9 research outputs found

    Reachability analysis of first-order definable pushdown systems

    Get PDF
    We study pushdown systems where control states, stack alphabet, and transition relation, instead of being finite, are first-order definable in a fixed countably-infinite structure. We show that the reachability analysis can be addressed with the well-known saturation technique for the wide class of oligomorphic structures. Moreover, for the more restrictive homogeneous structures, we are able to give concrete complexity upper bounds. We show ample applicability of our technique by presenting several concrete examples of homogeneous structures, subsuming, with optimal complexity, known results from the literature. We show that infinitely many such examples of homogeneous structures can be obtained with the classical wreath product construction.Comment: to appear in CSL'1

    An Automata-Theoretic Approach to the Verification of Distributed Algorithms

    Get PDF
    We introduce an automata-theoretic method for the verification of distributed algorithms running on ring networks. In a distributed algorithm, an arbitrary number of processes cooperate to achieve a common goal (e.g., elect a leader). Processes have unique identifiers (pids) from an infinite, totally ordered domain. An algorithm proceeds in synchronous rounds, each round allowing a process to perform a bounded sequence of actions such as send or receive a pid, store it in some register, and compare register contents wrt. the associated total order. An algorithm is supposed to be correct independently of the number of processes. To specify correctness properties, we introduce a logic that can reason about processes and pids. Referring to leader election, it may say that, at the end of an execution, each process stores the maximum pid in some dedicated register. Since the verification of distributed algorithms is undecidable, we propose an underapproximation technique, which bounds the number of rounds. This is an appealing approach, as the number of rounds needed by a distributed algorithm to conclude is often exponentially smaller than the number of processes. We provide an automata-theoretic solution, reducing model checking to emptiness for alternating two-way automata on words. Overall, we show that round-bounded verification of distributed algorithms over rings is PSPACE-complete.Comment: 26 pages, 6 figure

    FO2(<,+1,~) on data trees, data tree automata and branching vector addition systems

    Get PDF
    A data tree is an unranked ordered tree where each node carries a label from a finite alphabet and a datum from some infinite domain. We consider the two variable first order logic FO2(<,+1,~) over data trees. Here +1 refers to the child and the next sibling relations while < refers to the descendant and following sibling relations. Moreover, ~ is a binary predicate testing data equality. We exhibit an automata model, denoted DAD# that is more expressive than FO2(<,+1,~) but such that emptiness of DAD# and satisfiability of FO2(<,+1,~) are inter-reducible. This is proved via a model of counter tree automata, denoted EBVASS, that extends Branching Vector Addition Systems with States (BVASS) with extra features for merging counters. We show that, as decision problems, reachability for EBVASS, satisfiability of FO2(<,+1,~) and emptiness of DAD# are equivalent

    On the Expressiveness of TPTL and MTL over \omega-Data Words

    Full text link
    Metric Temporal Logic (MTL) and Timed Propositional Temporal Logic (TPTL) are prominent extensions of Linear Temporal Logic to specify properties about data languages. In this paper, we consider the class of data languages of non-monotonic data words over the natural numbers. We prove that, in this setting, TPTL is strictly more expressive than MTL. To this end, we introduce Ehrenfeucht-Fraisse (EF) games for MTL. Using EF games for MTL, we also prove that the MTL definability decision problem ("Given a TPTL-formula, is the language defined by this formula definable in MTL?") is undecidable. We also define EF games for TPTL, and we show the effect of various syntactic restrictions on the expressiveness of MTL and TPTL.Comment: In Proceedings AFL 2014, arXiv:1405.527

    Reasoning about Data Repetitions with Counter Systems

    Full text link
    We study linear-time temporal logics interpreted over data words with multiple attributes. We restrict the atomic formulas to equalities of attribute values in successive positions and to repetitions of attribute values in the future or past. We demonstrate correspondences between satisfiability problems for logics and reachability-like decision problems for counter systems. We show that allowing/disallowing atomic formulas expressing repetitions of values in the past corresponds to the reachability/coverability problem in Petri nets. This gives us 2EXPSPACE upper bounds for several satisfiability problems. We prove matching lower bounds by reduction from a reachability problem for a newly introduced class of counter systems. This new class is a succinct version of vector addition systems with states in which counters are accessed via pointers, a potentially useful feature in other contexts. We strengthen further the correspondences between data logics and counter systems by characterizing the complexity of fragments, extensions and variants of the logic. For instance, we precisely characterize the relationship between the number of attributes allowed in the logic and the number of counters needed in the counter system.Comment: 54 page

    A Robust Class of Data Languages and an Application to Learning

    Get PDF
    We introduce session automata, an automata model to process data words, i.e., words over an infinite alphabet. Session automata support the notion of fresh data values, which are well suited for modeling protocols in which sessions using fresh values are of major interest, like in security protocols or ad-hoc networks. Session automata have an expressiveness partly extending, partly reducing that of classical register automata. We show that, unlike register automata and their various extensions, session automata are robust: They (i) are closed under intersection, union, and (resource-sensitive) complementation, (ii) admit a symbolic regular representation, (iii) have a decidable inclusion problem (unlike register automata), and (iv) enjoy logical characterizations. Using these results, we establish a learning algorithm to infer session automata through membership and equivalence queries

    Model Checking Languages of Data Words

    Get PDF
    We consider the model-checking problem for data multipushdown automata (DMPA). DMPA generate data words, i.e, strings enriched with values from an infinite domain. The latter can be used to represent an unbounded number of process identifiers so that DMPA are suitable to model concurrent programs with dynamic process creation. To specify properties of data words, we use monadic second-order (MSO) logic, which comes with a predicate to test two word positions for data equality. While satisfiability for MSO logic is undecidable (even for weaker fragments such as first-order logic), our main result states that one can decide if all words generated by a DMPA satisfy a given formula from the full MSO logic
    corecore