56 research outputs found

    Structure of computations in parallel complexity classes

    Get PDF
    Issued as Annual report, and Final project report, Project no. G-36-67

    Counting and enumerating in first-order team logics

    Get PDF
    Descriptive complexity theory is the study of the expressibility of computational problems in certain logics. Most of the results in this field use (fragments or extensions of) first-order logic or second-order logic to describe decision complexity classes. For example the complexity class NP can be characterized as the set of problems that are describable by a dependence logic formula, in short NP = FO(=(...)). Dependence logic is a certain team logic, where a team logic is an extension of first-order logic by some new atoms, with new semantics, called team semantics. Compared to decision complexity where one is interested in the existence of a solution to an input instance, in counting complexity one is interested in the number of solutions and in enumeration complexity one wants to compute all solutions. Counting complexity has been less studied in terms of descriptive complexity than decision complexity, whereas there are no results for enumeration complexity in this field. The latter is because the concept of hardness in the enumeration setting was first introduced rather recently. In this thesis, we characterize counting and enumeration complexity classes with team logics and compare the results to the corresponding results for decision complexity classes. To study the framework of hard enumeration a bit more, we investigate further team logic based enumeration problems. In the counting setting we characterize the classes #P and #•NP as #P = #FOT and #•NP = #FO(⊥). Furthermore, we establish two team logic based classes #FO(⊆) and #FO(=(...)) which seem to have no direct counterpart in classical counting complexity, but contain problems that are complete under Turing reductions for #P and #•NP, respectively. To show the latter we identify a new #•NP-complete problem with respect to Turing reductions. We show that in the enumeration setting the classes behave very similarly to the corresponding classes in the decision setting. We translate the results P = FO(⊆) and NP = FO(=(...)) to the enumeration setting which results in DelP = DelFO(⊆) and DelNP = DelFO(=(...)). Furthermore, we identify several DelP and DelNP-complete problems which yield additional characterisations of DelP and DelNP. For one of the investigated problems we were only able to show Del+NP membership (and DelNP-hardness), a precise classification remains open

    Descriptive Complexity

    Full text link

    Applications of Finite Model Theory: Optimisation Problems, Hybrid Modal Logics and Games.

    Get PDF
    There exists an interesting relationships between two seemingly distinct fields: logic from the field of Model Theory, which deals with the truth of statements about discrete structures; and Computational Complexity, which deals with the classification of problems by how much of a particular computer resource is required in order to compute a solution. This relationship is known as Descriptive Complexity and it is the primary application of the tools from Model Theory when they are restricted to the finite; this restriction is commonly called Finite Model Theory. In this thesis, we investigate the extension of the results of Descriptive Complexity from classes of decision problems to classes of optimisation problems. When dealing with decision problems the natural mapping from true and false in logic to yes and no instances of a problem is used but when dealing with optimisation problems, other features of a logic need to be used. We investigate what these features are and provide results in the form of logical frameworks that can be used for describing optimisation problems in particular classes, building on the existing research into this area. Another application of Finite Model Theory that this thesis investigates is the relative expressiveness of various fragments of an extension of modal logic called hybrid modal logic. This is achieved through taking the Ehrenfeucht-Fraïssé game from Model Theory and modifying it so that it can be applied to hybrid modal logic. Then, by developing winning strategies for the players in the game, results are obtained that show strict hierarchies of expressiveness for fragments of hybrid modal logic that are generated by varying the quantifier depth and the number of proposition and nominal symbols available

    Towards Tractable Algebras for Bags

    Get PDF
    AbstractBags, i.e., sets with duplicates, are often used to implement relations in database systems. In this paper, we study the expressive power of algebras for manipulating bags. The algebra we present is a simple extension of the nested relation algebra. Our aim is to investigate how the use of bags in the language extends its expressive power and increases its complexity. We consider two main issues, namely (i) the impact of the depth of bag nesting on the expressive power and (ii) the complexity and the expressive power induced by the algebraic operations. We show that the bag algebra is more expressive than the nested relation algebra (at all levels of nesting), and that the difference may be subtle. We establish a hierarchy based on the structure of algebra expressions. This hierarchy is shown to be highly related to the properties of the powerset operator

    The combinatorics of minimal unsatisfiability: connecting to graph theory

    Get PDF
    Minimally Unsatisfiable CNFs (MUs) are unsatisfiable CNFs where removing any clause destroys unsatisfiability. MUs are the building blocks of unsatisfia-bility, and our understanding of them can be very helpful in answering various algorithmic and structural questions relating to unsatisfiability. In this thesis we study MUs from a combinatorial point of view, with the aim of extending the understanding of the structure of MUs. We show that some important classes of MUs are very closely related to known classes of digraphs, and using arguments from logic and graph theory we characterise these MUs.Two main concepts in this thesis are isomorphism of CNFs and the implica-tion digraph of 2-CNFs (at most two literals per disjunction). Isomorphism of CNFs involves renaming the variables, and flipping the literals. The implication digraph of a 2-CNF F has both arcs (¬a → b) and (¬b → a) for every binary clause (a ∨ b) in F .In the first part we introduce a novel connection between MUs and Minimal Strong Digraphs (MSDs), strongly connected digraphs, where removing any arc destroys the strong connectedness. We introduce the new class DFM of special MUs, which are in close correspondence to MSDs. The known relation between 2-CNFs and implication digraphs is used, but in a simpler and more direct way, namely that we have a canonical choice of one of the two arcs. As an application of this new framework we provide short and intuitive new proofs for two im-portant but isolated characterisations for nonsingular MUs (every literal occurs at least twice), both with ingenious but complicated proofs: Characterising 2-MUs (minimally unsatisfiable 2-CNFs), and characterising MUs with deficiency 2 (two more clauses than variables).In the second part, we provide a fundamental addition to the study of 2-CNFs which have efficient algorithms for many interesting problems, namely that we provide a full classification of 2-MUs and a polytime isomorphism de-cision of this class. We show that implication digraphs of 2-MUs are “Weak Double Cycles” (WDCs), big cycles of small cycles (with possible overlaps). Combining logical and graph-theoretical methods, we prove that WDCs have at most one skew-symmetry (a self-inverse fixed-point free anti-symmetry, re-versing the direction of arcs). It follows that the isomorphisms between 2-MUs are exactly the isomorphisms between their implication digraphs (since digraphs with given skew-symmetry are the same as 2-CNFs). This reduces the classifi-cation of 2-MUs to the classification of a nice class of digraphs.Finally in the outlook we discuss further applications, including an alter-native framework for enumerating some special Minimally Unsatisfiable Sub-clause-sets (MUSs)

    Pseudo-contractions as Gentle Repairs

    Get PDF
    Updating a knowledge base to remove an unwanted consequence is a challenging task. Some of the original sentences must be either deleted or weakened in such a way that the sentence to be removed is no longer entailed by the resulting set. On the other hand, it is desirable that the existing knowledge be preserved as much as possible, minimising the loss of information. Several approaches to this problem can be found in the literature. In particular, when the knowledge is represented by an ontology, two different families of frameworks have been developed in the literature in the past decades with numerous ideas in common but with little interaction between the communities: applications of AGM-like Belief Change and justification-based Ontology Repair. In this paper, we investigate the relationship between pseudo-contraction operations and gentle repairs. Both aim to avoid the complete deletion of sentences when replacing them with weaker versions is enough to prevent the entailment of the unwanted formula. We show the correspondence between concepts on both sides and investigate under which conditions they are equivalent. Furthermore, we propose a unified notation for the two approaches, which might contribute to the integration of the two areas

    36th International Symposium on Theoretical Aspects of Computer Science: STACS 2019, March 13-16, 2019, Berlin, Germany

    Get PDF
    corecore