
A Robust Class of Data Languages and an Application

to Learning

Benedikt Bollig, Peter Habermehl, Martin Leucker, Benjamin Monmege

To cite this version:

Benedikt Bollig, Peter Habermehl, Martin Leucker, Benjamin Monmege. A Robust Class of
Data Languages and an Application to Learning. Logical Methods in Computer Science, Logical
Methods in Computer Science Association, 2014, 10 (4:19), <10.2168/LMCS-10(4:19)2014>.
<hal-00920945v2>

HAL Id: hal-00920945

https://hal.archives-ouvertes.fr/hal-00920945v2

Submitted on 12 Feb 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Hal-Diderot

https://core.ac.uk/display/47084712?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00920945v2
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Logical Methods in Computer Science
Vol. 10(4:19)2014, pp. 1–23
www.lmcs-online.org

Submitted Jan. 29, 2014
Published Dec. 29, 2014

A ROBUST CLASS OF DATA LANGUAGES AND AN APPLICATION

TO LEARNING ∗

BENEDIKT BOLLIG a, PETER HABERMEHL b, MARTIN LEUCKER c, AND BENJAMIN MONMEGE d

a LSV, ENS Cachan, CNRS & Inria, France
e-mail address: bollig@lsv.ens-cachan.fr

b Univ Paris Diderot, Sorbonne Paris Cité, LIAFA, CNRS, France
e-mail address: haberm@liafa.univ-paris-diderot.fr

c ISP, University of Lübeck, Germany
e-mail address: leucker@isp.uni-luebeck.de

d Université Libre de Bruxelles, Belgium
e-mail address: bmonmege@ulb.ac.be

Abstract. We introduce session automata, an automata model to process data words,
i.e., words over an infinite alphabet. Session automata support the notion of fresh data
values, which are well suited for modeling protocols in which sessions using fresh values are
of major interest, like in security protocols or ad-hoc networks. Session automata have an
expressiveness partly extending, partly reducing that of classical register automata. We show
that, unlike register automata and their various extensions, session automata are robust:
They (i) are closed under intersection, union, and (resource-sensitive) complementation,
(ii) admit a symbolic regular representation, (iii) have a decidable inclusion problem (unlike
register automata), and (iv) enjoy logical characterizations. Using these results, we establish
a learning algorithm to infer session automata through membership and equivalence queries.

1. Introduction

The study of automata over data words, i.e., words over an infinite alphabet, has its origins
in the seminal work by Kaminski and Francez [21]. Their finite-memory automata (more
commonly called register automata) equip finite-state machines with registers in which data
values (from the infinite alphabet) can be stored and be reused later. Register automata
preserve some of the good properties of finite automata: they have a decidable emptiness
problem and are closed under union and intersection. On the other hand, register automata
are neither determinizable nor closed under complementation, and they have an undecidable
equivalence/inclusion problem. There are actually several variants of register automata,

2012 ACM CCS: [Theory of computation]: Formal languages and automata theory—Automata over
infinite objects; Theory and algorithms for application domains—Machine learning theory—Active learning.

Key words and phrases: Register Automata; Data words; Angluin-style learning; Freshness.
∗ This paper is an extended and revised version of the paper “A Fresh Approach to Learning Register

Automata” which appeared in DLT 2013.

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.2168/LMCS-10(4:19)2014
c© B. Bollig, P. Habermehl, M. Leucker, and B. Monmege
CC© Creative Commons

http://creativecommons.org/about/licenses

2 B. BOLLIG, P. HABERMEHL, M. LEUCKER, AND B. MONMEGE

which all have the same expressive power but differ in the complexity of decision problems
[14, 5]. In the sequel, many more automata models have been introduced (not necessarily
with registers), aiming at a good balance between expressivity, decidability, and closure
properties [29, 14, 23, 7, 17, 16]. Some of those models extend register automata, inheriting
their drawbacks such as undecidability of the equivalence problem.

We will follow the work on register automata and study a model that supports the
notion of freshness. When reading a data value, it may enforce that the data value is fresh,
i.e., it has not occurred in the whole history of the run. This feature has been proposed in
[33] to model computation with names in the context of programming-language semantics.
Actually, fresh names are needed to model object creation in object-oriented languages,
and they are important ingredients in modeling security protocols which often make use of
so-called fresh nonces to achieve their security assertions [24]. Fresh names are also crucial
in the field of network protocols, and they are one of the key features of the π-calculus
[28]. Like ordinary register automata, fresh-register automata preserve some of the good
properties of finite automata. However, they are not closed under complement and also
come with an undecidable equivalence problem.

In this paper, we propose session automata, a robust automata model over data words.
Like register automata, session automata are a syntactical restriction of fresh-register
automata, but in an orthogonal way. Register automata drop the feature of checking global
freshness (referring to the whole history) while keeping a local variant (referring to the
registers). Session automata, on the other hand, discard local freshness, while keeping the
global one. Session automata are well-suited whenever fresh values are important for a finite
period, for which they will be stored in one of the registers. They correspond to the model
from [8] without stacks.

Not surprisingly, we will show that session automata and register automata describe
incomparable classes of languages of data words, whereas both are strictly weaker than
fresh-register automata. Contrary to finite-state unification based automata introduced
in [22], session automata (like fresh-register automata) do not have the capability to reset
the content of a register. However, they can test global freshness which the model of [22]
cannot. The variable automata from [16] do not employ registers, but rather use bound and
free variables. However, variable automata are close to our model: they use a finite set of
bound variables to track the occurrences of some data values, and a single free variable for
all other data values (that must be different from data values tracked by bound variables).
Contrary to our model, variable automata cannot test for global freshness, but we are not
able to recognize the language of all data words, contrary to them.

In this paper, we show that session automata (i) are closed under intersection, union,
and resource-sensitive complementation1, (ii) have a unique canonical form (analogous to
minimal deterministic finite automata), (iii) have a decidable equivalence/inclusion problem,
and (iv) enjoy logical characterizations. Altogether, this provides a versatile framework for
languages over infinite alphabets.

In a second part of the paper, we present an application of our automata model in the
area of learning, where decidability of the equivalence problem is crucial. Learning automata
deals with the inference of automata based on some partial information, for example samples,
which are words that either belong to the accepted language or not. A popular framework is
that of active learning defined by Angluin [2] in which a learner may consult a teacher for

1A notion similar to [25], but for a different model.

A ROBUST CLASS OF DATA LANGUAGES AND AN APPLICATION TO LEARNING 3

so-called membership and equivalence queries to eventually infer the automaton in question.
Learning automata has many applications in computer science. Notable examples are the
use in model checking [15] and testing [3]. See [26] for an overview.

While active learning of regular languages is meanwhile well understood and is supported
by freely available libraries such as LearnLib [27] and libalf [10], extensions beyond plain
regular languages are still an area of active research. Recently, automata dealing with
potentially infinite data as basis objects have been studied. Seminal works in this area are
that of [1, 20] and [19]. While the first two use abstraction and refinement techniques to
cope with infinite data, the second approach learns a sub-class of register automata. Note
that session automata are incomparable with the model from [19]. Thanks to their closure
and decidability properties, a conservative extension of Angluin’s classical algorithm will do
for their automatic inference.

Outline. The paper is structured as follows. In Section 2 we introduce session automata.
Section 3 presents the main tool allowing us to establish the results of this paper, namely
the use of data words in symbolic normal form and the construction of a canonical session
automaton. The section also presents some closure properties of session automata and the
decidability of the equivalence problem. Section 4 gives logical characterizations of our
model. In Section 5, we present an active learning algorithm for session automata. This
paper is an extended version of [9].

2. Data Words and Session Automata

We let N be the set of natural numbers and N>0 be the set of non-zero natural numbers.
In the following, we fix a non-empty finite alphabet Σ of labels and an infinite set D of
data values. In examples, we usually use D = N. A data word over Σ and D is a sequence
w = (a1, d1) · · · (an, dn) of pairs (ai, di) ∈ Σ × D. In other words, w is an element from
(Σ ×D)∗. For d ∈ {d1, . . . , dn}, we let firstw(d) denote the position j ∈ {1, . . . , n} where
d occurs for the first time, i.e., such that dj = d and there is no k < j such that dk = d.
Accordingly, we define lastw(d) to be the last position where d occurs.

An example data word over Σ = {a, b} and D = N is given by w = (a, 8)(b, 4)(a, 8)(c, 3)
(a, 4)(b, 4)(a, 9). We have firstw(4) = 2 and lastw(4) = 6.

This section recalls two existing automata models over data words – namely register
automata, previously introduced in [21], and fresh-register automata, introduced in [33] as
a generalization of register automata. Moreover, we introduce the new model of session
automata, our main object of interest.

Register automata (initially called finite-memory automata) equip finite-state machines
with registers in which data values can be stored and be read out later. Fresh-register
automata additionally come with an oracle that can determine if a data value is fresh, i.e.,
has not occurred in the history of a run. Both register and fresh-register automata are closed
under union and intersection, and they have a decidable emptiness problem. However, they
are not closed under complementation, and their equivalence problem is undecidable, which
limits their application in areas such as model checking and automata learning. Session
automata, on the other hand, are closed under (resource-sensitive) complementation, and
they have a decidable inclusion/equivalence problem.

Given a set R, we let R↑ def
= {r↑ | r ∈ R}, R� def

= {r� | r ∈ R}, and R~ def
= {r~ | r ∈ R}.

In the automata models that we are going to introduce, R will be the set of registers.

4 B. BOLLIG, P. HABERMEHL, M. LEUCKER, AND B. MONMEGE

Transitions will be labeled with an element from R~ ∪ R� ∪ R↑, which determines a register
and the operation that is performed on it. More precisely, r~ writes a globally fresh value
into r, r� writes a locally fresh value into r, and r↑ uses the value that is currently stored in
r. For π ∈ R~ ∪ R� ∪ R↑, we let reg(π) = r if π ∈ {r~, r�, r↑}. Similarly,

op(π) =

~ if π is of the form r~

� if π is of the form r�

↑ if π is of the form r↑ .

Definition 2.1 (Fresh-Register Automaton, cf. [33]). A fresh-register automaton (over Σ
and D) is a tuple A = (S,R, ι, F,∆) where

• S is the non-empty finite set of states,
• R is the non-empty finite set of registers,
• ι ∈ S is the initial state,
• F ⊆ S is the set of final states, and
• ∆ is a finite set of transitions: each transition is a tuple of the form (s, (a, π), s′) where
s, s′ ∈ S are the source and target state, respectively, a ∈ Σ, and π ∈ R~ ∪ R� ∪ R↑. We
call (a, π) the transition label.

For a transition (s, (a, π), s′) ∈ ∆, we also write s
(a,π)−−−→ s′. When taking this transition, the

automaton moves from state s to state s′ and reads a symbol (a, d) ∈ Σ×D. If π = r↑ ∈ R↑,
then d is the data value that is currently stored in register r. If π = r~ ∈ R~, then d is
some globally fresh data value, which has not been read in the whole history of the run; d is
then written into register r. Finally, if π = r� ∈ R�, then d is some locally fresh data value,
which is currently not stored in the registers; it will henceforth be stored in register r.

Let us formally define the semantics of A. A configuration is a triple γ = (s, τ, U) where
s ∈ S is the current state, τ : R ⇀ D is a partial mapping encoding the current register
assignment, and U ⊆ D is the set of data values that have been used so far. By dom(τ), we
denote the set of registers r such that τ(r) is defined. Moreover, τ(R)

def
= {τ(r) | r ∈ dom(τ)}.

We say that γ is final if s ∈ F . As usual, we define a transition relation over configurations

and let (s, τ, U)
(a,d)
==⇒ (s′, τ ′, U ′), where (a, d) ∈ Σ×D, if there is a transition s

(a,π)−−−→ s′ such
that the following conditions hold:

(1)

d = τ(reg(π)) if op(π) = ↑
d 6∈ τ(R) if op(π) = �
d 6∈ U if op(π) = ~ ,

(2) dom(τ ′) = dom(τ) ∪ {reg(π)} and U ′ = U ∪ {d},
(3) τ ′(reg(π)) = d and τ ′(r) = τ(r) for all r ∈ dom(τ) \ {reg(π)}.
A run of A on a data word (a1, d1) · · · (an, dn) ∈ (Σ×D)∗ is a sequence

γ0
(a1,d1)
====⇒ γ1

(a2,d2)
====⇒ · · · (an,dn)

====⇒ γn

for suitable configurations γ0, . . . , γn with γ0 = (ι, ∅, ∅) (here the partial mapping ∅ represents
the mapping with empty domain). The run is accepting if γn is a final configuration. The
language L(A) ⊆ (Σ×D)∗ of A is then defined as the set of data words for which there is
an accepting run.

Note that fresh-register automata cannot distinguish between data words that are
equivalent up to permutation of data values. More precisely, given w,w′ ∈ (Σ ×D)∗, we

A ROBUST CLASS OF DATA LANGUAGES AND AN APPLICATION TO LEARNING 5

write w ≈ w′ if w = (a1, d1) · · · (an, dn) and w′ = (a1, d
′
1) · · · (an, d′n) such that, for all

i, j ∈ {1, . . . , n}, we have di = dj iff d′i = d′j . For instance, (a, 4)(b, 2)(b, 4) ≈ (a, 2)(b, 5)(b, 2).

In the following, the equivalence class of a data word w wrt. ≈ is written [w]≈. We call
L ⊆ (Σ×D)∗ a data language if, for all w,w′ ∈ (Σ×D)∗ such that w ≈ w′, we have w ∈ L if,
and only if, w′ ∈ L. In particular, L(A) is a data language for every fresh-register automaton
A.

We obtain natural subclasses of fresh-register automata when we restrict the transition
labels (a, π) ∈ Σ× (R~ ∪ R� ∪ R↑) in the transitions.

Definition 2.2 (Register Automaton, [21]). A register automaton is a fresh-register au-
tomaton where every transition label is from Σ× (R� ∪R↑).

Like register automata, session automata are a syntactical restriction of fresh-register
automata, but in an orthogonal way. Instead of local freshness, they include the feature of
global freshness.

Definition 2.3 (Session Automaton). A session automaton is a fresh-register automaton
where every transition label is from Σ× (R~ ∪R↑).

We first compare the three models of automata introduced above in terms of expressive
power.

Example 2.4. Consider the set of labels Σ = {req, ack} and the set of data values D = N,
representing an infinite supply of process identifiers (pids). We model a simple (sequential)
system where processes can approach a server and make a request, indicated by req, and where
the server can acknowledge these requests, indicated by ack. More precisely, (req, p) ∈ Σ×D
means that the process with pid p performs a request, which is acknowledged when the
system executes (ack, p).

Figure 1(a) depicts a register automaton that recognizes the language L1 of data words
verifying the following conditions:

• there are at most two open requests at a time;
• a process waits for an acknowledgment before making another request;
• every acknowledgment is preceded by a request;
• requests are acknowledged in the order they are received.

In the figure, an edge label of the form (req, r�i ∨r
↑
i) shall denote that there are two transitions,

one labeled with (req, r�i), and one labeled with (req, r↑i). Whereas a transition labeled with

(req, r�i) is taken when the current data value does not appear currently in the registers
(but could have appeared before in the data word) and store it in ri, transition labeled with

(req, r↑i) simply checks that the current data is stored in register ri. The automaton models a
server that can store two requests at a time and will acknowledge them in the order they are
received. For example, it accepts (req, 8)(req, 4)(ack, 8)(req, 3)(ack, 4)(req, 8)(ack, 3)(ack, 8).

When we want to guarantee that, in addition, every process makes at most one request,
we need the global freshness operator. Figure 1(b) hence depicts a session automaton
recognizing the language L2 of all the data words of L1 in which every process makes at
most one request. Notice that the transition from s0 to s1 is now labeled with (req, r~1),
so that this transition can only be taken in case the current data value has never been

seen before. We obtain A2 from A1 by replacing every occurrence of r�i ∨ r
↑
i with r~i .

While (req, 8)(req, 4)(ack, 8)(req, 3)(ack, 4)(req, 8)(ack, 3)(ack, 8) is no longer contained in L2,
(req, 8) (req, 4)(ack, 8)(req, 3)(ack, 4)(ack, 3) is still accepted.

6 B. BOLLIG, P. HABERMEHL, M. LEUCKER, AND B. MONMEGE

s0s1 s2

s12

s21

(req, r⊙
1
∨ r

↑
1
)

(ack, r↑
1
)

(req, r⊙
2
∨ r

↑
2
)

(req, r⊙
1
∨ r

↑
1
)(ack, r↑

2
)

(ack, r↑
1
)

(req, r⊙
2
∨ r

↑
2
)

(ack, r↑
2
)

s0s1 s2

s12

s21

(req, r⊛
1
)

(ack, r↑
1
)

(req, r⊛
2
)

(req, r⊛
1
)(ack, r↑

2
)

(ack, r↑
1
)

(req, r⊛
2
)

(ack, r↑
2
)

(a) (b)

Figure 1: (a) Register automaton A1 for L1, (b) Session automaton A2 for L2

(req, r⊛)

(ack, r⊙)

(ack, r↑)

Figure 2: Fresh-register automaton A3 for L3

As a last example, consider the language L3 of data words in which every process makes
at most one request (without any other condition). A fresh-register automaton recognizing
it is given in Figure 2.

Proposition 2.5. Register automata and session automata are incomparable in terms of
expressive power. Moreover, fresh-register automata are strictly more expressive than both
register automata and session automata.

Proof. We use the languages L1, L2, and L3 defined in Example 2.4 to separate the different
automata models.

First, the language L1, recognizable by a register automaton, is not recognized by any
session automaton. Indeed, denoting wd the data word (req, d)(ack, d), no session automaton
using k registers can accept

w1w2 · · ·wkwk+1wk · · ·w2w1 ∈ L1 .

Intuitively, the session automaton must store all k + 1 data values of the requests in order
to check the acknowledgement, and cannot discard any of the k first data values to store
the (k + 1)th since all of them have to be reused afterwards (and at that time they are not
globally fresh anymore). More precisely, after reading w1w2 · · ·wk the configuration must
be of the form (s, τ, {1, 2, . . . , k}) with τ being a permutation of {1, . . . , k}. Reading wk+1,
with fresh data value k + 1, must then replace the content of a register with k + 1. Suppose
it is register j. Then, when reading the second occurrence of wj , data value j is not globally
fresh anymore, yet it is not stored anymore in the registers, which does not allow us to
accept this data word.

Then, the language L2, recognizable by a session automaton, is indeed not recognizable
by a register automaton, for the same reasons as already developed in Proposition 5 of [21].
Intuitively, the automaton needs to register every data value encountered since it has to
ensure the freshness of every pid.

Finally, language L3, recognized by a fresh-register automaton, is not recognized by
any register automaton (see again Proposition 5 of [21]) nor by any session automaton. In

A ROBUST CLASS OF DATA LANGUAGES AND AN APPLICATION TO LEARNING 7

0 1 2

3 4

join, r⊛
1

forw, r
↑
1
, r⊛

2

forw, r
↑
2
, r⊛

1ack, r
↑
1

ack, r
↑
2

com, r
↑
1

com, r
↑
2

Figure 3: Session automaton for the P2P protocol

particular, no session automaton with k registers can accept the data word

(req, 1)(req, 2) · · · (req, k + 1)(ack, 1)(ack, 2) · · · (ack, k + 1) ∈ L3

since when reading the letter (req, k + 1), all the k + 1 data values seen so far should be
registered to accept the suffix afterwards. A formal proof can be done in the same spirit as
for L1.

Example 2.6. To conclude the section, we present a session automaton with 2 registers that
models a P2P protocol. A user can join a host with address x, denoted by action (join, x).
The request is either forwarded by x to another host y, executing (forw1, x)(forw2, y),
or acknowledged by (ack, x). In the latter case, a connection between the user and x
is established so that they can communicate, indicated by action (com, x). Note that
the sequence of actions (forw1, x)(forw2, y) should be considered as an encoding of a sin-
gle action (forw, x, y) and is a way of dealing with actions that actually take two or
more data values, as considered, e.g., in [19]. An example execution of our protocol is
(join, 145)(forw, 145, 978)(forw, 978, 14)(ack, 14)(com, 14)(com, 14)(com, 14). In Figure 3, we
show the session automaton for the P2P protocol: it uses 2 registers. Following [8], our
automata can be easily extended to multi-dimensional data words. This also holds for the
learning algorithm that will be presented in Section 5.

3. Symbolic Normal Form and Canonical Session Automata

Closure properties of session automata, decidability of inclusion/equivalence and the learning
algorithm will be established by means of a symbolic normal form of a data word, as well as
a canonical session automaton recognizing those normal forms. The crucial observation is
that data equality in a data word recognized by a session automaton only depends on the
transition labels that generate it. In this section, we suppose that the set of registers of a

session automaton is of the form R = {1, . . . , k}. In the following, we let Γ = N~
>0 ∪ N↑>0

and, for k ≥ 1, Γk = {1, . . . , k}~ ∪ {1, . . . , k}↑.

3.1. Data Words in Symbolic Normal Forms. Suppose a session automaton reads a
sequence u = (a1, π1) · · · (an, πn) ∈ (Σ× Γ)∗ of transition labels. We call u a symbolic word.
It “produces” a data word if, and only if, a register is initialized before it is used. Formally,
we say that u is well-formed if, for all positions j ∈ {1, . . . , n} with op(πj) = ↑, there is
i < j such that πi = reg(πj)

~. Let WF ⊆ (Σ× Γ)∗ be the set of all well-formed words.
With u = (a1, π1) · · · (an, πn) ∈ (Σ× Γ)∗, we can associate an equivalence relation ∼u

over {1, . . . , n}, letting i ∼u j if, and only if,

• reg(πi) = reg(πj), and

8 B. BOLLIG, P. HABERMEHL, M. LEUCKER, AND B. MONMEGE

• i ≤ j and there is no position k ∈ {i+ 1, . . . , j} such that πk = reg(πi)
~, or

j ≤ i and there is no position k ∈ {j + 1, . . . , i} such that πk = reg(πj)
~.

If u is well-formed, then the data values of every data word w = (a1, d1) · · · (an, dn) that
a session automaton “accepts via” u conform with the equivalence relation ∼u, that is,
we have di = dj iff i ∼u j. This motivates the following definition. Given a well-formed
word u = (a1, π1) · · · (an, πn) ∈ (Σ × Γ)∗, we call w ∈ (Σ × D)∗ a concretization of u
if it is of the form w = (a1, d1) · · · (an, dn) such that, for all i, j ∈ {1, . . . , n}, we have
di = dj iff i ∼u j. For example, w = (a, 8)(a, 5)(b, 8)(a, 3)(b, 3) is a concretization of

u = (a, 1~)(a, 2~)(b, 1↑)(a, 2~)(b, 2↑).
Let γ(u) denote the set of all concretizations of u. Observe that, if w is a data word from

γ(u), then γ(u) = [w]≈. Concretization is extended to sets L ⊆ (Σ×Γ)∗ of well-formed words,
and we let γ(L)

def
=
⋃
u∈L∩WF γ(u). Note that, here, we first filter the well-formed words

before applying the operator. Now, let A = (S,R, ι, F,∆) be a session automaton. In the
obvious way, we may consider A as a finite automaton over the finite alphabet Σ× (R~∪R↑).
We then obtain a regular language Lsymb(A) ⊆ (Σ× Γ)∗ (indeed, Lsymb(A) ⊆ (Σ× Γk)

∗ if
R = {1, . . . , k}). It is not difficult to verify that L(A) = γ(Lsymb(A)).

Though we have a symbolic representation of data languages recognized by session
automata, it is in general difficult to compare their languages, since different symbolic words
may give rise to the same concretizations. For example, we have γ((a, 1~)(a, 1~)(a, 1↑)) =
γ((a, 1~)(a, 2~)(a, 2↑)). However, we can associate, with every data word, a symbolic normal
form, producing the same set of concretizations. Intuitively, the normal form uses the first
(according to the natural total order) register whose current data value will not be used
anymore. In the above example, (a, 1~)(a, 1~)(a, 1↑) would be in symbolic normal form:
the data value stored at the first position in register 1 is not reused so that, at the second
position, register 1 must be overwritten. For the same reason, (a, 1~)(a, 2~)(a, 2↑) is not in
symbolic normal form, in contrast to (a, 1~)(a, 2~)(a, 2↑)(a, 1↑) where register 1 is read at
the end of the word.

Formally, given a data word w = (a1, d1) · · · (an, dn), we define its symbolic normal
form snf (w)

def
= (a1, π1) · · · (an, πn) ∈ (Σ × Γ)∗ inductively, along with sets Free(i) ⊆ N>0

indicating the registers that are reusable after executing position i ∈ {1, . . . , n}. Setting
Free(0) = N>0, we define

πi =

{
min(Free(i− 1))~ if i = firstw(di)

reg(πfirstw(di))
↑ otherwise ,

and

Free(i) =

Free(i− 1) \min(Free(i− 1)) if i = firstw(di) 6= lastw(di)

Free(i− 1) ∪ {reg(πi)} if i = lastw(di)

Free(i− 1) otherwise .

We canonically extend snf to data languages L, setting snf (L) = {snf (w) | w ∈ L}.

Example 3.1. Let w = (a, 8)(b, 4)(a, 8)(c, 3)(a, 4)(b, 3)(a, 9). Then, we have snf (w) =
(a, 1~)(b, 2~)(a, 1↑)(c, 1~)(a, 2↑)(b, 1↑)(a, 1~).

The relation between the mappings γ and snf is illustrated below

A ROBUST CLASS OF DATA LANGUAGES AND AN APPLICATION TO LEARNING 9

1 2 3 4 5 6 7 8 9

a b a a c c b c c
4 2 4 3 2 1 3 1 3

a, 1⊛

a, 1↑

a, 2⊛

a, 2↑

(a) (b)

Figure 4: (a) A data word and its sessions, (b) Session automaton recognizing all 2-bounded
data words

w
∈ γ(u)
∈ (Σ×D)∗

u
= snf (w)
∈ (Σ× Γ)∗

snf

γ

One easily verifies that L = γ(snf (L)), for all data languages L. Therefore, equality of data
languages reduces to equality of their symbolic normal forms:

Lemma 3.2. Let L and L′ be data languages. Then, L = L′ if, and only if, snf (L) = snf (L′).

Of course, symbolic normal forms may use any number of registers so that the set of
symbolic normal forms is a language over an infinite alphabet as well. However, given a
session automaton A, the symbolic normal forms that represent the language L(A) uses only a
bounded (i.e., finite) number of registers. Indeed, an important notion in the context of session
automata is the bound of a data word. Intuitively, the bound of w = (a1, d1) · · · (an, dn) ∈
(Σ × D)∗ is the minimal number of registers that a session automaton needs in order to
execute w. Or, in other words, the bound is the maximal number of overlapping sessions.
A session is an interval delimiting the occurrence of one particular data value. Formally, a
session of w is a set I ⊂ N>0 of the form {firstw(d),firstw(d) + 1, . . . , lastw(d)} with d ∈ D
a data value appearing in w. Given k ∈ N>0, we say that w is k-bounded if every position
i ∈ {1, . . . , n} is contained in at most k sessions. Let DWk denote the set of k-bounded data
words, and let SNFk

def
= snf (DWk) denote the set of symbolic normal forms of all k-bounded

data words.
One can verify that a data word w is k-bounded if, and only if, snf (w) is a word over the

alphabet Σ× Γk. Notice that DWk = γ((Σ× Γk)
∗). Indeed, inclusion DWk ⊇ γ((Σ× Γk)

∗)
is trivial. If, on the other hand, w ∈ DWk, we must have snf (w) ∈ (Σ× Γk)∗, which implies
that w ∈ γ(snf (w)) ⊆ γ((Σ× Γk)

∗).
A data language L is said to be k-bounded if L ⊆ DWk. It is bounded if it is k-bounded

for some k. Note that the set of all data words is not bounded.
Figure 4(a) illustrates a data word w with four different sessions. It is 2-bounded, as no

position shares more than 2 sessions.

Example 3.3. Consider the session automaton from Figure 4(b). It recognizes the set of
all 2-bounded data words over Σ = {a}.

3.2. Deterministic Session Automata. Session automata come with two natural no-
tions of determinism. We call A = (S,R, ι, F,∆) symbolically deterministic if |{s′ ∈ S |
(s, (a, π), s′) ∈ ∆}| ≤ 1 for all s ∈ S, a ∈ Σ, and π ∈ R~ ∪ R↑. Then, ∆ can be seen as a
partial function S × (Σ× (R~ ∪R↑)) ⇀ S.

10 B. BOLLIG, P. HABERMEHL, M. LEUCKER, AND B. MONMEGE

0, ∅ 1, ∅ 2, {1} 2, ∅
1⊛

1⊛

1↑

2⊛

2⊛

2↑

1↑

2⊛

1⊛

1↑

2↑

Figure 5: A session automaton recognizing SNF2

We call A data deterministic if it is symbolically deterministic and, for all s ∈ S, a ∈ Σ,
and r1, r2 ∈ R with r1 6= r2, we have that (s, (a, r~1)) ∈ dom(∆) implies (s, (a, r~2)) /∈ dom(∆).
Intuitively, given a data word as input, the automaton is data deterministic if, in each state,
given a pair letter/data value, there is at most one fireable transition.

Notice that session automata, even when symbolically or data deterministic, may not
necessarily be “complete”, in the sense that it is possible that a run over a data word falls
into a deadlock situation: this is the case when the session automaton forced a data value to
be removed from the set of registers, though it will be seen in the future.

While “data deterministic” implies “symbolically deterministic” by definition, the
converse is not true. E.g., the session automaton A2 from Figure 1(b) and the one of
Figure 4(b) are symbolically deterministic but not data deterministic. However, the session
automaton obtained from A2 by removing, e.g., the transition from s0 to s2 (coupled with
the transition from s0 to s1, it causes non-determinism when reading a fresh data value at a
request), is data deterministic (and is indeed equivalent to A2, in the sense that it recognizes
the same language L(A2)).

Example 3.4. We explain how to construct a symbolically deterministic session automaton
A, with k ≥ 1 registers, such that Lsymb(A) = SNFk. Its state space is S = {0, . . . , k} ×
2{1,...,k}, consisting of (i) the greatest register already initialized (indeed we will only use a
register r if every register r′ < r has already been used), (ii) a subset P of registers that we
promise to reuse again before resetting their value. The initial state of A is (0, ∅), whereas
the set of accepting states is ({0, . . . , k})× {∅}. We now describe the set of transitions. For
every a ∈ Σ, i ∈ {0, . . . , k}, P ⊆ {1, . . . , k}, and r ∈ {1, . . . , k}:

∆
(
(i, P), (a, r↑)

)
=

{
(i, P \ {r}) if r ≤ i
not defined otherwise

∆
(
(i, P), (a, r~)

)
=

{
(max(i, r), P ∪ {1, . . . , r − 1}) if r − 1 ≤ i ∧ r /∈ P
not defined otherwise

Figure 5 depicts the session automaton for SNF2 (omitting Σ).

By determinizing a finite-state automaton recognizing the symbolic language, it is easy
to show that every language recognized by a session automaton is also recognized by a
symbolically deterministic session automaton: we shall study this question in more detail in
the next section. The next theorem shows that this is not true for data deterministic session
automata.

Theorem 3.5. Session automata are strictly more expressive than data deterministic session
automata.

A ROBUST CLASS OF DATA LANGUAGES AND AN APPLICATION TO LEARNING 11

Proof. We show that the data language L = DW2 cannot be recognized by a data determin-
istic session automaton. Indeed, suppose that such an automaton exists, with k registers.
Then, consider the word w = (a, 1)(a, 2)(a, 3) · · · (a, k + 1) ∈ L, where every data value
is fresh. By data determinism, there is a unique run accepting w. Along this run, let
i < j be two positions such that their two fresh data values have been stored in the same
register r (such a pair must exist since the automaton has only k registers). Without loss
of generality, we can consider the greatest position j verifying this condition, and then
the greatest position i associated with j. This means that register r is used for the last
time when reading j, and has not been used in-between positions i and j. Now, the word
(a, 1)(a, 2)(a, 3) · · · (a, k + 1)(a, i) ∈ L must be recognized by the automaton, but cannot
since data value i appearing on the last position is not fresh anymore, and yet not stored in
one of the registers (since register r was reused at j).

3.3. Canonical Session Automata. We now present the main result of this section
showing that every session automaton A is equivalent to a canonical session automaton AC ,
whose symbolic language Lsymb(AC) contains only symbolic normal forms.

Theorem 3.6. Let A = (S,R, ι, F,∆) be a session automaton with R = {1, . . . , k}. Then,
L(A) is k-bounded. Moreover, snf (L(A)) is a regular language over the finite alphabet

Σ× Γk. A corresponding automaton Ã can be effectively computed. Its number of states is
at most exponential in k and linear in |S|.

Proof. First, if A is a session automaton using k registers, the language L(A) is k-bounded
since Lsymb(A) ⊆ (Σ×Γk)∗, which implies that L(A) = γ(Lsymb(A)) ⊆ γ((Σ×Γk)∗) = DWk.

Example 3.4, constructing a symbolically deterministic session automaton for SNFk =
snf (γ((Σ× Γk)

∗)), shows that regularity of the symbolic language (Σ× Γk)
∗ is preserved

under the application of snf (γ(·)). We now prove that this is the case for every regular
language over Σ× Γk. In particular, for the symbolic regular language Lsymb(A), this will
show that snf (L(A)), which is equal to snf (γ(Lsymb(A))), is regular.

Let L ⊆ (Σ× Γk)
∗ be regular. Consider first the language

L̃ = {u ∈WF ∩ (Σ× Γk)
∗ | there is u′ ∈ L such that γ(u) = γ(u′)}

i.e., the set of well-formed symbolic words having the same concretizations as some word from
L. We show that snf (γ(L)) = SNFk ∩ L̃. Indeed, if u ∈ snf (γ(L)), then there are u′ ∈ L and
w ∈ γ(u′) such that u = snf (w). Since u′ ∈ (Σ×Γk)∗, we have u ∈ snf (γ((Σ×Γk)∗)) = SNFk.
Moreover, we have [w]≈ = γ(u′) and w ∈ γ(snf (w)) = γ(u) implying also [w]≈ = γ(u).

Finally, we obtain γ(u) = γ(u′), so that u ∈ L̃. Reciprocally, if u ∈ SNFk ∩ L̃, then there is
u′ ∈ L such that γ(u) = γ(u′). Hence, starting from a word w in γ(u) (which is non empty
since u is well-formed), we have u = snf (w) (by uniqueness of the symbolic normal form)
and w ∈ γ(u′) ⊆ γ(L), so that u ∈ snf (γ(L)).

We know from Example 3.4 that SNFk is regular. We now show that L̃ is regular:
knowing that snf (γ(L)) = SNFk ∩ L̃, this will permit to conclude that snf (γ(L)) is regular.
To do so, let A = (S,R, ι, F,∆) be a session automaton with R = {1, . . . , k} such that

Lsymb(A) = L. We construct a session automaton Ã = (S × Inj(k),R, (s0, ∅), F × Inj(k), ∆̃)

recognizing the symbolic language L̃. Hereby, Inj(k) is the set of partial injective mappings
from {1, . . . , k} to {1, . . . , k}, and ∅ ∈ Inj(k) denotes the mapping with empty domain.
These partial mappings are used to remember the correspondence between old registers and

12 B. BOLLIG, P. HABERMEHL, M. LEUCKER, AND B. MONMEGE

new ones, so they may be understood as a set of constraints. For example, the mapping
(2 7→ 1, 1 7→ 3) stands for “old register 2 henceforth refers to 1, and old register 1 henceforth
refers to 3”. Each subset of these constraints forms always a valid partial injective mapping.
In the following, such a subset is called a sub-mapping. For example, σ = (1 7→ 3) is a
sub-mapping of the previous one; it can then be extended with the new constraint 2 7→ 2,
which we denote σ[2 7→ 2]. We describe now the transition relation of Ã:

∆̃ =
{(

(s1, σ), (a, σ(r)↑), (s2, σ)
)
|
(
s1, (a, r

↑), s2
)
∈ ∆

}
∪
{(

(s1, σ1), (a, r
~
2), (s2, σ2)

)
|
(
s1, (a, r

~
1), s2

)
∈ ∆ ∧ σ2 = σ[r1 7→ r2]

with σ maximal sub-mapping of σ1 s.t. σ[r1 7→ r2] injective
}

We simulate r↑-transitions simply using the current mapping σ. For r~-transitions, we
update σ, recording the new permutation of the registers: the maximal sub-mapping σ
of σ1 is either σ1 itself or σ1 where exactly one constraint r1 7→ r3 is removed to free r1.
One can indeed show that Lsymb(Ã) = L̃. Inclusion Lsymb(Ã) ⊆ L̃ is easy to show since

an accepting run in Ã can be mapped to an accepting run in A using the partial injective
mappings maintained in the states of Ã. For the other inclusion, it suffices to prove that
for every symbolic word u ∈ L and well-formed word u′ such that γ(u′) = γ(u), we have

u′ ∈ Lsymb(Ã). By definition of γ, we know that projections of u and u′ over the finite
alphabet Σ are the same, and that ∼u = ∼u′ : the latter permits to reconstruct by induction
a unique sequence of partial injective mappings linking the registers used in u and in u′. An
accepting run of A on u can therefore be mapped to an accepting run of Ã on u′.

Building the product of the automaton recognizing SNFk and the automaton Ã, we
obtain a session automaton using k registers recognizing snf (γ(L)). Its number of states is
bounded above by O(|Q| × k!× (k + 1)× 2k) (as the number of partial injective mappings
in Inj(k) is bounded above by O(k!)).

From the automaton Ã built in the proof of the previous theorem, we can consider
the (unique up to isomorphism) minimal deterministic finite-state automaton AC (i.e.,
symbolically deterministic session automaton) equivalent to it: this automaton will be
called the canonical session automaton. In case A is data deterministic, we can verify
that Ã is symbolically deterministic, and hence the minimal automaton AC has at most
O(|Q|×k!× (k+1)×2k) states. Otherwise, a determinization phase has to be done resulting

in a canonical session automaton with at most 2O(|Q|×k!×(k+1)×2k) states.

Example 3.7. Examples of A and Ã, as defined in the previous proof, are given in Fig-
ure 6. The figure also depicts the canonical automaton AC associated with A, obtained by
determinizing and minimizing the product of both Ã and the symbolically deterministic au-
tomaton recognizing SNF2 (as given in Figure 5). Note that AC is symbolically deterministic
and minimal.

3.4. Closure Properties. Using Theorem 3.6, we obtain some language theoretical closure
properties of session automata, which they inherit from classical regular languages. These
results demonstrate a certain robustness as required in verification tasks such as compositional
verification [11] and infinite-state regular model checking [18].

Theorem 3.8. We have the following closure properties:

• Session automata are closed under union and intersection.

A ROBUST CLASS OF DATA LANGUAGES AND AN APPLICATION TO LEARNING 13

a, 1⊛

b, 1↑

a, 2⊛

b, 2↑

∅

1 7→ 12 7→ 1 1 7→ 22 7→ 2

1 7→ 1

2 7→ 2

1 7→ 2

2 7→ 1

a, 1⊛

a, 1⊛

a, 2⊛a, 2⊛

a, 1⊛

b, 1↑
a, 1⊛

b, 1↑
a, 2⊛

b, 2↑
a, 2⊛

b, 2↑

a, 1⊛

a, 2⊛

a, 1⊛a, 2⊛

a, 1⊛

a, 2⊛

a, 2⊛a, 2⊛

a, 1⊛a, 1⊛

a, 1⊛

a, 2⊛

b, 1↑

b, 2↑

a, 1⊛

a, 2⊛

b, 1↑

b, 2↑

a, 1⊛a, 1⊛

a, 2⊛a, 2⊛

a, 1⊛

a, 1⊛

b, 1↑

a, 2⊛

a, 2⊛

b, 2↑

b, 1↑a, 2⊛
a, 1⊛

b, 1↑

b, 2↑

(a) (b) (c)

Figure 6: (a) A session automaton A, (b) its automaton Ã, (c) its canonical automaton AC

• Session automata are closed under resource-sensitive complementation: Given a session
automaton A with k registers, there is a session automaton A′ with k registers such that
L(A′) = DWk \ L(A).

Proof. Let A be a session automaton using k registers, and B a session automaton using
k′ registers. Using a classical product construction for AC and BC , we obtain a session
automaton using min(k, k′) registers recognizing the data language L(A) ∩ L(B). The
language L(A) ∪ L(B) is recognized by the session automaton, using max(k, k′) registers,
that we obtain as the “disjoint union” of A and B, branching on the first transition in one
of these two automata.

Finally, let us consider a symbolically deterministic session automaton A using k registers.
Without loss of generality, by adding a sink state, we can suppose that A is complete. Then,
every well-formed symbolic word over Σ× Γk has exactly one run in A. The automaton A′
constructed from A by taking as accepting states the non-accepting states of A verifies that
Lsymb(A′) = (Σ× Γk)

∗ \ Lsymb(A) so that L(A′) = γ((Σ× Γk)
∗) \ L(A). Notice that A′ is

symbolically deterministic, but not necessarily data deterministic (even if A is), because of
the completion step.

Theorem 3.9. The inclusion problem for session automata is decidable.

Proof. Considering two session automata A and B, we can decide inclusion L(A) ⊆ L(B) by
considering the canonical automata AC and BC . Indeed, L(A) ⊆ L(B) ⇐⇒ snf (L(A)) ⊆
snf (L(B))⇐⇒ Lsymb(AC) ⊆ Lsymb(BC). Thus, it is sufficient to check inclusion for AC and

BC .

In case B is data deterministic, BC has a size polynomial in the number of states of B,
but exponential in the number of registers. Testing the inclusion Lsymb(AC) ⊆ Lsymb(BC)

may be done by first complementing Lsymb(BC) (which does not add states since BC is

symbolically deterministic) and then testing the emptiness of its intersection with Lsymb(AC).
In the overall, this implies a complexity of the inclusion check that is polynomial in the
number of states of A and B, but exponential in the number of registers used by B. In case

14 B. BOLLIG, P. HABERMEHL, M. LEUCKER, AND B. MONMEGE

B is not data deterministic, a determinization phase may add an exponent in the size and
the number of registers of B.

As a corollary, we obtain that the emptiness problem and the universality problem
under k-boundedness (i.e., knowing whether the language of a session automaton with k
registers is the whole set of k-bounded data words) are decidable for session automata. It is
not surprising for the emptiness problem, since it already holds for fresh-register automata.
Notice that the problem is shown co-NP-complete for register automata in [31], and we
can show that the emptiness problem is co-NP-complete, too, for session automata. First,
co-NP-hardness can be shown by a reduction to the 3-SAT problem, in a very similar way
as in [31]. Then, the co-NP upper bound comes from the symbolic view. Indeed, for a
session automaton A with k registers, L(A) = ∅ if and only if Lsymb(A) ∩WFk = ∅ (where
WFk denotes the set of well-formed symbolic words over alphabet Σ × Γk). We may not
construct a finite automaton recognizing Lsymb(A) ∩WFk (that has a size exponential in k),
but instead non-deterministically search for a witness of non-emptiness of Lsymb(A) ∩WFk,
i.e., a well-formed word u such that u ∈ Lsymb(A). Notice that the membership test of u in
the finite-state automaton A can be performed in polynomial time, hence, to conclude, we
must simply show the existence of a well-formed witness u of polynomial size. As for register
automata in [31], this relies on the fact that, even though the total number of configurations
of A is exponential in k (due to the set U of initialized registers), along a run of A, only a
polynomial (in A and k) number of configurations can be visited, since the set U will take at
most k + 1 values during the computation (the initialization of registers is done in a certain
order, and no register can be emptied at any point). Hence, by disallowing the visit of two
occurrences of the same configuration, the existence of a well-formed witness implies the
existence of a well-formed witness of polynomial size.

While fresh-register automata are not complementable for the set of all data words, they
are complementable for k-bounded data words, using the previous theorem. The reason is
that, given a fresh-register automaton A, one can construct a session automaton B such
that L(B) = L(A) ∩ DWk.

4. Logical Characterizations

In this section, we provide logical characterizations of session automata.

4.1. MSO Logic over Data Words. We consider the standard data monadic second-order
logic (dMSO), which is an extension of classical MSO logic by the binary predicate x ∼ y to
compare data values.

We fix infinite supplies of first-order variables x, y, . . ., which are interpreted as word
positions, and second-order variables X,Y, . . ., which are taken as sets of positions. We let
dMSO be the set of formulae ϕ defined by the following grammar:

ϕ ::= label(x) = a | x = y | y = x+ 1 | x ∼ y | x ∈ X | ¬ϕ | ϕ ∨ ϕ | ∃x ϕ | ∃X ϕ

with x, y first-order variables, X a second-order variable and a ∈ Σ. The semantics of
formulae in dMSO is given in Table 1: we define w, σ |= ϕ (to be read as “w satisfies ϕ
when free variables of ϕ are interpreted as prescribed in σ”) by induction over ϕ, where
w = (a1, d1) · · · (an, dn) ∈ (Σ×D)∗ is a data word and σ is a valuation of (at least the) free
variables in ϕ, i.e., such that for every first-order free variable x, we have σ(x) ∈ {1, . . . , n}
and for every second-order free variable X, we have σ(X) ⊆ {1, . . . , n}. For a first-order

A ROBUST CLASS OF DATA LANGUAGES AND AN APPLICATION TO LEARNING 15

Table 1: Semantics of formulae in dMSO
w, [x 7→ i, y 7→ j] |= x = y if i = j
w, [x 7→ i] |= label(x) = a if ai = a

w, [x 7→ i, y 7→ j] |= y = x+ 1 if j = i+ 1
w, [x 7→ i,X 7→ I] |= x ∈ X if i ∈ I
w, [x 7→ i, y 7→ j] |= x ∼ y if di = dj

w, σ |= ¬ϕ if w, σ 6|= ϕ
w, σ |= ϕ1 ∨ ϕ2 if w, σ |= ϕ1 or w, σ |= ϕ2

w, σ |= ∃x ϕ if there exists i ∈ {1, . . . , n} such that w, σ[x 7→ i] |= ϕ
w, σ |= ∃X ϕ if there exists I ⊆ {1, . . . , n} such that w, σ[X 7→ I] |= ϕ

variable x and a position i ∈ {1, . . . , n}, we let σ[x 7→ i] be the valuation τ such that
τ(x) = i and τ(α) = σ(α) for every variable α different from x. A similar definition holds
for second-order variables.

In addition, we use abbreviations such as true, x ≤ y, ∀x ϕ, ϕ ∧ ψ, ϕ → ψ, etc. A
sentence is a formula without free variables. For a dMSO sentence ϕ, we set L(ϕ)

def
= {w ∈

(Σ×D)∗ | w |= ϕ}. Note that L(ϕ) is a data language.
As usual, to deal with free variables, it is possible to extend the alphabet Σ as follows. If

V is the set of variables that occur in ϕ, we have to consider data words over Σ̂ = Σ×{0, 1}V
and D. Intuitively, these data words include the interpretation of the free variables. If a
data word carries, at position i, the letter (a, b̄, d) ∈ Σ̂×D with b̄[x] = 1 (where b̄[x] refers to
the x-component of b̄), then x is interpreted as position i. If b̄[X] = 1, then X is interpreted

as a set containing i. Whenever we refer to a word over the extended alphabet Σ̂, we will
silently assume that the interpretation of a first-order variable x is uniquely determined,
i.e., there is exactly one position i where b̄[x] = 1. This is justified, since the set of those
“well-shaped” words is (symbolically) regular. This way we can transform any well-shaped
word ŵ ∈ (Σ×{0, 1}V ×D)∗ into a pair (w, σ) where w is a data word of (Σ×D)∗ and σ is
a valuation of variables in V , and vice versa.

Note that dMSO is a very expressive logic and goes beyond virtually all automata
models defined for data words [29, 32, 6, 12]. However, if we restrict to bounded languages,
we can show that dMSO is no more expressive than session automata.

Theorem 4.1. Let L be a bounded data language. Then, the following statements are
equivalent:

• There is a session automaton A such that L(A) = L.
• There is a dMSO sentence ϕ such that L(ϕ) = L.

Proof. The construction of a dMSO formula of the form ∃X1 · · · ∃Xm (α∧∀x∀y (x ∼ y ↔ β)),
with α and β classical MSO formulae (not containing predicate ∼), from a session automaton
A was implicitly shown in [8] (with a different goal, though). The idea is that the existential
second-order variables X1, . . . , Xm are used to guess an assignment of transitions to positions.
In α, it is verified that the assignment corresponds to a run of A. Moreover, β checks if
data equality corresponds to the data flow as enforced by the transition labels from Γk. The
formula has a size polynomial in the size of the automaton. In Section 4.2, formulae of this
shape will be studied in more detail.

16 B. BOLLIG, P. HABERMEHL, M. LEUCKER, AND B. MONMEGE

For the converse direction, we perform, as usual, an induction on the structure of the
formula ϕ of dMSO such that L(ϕ) is k-bounded, for some k ≥ 1. To cope with free variables,
we use the encoding of a pair (w, σ) as presented before.

First, we have to deal with the base cases:

• Consider the formula label(x) = a. We construct a session automaton A with k registers

such that Lsymb(A) consists of all “well-shaped” words u ∈ (Σ̂× Γk)
∗ containing a letter

(a, b̄, π) with b̄[x] = 1.
• For x = y, the automaton has to verify that there is a letter (a, b̄, π) such that b̄[x] =

b̄[y] = 1, which can be done since this is a regular condition on word over alphabet Σ̂×Γk.
• Formulae y = x+ 1 and x ∈ X are treated similarly.
• The most interesting base case is x ∼ y. Let L be the symbolic language containing exactly

the symbolic words u = (a1, b̄1, π1) · · · (an, b̄n, πn) ∈ (Σ̂ × Γk)
∗ satisfying the following:

there are two positions i, j ∈ {1, . . . , n} such that i ∼u j, b̄i[x] = 1, and b̄j [y] = 1. Note
that L is indeed a regular language so that we can construct a corresponding session
automaton A with k registers such that Lsymb(A) = L.

In all of the above base cases, if ϕ is the atomic formula and A the corresponding session
automaton, the following holds: given a data word ŵ ∈ DWk encoding free variables, we
have ŵ ∈ L(ϕ) iff ŵ ∈ L(A).

Let us come to the induction step. To deal with negation, we can indeed exploit the fact
that session automata are closed under complementation when considering only k-bounded
data words (Theorem 3.8). Suppose we have constructed a session automaton A with
k registers such that L(A) = L(ϕ) ∩ DWk. According to Theorem 3.8, there is a session
automaton A′ with k registers such that L(A′) = DWk\L(A). From L(¬ϕ) = (Σ×D)∗\L(ϕ),
we deduce L(A′) = L(¬ϕ) ∩ DWk. To deal with disjunction, we exploit closure of session
automata under union (again, Theorem 3.8). Finally, existential quantification corresponds,
as usual, to projection.

Because of the negations that require complementation (and hence determinization of
finite-state automata), the automaton associated with a given dMSO formula has a size
given as a tower of exponentials of the size given by the number of nested negations in the
formula.

By Theorems 3.9 and 4.1, we obtain, as a corollary, that model checking session automata
against dMSO specifications is decidable, though with non-elementary complexity (while it
is undecidable for register automata). Note that this was already shown in [8] for a more
powerful model with pushdown stacks.

Theorem 4.2. Given a session automaton A and a dMSO sentence ϕ, one can decide
whether L(A) ⊆ L(ϕ).

4.2. Session MSO Logic. Next, we give an alternative logical characterization of session
automata. We identify a fragment of dMSO, called session MSO logic, such that every
formula from that fragment can be translated into a session automaton, without having to
restrict the set of data words in advance. Note that register automata also enjoy a logical
characterization [12]. There, guards are employed to tame the power of the predicate ∼.
Similarly, our logic also uses a guard, though in a quite different way.

A ROBUST CLASS OF DATA LANGUAGES AND AN APPLICATION TO LEARNING 17

Definition 4.3. A session MSO (sMSO) formula is a dMSO sentence of the form

∃X1 · · · ∃Xm (α ∧ ∀x∀y (x ∼ y ↔ β))

such that α and β are classical MSO formulae (not containing the predicate ∼).

Example 4.4. The formula ϕ1 = ∀x∀y (x ∼ y ↔ x = y) is an sMSO formula. Its semantics
L(ϕ1) is the set of data words in which every data value occurs at most once. Moreover,
ϕ2 = ∀x∀y (x ∼ y ↔ true) is an sMSO formula, and L(ϕ2) is the set of data words where
all data values coincide. As a last example, let ϕ3 = ∃X ∀x∀y (x ∼ y ↔ (¬∃z ∈ X (x <
z ≤ y ∨ y < z ≤ x))). Then, L(ϕ3) is the set of 1-bounded data words. Intuitively, the
second-order variable X represents the set of positions where a fresh data value is introduced.

Theorem 4.5. For all data languages L, the following statements are equivalent:

• There is a session automaton A such that L(A) = L.
• There is an sMSO sentence ϕ such that L(ϕ) = L.

Proof. The construction of an sMSO formula from a session automaton A has already been
sketched in the proof of Theorem 4.1.

We turn to the converse direction and let ϕ = ∃X1 · · · ∃Xm (α ∧ ∀x∀y (x ∼ y ↔ β)) be
an sMSO sentence. By Theorem 4.1, it is sufficient to show that L(ϕ) is bounded.

The free variables of β are among x, y,X1, . . . , Xm. As, moreover, β is a “classical”
MSO formula, which does not contain ∼, it defines, in the expected manner, a set Lsymb(β)
of words over the finite alphabet Σ × {0, 1}m+2. Similarly to the proof of Theorem 4.1,
the idea is to interpret a position carrying letter (a, 1, b, b1, . . . , bm) as x, and a position
labeled (a, b, 1, b1, . . . , bm) as y, while membership in Xi is indicated by bi. Words where
x and y are not uniquely determined, are discarded. We can represent such models as
tuples (w, i, j, I1, . . . , Im) where w ∈ Σ∗, i denotes the position of the 1-entry in the unique
first component, and j denotes the position of the 1-entry in the second component. As
Lsymb(β) ⊆ (Σ×{0, 1}m+2)∗ is MSO definable (in the classical sense, without data), it is, by
Büchi’s theorem, recognized by some minimal deterministic finite automaton Aβ. Suppose
that Aβ has kβ ≥ 1 states.

We claim that the data language L(ϕ) is kβ-bounded. To show this, let w = (a1, d1) · · ·
(an, dn) ∈ L(ϕ). There exists a tuple I = (I1, . . . , Im) of subsets of {1, . . . , n} such that, for
all i, j ∈ {1, . . . , n},

di = dj ⇐⇒ (a1 · · · an, i, j, I) ∈ Lsymb(β) . (∗)
Suppose, towards a contradiction, that w is not kβ-bounded. Then, there are k > kβ

and a position i ∈ {1, . . . , n} such that i is contained in k distinct sessions J1, . . . , Jk. For
l ∈ {1, . . . , k}, let il = min(Jl) and jl = max(Jl), so that Jl = {il, il + 1, . . . , jl}. Note
that the il are pairwise distinct, and so are the jl. By (∗), for every l ∈ {1, . . . , k}, we
have wl = (a1 · · · an, il, jl, I) ∈ Lsymb(β). Thus, for every such word wl, there is a unique
accepting run of Aβ, say, being in state ql after executing position i. As Aβ has only kβ
states, there are l 6= l′ such that ql = ql′ . Thus, there is an accepting run of Aβ either on a
word where one of the first-order components is not unique, which is a contradiction, or on
(a1 · · · an, il, jl′ , I). The latter contradicts (∗), since Jl and Jl′ are distinct sessions.

18 B. BOLLIG, P. HABERMEHL, M. LEUCKER, AND B. MONMEGE

5. Learning Session Automata

In this section, we introduce an active learning algorithm for session automata. In the usual
active learning setting (as introduced by Angluin [2], see [13] for a general overview of active
learning techniques), a learner interacts with a so-called minimally adequate teacher (MAT),
an oracle which can answer membership and equivalence queries. In our case, the learner is
given the task to infer the data language L(A) defined by a given session automaton A. We
suppose here that the teacher knows the session automaton or any other device accepting
L(A). In practice, this might not be the case — A could be a black box — and equivalence
queries could be (approximately) answered, for example, by extensive testing. The learner
can ask if a data word is accepted by A or not. Furthermore it can ask equivalence queries
which consist in giving an hypothesis session automaton to the teacher who either answers
yes, if the hypothesis is equivalent to A (i.e., both data languages are the same), or gives
a data word which is a counterexample, i.e., a data word that is either accepted by the
hypothesis automaton but should not, or vice versa.

Given the data language L(A) accepted by a session automaton A over Σ and D,
our algorithm will learn the canonical session automaton AC , that uses k registers, i.e.,
the minimal symbolically deterministic automaton recognizing the language L(A) and the
regular language Lsymb(AC) over Σ × Γk. Therefore one can consider that the learning

target is Lsymb(AC) and use an arbitrary active learning algorithm for regular languages.
However, as the teacher answers only questions over data words, queries have to be adapted.
Since AC only accepts symbolic words which are in normal form, a membership query for a
given symbolic word u not in normal form will be answered negatively (without consulting
the teacher); otherwise, the teacher will be given one data word included in γ(u) (all the
answers on words of γ(u) are the same). Likewise, before submitting an equivalence query
to the teacher, the learning algorithm checks if the current hypothesis automaton accepts
symbolic words not in normal form2. If yes, one of those is taken as a counterexample, else
an equivalence query is submitted to the teacher. Since the number of registers needed to
accept a data language is a priori not known, the learning algorithm starts by trying to
learn a session automaton with 1 register and increases the number of registers as necessary.

Every active learning algorithm for regular languages may be adapted to our setting.
Here we describe a variant of Rivest and Schapire’s algorithm [30] which is itself a variant of
Angluin’s L∗ algorithm [2]. An overview of learning algorithms for deterministic finite state
automata can be found, for example, in [4].

The algorithm is based on the notion of observation table which contains the information
accumulated by the learner during the learning process. An observation table over a given
alphabet Σ× Γk is a triple O = (T,U, V) with U, V two sets of words over Σ× Γk such that
ε ∈ U ∩ V and T is a mapping (U ∪ U · (Σ × Γk)) × V → {+,−}. A table is partitioned
into an upper part U and a lower part U · (Σ× Γk). We define for each u ∈ U ∪ U · (Σ× Γk)
a mapping row(u) : V → {+,−} where row(u)(v) = T (u, v). An observation table must
satisfy the following property: for all u, u′ ∈ U such that u 6= u′ we have row(u) 6= row(u′),
i.e., there exists v ∈ V such that T (u, v) 6= T (u′, v). This means that the rows of the upper
part of the table are pairwise distinct. A table is closed if for all u′ ∈ U · (Σ×Γk) there exists
u ∈ U such that row(u) = row(u′). From a closed table we can construct a symbolically

2This can be checked in polynomial time over the trimmed hypothesis automaton with a fixed point
computation labelling the states with the registers that should be used again before overwriting them.

A ROBUST CLASS OF DATA LANGUAGES AND AN APPLICATION TO LEARNING 19

Algorithm 1: The learning algorithm for a session automaton A
initialize k := 1 and O := (T,U, V) by U = V = {ε} and T (u, ε) for all u ∈ U ∪ U · (Σ× Γk) with
membership queries;

repeat
while O is not closed do

find u ∈ U and (a, π) ∈ Σ× Γk such that for all u′ ∈ U : row(u(a, π)) 6= row(u′);

extend table to O := (T ′, U ∪ {u(a, π)}, V) by membership queries;

end

from O construct the hypothesized automaton AO; // cf. Definition 5.1

if AO accepts symbolic words not in normal form then
let z be one of those;

else
if L(A) = L(AO) then

equivalence test succeeds;

else
get counterexample w ∈ (L(A) \ L(AO)) ∪ (L(AO) \ L(A));

set z := snf (w);

find minimal k′ such that z ∈ (Σ× Γk′)∗;

if k′ > k then
set k := k′;

extend table to O := (T ′, U, V) over Σ× Γk by membership queries;

end

end

end

if O is closed then // is true if k′ ≤ k
find a break-point for z where v is the distinguishing word;

extend table to O := (T ′, U, V ∪ {v}) by membership queries;

end

until equivalence test succeeds;
return AO

deterministic session automaton whose states correspond to the rows of the upper part of
the table:

Definition 5.1. For a closed table O = (T,U, V) over a finite alphabet Σ× Γk, we define a
symbolically deterministic session automaton AO = (S,R, ι, F,∆) over Σ× Γk by S = U ,
R = {1, . . . , k}, ι = ε, F = {u ∈ S | T (u, ε) = +}, and for all u ∈ S and (a, π) ∈ Σ × Γk,
∆(u, (a, π)) = u′ if row(u(a, π)) = row(u′). This is well defined as the table is closed.

We now describe in detail our active learning algorithm for a given session automaton
A given in Table 1. It is based on a loop which repeatedly constructs a closed table using
membership queries, builds the corresponding automaton and then asks an equivalence query.
This is repeated until A is learned. An important part of a active learning algorithm is the
treatment of counterexamples provided by the teacher as an answer to an equivalence query.
Suppose that for a given AO constructed from a closed table O = (T,U, V) the teacher
answers by a counterexample data word w. Let z = snf (w). If z uses more registers than
available in the current alphabet, we extend the alphabet and then the table. If the obtained
table is not closed, we restart from the beginning of the loop. Otherwise – and also if z does
not use more registers – we use Rivest and Schapire’s [30] technique to extend the table by
adding a suitable v to V making it non-closed. The technique is based on the notion of break-
point that we now recall. As z is a counterexample, (1) z ∈ Lsymb(AO) ⇐⇒ z 6∈ Lsymb(AC).

20 B. BOLLIG, P. HABERMEHL, M. LEUCKER, AND B. MONMEGE

Let z = z1 · · · zm, with zi ∈ Σ× Γ. Then, for all i with 1 ≤ i ≤ m+ 1, let z be decomposed
as z = uivi with ui, vi ∈ (Σ× Γ)∗, where u1 = vm+1 = ε, v1 = um+1 = z and the length of
ui is equal to i − 1 (we have also z = uizivi+1 for all i such that 1 ≤ i ≤ m). Let si ∈ U
be the state visited by z just before reading the ith letter, along the computation of z on
AO: i is a break-point if sizivi+1 ∈ Lsymb(AO) ⇐⇒ si+1vi+1 /∈ Lsymb(AC). Because of (1)
such a break-point must exist and can be obtained with O(log(m)) membership queries by a
binary search. The word vi+1 is called the distinguishing word. If V is extended by vi+1 the
table is not closed anymore (row(si) and row(sizi) become different). Now, the algorithm
closes the table again, then asks another equivalence query and so forth until termination.
At each iteration of the loop the number of rows (each of those correspond to a state in the
automaton AC) is increased by at least one. Notice that the same counterexample might be
given several times. The treatment of the counterexample only guarantees that the table
will contain one more row in its upper part. We obtain the following:

Theorem 5.2. Let A be a session automaton over Σ and D, using k′ registers. Let AC be
the corresponding canonical session automaton. Let N be its number of states, k its number
of registers and M the length of the longest counterexample returned by an equivalence
query. Then, the learning algorithm for A terminates with at most O(k|Σ|N2 +N log(M))
membership and O(N) equivalence queries.

Proof. This follows directly from the proof of correctness and complexity of Rivest and
Schapire’s algorithm [4, 30]. Notice that the equivalence query cannot return a counterex-
ample whose normal form uses more than k registers, as such a word is rejected by both AC
(by definition) and by AO (by construction).

Let us discuss the complexity of our algorithm. In terms of the canonical session
automaton, the number of required membership and equivalence queries is polynomial.
When the session automaton A is data deterministic, using the discussion after the proof
of Theorem 3.6 over the size of AC , the overall complexity of the learning algorithm is
polynomial in the number of states of A, but exponential in the number of registers it uses
(with constant base). As usual, we have to add one exponent when we consider session
automata which are not data deterministic. In [19], the number of equivalence queries is
polynomial in the size of the underlying automaton. In contrast, the number of membership
queries contains a factor nk where n is the number of states and k the number of registers.
This may be seen as a drawback, as n is typically large. Note that [19] restrict to deterministic
automata, since classical register automata are not determinizable.

Example 5.3. We apply our learning algorithm on the data language given by the au-
tomaton A of Figure 6(a). In Figure 7 the successive observation tables constructed by
the algorithm are given. To save space some letters whose rows contain only −’s are
omitted. In Figure 8 the successive automata constructed from the closed observation
tables are given. For sake of clarity we omit the sink states. We start with the alphabet
Σ × Γ1 = {(a, 1~), (a, 1↑), (b, 1~), (b, 1↑)}. We omit letters (a, 1↑) and (b, 1~). Table O1 is
obtained after initialization and closing by adding (b, 1↑) to the top. We use to indicate
that all letters will lead to the same row. From O1 the first hypothesis automaton A1 is
constructed. We suppose that the equivalence query gives back as counterexample the
data word (a, 3)(b, 3) whose normal form is (a, 1~)(b, 1↑). Here the break-point yields the
distinguishing word (b, 1↑). We add it to V . The obtained table is not closed anymore. We
close it by adding (a, 1~) to the top and get table O2 yielding hypothesis automaton A2.

A ROBUST CLASS OF DATA LANGUAGES AND AN APPLICATION TO LEARNING 21

O1 ε

ε +

(b, 1↑) −
(a, 1~) +
(b, 1~) −

⇒
O2 ε (b, 1↑)

ε + −
(b, 1↑) − −
(a, 1~) + +

(b, 1↑) − −
(a, 1~)(a, 1~) + +

(a, 1~)(b, 1↑) + +

⇒
O3 ε (b, 1↑)

ε + −
(b, 1↑) − −
(a, 1~) + +

(a, 2~) − −
(b, 2↑) − −

(b, 1↑) − −
(a, 1~)(a, 1~) + +

(a, 1~)(b, 1↑) + +
(a, 1~)(a, 2~) − +

(a, 1~)(b, 2↑) − −

⇒

O4 ε (b, 1↑)

ε + −
(b, 1↑) − −
(a, 1~) + +

(a, 1~)(a, 2~) − +

(a, 2~) − −
(b, 2↑) − −

(b, 1↑) − −
(a, 1~)(a, 1~) + +

(a, 1~)(b, 1↑) + +

(a, 1~)(b, 2↑) − −
(a, 1~)(a, 2~)(a, 1~) − −
(a, 1~)(a, 2~)(b, 1↑) + +
(a, 1~)(a, 2~)(a, 2~) − +

(a, 1~)(a, 2~)(b, 2↑) − +

⇒
O5 ε (b, 1↑) (b, 2↑)

ε + − −
(b, 1↑) − − −
(a, 1~) + + −

(a, 1~)(a, 2~) − + −
(a, 1~)(a, 2~)(b, 1↑) + + +

(a, 2~) − − −
(b, 2↑) − − −

(b, 1↑) − − −
(a, 1~)(a, 1~) + + −
(a, 1~)(b, 1↑) + + −
(a, 1~)(b, 2↑) − − −

(a, 1~)(a, 2~)(a, 1~) − − −
(a, 1~)(a, 2~)(a, 2~) − + −
(a, 1~)(a, 2~)(b, 2↑) − + −

(a, 1~)(a, 2~)(b, 1↑)(a, 1~) + + +

(a, 1~)(a, 2~)(b, 1↑)(b, 1↑) + + +

(a, 1~)(a, 2~)(b, 1↑)(a, 2~) − + −
(a, 1~)(a, 2~)(b, 1↑)(b, 2↑) + + +

Figure 7: The successive observation tables

A1:

a, 1⊛

A2: a, 1⊛

a, 1⊛

b, 1↑

A4: a, 1⊛

a, 1⊛

b, 1↑

a, 2⊛

a, 2⊛

b, 2↑

b, 1↑

AC : a, 1⊛

a, 1⊛

b, 1↑

a, 2⊛

a, 2⊛

b, 2↑

b, 1↑

a, 2⊛

a, 1⊛

b, 1↑

b, 2↑

Figure 8: The successive hypothesis automata

Notice that Lsymb(A2) = Lsymb(AC)∩(Σ×Γ1)∗. This means that the equivalence query must
give back a data word whose normal form is using at least 2 registers (here (a, 7)(a, 4)(b, 7)
with normal form (a, 1~)(a, 2~)(b, 1↑)). As the word uses 2 registers, we extend the alphabet
to Σ× Γ2 and obtain table O3. We close the table and get O4. From there we obtain the

22 B. BOLLIG, P. HABERMEHL, M. LEUCKER, AND B. MONMEGE

hypothesis automaton A4. After the equivalence query we get (a, 1~)(a, 2~)(b, 1↑)(b, 2↑) as
normal form of the data word counterexample (a, 9)(a, 3)(b, 9)(b, 3). After adding (b, 2↑) to
V and closing the table by moving (a, 1~)(a, 2~)(b, 1↑) to the top we get finally the table O5

from which the canonical automaton AC is obtained and the equivalence query succeeds.

6. Conclusion

In this paper, we developed a theory of session automata, which form a robust class of data
languages. In particular, they are closed under union, intersection, and resource-sensitive
complementation. Moreover, they enjoy logical characterizations in terms of (a fragment
of) MSO logic with a predicate to compare data values for equality. Finally, unlike most
other automata models for data words, session automata have a decidable inclusion problem.
This makes them attractive for verification and learning. In fact, we provided a complete
framework for algorithmic learning of session automata, making use of their canonical
normal form. An interesting direction to follow would be to try to apply those methods
to other models of automata dealing with data values like data automata [6, 5] or variable
automata [16]. As a next step, we plan to employ our setting for various verification tasks.
In particular, the next step is to implement our framework, using possibly other learning
algorithms than the one of Rivest and Shapire that we presented in this article, for instance
using the LearnLib platform [27] or libalf [10].

Acknowledgments. We are grateful to Thomas Schwentick for suggesting the symbolic normal
form of data words, and to the reviewers for their valuable comments.

References

[1] F. Aarts, F. Heidarian, H. Kuppens, P. Olsen, and F. W. Vaandrager. Automata learning through
counterexample guided abstraction refinement. In FM, volume 7436 of Lecture Notes in Computer
Science, pages 10–27. Springer, 2012.

[2] D. Angluin. Learning regular sets from queries and counterexamples. Information and Computation,
75(2):87–106, 1987.

[3] T. Berg, O. Grinchtein, B. Jonsson, M. Leucker, H. Raffelt, and B. Steffen. On the correspondence
between conformance testing and regular inference. In FASE, volume 3442 of Lecture Notes in Computer
Science, pages 175–189. Springer, 2005.

[4] T. Berg and H. Raffelt. Model checking. In Model-based Testing of Reactive Systems, volume 3472 of
Lecture Notes in Computer Science. Springer, 2005.

[5] H. Björklund and Th. Schwentick. On notions of regularity for data languages. Theoretical Computer
Science, 411(4-5):702–715, 2010.

[6] M. Bojanczyk, C. David, A. Muscholl, T. Schwentick, and L. Segoufin. Two-variable logic on data words.
ACM Trans. Comput. Log., 12(4):27, 2011.

[7] M. Bojańczyk and S. Lasota. An extension of data automata that captures XPath. In LICS 2010, pages
243–252. IEEE Computer Society, 2010.

[8] B. Bollig, A. Cyriac, P. Gastin, and K. Narayan Kumar. Model checking languages of data words. In
L. Birkedal, editor, Proceedings of FoSSaCS’12, volume 7213 of Lecture Notes in Computer Science,
pages 391–405. Springer, 2012.

[9] B. Bollig, P. Habermehl, M. Leucker, and B. Monmege. A fresh approach to learning register automata.
In Proceedings of the 17th International Conference on Developments in Language Theory (DLT’13),
volume 7907 of Lecture Notes in Computer Science, pages 118–130. Springer, 2013.

[10] B. Bollig, J.-P. Katoen, C. Kern, M. Leucker, D. Neider, and D. Piegdon. libalf: the automata learning
framework. In CAV, volume 6174 of Lecture Notes in Computer Science, pages 360–364. Springer, 2010.

A ROBUST CLASS OF DATA LANGUAGES AND AN APPLICATION TO LEARNING 23

[11] J. M. Cobleigh, D. Giannakopoulou, and C. S. Pasareanu. Learning assumptions for compositional
verification. In TACAS, volume 2619 of Lecture Notes in Computer Science, pages 331–346. Springer,
2003.

[12] T. Colcombet, C. Ley, and G. Puppis. On the use of guards for logics with data. In Proceedings
of MFCS’11, volume 6907 of Lecture Notes in Computer Science, pages 243–255. Springer Berlin /
Heidelberg, 2011.

[13] C. de la Higuera. Grammatical Inference. Learning Automata and Grammars. Cambridge University
Press, 2010.

[14] S. Demri and R. Lazić. LTL with the freeze quantifier and register automata. ACM Transactions on
Computational Logic, 10(3), 2009.

[15] D. Giannakopoulou and J. Magee. Fluent model checking for event-based systems. In ESEC / SIGSOFT
FSE, pages 257–266. ACM, 2003.

[16] O. Grumberg, O. Kupferman, and S. Sheinvald. Variable automata over infinite alphabets. In LATA,
volume 6031 of Lecture Notes in Computer Science, pages 561–572. Springer, 2010.

[17] O. Grumberg, O. Kupferman, and S. Sheinvald. An automata-theoretic approach to reasoning about
parameterized systems and specifications. In ATVA, volume 8172 of Lecture Notes in Computer Science,
pages 397–411. Springer, 2013.

[18] P. Habermehl and T. Vojnar. Regular model checking using inference of regular languages. Electronic
Notes in Theoretical Computer Science, 138(3):21–36, 2005.

[19] F. Howar, B. Steffen, B. Jonsson, and S. Cassel. Inferring canonical register automata. In VMCAI,
volume 7148 of Lecture Notes in Computer Science, pages 251–266. Springer, 2012.

[20] B. Jonsson. Learning of automata models extended with data. In SFM, volume 6659 of Lecture Notes in
Computer Science, pages 327–349. Springer, 2011.

[21] M. Kaminski and N. Francez. Finite-memory automata. Theoretical Computer Science, 134(2):329–363,
1994.

[22] M. Kaminski and T. Tan. Regular expressions for languages over infinite alphabets. Fundamenta
Informaticae, 69(3):301–318, 2006.

[23] M. Kaminski and D. Zeitlin. Finite-memory automata with non-deterministic reassignment. International
Journal of Foundations of Computer Science, 21(5):741–760, 2010.

[24] K. O. Kürtz, R. Küsters, and T. Wilke. Selecting theories and nonce generation for recursive protocols.
In P. Ning, V. Atluri, V. D. Gligor, and H. Mantel, editors, FMSE, pages 61–70. ACM, 2007.

[25] A. Kurz, T. Suzuki, and E. Tuosto. On nominal regular languages with binders. In L. Birkedal, editor,
Proceedings of FoSSaCS’12, volume 7213 of Lecture Notes in Computer Science, pages 255–269. Springer,
2012.

[26] M. Leucker. Learning meets verification. In FMCO, volume 4709 of Lecture Notes in Computer Science,
pages 127–151. Springer, 2007.

[27] T. Margaria, H. Raffelt, B. Steffen, and M. Leucker. The LearnLib in FMICS-jETI. In ICECCS, pages
340–352. IEEE Computer Society Press, 2007.

[28] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, Parts I and II. Information and
Computation, 100:1–77, Sept. 1992.

[29] F. Neven, Th. Schwentick, and V. Vianu. Finite state machines for strings over infinite alphabets. ACM
Transactions on Computational Logic, 5(3):403–435, 2004.

[30] R. Rivest and R. Schapire. Inference of finite automata using homing sequences. Information and
Computation, 103:299–347, 1993.

[31] H. Sakamoto and D. Ikeda. Intractability of decision problems for finite-memory automata. Theoretical
Computer Science, 231:297–308, 2000.

[32] L. Segoufin. Automata and logics for words and trees over an infinite alphabet. In Z. Ésik, editor, CSL
2006, volume 4207 of LNCS, pages 41–57. Springer, 2006.

[33] N. Tzevelekos. Fresh-register automata. In T. Ball and M. Sagiv, editors, POPL, pages 295–306. ACM,
2011.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or
Eisenacher Strasse 2, 10777 Berlin, Germany

	1. Introduction
	2. Data Words and Session Automata
	3. Symbolic Normal Form and Canonical Session Automata
	3.1. Data Words in Symbolic Normal Forms
	3.2. Deterministic Session Automata
	3.3. Canonical Session Automata
	3.4. Closure Properties

	4. Logical Characterizations
	4.1. MSO Logic over Data Words
	4.2. Session MSO Logic

	5. Learning Session Automata
	6. Conclusion
	References

