 

10.3390/en7020591. 

Chianese, A., Di Berardino, F. and Jones, A. G. G. (1993) ‘On the effect of secondary nucleation 

on the crystal size distribution from a seeded batch crystallizer’, Chemical Engineering 

Science. Pergamon, 48(3), pp. 551–560. doi: 10.1016/0009-2509(93)80309-E. 

Choong, K. L. and Smith, R. (2004) ‘Optimization of batch cooling crystallization’, Chemical 

Engineering Science. Elsevier, 59(2), pp. 313–327. 

Cornehl, B. et al. (2014) ‘Breakage of lysozyme crystals due to compressive stresses during 

cake filtration’, Chemical Engineering Science. Elsevier, 111, pp. 324–334. doi: 

10.1016/j.ces.2014.02.016. 



 

223 
 

Corriou, J. R. and Rohani, S. (2002) ‘Nonlinear control of a batch crystallizer’, Chemical 

Engineering Communications, 189(10), pp. 1415–1436. doi: 10.1080/00986440214062. 

Coulson, J. M. et al. (1964) Chemical Engineering: Fluid flow, heat transfer and mass transfer. 

Pergamon press. 

Damour, C. et al. (2010) ‘Nonlinear predictive control based on artificial neural network model 

for industrial crystallization’, Journal of Food Engineering, 99(2), pp. 225–231. doi: 

10.1016/j.jfoodeng.2010.02.027. 

David, R. et al. (2003) Modelling of multiple-mechanism agglomeration in a crystallization 

process, Powder Technology - POWDER TECHNOL. doi: 10.1016/S0032-5910(02)00213-9. 

Davis, L. (1991) ‘Handbook of genetic algorithms’. CUMINCAD. 

Deb, K. et al. (2000) ‘A fast elitist non-dominated sorting genetic algorithm for multi-objective 

optimization: NSGA-II’, Lecture Notes in Computer Science (including subseries Lecture Notes 

in Artificial Intelligence and Lecture Notes in Bioinformatics), 1917, pp. 849–858. 

Deb, K., Lele, S. and Datta, R. (2007) ‘A hybrid evolutionary multi-objective and SQP based 

procedure for constrained optimization’, in International Symposium on Intelligence 

Computation and Applications. Springer, pp. 36–45. 

Diaconis, P. (1987) ‘Application of the method of moments in probability and statistics’, 

Moments in mathematics. Amer. Math. Soc.: Providence, RI, 37, pp. 125–142. 

Diehl, M. et al. (2002) ‘Real-time optimization and nonlinear model predictive control of 

processes governed by differential-algebraic equations’, Journal of Process Control, pp. 577–

585. doi: 10.1016/S0959-1524(01)00023-3. 

Eggers, J. et al. (2009) ‘Monitoring size and shape during cooling crystallization of ascorbic 

acid’, Chemical Engineering Science, 64, pp. 163–171. doi: 10.1016/j.ces.2008.08.007. 

Eymard, R., Gallouët, T. and Herbin, R. (2000) ‘Finite volume methods’, Handbook of 

numerical analysis. Elsevier, 7, pp. 713–1018. 

Faria, N. et al. (2008) ‘Modelling agglomeration degree in sucrose crystallisation’, Chemical 

Engineering and Processing: Process Intensification, 47(9–10), pp. 1666–1677. doi: 



 

224 
 

10.1016/j.cep.2007.09.008. 

Forgione, M. et al. (2015) ‘Control Engineering Practice Batch-to-batch model improvement 

for cooling crystallization’, Control Engineering Practice. Elsevier, 41, pp. 72–82. doi: 

10.1016/j.conengprac.2015.04.011. 

Fujiwara, M. et al. (2002) ‘Paracetamol crystallization using laser backscattering and ATR-FTIR 

spectroscopy: metastability, agglomeration, and control’, Crystal Growth & Design. ACS 

Publications, 2(5), pp. 363–370. 

Fysikopoulos, D. et al. (2018) ‘A framework for model reliability and estimability analysis of 

crystallization processes with multi-impurity multi-dimensional population balance models’, 

Computers & Chemical Engineering. Pergamon. doi: 10.1016/J.COMPCHEMENG.2018.09.007. 

Gao, X. et al. (2008) ‘Multi-objective optimization for the periodic operation of the naphtha 

pyrolysis process using a new parallel hybrid algorithm combining NSGA-II with SQP’, 

Computers & Chemical Engineering. Elsevier, 32(11), pp. 2801–2811. 

Gao, Z. et al. (2017) ‘Recent Developments in the Crystallization Process: Toward the 

Pharmaceutical Industry’, Engineering, 3(3), pp. 343–353. doi: 10.1016/J.ENG.2017.03.022. 

García, C. E., Prett, D. M. and Morari, M. (1989a) ‘Model predictive control: Theory and 

practice-A survey’, Automatica, 25(3), pp. 335–348. doi: 10.1016/0005-1098(89)90002-2. 

García, C. E., Prett, D. M. and Morari, M. (1989b) ‘Model predictive control: Theory and 

practice—A survey’, Automatica. Pergamon, 25(3), pp. 335–348. doi: 10.1016/0005-

1098(89)90002-2. 

Garside, J. (1984) ‘Advances in the characterization of crystal growth’, in AIChE symposium 

series. American institute of chemical engineers, pp. 23–38. 

Garside, J. and Davey, R. J. (1980) ‘Invited Review Secondary Contact Nucleation: Kinetics, 

Growth and Scale-up’, Chemical Engineering Communications. Taylor & Francis, 4(4–5), pp. 

393–424. doi: 10.1080/00986448008935918. 

Garside, J. and Jančić, S. J. (1978) ‘Prediction and measurement of crystal size distributions 

for size-dependent growth’, Chemical Engineering Science. Elsevier, 33(12), pp. 1623–1630. 



 

225 
 

Georgieva, P., Meireles, M. J. and Feyo de Azevedo, S. (2003) ‘Knowledge-based hybrid 

modelling of a batch crystallisation when accounting for nucleation, growth and 

agglomeration phenomena’, Chemical Engineering Science, 58(16), pp. 3699–3713. doi: 

10.1016/S0009-2509(03)00260-4. 

Gimbun, J., Nagy, Z. K. and Rielly, C. D. (2009) ‘Simultaneous Quadrature Method of Moments 

for the Solution of Population Balance Equations, Using a Differential Algebraic Equation 

Framework | Jolius Gimbun - Academia.edu’, Ind. Eng. Chem. Res., 48, pp. 7798–7812. 

Gordon, R. G. (1968) ‘Error Bounds in Equilibrium Statistical Mechanics’, Journal of 

Mathematical Physics, 9(5), p. 655. doi: 10.1063/1.1664624. 

Granberg, R. A. and Rasmuson, Å. C. (1999) ‘Solubility of paracetamol in pure solvents’, 

Journal of Chemical & Engineering Data. ACS Publications, 44(6), pp. 1391–1395. 

Granberg, R. A. and Rasmuson, Å. C. (2005) ‘Crystal growth rates of paracetamol in mixtures 

of water+ acetone+ toluene’, AIChE journal. Wiley Online Library, 51(9), pp. 2441–2456. 

Grof, Z. et al. (2011) ‘Computational and experimental investigation of needle-shaped crystal 

breakage’, International journal of pharmaceutics. Elsevier, 407(1–2), pp. 12–20. 

Groppi, G. et al. (1995) ‘A comparison of lumped and distributed models of monolith catalytic 

combustors’, Chemical Engineering Science. Elsevier, 50(17), pp. 2705–2715. 

Gunawan, R. et al. (2004) ‘Optimal control of rapid thermal annealing in a semiconductor 

process’, Journal of Process Control, 14, pp. 423–430. doi: 10.1016/j.jprocont.2003.07.005. 

Gunawan, R., Fusman, I. and Braatz, R. D. (2004) ‘High Resolution Algorithms for 

Multidimensional Population Balance Equations’, AIChE, 50(11), pp. 2738–2749. doi: 

10.1002/aic.10228. 

Haber, R. (1992) ‘Transformation of the absolute descriptions of linear and non-linear 

processes to their incremental forms’, International journal of systems science. Taylor & 

Francis, 23(6), pp. 935–955. 

Haddad, A. H. (2008) Applied optimal estimation, Proceedings of the IEEE. doi: 

10.1109/proc.1976.10175. 



 

226 
 

Hartman, P. (1963) ‘On the local linearization of differential equations’, Proceedings of the 

American Mathematical Society. JSTOR, 14(4), pp. 568–573. 

Hefter, G. T. and Tomkins, R. P. T. (2003) The experimental determination of solubilities. John 

Wiley & Sons. 

Helt, J. E. and Larson, M. A. (1977) ‘Effects of temperature on the crystallization of potassium 

nitrate by direct measurement of supersaturation’, AIChE Journal. John Wiley & Sons, Ltd, 

23(6), pp. 822–830. doi: 10.1002/aic.690230608. 

Hemalatha, K. et al. (2018) ‘Multiobjective optimization and experimental validation for batch 

cooling crystallization of citric acid anhydrate’, Computers and Chemical Engineering. Elsevier 

Ltd, 112, pp. 292–303. doi: 10.1016/j.compchemeng.2018.02.019. 

Henrion, D. and Lasserre, J.-B. (2004) ‘Solving nonconvex optimization problems’, IEEE Control 

Systems Magazine. IEEE, 24(3), pp. 72–83. 

Hofmann, S. and Raisch, J., (2010). Application of optimal control theory to a batch crystallizer 

using orbital flatness. In 16th Nordic Process Control Workshop, Lund, Sweden (pp. 25-27). 

Lund Institute of Technology. 

Hojjati, H. and Rohani, S. (2006) ‘Measurement and prediction of solubility of paracetamol in 

water− isopropanol solution. Part 1. Measurement and data analysis’, Organic Process 

Research & Development. ACS Publications, 10(6), pp. 1101–1109. 

Hreiz, R. et al. (2015) ‘Chemical Engineering Research and Design Multi-objective optimal 

control of small-size wastewater treatment plants’, Chemical Engineering Research and 

Design. Institution of Chemical Engineers, 102, pp. 345–353. doi: 

10.1016/j.cherd.2015.06.039. 

Hulburt, H. M. and Katz, S. (1964) ‘Some problems in particle technology’, Chemical 

Engineering Science, 19(8), pp. 555–574. doi: 10.1016/0009-2509(64)85047-8. 

Izmailov, A. F., Myerson, A. S. and Arnold, S. (1999) ‘A statistical understanding of nucleation’, 

Journal of Crystal Growth, 196, pp. 234–242. 

Jang, H. et al. (2014) ‘Fast moving horizon estimation for a two-dimensional distributed 



 

227 
 

parameter system’, Computers and Chemical Engineering. Elsevier Ltd, 63, pp. 159–172. doi: 

10.1016/j.compchemeng.2013.12.005. 

Jansen, P. (2011) ‘State Feedback Linearization of a Seeded Batch Cooling Crystallizer for 

Supersaturation Control’, pp. 1–13. 

Jansens, P. J. and Hof, P. M. J. Van Den (2009) ‘Chemical Engineering Research and Design A 

model-based control framework for industrial batch crystallization processes’, Chemical 

Engineering Research and Design. Institution of Chemical Engineers, 88(9), pp. 1223–1233. 

doi: 10.1016/j.cherd.2009.09.010. 

Jansson, M. (2003) ‘Subspace identification and ARX modeling’, IFAC Proceedings Volumes. 

Elsevier, 36(16), pp. 1585–1590. 

Jensen, E. W., Lindholm, P. and Henneberg, S. W. (1996) ‘Autoregressive modeling with 

exogenous input of middle-latency auditory-evoked potentials to measure rapid changes in 

depth of anesthesia’, Methods of information in medicine. Schattauer GmbH, 35(03), pp. 256–

260. 

Jiang, M. et al. (2012) ‘Towards achieving a flattop crystal size distribution by continuous 

seeding and controlled growth’, Chemical Engineering Science. Elsevier, 77, pp. 2–9. doi: 

10.1016/j.ces.2011.12.033. 

Johansson, R. (1993) System modeling and identification. Prentice Hall Englewood Cliffs, NJ. 

John, V. and Thein, F. (2012) ‘On the efficiency and robustness of the core routine of the 

quadrature method of moments (QMOM)’, Chemical Engineering Science. Elsevier, 75, pp. 

327–333. doi: 10.1016/j.ces.2012.03.024. 

Kadam, S. S., Kramer, H. J. M. and ter Horst, J. H. (2011) ‘Combination of a single primary 

nucleation event and secondary nucleation in crystallization processes’, Crystal Growth & 

Design. ACS Publications, 11(4), pp. 1271–1277. 

Kazerounian, K. and Wang, Z. (1987) ‘Optimization Redundancy Manipulators Local in 

Resolution of Robotic’, Optimization, (1984), pp. 3–12. 

Kitak, T. et al. (2015) ‘Determination of solubility parameters of ibuprofen and ibuprofen 



 

228 
 

lysinate’, Molecules. Multidisciplinary Digital Publishing Institute, 20(12), pp. 21549–21568. 

Koren, B. (1993) ‘A robust upwind discretization method for advection, diffusion and source 

terms’, Notes on Numerical Fluid Mechanics, pp. 117–138. Available at: 

http://www.narcis.nl/publication/RecordID/oai:cwi.nl:2269%5Cnhttp://repository.tue.nl/73

7323. 

Kravaris, C. and Chung, C. (1987) ‘Nonlinear State Feedback Synthesis by Global Input / Output 

Linearization’, AIChE, 33(4), pp. 592–603. 

Kravaris, C. and Soroush, M. (1990) ‘Synthesis of multivariable nonlinear controllers by 

input/output linearization’, AIChE Journal, 36(2), pp. 249–264. doi: 10.1002/aic.690360211. 

Kulkarni, S. A., Meekes, H. and Ter Horst, J. H. (2014) ‘Polymorphism control through a single 

nucleation event’, Crystal Growth & Design. ACS Publications, 14(3), pp. 1493–1499. 

Kurtz, M. J. and Henson, M. A. (1998) ‘Feedback linearizing control of discrete-time nonlinear 

systems with input constraints’, International Journal of Control. Taylor & Francis, 70(4), pp. 

603–616. 

Kurtz, R. J. and Henson, M. A. (1996) ‘Feedback linearizing control of discrete-time nonlinear 

systems with constraints’, in Proceedings of 28th Southeastern Symposium on System Theory. 

IEEE, pp. 23–27. 

Lakerveld, R. et al. (2015) ‘The Application of an Automated Control Strategy for an Integrated 

Continuous Pharmaceutical Pilot Plant’, Organic Process Research and Development, 19(9), 

pp. 1088–1100. doi: 10.1021/op500104d. 

Lawton, S. et al. (2009) ‘Continuous crystallization of pharmaceuticals using a continuous 

oscillatory baffled crystallizer’, Organic Process Research and Development, 13(6), pp. 1357–

1363. doi: 10.1021/op900237x. 

Lekhal, A. et al. (2004) ‘The effect of agitated drying on the morphology of l-threonine 

(needle-like) crystals’, International journal of pharmaceutics. Elsevier, 270(1–2), pp. 263–

277. 

Liu, X. et al. (2011) ‘Monitoring of antisolvent crystallization of sodium scutellarein by 



 

229 
 

combined FBRM–PVM–NIR’, Journal of pharmaceutical sciences. Elsevier, 100(6), pp. 2452–

2459. 

Liu, Y. C. et al. (2019) ‘A Comparative Study of Continuous Operation between a Dynamic 

Baffle Crystallizer and a Stirred Tank Crystallizer’, Chemical Engineering Journal. Elsevier. doi: 

10.1016/J.CEJ.2019.02.129. 

Ma, D. L., Tafti, D. K. and Braatz, R. D. (2002) ‘Optimal control and simulation of 

multidimensional crystallization processes’, Computers and Chemical Engineering, 26, pp. 

1103–1116. 

Ma, L. and Braatz, R. D. (2003) ‘Robust identification and control of batch processes’, 

Computers and Chemical Engineering, 27, pp. 1175–1184. doi: 10.1016/S0098-

1354(03)00045-0. 

Majumder, A. et al. (2012a) ‘Lattice Boltzmann method for multi-dimensional population 

balance models in crystallization’, Chemical Engineering Science. Elsevier, 70, pp. 121–134. 

doi: 10.1016/j.ces.2011.04.041. 

Majumder, A. et al. (2012b) ‘Lattice Boltzmann method for population balance equations with 

simultaneous growth , nucleation , aggregation and breakage’, Chemical Engineering Science. 

Elsevier, 69(1), pp. 316–328. doi: 10.1016/j.ces.2011.10.051. 

Majumder, A. and Nagy, Z. K. (2013) ‘Prediction and control of crystal shape distribution in 

the presence of crystal growth modi fi ers’, Chemical Engineering Science. Elsevier, 101, pp. 

593–602. doi: 10.1016/j.ces.2013.07.017. 

Manrique, J. and Martinez, F. (2007) ‘Solubility of ibuprofen in some ethanol+ water cosolvent 

mixtures at several temperatures’, Latin American Journal of Pharmacy. COLEGIO DE 

FARMACEUTICOS, 26(3), p. 344. 

Marchisio, D. L. and Fox, R. O. (2005) ‘Solution of population balance equations using the 

direct quadrature method of moments’, Journal of Aerosol Science, 36(1), pp. 43–73. doi: 

10.1016/j.jaerosci.2004.07.009. 

Marchisio, D. L., Vigil, R. D. and Fox, R. O. (2003a) ‘Implementation of the quadrature method 



 

230 
 

of moments in CFD codes for aggregation – breakage problems’, 58, pp. 3337–3351. doi: 

10.1016/S0009-2509(03)00211-2. 

Marchisio, D. L., Vigil, R. D. and Fox, R. O. (2003b) ‘Quadrature method of moments for 

aggregation – breakage processes’, 258, pp. 322–334. doi: 10.1016/S0021-9797(02)00054-1. 

Marshall, T. C. et al. (1998) ‘Statistical confidence for likelihood‐based paternity inference in 

natural populations’, Molecular ecology. Wiley Online Library, 7(5), pp. 639–655. 

Matthews, H. B., Miller, S. M. and Rawlings, J. B. (1996) ‘Model identification for 

crystallization: Theory and experimental verification’, Powder Technology. Elsevier, 88(3), pp. 

227–235. doi: 10.1016/S0032-5910(96)03125-7. 

Mazzarotta, B. (1992) ‘Abrasion and breakage phenomena in agitated crystal suspensions’, 

Chemical Engineering Science. Elsevier, 47(12), pp. 3105–3111. 

McDonald, D. B. et al. (2007) ‘Global and local optimization using radial basis function 

response surface models’, Applied Mathematical Modelling, 31(10), pp. 2095–2110. doi: 

10.1016/j.apm.2006.08.008. 

McGraw, R. (1997) ‘Description of Aerosol Dynamics by the Quadrature Method of Moments’, 

Aerosol Science and Technology, 27(2), pp. 255–265. doi: 10.1080/02786829708965471. 

Meimaroglou, D., Roussos,  a. I. and Kiparissides, C. (2006) ‘Part IV: Dynamic evolution of the 

particle size distribution in particulate processes. A comparative study between Monte Carlo 

and the generalized method of moments’, Chemical Engineering Science, 61(17), pp. 5620–

5635. doi: 10.1016/j.ces.2006.05.001. 

Mesbah, A. et al. (2009) ‘A control oriented study on the numerical solution of the population 

balance equation for crystallization processes’, Chemical Engineering Science. Elsevier, 

64(20), pp. 4262–4277. doi: 10.1016/j.ces.2009.06.060. 

Mesbah, A. et al. (2010) ‘A model-based control framework for industrial batch crystallization 

processes’, Chemical Engineering Research and Design, 88(9), pp. 1223–1233. doi: 

10.1016/j.cherd.2009.09.010. 

Mitchell, N. A. and Frawley, P. J. (2010) ‘Nucleation kinetics of paracetamol–ethanol solutions 



 

231 
 

from metastable zone widths’, Journal of Crystal Growth. Elsevier, 312(19), pp. 2740–2746. 

Mitchell, N. A., Frawley, P. J. and Ó’Ciardhá, C. T. (2011) ‘Nucleation kinetics of paracetamol–

ethanol solutions from induction time experiments using Lasentec FBRM®’, Journal of Crystal 

Growth. Elsevier, 321(1), pp. 91–99. 

Mohan, R. and Myerson, A. S. (2002) ‘Growth kinetics : a thermodynamic approach’, Chemical 

Engineering Science, 57, pp. 4277–4285. 

Mullen, S. F. and Jebwab, J. (1995) ‘Methods and apparatus for generating pseudo-random 

binary patterns’. Google Patents. 

Mullin, J. W. (2001) ‘Crystallization’, in. Butterworth-Heinemann, pp. 181–284. doi: 

10.1021/op0101005. 

Mullin, J. W. and Nývlt, J. (1988) ‘Programmed cooling of batch crystallizers’, Chemical 

Engineering and Processing, 24(4), pp. 217–220. doi: 10.1016/0255-2701(88)85005-0. 

Mumtaz, H. S. et al. (1997) ‘Orthokinetic Aggregation During Precipiations: A Computational 

Model for Calcium Oxalate Monohydrate’, Institution of Chemical Engineers, 75, pp. 152–159. 

Nagy, Z. and Agachi, S. (1997) ‘Model predictive control of a PVC batch reactor’, Computers 

and Chemical Engineering, 21(6), pp. 571–591. 

Nagy, Z. K. (2003) ‘Robust Nonlinear Model Predictive Control of Batch Processes Robust 

Nonlinear Model Predictive Control of Batch Processes’, (February). doi: 

10.1002/aic.690490715. 

Nagy, Z. K., Chew, J. W., et al. (2008a) ‘Comparative performance of concentration and 

temperature controlled batch crystallizations’, Journal of Process Control, 18(3–4), pp. 399–

407. doi: 10.1016/j.jprocont.2007.10.006. 

Nagy, Z. K., Chew, J. W., et al. (2008b) ‘Comparative performance of concentration and 

temperature controlled batch crystallizations’, Journal of Process Control, 18(3–4), pp. 399–

407. doi: 10.1016/j.jprocont.2007.10.006. 

Nagy, Z. K., Fujiwara, M., et al. (2008) ‘Determination of the kinetic parameters for the 

crystallization of paracetamol from water using metastable zone width experiments’, 



 

232 
 

Industrial and Engineering Chemistry Research, 47(4), pp. 1245–1252. doi: 

10.1021/ie060637c. 

Nagy, Z. K. et al. (2013) ‘Chemical Engineering Research and Design Recent advances in the 

monitoring , modelling and control of crystallization systems’, Chemical Engineering Research 

and Design. Institution of Chemical Engineers, 91(10), pp. 1903–1922. doi: 

10.1016/j.cherd.2013.07.018. 

Nagy, Z. K. and Braatz, R. D. (2003) ‘Robust Nonlinear Model Predictive Control of Batch 

Processes’, AIChE, 49(7), pp. 1776–1786. 

Nagy, Z. K. and Braatz, R. D. (2004) ‘Open-loop and closed-loop robust optimal control of 

batch processes using distributional and worst-case analysis’, Journal of Process Control, 14, 

pp. 411–422. doi: 10.1016/j.jprocont.2003.07.004. 

Nagy, Z. K. and Braatz, R. D. (2012) ‘Advances and New Directions in Crystallization Control’, 

Annual Review of Chemical and Biomolecular Engineering, 3, pp. 55–75. doi: 

10.1146/annurev-chembioeng-062011-081043. 

Ni, X. and Liao, A. (2008) ‘Effects of cooling rate and solution concentration on solution 

crystallization of L-glutamic acid in an oscillatory baffled crystallizer’, Crystal Growth and 

Design. ACS Publications, 8(8), pp. 2875–2881. 

Nikolaou, M. and Vuthandam, P. (1998) ‘FIR model identification: parsimony through kernel 

compression with wavelets’, AIChE Journal. Wiley Online Library, 44(1), pp. 141–150. 

Ochsenbein, D. R. et al. (2015) ‘Modeling the facet growth rate dispersion of β L -glutamic 

acid — Combining single crystal experiments with n D particle size distribution data’, Chemical 

Engineering Science. Elsevier, 133, pp. 30–43. doi: 10.1016/j.ces.2015.02.026. 

Ogata, K. (1995) Discrete-time control systems. Prentice Hall Englewood Cliffs, NJ. 

Oguchi, T., Watanabe, A. and Nakamizo, T. (2002) ‘Input-output linearization of retarded non-

linear systems by using an extension of Lie derivative’, International Journal of Control. Taylor 

& Francis, 75(8), pp. 582–590. 

Onyemelukwe, I. I. et al. (2018) ‘The heat transfer characteristics of a mesoscale continuous 



 

233 
 

oscillatory flow crystalliser with smooth periodic constrictions’, International Journal of Heat 

and Mass Transfer. Elsevier Ltd, 123, pp. 1109–1119. doi: 

10.1016/j.ijheatmasstransfer.2018.03.015. 

Pardalos, P. M. and Romeijn, H. E. (2013) Handbook of global optimization. Springer Science 

& Business Media. 

Peiró, J. and Sherwin, S. (2005) ‘Finite difference, finite element and finite volume methods 

for partial differential equations’, in Handbook of materials modeling. Springer, pp. 2415–

2446. 

Pöllänen, K. et al. (2006) ‘Dynamic PCA-based MSPC charts for nucleation prediction in batch 

cooling crystallization processes’, Chemometrics and Intelligent Laboratory Systems, 84(1-2 

SPEC. ISS.), pp. 126–133. doi: 10.1016/j.chemolab.2006.04.016. 
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