1,357 research outputs found

    Linear and non-linear dynamic analyses of sandwich panels with face sheet-tocore debonding

    Get PDF
    А survey of recent developments in the dynamic analysis of sandwich panels with face sheet-to-core debonding is presented. The finite element method within the ABAQUSTM code is utilized. The emphasis is directed to the procedures used to elaborate linear and non-linear models and to predict dynamic response of the sandwich panels. Recently developed models are presented, which can be applied for structural health monitoring algorithms of real-scale sandwich panels. First, various popular theories of intact sandwich panels are briefly mentioned and a model is proposed to effectively analyse the modal dynamics of debonded and damaged (due to impact) sandwich panels. The influence of debonding size, form and location, and number of such damage on the modal characteristics of sandwich panels are shown. For nonlinear analysis, models based on implicit and explicit time integration schemes are presented and dynamic response gained with those models are discussed. Finally, questions related to debonding progression at the face sheet-core interface when dynamic loading continues with time are briefly highlighted

    Three-dimensional free vibration analysis of thermally loaded fgm sandwich plates

    Get PDF
    Using the finite element code ABAQUS and the user-defined material utilities UMAT and UMATHT, a solid brick graded finite element is developed for three-dimensional (3D) modeling of free vibrations of thermally loaded functionally gradient material (FGM) sandwich plates. The mechanical and thermal material properties of the FGM sandwich plates are assumed to vary gradually in the thickness direction, according to a power-law fraction distribution. Benchmark problems are firstly considered to assess the performance and accuracy of the proposed 3D graded finite element. Comparisons with the reference solutions revealed high efficiency and good capabilities of the developed element for the 3D simulations of thermomechanical and vibration responses of FGM sandwich plates. Some parametric studies are carried out for the frequency analysis by varying the volume fraction profile and the temperature distribution across the plate thickness

    Finite element reduced order models for nonlinear vibrations of piezoelectric layered beams with applications to NEMS

    Get PDF
    This article presents a finite element reduced order model for the nonlinear vibrations of piezoelectric layered beams with application to NEMS. In this model, the geometrical nonlinearities are taken into account through a von Kármán nonlinear strain–displacement relationship. The originality of the finite element electromechanical formulation is that the system electrical state is fully described by only a couple of variables per piezoelectric patches, namely the electric charge contained in the electrodes and the voltage between the electrodes. Due to the geometrical nonlinearity, the piezoelectric actuation introduces an original parametric excitation term in the equilibrium equation. The reduced-order formulation of the discretized problem is obtained by expanding the mechanical displacement unknown vector onto the short-circuit eigenmode basis. A particular attention is paid to the computation of the unknown nonlinear stiffness coefficients of the reduced-order model. Due to the particular form of the von Kármán nonlinearities, these coefficients are computed exactly, once for a given geometry, by prescribing relevant nodal displacements in nonlinear static solutions settings. Finally, the low-order model is computed with an original purely harmonic-based continuation method. Our numerical tool is then validated by computing the nonlinear vibrations of a mechanically excited homogeneous beam supported at both ends referenced in the literature. The more difficult case of the nonlinear oscillations of a layered nanobridge piezoelectrically actuated is also studied. Interesting vibratory phenomena such as parametric amplification or patch length dependence of the frequency output response are highlighted in order to help in the design of these nanodevices.This research is part of the NEMSPIEZO project, under funds from the French National Research Agency (Project ANR-08-NAN O-015-04), for which the authors are grateful

    Measurement of relevant elastic and damping material properties in sandwich thick plates

    No full text
    International audienceAn easy-to-implement method to measure relevant elastic and damping properties of the constituents of a sandwich structure, possibly with a heterogeneous core, is proposed. The method makes use of a one-point dynamical measurement on a thick-plate. The hysteretic model for each (possibly orthotropic) constituent is written generically as "E(1+jη)" for all mechanical parameters. The estimation method of the parameters relies on a mixed experimental/numerical procedure. The frequencies and dampings of the natural modes of the plate are obtained from experimental impulse responses by means of a high-resolution modal analysis technique. This allows for considerably more experimental data to be used. Numerical modes (frequencies, dampings, and modal shapes) are computed by means of an extended Rayleigh-Ritz procedure under the "light damping" hypothesis, for given values of the mechanical parameters. Minimising the differences between the modal characteristics yields an estimation of the values of the mechanical parameters describing the hysteretic behaviour. A sensitivity analysis assesses the reliability of the method for each parameter. Validations of the method are proposed by (a) applying it to virtual plates on which a finite-element model replaces the experimental modal analysis, (b) some comparisons with results obtained by static mechanical measurements, and (c) by comparing the results on different plates made of the same sandwich material

    Identification of elastic and damping properties of sandwich structures based on high resolution modal analysis of point measurements

    No full text
    International audienceA method is proposed to identify the mechanical properties of the skin and core materials of sandwich structures having heterogeneous cores. All the elastic coefficients and loss-factors that matter in the dynamics of such a panel in the thick-plate approximation are identified. To this end, experimental natural modes (i.e. eigenmodes of the damped system) are compared to the numerical modes of large sandwich panels (lx,y/h ≃ 80). The chosen generic model for the visco-elastic behaviour of the materials is E(1 + j ). The numerical modes are computed by means of a Rayleigh-Ritz procedure and their dampings are predicted according to the visco-elastic model. The frequencies and dampings of the natural modes of the panel are estimated experimentally by means of a high-resolution modal analysis technique. An optimisation procedure yields the desired coefficients. A sensitivity analysis assess the reliability of the method. Identification is conducted on two very different kind of sandwich panels to illustrate the method

    Correlating low energy impact damage with changes in modal parameters: diagnosis tools and FE validation

    Get PDF
    This paper presents a basic experimental technique and simplified FE based models for the detection, localization and quantification of impact damage in composite beams around the BVID level. Detection of damage is carried out by shift in modal parameters. Localization of damage is done by a topology optimization tool which showed that correct damage locations can be found rather efficiently for low-level damage. The novelty of this paper is that we develop an All In One (AIO) package dedicated to impact identification by modal analysis. The damaged zones in the FE models are updated by reducing the most sensitive material property in order to improve the experimental/numerical correlation of the frequency response functions. These approximate damage models(in term of equivalent rigidity) give us a simple degradation factor that can serve as a warning regarding structure safety

    Identification of honeycomb sandwich properties by high-resolution modal analysis

    No full text
    International audienceA method is proposed to identify the mechanical properties of the skin and core materials of honeycomb sandwich. All the elastic coefficients and loss-factors that matter in the dynamics of a panel in the thick-plate approximation are identified. To this end, experimental natural modes (i.e. eigenmodes of the damped system) are compared to the numerical modes of a large sandwich panel (lx,y/h ≃ 80). The chosen generic model for the visco-elastic behaviour of the materials is E(1 + jd). The numerical modes are computed by means of a Rayleigh-Ritz procedure and their dampings are predicted according to the visco-elastic model. The frequencies and dampings of the natural modes of the panel are estimated experimentally by means of a high-resolution modal analysis technique. An optimisation procedure yields the desired coefficients. A sensitivity analysis assess the reliability of the method

    Fabrication and mechanical testing of a new sandwich structure with carbon fiber network core

    Get PDF
    The aim is the fabrication and mechanical testing of sandwich structures including a new core material known as fiber network sandwich materials. As fabrication norms for such a material do not exist as such, so the primary goal is to reproduce successfully fiber network sandwich specimens. Enhanced vibration testing diagnoses the quality of the fabrication process. These sandwich materials possess low structural strength as proved by the static tests (compression, bending), but the vibration test results give high damping values, making the material suitable for vibro-acoustic applications where structural strength is of secondary importance e.g., internal panelling of a helicopter

    Cellular buckling in stiffened plates

    Full text link
    An analytical model based on variational principles for a thin-walled stiffened plate subjected to axial compression is presented. A system of nonlinear differential and integral equations is derived and solved using numerical continuation. The results show that the system is susceptible to highly unstable local--global mode interaction after an initial instability is triggered. Moreover, snap-backs in the response showing sequential destabilization and restabilization, known as cellular buckling or snaking, arise. The analytical model is compared to static finite element models for joint conditions between the stiffener and the main plate that have significant rotational restraint. However, it is known from previous studies that the behaviour, where the same joint is insignificantly restrained rotationally, is captured better by an analytical approach than by standard finite element methods; the latter being unable to capture cellular buckling behaviour even though the phenomenon is clearly observed in laboratory experiments.Comment: 22 pages, 9 figures, 1 table, accepted for publication. Proceedings of the Royal Society A, 201

    Probabilistic approach for model and data uncertainties and its experimental identification in structural dynamics: Case of composite sandwich panels

    Get PDF
    International audienceThis paper deals with the experimental identification and the validation of a non-parametric probabilistic approach allowing model uncertainties and data uncertainties to be taken into account in the numerical model developed to predict low- and medium-frequency dynamics of structures. The analysis is performed for a composite sandwich panel representing a complex dynamical system which is sufficiently simple to be completely described and which exhibits, not only data uncertainties, but above all model uncertainties. The dynamical identification is experimentally performed for eight panels. The experimental frequency response functions are used to identify the non-parametric probabilistic approach of model uncertainties. The prediction of the low- and medium-frequency dynamical responses obtained with the stochastic system is compared with the experimental measurements
    corecore