734 research outputs found

    An Architecture for Personality-based, Nonverbal Behavior in Affective Virtual Humanoid Character

    Get PDF
    As humans we perceive other humans as individually different based – amongst other things – on a consistent pattern of affect, cognition, and behavior. Here we propose a biologically and psychologically grounded cognitive architecture for the control of nonverbal behavior of a virtual humanoid character during dynamic interactions with human users. Key aspects of the internal states and overt behavior of the virtual character are modulated by high-level personality parameters derived from the scientific literature. The virtual character should behave naturally and consistently while responding dynamically to the environment's feedback. Our architecture strives to yield consistent patterns of behavior though personality traits that have a modulatory influence at different levels of the hierarchy. These factors affect on the one hand high-level components such as ‘emotional reactions’ and ‘coping behavior’, and on the other hand low-level parameters such as the ‘speed of movements and repetition of gestures. Psychological data models are used as a reference to create a map between personality factors and patterns of behavior. We present a novel hybrid computational model that combines the control of discrete behavior of the virtual character moving through states of the interaction with continuous updates of the emotional state of the virtual character depending on feedback from interactions with the environment. To develop and evaluate the hybrid model, a testing scenario is proposed that is based on a turn-taking interaction between a human participant and a 3D representation of the humanoid character. We believe that our work contributes to individualized, and ultimately more believable humanoid artifacts that can be deploy in a wide range of application scenarios

    Affective interactions between expressive characters

    Get PDF
    When people meet in virtual worlds they are represented by computer animated characters that lack a variety of expression and can seem stiff and robotic. By comparison human bodies are highly expressive; a casual observation of a group of people mil reveals a large diversity of behavior, different postures, gestures and complex patterns of eye gaze. In order to make computer mediated communication between people more like real face-to-face communication, it is necessary to add an affective dimension. This paper presents Demeanour, an affective semi-autonomous system for the generation of realistic body language in avatars. Users control their avatars that in turn interact autonomously with other avatars to produce expressive behaviour. This allows people to have affectively rich interactions via their avatars

    Affective Computing

    Get PDF
    This book provides an overview of state of the art research in Affective Computing. It presents new ideas, original results and practical experiences in this increasingly important research field. The book consists of 23 chapters categorized into four sections. Since one of the most important means of human communication is facial expression, the first section of this book (Chapters 1 to 7) presents a research on synthesis and recognition of facial expressions. Given that we not only use the face but also body movements to express ourselves, in the second section (Chapters 8 to 11) we present a research on perception and generation of emotional expressions by using full-body motions. The third section of the book (Chapters 12 to 16) presents computational models on emotion, as well as findings from neuroscience research. In the last section of the book (Chapters 17 to 22) we present applications related to affective computing

    A Review of Verbal and Non-Verbal Human-Robot Interactive Communication

    Get PDF
    In this paper, an overview of human-robot interactive communication is presented, covering verbal as well as non-verbal aspects of human-robot interaction. Following a historical introduction, and motivation towards fluid human-robot communication, ten desiderata are proposed, which provide an organizational axis both of recent as well as of future research on human-robot communication. Then, the ten desiderata are examined in detail, culminating to a unifying discussion, and a forward-looking conclusion

    A Comprehensive Review of Data-Driven Co-Speech Gesture Generation

    Full text link
    Gestures that accompany speech are an essential part of natural and efficient embodied human communication. The automatic generation of such co-speech gestures is a long-standing problem in computer animation and is considered an enabling technology in film, games, virtual social spaces, and for interaction with social robots. The problem is made challenging by the idiosyncratic and non-periodic nature of human co-speech gesture motion, and by the great diversity of communicative functions that gestures encompass. Gesture generation has seen surging interest recently, owing to the emergence of more and larger datasets of human gesture motion, combined with strides in deep-learning-based generative models, that benefit from the growing availability of data. This review article summarizes co-speech gesture generation research, with a particular focus on deep generative models. First, we articulate the theory describing human gesticulation and how it complements speech. Next, we briefly discuss rule-based and classical statistical gesture synthesis, before delving into deep learning approaches. We employ the choice of input modalities as an organizing principle, examining systems that generate gestures from audio, text, and non-linguistic input. We also chronicle the evolution of the related training data sets in terms of size, diversity, motion quality, and collection method. Finally, we identify key research challenges in gesture generation, including data availability and quality; producing human-like motion; grounding the gesture in the co-occurring speech in interaction with other speakers, and in the environment; performing gesture evaluation; and integration of gesture synthesis into applications. We highlight recent approaches to tackling the various key challenges, as well as the limitations of these approaches, and point toward areas of future development.Comment: Accepted for EUROGRAPHICS 202

    Development of the huggable social robot Probo: on the conceptual design and software architecture

    Get PDF
    This dissertation presents the development of a huggable social robot named Probo. Probo embodies a stuffed imaginary animal, providing a soft touch and a huggable appearance. Probo's purpose is to serve as a multidisciplinary research platform for human-robot interaction focused on children. In terms of a social robot, Probo is classified as a social interface supporting non-verbal communication. Probo's social skills are thereby limited to a reactive level. To close the gap with higher levels of interaction, an innovative system for shared control with a human operator is introduced. The software architecture de nes a modular structure to incorporate all systems into a single control center. This control center is accompanied with a 3D virtual model of Probo, simulating all motions of the robot and providing a visual feedback to the operator. Additionally, the model allows us to advance on user-testing and evaluation of newly designed systems. The robot reacts on basic input stimuli that it perceives during interaction. The input stimuli, that can be referred to as low-level perceptions, are derived from vision analysis, audio analysis, touch analysis and object identification. The stimuli will influence the attention and homeostatic system, used to de ne the robot's point of attention, current emotional state and corresponding facial expression. The recognition of these facial expressions has been evaluated in various user-studies. To evaluate the collaboration of the software components, a social interactive game for children, Probogotchi, has been developed. To facilitate interaction with children, Probo has an identity and corresponding history. Safety is ensured through Probo's soft embodiment and intrinsic safe actuation systems. To convey the illusion of life in a robotic creature, tools for the creation and management of motion sequences are put into the hands of the operator. All motions generated from operator triggered systems are combined with the motions originating from the autonomous reactive systems. The resulting motion is subsequently smoothened and transmitted to the actuation systems. With future applications to come, Probo is an ideal platform to create a friendly companion for hospitalised children
    corecore