607 research outputs found

    Interim research assessment 2003-2005 - Computer Science

    Get PDF
    This report primarily serves as a source of information for the 2007 Interim Research Assessment Committee for Computer Science at the three technical universities in the Netherlands. The report also provides information for others interested in our research activities

    Situation awareness and ability in coalitions

    Get PDF
    This paper proposes a discussion on the formal links between the Situation Calculus and the semantics of interpreted systems as far as they relate to Higher-Level Information Fusion tasks. Among these tasks Situation Analysis require to be able to reason about the decision processes of coalitions. Indeed in higher levels of information fusion, one not only need to know that a certain proposition is true (or that it has a certain numerical measure attached), but rather needs to model the circumstances under which this validity holds as well as agents' properties and constraints. In a previous paper the authors have proposed to use the Interpreted System semantics as a potential candidate for the unification of all levels of information fusion. In the present work we show how the proposed framework allow to bind reasoning about courses of action and Situation Awareness. We propose in this paper a (1) model of coalition, (2) a model of ability in the situation calculus language and (3) a model of situation awareness in the interpreted systems semantics. Combining the advantages of both Situation Calculus and the Interpreted Systems semantics, we show how the Situation Calculus can be framed into the Interpreted Systems semantics. We illustrate on the example of RAP compilation in a coalition context, how ability and situation awareness interact and what benefit is gained. Finally, we conclude this study with a discussion on possible future works

    Seventh Biennial Report : June 2003 - March 2005

    No full text

    Cost Automata, Safe Schemes, and Downward Closures

    Get PDF
    Higher-order recursion schemes are an expressive formalism used to define languages of possibly infinite ranked trees. They extend regular and context-free grammars, and are equivalent to simply typed ?Y-calculus and collapsible pushdown automata. In this work we prove, under a syntactical constraint called safety, decidability of the model-checking problem for recursion schemes against properties defined by alternating B-automata, an extension of alternating parity automata for infinite trees with a boundedness acceptance condition. We then exploit this result to show how to compute downward closures of languages of finite trees recognized by safe recursion schemes

    Generalizing symbolic execution to library classes

    Full text link

    On the connection of probabilistic model checking, planning, and learning for system verification

    Get PDF
    This thesis presents approaches using techniques from the model checking, planning, and learning community to make systems more reliable and perspicuous. First, two heuristic search and dynamic programming algorithms are adapted to be able to check extremal reachability probabilities, expected accumulated rewards, and their bounded versions, on general Markov decision processes (MDPs). Thereby, the problem space originally solvable by these algorithms is enlarged considerably. Correctness and optimality proofs for the adapted algorithms are given, and in a comprehensive case study on established benchmarks it is shown that the implementation, called Modysh, is competitive with state-of-the-art model checkers and even outperforms them on very large state spaces. Second, Deep Statistical Model Checking (DSMC) is introduced, usable for quality assessment and learning pipeline analysis of systems incorporating trained decision-making agents, like neural networks (NNs). The idea of DSMC is to use statistical model checking to assess NNs resolving nondeterminism in systems modeled as MDPs. The versatility of DSMC is exemplified in a number of case studies on Racetrack, an MDP benchmark designed for this purpose, flexibly modeling the autonomous driving challenge. In a comprehensive scalability study it is demonstrated that DSMC is a lightweight technique tackling the complexity of NN analysis in combination with the state space explosion problem.Diese Arbeit prĂ€sentiert AnsĂ€tze, die Techniken aus dem Model Checking, Planning und Learning Bereich verwenden, um Systeme verlĂ€sslicher und klarer verstĂ€ndlich zu machen. Zuerst werden zwei Algorithmen fĂŒr heuristische Suche und dynamisches Programmieren angepasst, um Extremwerte fĂŒr Erreichbarkeitswahrscheinlichkeiten, Erwartungswerte fĂŒr Kosten und beschrĂ€nkte Varianten davon, auf generellen Markov Entscheidungsprozessen (MDPs) zu untersuchen. Damit wird der Problemraum, der ursprĂŒnglich mit diesen Algorithmen gelöst wurde, deutlich erweitert. Korrektheits- und OptimalitĂ€tsbeweise fĂŒr die angepassten Algorithmen werden gegeben und in einer umfassenden Fallstudie wird gezeigt, dass die Implementierung, namens Modysh, konkurrenzfĂ€hig mit den modernsten Model Checkern ist und deren Leistung auf sehr großen ZustandsrĂ€umen sogar ĂŒbertrifft. Als Zweites wird Deep Statistical Model Checking (DSMC) fĂŒr die QualitĂ€tsbewertung und Lernanalyse von Systemen mit integrierten trainierten Entscheidungsgenten, wie z.B. neuronalen Netzen (NN), eingefĂŒhrt. Die Idee von DSMC ist es, statistisches Model Checking zur Bewertung von NNs zu nutzen, die Nichtdeterminismus in Systemen, die als MDPs modelliert sind, auflösen. Die Vielseitigkeit des Ansatzes wird in mehreren Fallbeispielen auf Racetrack gezeigt, einer MDP Benchmark, die zu diesem Zweck entwickelt wurde und die Herausforderung des autonomen Fahrens flexibel modelliert. In einer umfassenden Skalierbarkeitsstudie wird demonstriert, dass DSMC eine leichtgewichtige Technik ist, die die KomplexitĂ€t der NN-Analyse in Kombination mit dem State Space Explosion Problem bewĂ€ltigt
    • 

    corecore