199 research outputs found

    Current sensorless model predictive torque control based on adaptive backstepping observer for PMSM drives

    Full text link
    A novel adaptive backstepping observer is proposed and model predictive torque control (MPTC) strategy is considered for three-phase permanent magnet synchronous motor (PMSM) drives without any current sensor. Generally, instantaneous stator currents are required for successful operation of MPTC. If the stator current sensors fail, the most common technique for reconstructing stator currents mainly focuses on using information from a single current sensor in the DC-link of an inverter. Nevertheless, the existence of immeasurable regions in the output voltage hexagon results in that the three-phase currents will not be reliably detected since one or more of the active state vectors are not applied long enough to insure accurate measurements. In addition, the technique may suffer from the very noisy of DC-link current feedback. To avoid these drawbacks, making use of the technique of adaptive backstepping, a novel observer is proposed. The designed observer can be capable of concurrent estimation of stator currents and resistance under the assumption that rotor speed and inverter output voltage as well as DC-link voltage are available for measurement. Stability and convergence of the observer are analytically verified based on Lyapunov stability theory. In order to reduce the torque & flux ripples and improve drives control performance, MPTC strategy is employed. The proposed algorithm is less complicated and its implement is relatively easy. It can ensure that the whole drives system achieves satisfactory torque & speed control and strong robustness. Extensive simulation validates the feasibility and effectiveness of the proposed scheme

    Predictive Stator Flux and Load Angle Control of Synchronous Reluctance Motor Drives Operating in a Wide Speed Range

    Get PDF
    This paper presents a new simplified finitecontrol- set model predictive control strategy for synchronous reluctance motors operating in the entire speed range. It is a predictive control scheme that regulates the stator flux and the load angle of the synchronous reluctance motor, incorporating the ability to operate the drive in the field-weakening region and respecting the motor voltage and current limits as well as the load angle limitation needed to operate this type of motor in the maximum torque per voltage region. The proposed control strategy possesses some attractive features, such as no need for controller calibration, no weighting factors in the cost function, good robustness against parameter mismatch, and smaller computational cost compared to more traditional finite-control-set model predictive control algorithms. Simulation and experimental results obtained using a high-efficiency synchronous reluctance motor demonstrate the effectiveness of the proposed control scheme.info:eu-repo/semantics/publishedVersio

    Predictive Trajectory Control with Online MTPA Calculation and Minimization of the Inner Torque Ripple for Permanent-Magnet Synchronous Machines

    Get PDF
    This paper presents an extended predictive trajectory control scheme combined with an inner torque ripple minimization considering the current-, flux-linkage-, and voltage-planes of permanent magnet synchronous machines. The extension of a fundamental machine model with flux-linkage harmonics allows the calculation of the inner torque ripple and enables its minimization. For this, the control is divided in two cases: (1) The dynamic operation or large signal behavior which uses the maximal torque gradient for the trajectory strategy during each control period for fastest dynamic operation, and (2) The stationary operation or small signal behavior, utilizing a real time capable polynomial approximation of the rotor position dependent torque hyperbolas (iso-torque curves) of permanent magnet synchronous machines for the ideal torque to current reference values. Since dynamic and steady-state operation is covered, torque to current look-up tables, such as maximum torque per ampere (MTPA)/maximum torque per volt/voltage (MTPV) look-up tables, are not required anymore. The introduced, new control approach is implemented in Matlab/Simulink based on finite element analysis and measured data. Furthermore, test-bench implementations based on measurement data are presented to show the real-time capability and precision

    Mitigating the Torque Ripple in Electric Traction using Proportional Integral Resonant Controller

    Get PDF
    Permanent magnet (PM) machines offer high efficiencies which are attractive to be used in vehicle propulsion systems, however, their design creates an inherent torque ripple. This is particularly problematic for electric vehicles (EV) due to low damping of torsional vibration which can result in reduced vehicle comfort. This can prohibit the take up of PM machines, missing opportunities for improving vehicle energy efficiency. This paper presents the application of resonant control (RC) to suppress the impact of the PM torque ripple this enabling take up of this technology and for the first time aims to demonstrate a reduction in vibration at a vehicle level. A prototype PM machine and driveline have been fitted to a light-duty off-road vehicle. Firstly an analysis of the vehicle vibration when it is driven in a speed-control mode with a conventional proportional-integral (PI) control. The main source of the vibration is identified as the 24th harmonic torque ripple of the PM machine, which originates from the cogging torque and air-gap flux harmonics. The vibration is more severe when the torque ripple frequency is close to the natural frequency of the drivetrain. The application of Resonance Control has demonstrated over 80% reduction in speed ripple even when the torque ripple frequency is close to the natural frequency of the vehicle

    Constrained field-oriented control of permanent magnet synchronous machine with field-weakening utilizing a reference governor

    Get PDF
    This paper presents a complete solution for constrained control of a permanent magnet synchronous machine. It utilizes field-oriented control with proportional-integral current controllers tuned to obtain a fast transient response and zero steady-state error. To ensure constraint satisfaction in the steady state, a novel field-weakening algorithm which is robust to flux linkage uncertainty is introduced. Field weakening problem is formulated as an optimization problem which is solved online using projected fast gradient method. To ensure constraint satisfaction during current transients, an additional device called current reference governor is added to the existing control loops. The constraint satisfaction is achieved by altering the reference signal. The reference governor is formulated as a simple optimization problem whose objective is to minimize the difference between the true reference and a modified one. The proposed method is implemented on Texas instruments F28343 200 MHz microcontroller and experimentally verified on a surface mounted permanent magnet synchronous machine

    Cogging torque reduction in brushless motors by a nonlinear control technique

    Get PDF
    This work addresses the problem of mitigating the effects of the cogging torque in permanent magnet synchronous motors, particularly brushless motors, which is a main issue in precision electric drive applications. In this work, a method for mitigating the effects of the cogging torque is proposed, based on the use of a nonlinear automatic control technique known as feedback linearization that is ideal for underactuated dynamic systems. The aim of this work is to present an alternative to classic solutions based on the physical modification of the electrical machine to try to suppress the natural interaction between the permanent magnets and the teeth of the stator slots. Such modifications of electric machines are often expensive because they require customized procedures, while the proposed method does not require any modification of the electric drive. With respect to other algorithmic-based solutions for cogging torque reduction, the proposed control technique is scalable to different motor parameters, deterministic, and robust, and hence easy to use and verify for safety-critical applications. As an application case example, the work reports the reduction of the oscillations for the angular position control of a permanent magnet synchronous motor vs. classic PI (proportional-integrative) cascaded control. Moreover, the proposed algorithm is suitable to be implemented in low-cost embedded control units

    Critical Aspects of Electric Motor Drive Controllers and Mitigation of Torque Ripple - Review

    Get PDF
    Electric vehicles (EVs) are playing a vital role in sustainable transportation. It is estimated that by 2030, Battery EVs will become mainstream for passenger car transportation. Even though EVs are gaining interest in sustainable transportation, the future of EV power transmission is facing vital concerns and open research challenges. Considering the case of torque ripple mitigation and improved reliability control techniques in motors, many motor drive control algorithms fail to provide efficient control. To efficiently address this issue, control techniques such as Field Orientation Control (FOC), Direct Torque Control (DTC), Model Predictive Control (MPC), Sliding Mode Control (SMC), and Intelligent Control (IC) techniques are used in the motor drive control algorithms. This literature survey exclusively compares the various advanced control techniques for conventionally used EV motors such as Permanent Magnet Synchronous Motor (PMSM), Brushless Direct Current Motor (BLDC), Switched Reluctance Motor (SRM), and Induction Motors (IM). Furthermore, this paper discusses the EV-motors history, types of EVmotors, EV-motor drives powertrain mathematical modelling, and design procedure of EV-motors. The hardware results have also been compared with different control techniques for BLDC and SRM hub motors. Future direction towards the design of EV by critical selection of motors and their control techniques to minimize the torque ripple and other research opportunities to enhance the performance of EVs are also presented.publishedVersio

    Field-oriented control based on hysteresis band current controller for a permanent magnet synchronous motor driven by a direct matrix converter

    Full text link
    © 2018, The Institution of Engineering and Technology. The hysteresis band controller offers excellent dynamic performance. It has been widely researched and applied to the voltage source inverter and inverter fed drives, however it has not been investigated within the context of a matrix converter or a matrix converter based motor drive. In this study, both fixed-band and sinusoidal-band hysteresis current controllers are proposed and developed for a direct matrix converter. A comprehensive comparative evaluation of the two methods is then carried out. Both methods have fast dynamic performance and they inherently integrate the line modulation technique of the virtual rectifier stage into the overall modulation. Surge currents are prevented with the proposed scheme. The sinusoidal-band hysteresis controller demonstrates lower total harmonic distortion at the expense of higher average switching frequency, which is only significantly observable at very high sampling frequencies. The proposed controller is integrated with the field-oriented control to drive a matrix converter fed permanent magnet synchronous machine. The proposed methods are simple and incur a light computational burden, which advances the practical applications of matrix converters in AC motor drives. The simulation and experiment results demonstrate the effectiveness and feasibility of the proposed scheme
    corecore