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émanant des établissements d’enseignement et de
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Abstract

This paper deals with the experimental identification and the validation of a non-parametric

probabilistic approach allowing model uncertainties and data uncertainties to be taken into

account in the numerical model developed to predict low- and medium-frequency dynamics of

structures. The analysis is performed for a composite sandwich panel representing a complex

dynamical system which is sufficiently simple to be completely described and which exhibits,

not only data uncertainties, but above all model uncertainties. The dynamical identification

is experimentally performed for 8 panels. The experimental frequency response functions

are used to identify the non-parametric probabilistic approach of model uncertainties. The

prediction of the low- and medium-frequency dynamical responses obtained with the stochastic

system is compared with the experimental measurements.

Keywords: uncertainties, experimental identification, structural dynamics, composite, sand-

wich panel

1. Introduction

The last two decades have received a particular attention in developments of parametric prob-

abilistic approach for modelling data uncertainties (material properties, geometry, boundary

conditions) in structural dynamics, for many simple and complex dynamical systems, including

the case of composite structures (see for instance, Refs. [1-9] for analysis, optimal design,

stability analysis, free vibration and reliability analysis of composite structures).

This paper has twomain objectives. The first one is to present the validation of an experimental

identification method of a general non-parametric probabilistic approach recently introduced

(see Refs.[10,11,12]), allowing model and data uncertainties to be taken into account in struc-

tural dynamics. The structure which has been chosen for performing this probabilistic analysis

is a composite sandwich panel because it constitutes a complex dynamical system which is

sufficiently simple to be completely described and which exhibits not only data uncertainties

but above all model uncertainties. The second objective is to analyse the role played by

model uncertainties in the dynamical responses of such mechanical system. It is known that

the dynamical responses of light composite sandwich panels in the medium-frequency range

are sensitive to the process used for their manufacturing. In addition, such sandwich panels

constitute complex dynamical systems (dynamical behavior of the materials consituting the

different layers; interface conditions between two adjacent layers; boundary conditions, etc)

and consequently, model uncertainties are induced by the mathematical-mechanical modelling
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process in which simplifications are introduced. Finally, the parameters of the mathematical-

mechanical modelling are not known with a great precision which means that data parameters

are also uncertain. It should be noted that this paper addresses (1) neither uncertain loads,

(2) neither data uncertainties modelled by perturbation techniques or by the usual parametric

probabilistic approach (3) nor active control and related topics such as synthesis of active con-

trollers. This paper mainly addresses a new experimental validation of a general probabilistic

approach which allows model uncertainties and data uncertainties to be taken into account in

the numerical predictive models for the low- and medium-frequency dynamics. Eight sand-

wich panels have been manufactured using an identical process and their frequency response

functions have been experimentally identified.

The designed composite sandwich panel is constituted of two thin carbon-resin skins and one

high stiffness closed-cell foam core. Each skin is constituted of 2 unidirectional plies [60/-

60]. As written above, it is known that such sandwich panels, manufactured with an identical

process, generally present a significant dispersion for their Frequency Response Functions

(FRF) in the low-requency (LF) range and above all in the medium-frequency (MF) range.

Concerning the sandwich panel, the objectives are (1) to perform an experimental analysis

of the frequency-response-functions dispersion due to the process used for manufacturing the

sandwich panels, (2) to develop a predictive mean mechanical model based on the use of the

laminated composite thin plate theory in dynamics and to compare the numerical simulations

with the experiments, and (3) to use a non-parametric probabilistic approach allowing data and

model uncertainties to be modelled in order to improve the predictability of the mean model in

the LF and MF dynamics.

The non-parametric probabilistic approach used in this paper is based on the concepts and the

methodology introduced in Refs. [10,11,12]. In such a probabilistic model, the probability

distribution of each full random generalized matrix of the dynamical system (generalized mass,

damping and stiffness matrices) depends on a dispersion parameter (the coefficient of variation

of the full random matrix constructed with the Frobenius norm) allowing the level of the

random fluctuations of each random matrix to be controlled. An experimental estimation of

each dispersion parameter for the random generalized mass, damping and stiffness matrices is

proposed. The confidence regions of the random frequency response functions are predicted by

using the randomdynamical system constructedwith the non-parametric probabilistic approach

of model and data uncertainties and are compared with the experimental frequency response

functions measured for the 8 sandwich panels.
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Notation

In this paper, the following notations are used:

(1) A lower case letter is a real or complex deterministic variable (e.g. f ).

(2) A boldface lower case letter is a real or complex deterministic vector (e.g. f = (f1, . . . , fn).

(3) An upper case letter is a real or complex random variable (e.g. F ).

(4) A boldface upper case letter is a real or complex random vector (e.g. F = (F1, . . . , Fn)).

(5) An upper case letter between brackets is a real or complex deterministic matrix (e.g. [A ]).

(6) A boldface upper case letter between brackets is a real or complex random matrix (e.g.

[A]).

(7) Any deterministic quantities above (e.g. f, f, [A ]) with an underline (e.g. f, f, [A ]) means

that these deterministic quantities are related to the mean model (or to the nominal model).

In addition, the following algebraic notations are used.

Euclidean space. The Euclidean space  m is equipped with the usual inner product such that,

for all u = (u1, . . . , um) and v = (v1, . . . , vm) in  m, <u , v>= u1 v1 + . . .+ um vm and

the associated norm ‖u‖ =< u , u>1/2. The bilinear form (u, v) 7→< u , v> is extended to

complex vectors u and v belonging to the Hermitian space !m.

Hermitian space. For all u = (u1, . . . , um) in the Hermitian space !m, its hermitian norm is

such that ‖u‖ = {|u1|
2 + . . .+ |um|2}1/2.

Matrix sets. Let "n,m( ) be the set of all the (n×m) real matrices, "n( ) = "n,n( ) be the

set of all the square (n× n) real matrices, "S
n( ) be the set of all the (n× n) real symmetric

matrices and "+
n ( ) be the set of all the (n×n) real symmetric positive-definite matrices. We

then have "+
n ( ) ⊂ "S

n( ) ⊂ "n( ).

Norms and usual operators. We denote:

(1) the determinant of matrix [A ] ∈ "n( ) as det[A ] and its trace as tr[A ] =
∑n

j=1[A ]jj,

(2) the transpose of [A ] ∈ "n,m( ) as [A ]T ∈ "m,n( ),

(3) the Frobenius norm (orHilbert-Schmidt norm) ‖A‖F of [A ] as ‖A‖F = {tr{[A ]T [A ]}}1/2.

(4) the mathematical expectation of any random quantity such as [A] is denoted by E{[ A]}.

2. Description of the designed sandwich panel

The designed sandwich panel is constituted of five layers made of four thin carbon-resin

unidirectional plies and one high stiffness closed-cell foam core. This panel is defined with

respect to a Cartesian coordinate system Oxyz and is 0.40 m length (Ox axis), 0.30 m width

(Oy axis) and 0.01068 m total thickness (Oz axis). The middle plane of the sandwich panel is
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Oxy and the origineO is located in the corner. Each carbon layer is made of a thin carbon-resin

ply with a thickness of 0.00017 m, a mass density ρ = 1600 Kg/m3. Let OXY Z be the local

Cartesian coordinate system attached to a carbon-resin ply for which OXY coincides with

the plan of the ply and for which its fibers are oriented in OX direction. Then, the elasticity

constants expressed in the local coordinate system OXY Z are: EX = 101 GPa, EY = 6.2

GPa, νXY = 0.32, GXY = GXZ = GY Z = 2.4 GPa. The first two layers are two carbon-

resin unidirectional plies in a [-60/60] layup. The third layer is a closed-cell foam core with a

thickness of 0.01m, a mass density of 80Kg/m3 and elasticity constants: Ex = Ey = 60MPa,

νxy = 0, Gxy = Gxz = Gyz = 30 MPa . The fourth and fifth layers are two carbon-resin

unidirectional plies in a [60/-60] layup.

3. Manufacturing the sandwich panels

Eight sandwich panels have been manufactured from the designed sandwich panel using an

identical process and the same materials. All the sandwich panels have been baked in the same

batch for suppressing the influences of the different baking conditions concerning time and

temperature. The different steps for themanufacturing of the sandwich panels are the following.

Step 1: cut out the carbon-resine tissue and cut out the foam plate with the dimension of the

designed panel. Step 2: for each plate, paste the carbon-resine tissues with the foam plate.

Step 3: bake the eight sandwich panels pasted in the previous step in the vacuum oven for

solidify the oxygen resin existing in the sandwich. Figure 1 shows step 2 of the manufacturing

process for a sandwich panel.

4. Dynamical identification of the eight sandwich panels

4.1. Description of dynamical testing

The panel is vertical and suspended by two thin soft rubber bands attached to the two upper

corners of the panel. The eigenfrequency of the vertical body motion is about 2 Hz which

has to be compared to the lowest elastic eigenfrequency which is 191 Hz. Consequently,

the measurements of the frequency response functions in the frequency band of analysis are

then performed for a configuration corresponding to free-free conditions. The frequency band

of analysis considered is the band B = [10 , 4500]Hz corresponding to the model validity

of the mean finite element model. The input z-force is a point load applied to the point

N0 of coordinates (0.187, 0.103, 0) m and is delivered by an electrodynamic shaker which

is horizontally fixed. The input force is measured with a force transducer which is located

between the panel and the shaker. The experimental configuration used guarantees a correct
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excitation in bending mode with a driven force which can be modelled by a point force. Point

N0 has been chosen such that all the symmetric and anti-symmetric elastic modes of the panel

is excited in the frequency band of analysis.

The output z-accelerations are measured at 25 points by accelerometers. For the sake

of briefness, the presentation is limited to the 3 following points: N1 with coordinates

(0.337, 0.103, 0)m,N2with coordinates (0.112, 0.159, 0)m andN3with coordinates (0.337,

0.216, 0) m. The cross frequency response functions are identified on frequency band B by

using the usual spectral analysis method and signal processing [13,14].

4.2. Experimental cross frequency response functions

Figures 2, 3 and 4 display the graphs of the modulus of the experimental cross frequency

response functions in log scale for an input at point N0 (driven point) and a transversal

acceleration output at points N1, N2 and N3, respectively. There are 8 graphs on each figure

corresponding to the 8 sandwich panels. The analysis of the 25 experimental cross frequency

response functions on frequency bandB = [10 , 4500]Hz (in which there are 60 elastic modes)

shows a small dispersion in the frequency band [10 , 1550] Hz (in which there are 11 elastic

modes) and a significant dispersion, increasing with the frequencies, in the frequency band

[1550 , 4500]Hz (in which there are about 59 elastic modes). This can clearly be seen in figures

2, 3 and 4 relative to pointsN1, N2 and N3 respectively.

4.3. Experimental modal analysis

For each sandwich panel, an experimentalmodal analysis [15] has been performed using a com-

mercialized software [16] in the frequency band [10 , 1550]Hz and the identified experimental

cross frequency response functions (see Section 4.2). For each sandwich panel r = 1, . . . , 8,

eleven elastic modes have been identified in this frequency band. For sandwich panel r, the

following usual modal parameters of each experimental elastic mode α has been identified: (1)

the eigenfrequency ωexp
α (θr), (2) the damping rate ξ

exp
α (θr), (3) the elastic mode shape ψ

exp
α (θr)

and the corresponding generalized mass µexpα (θr).

The experimental modal model identification used to estimate the eigenfrequencies, the damp-

ing rates, the elastic mode shapes and the generalized masses (from data constituted of the

experimental cross frequency response functions) are the following [16]: The identification

procedure is to seek an approximation of the measured cross frequency response functions

in the pole / residue usual form. An iterative refinement of the poles of the current model

is performed. The three main steps of the procedure are: (1) finding initial pole estimates,

adding missed poles, removing computational poles, (2) estimating residues and residual terms
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for a given set of poles, (3) optimizing poles and residues of the current model using a nar-

row frequency band update. In particular, from the poles, it is deduced the experimental

eigenfrequencies and the experimental damping rates. This procedure allows the first eleven

experimental eigenmodes to be identified without significant errors while the errors increase

with the upper experimental eigenmodes (twelve, thirteenth, etc...). Consequently, only the

first eleven identified eigenmodes have been kept.

Concerning the updating of the conservative part of the mean model with the first experimental

eigenfrequencies (see Section 5.3), an average value of each experimental eigenfrequency is

constructed over the set of the eight experimental panels. For each experimental eigenfrequency

α, the usual estimation ωexp
α defined by

ωexp
α = (1/8)

8∑

r=1

ωexp
α (θr)

is then introduced and represents the average experimental eigenfrequency. In addition, the

updating of the conservative part of the mean model will be performed using only the first

four "well isolated" eigenmodes. Introducing f exp
α

= ωexp
α /(2 π), the results for the first four

eigenfrequencies are

f exp
1

= 191.0Hz , f exp
2

= 329.5Hz , f exp
3

= 532.0Hz , f exp
4

= 635.1Hz .

Concerning the dissipative part of the mean model no updating is performed to "obtain a

good fit" (which would be really difficult to construct because the prediction performed is

a confidence region of the stochastic frequency response functions corresponding to a given

probability level and in addition, would be without any interest since the objective of the paper

is to take into account model and data uncertainties and not only data uncertainties). A global

average experimental damping rate is then constructed as explained below and then the average

value is directly used in the mean model (see Section 5.2). For α = 1, . . . , 11, let

ξexp
α

= (1/8)

8∑

r=1

ξexpα (θr)

be the average experimental damping rate α over the set of the eight experimental panels. Let

ξexp = (1/11)

11∑

α=1

ξexp
α

be the global average experimental damping rate for the first eleven experimental eigenfre-

quencies. This procedure yields the value

ξexp = 0.01 ,

which will be directly used in the mean model.
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5. Mean mechanical model of the dynamical system and experimental comparisons

The mean model refers to the model deduced from the mechanical-mathematical model of the

designed sandwich panel for which data (geometry, elasticity constants, mass densities, etc)

correspond to the designed sandwich panel data values and are usually called the mean data or

the nominal data.

5.1. Mean finite element model

The designed panel is considered as a laminated composite thin plate for which each layer is

made of an orthotropic elastic material [17,18,19]. The elasticity constants of each layer are

given in Section 2. Since we are interested in the z-dispacement of the middle plane of the

sandwich panel in the bending mode and since the panel is a free structure, there are 3 rigid

body modes. We are interested in the construction of the responses in the frequency domain

over the frequency band of analysis B. The designed panel is modelled by using a regular

finite element meshes constituted of 64 × 64 four-nodes finite elements for laminated plate

bending. The damping of the structure is introduced by an arbitrary usual model controlled by

the modal damping rates (see section 5.2)

In frequency band B, the mean finite element model of linear vibrations of the free designed

panel around a position of static equilibrium taken as reference configurationwithout prestresses

is written as

(
−ω2 [ ] + iω [! ] + [" ]

)
y(ω) = f(ω) , ω ∈ B , (1)

in which y(ω) = (y
1
(ω), . . . , y

m
(ω)) is the #m-vector of the m DOFs (displacements and

rotations) and f(ω) = (f
1
(ω), . . . , f

m
(ω)) is the #m-vector of the m inputs (forces and

moments). The mean mass matrix [ ] is a positive-definite symmetric (m ×m) real matrix.

The mean damping and stiffness matrices [! ] and [" ] are positive-semidefinite symmetric

(m×m) real matrices (free structure). Matrices [! ] and [" ] have the same null space having a

dimensionmrig = 3 and spanned by the rigid body modes { 
−2
, 

−1
, 

0
}. It is assumed that

the given deterministic load vector f(ω) is in equilibrium, i.e. is such that < f(ω) , 
1−β

>= 0

for all β in {1, 2, 3}. For all ω inB, Eq. (1) has a unique solution y(ω) = [$(ω)] f(ω) in which

[$(ω)] is the matrix-valued FRF (frequency response function) defined by [$(ω)] = [%(ω)]−1

where [%(ω)] is the dynamic stiffness matrix such that

[%(ω)] = −ω2 [ ] + iω [!] + ["] . (2)
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5.2. Mean reduced matrix model

The mean reduced matrix model adapted to frequency band B is constructed by using the

usual modal analysis with the elastic modes of the associated conservative system. The

generalized eigenvalue problem associated with the mean mass and stiffness matrices of the

mean finite element model is written as [ ] = λ [! ] . Since [ ] is a positive-semidefinite

matrix, we have λ−2 = λ−1 = λ0 = 0 < λ1 ≤ λ2 ≤ . . . ≤ λm and the associated elastic

modes { 
1
, 

2
, . . .} corresponding to the strictly positive eigenvalues λ1, λ2, . . ., are such that

< [! ] 
β
, 

β′
>= µ

β
δββ′ and < [ ] 

β
, 

β′
>= µ

β
ω2

β δββ′ in which ωβ =
√
λβ is the

eigenfrequency of elastic mode 
β
whose normalization is defined by the generalized mass µ

β
.

The mean reduced matrix model of the dynamic system whose mean finite element model is

defined by Eq. (1) is obtained by constructing the projection of the mean finite element model

on the subspace Vn of "m spanned by { 
1
, . . . , 

n
} with n ≪ m. Let [ Φn] be the (m× n)

real matrix whose columns are vectors { 
1
, . . . , 

n
}. The generalized mass, damping and

stiffness matrices [Mn], [Dn] and [Kn] are positive-definite symmetric (n× n) real matrices

such that [Mn]ββ′ = µ
β
δββ′ , [Dn]ββ′ =< [# ] 

β′
, 

β
> and [Kn]ββ′ = µ

β
ω2

β δββ′ . In

general, [Dn] is a full matrix. Nevertheless, as explained in section 5.1, the damping model is

introduced in writing that [Dn]ββ′ = 2 ξ
β
µ

β
ωβ δββ′ in which ξ

1
, . . . , ξ

n
are the mean modal

damping rates. The mean damping model is then chosen (see Section 4.3) such that

ξ
1

= . . . = ξ
n

= ξexp = 0.01 .

For frequency bandB, the mean reduced matrix model of the dynamic system is written as the

approximation yn(ω) of y(ω) such that

yn(ω) = [Φn] qn(ω) , ω ∈ B , (3)

in which the $n-vector qn(ω) of the generalized coordinates is the unique solution of the mean

reduced matrix equation,

(
−ω2 [Mn ] + iω [Dn] + [Kn]

)
qn(ω) = F

n(ω) , ω ∈ B , (4)

withF
n(ω) = [Φn]T f(ω) ∈ $n and where the mean generalized mass, damping and stiffness

matrices are the positive-definite symmetric (n× n) real diagonal matrices defined above.

C. Chen, D. Duhamel, C. Soize, second revision October 2005, first revision June 2005, submitted in October 2004 to JSV 9



5.3. Updating the conservative part of the mean model with the first experimental

eigenfrequencies

Firstly, the mean value of the mass density ρ of each carbon-resine ply has been identified by

using (1) a measurement of the dimensions and of the total weight of the panel and (2) the mass

density of the foam given by the manufacturer. This identification yields ρupd = 1904 Kg/m3.

Secondly, the Young moduli EX and EY of each carbon-resin ply has been updated with

respect to the first eigenfrequencies. The main hypothesis used is to obtain an updated mean

model which has a correct global stiffness. Consequently, since only the two parameters EX

and EY are used for this updating, the number of elastic mode has been limited to the first

four eigenfrequencies. The calculation of the eigenfrequencies of the designed panel with data

defined in Section 2 has been performed with the mean finite element model (see Section 5.1)

whose finite element mesh is made of 128 × 64 four-nodes finite elements. For this designed

panel, the first four computed eigenfrequencies are

f
1

= 176.4Hz , f
2

= 344.8Hz , f
3

= 499.7Hz , f
4

= 651.2Hz .

The updating of the conservative part of the mean model is then performed in minimizing the

following cost function,

J(EX , EY ) =

4∑

β=1

|f
β
− f exp

β
| ,

with respect to EX and EY , where

f exp
1

= 191.0Hz , f exp
2

= 329.5Hz , f exp
3

= 532.0Hz , f exp
4

= 635.1Hz ,

are the average experimental eigenfrequencies defined in Section 4.3, and where all the other

mechanical parameters take the values defined in Section 2 except ρ = ρupd. The updated values

for EX and EY are

Eupd

X = 103GPa , Eupd

Y = 6.0GPa ,

and yields for the first four updated eigenfrequencies,

f upd

1
= 191.7Hz , f upd

2
= 332.8Hz , f upd

3
= 529.5Hz , f upd

4
= 630.8Hz .

Below, the updated mechanical parameters are used instead of the values defined for the

designed sanswich panel. The designed sandwich panel with the updated mechanical constants

will be named the updated designed sandwich panel associated with the updated mean finite

element model and the updated mean reduced matrix model.
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5.4. Convergence with respect to the mesh size for the updated designed panel

A convergence analysis of the cross frequency response functions of the updated designed

sandwich panel has been performed with respect to the size mesh of the finite element mesh.

Figure 5 displays the graphs of the cross FRF between point N0 and point N1 for the three

finite element meshes: 32× 32 four-nodes finite elements, 64× 64 four-nodes finite elements

and 128 × 64 four-nodes finite elements. All the results obtained, and in particular Figure 5,

show that convergence with respect to the finite element mesh size is reasonable for 64 × 64

four-nodes finite elements.

5.5. Convergence of the updated mean reduced matrix model with respect to the number

of elastic modes

The convergence with respect to the dimension of the updated mean reduced matrix model

is analyzed in studing the graph of the L2-norm in space (over all the middle plane of the

sandwich panel) and in frequency (over all the frequency band of analysis B) of the z-

acceleration response for a unit input applied to point N0. Figure 6 displays the graph of this

norm versus the dimension of the updated mean reduced matrix model, that is to say, versus

the number of elastic modes. The convergence is reached for n = 120.

5.6. FRF calculation with the updated mean reduced matrix model and experimental

comparisons

The cross frequency response functions are calculated by using Eqs. (3) and (4) (updated mean

reduced matrix model) with n = 200. Figures 7, 8 and 9 display the graphs of the modulus

of the experimental and numerical cross frequency response functions in log scale for an input

at point N0 (driven point) and a z-acceleration output at points N1,N2 and N3, respectively.

There are 9 graphs on each figure: 8 graphs correspond to the experimental cross frequency

response functions associated with the 8 sandwich panels and 1 graph corresponds to the

numerical cross frequency response function computed with the updated mean reduced matrix

model.

The comparisons of the experimental cross frequency response functionswith those constructed

with the updatedmean finite elementmodel are reasonably good in the frequency band [0, 1500]

Hz and are relatively bad in [1500 , 4500]Hz. In the frequency band [1500, 4500] Hz, the lack

of predictability is increasing with the frequency and is mainly due to data uncertainties

(mechanical parameters) and to model uncertainties (modelling the sandwich panel by using

the laminated composite thin plate theory).
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6. Nonparametric Model of Random Uncertainties

The non-parametric model of random uncertainties has initially been introduced in Ref. [10].

The construction of the non-parametric model of random uncertainties in the frequency band

B consists in modelling the generalized mass, damping and stiffness matrices of the mean

reduced matrix model defined by Eqs. (3) and (4) by full random matrices [Mn], [Dn] and [Kn]

with values in  +
n (!) such that E{[Mn]} = [Mn ], E{[Dn]} = [Dn ] and E{[Kn]} = [Kn ].

Consequently, the non-parametric model of random uncertainties in frequency band B is

written as

Yn(ω) = [Φn]Qn(ω) , (5)

in which, for all ω fixed inB, the"n-valued random variableQn(ω) of the random generalized

coordinates is the unique solution of the random reduced matrix equation,

(
−ω2 [Mn] + iω [Dn] + [Kn]

)
Qn(ω) = F

n(ω) , ω ∈ B . (6)

From Refs. [10,11,12,20], these random matrices are written as

[Mn] = [LMn
]T [GMn

] [LMn
] , (7)

[Dn] = [LDn
]T [GDn

] [LDn
] , (8)

[Kn] = [LKn
]T [GKn

] [LKn
] , (9)

in which the positive-definite (n×n) real diagonal matrices [LMn
], [LDn

] and [LKn
] are such

that [Mn ] = [LMn
]2, [Dn] = [LDn

]2 and [Kn] = [LKn
]2. Assuming that no available infor-

mation (objective data) exits concerning the statistical dependence of the random generalized

mass, damping and stiffness matrices, then it can be proved [10] that the full random matrices

[GMn
], [GDn

] or [GKn
] have to be considered as mutually independent. The dispersion of

random matrices [GMn
], [GDn

] and [GKn
] are controlled by the positive real parameters δM ,

δD and δK which are independent of dimension n and which do not depend on frequency ω. If

An denotesMn,Dn orKn, then the dispersion parameter δA of random matrix [An] is defined

by

δA =

{
1

n
E{‖ [GAn

] − [In] ‖2
F}

}1/2

. (10)

The probability distribution P[GAn ] of the random matrix [GAn
] is defined by a probability

density function [Gn] 7→ p[GAn ]([Gn]) from  +
n (!) into !+ = [0 ,+∞[, with respect to

the measure d̃Gn on  S
n(!), such that, d̃Gn = 2n(n−1)/4 Π1≤i≤j≤n d[Gn]ij . We then have
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P[GAn ] = p[GAn ]([Gn]) d̃Gn with the normalization condition
∫ +

n (!)
p[GAn ]([Gn]) d̃Gn = 1.

The probability density function p[GAn ]([Gn]) is then written [10,11,12,20] as

p[GAn ]([Gn]) =   +
n (!)([Gn])×CGAn

×
(
det [Gn]

)(n+1)
(1−δ2

A
)

2δ2
A ×exp

{
−

(n+ 1)

2δ2A
tr [Gn]

}
,

in which   +
n (!)([Gn]) is equal to 1 if [Gn] ∈ !+

n (") and is equal to zero if [Gn] /∈ !+
n (")

and where the positive constant CGAn
is such that

CGAn
=

(2π)−n(n−1)/4
(

n+1
2δ2

A

)n(n+1)(2δ2
A)−1

{
Πn

j=1Γ
(

n+1
2δ2

A

+ 1−j
2

)} ,

whith Γ(z) the gamma function defined for z > 0 by Γ(z) =
∫ +∞

0
tz−1 e−t dt. The above

equation shows that {[GAn
]jk, 1 ≤ j ≤ k ≤ n} are dependent random variables. In general,

(n + 1)/δ2 is not an integer and consequently, the probability distribution is not a Wishart

distribution.

In order to solve the stochastic equation (6) by the Monte Carlo numerical simulation, it is

necessary to construct a randommatrix generator for [GAn
]whose probability density function

p[GAn ]([Gn]) is defined above. The following algebraic representation developed in Refs.

[10,11,12,20] allows such a random matrix generator to be constructed. The random matrix

[GAn
], with dispersion parameter δA and having the probability density function p[Gn]([Gn])

defined above, can be written as

[GAn
] = [LAn

]T [LAn
] , (11)

in which [LAn
] is an upper triangular random (n×n) real matrix such that the random variables

{[LAn
]jj′ , j ≤ j′} are mutually independent and such that

(1) for j < j′, real-valued random variable [LAn
]jj′ is written as [LAn

]jj′ = σnUjj′ in which

σn = δA(n+1)−1/2 and whereUjj′ is a real-valued Gaussian random variable with zero mean

and variance equal to 1;

(2) for j = j′, positive-valued random variable [LAn
]jj is written as [LAn

]jj = σn

√
2Vj in

which σn is defined above and where Vj is a positive-valued gamma random variable whose

probability density function pVj
(v)with respect to dv is written as pVj

(v) =  !+(v){Γ(n+1
2δ2

A

+

1−j
2

)}−1 v
n+1

2δ2
A

−
1+j
2
e−v .
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7. Experimental estimation of the dispersion parameters for the non-parametric

probabilistic model

Let δM , δD and δK be the dispersion parameters of the random generalized mass, damping

and stiffness matrices. Since the dispersion parameters have to be independent of n (see

Section 6), the dispersion parameters can be estimated by using the experimental matrices

[M exp
ν (θr)], [D

exp
ν (θr)] and [Kexp

ν (θr)] for r = 1, . . . , 8 corresponding to the 8 experimental

sandwich panels, and for a dimension ν < n. Here, a very simple procedure is proposed

for estimating δM , δD and δK (this procedure corresponds to the first step of the procedure

based on the maximum likelihood principle and developed in Ref. [20]). The first step of

this procedure consists in associating the ν first elastic modes computed with the updated

mean finite element model, with the corresponding ν experimental elastic modes obtained

by performing the experimental modal analysis [15,16] of each sandwich panel. Let 0 <

ω
exp
j1

(θr) ≤ . . . ≤ ω
exp
jν

(θr) be the set of the ν experimental eigenfrequencies of sandwich

panel r, corresponding to the set of the ν first eigenfrequencies 0 < ω1 ≤ . . . ≤ ων computed

with the updated mean finite element model. The same set of degrees of freedom for the mean

finite element model and for the experimental sandwich panels is considered (25 observations).

For each sandwich panel r = 1, . . . , 8, the association of the first experimental elastic modes

ordered in increasing eigenfrequencies (which means that j1 = 1, . . . , jν = ν), with the first

elastic modes computed with the updated mean finite element model and ordered in increasing

eigenfrequencies, is performed using the [MAC(θr)] matrix defined by

[MAC(θr)]αβ =
<  

β
,!exp

α (θr)>
2

<  
β
, 

β
>< !exp

α (θr) ,!exp
α (θr) >

,

in which  
β
is the elastic mode of the updated mean finite element model whose eigenfre-

quency is ωβ and where !exp
α (θr) is the experimental elastic mode of sandwich panel r whose

eigenfrequeny is ωexp
α (θr). Let us consider the eight first elastic modes, i.e ν = 8. Let [MAC]

be the (8 × 8) real matrix corresponding to the average over the 8 panels and defined by

[MAC] = 1
8

∑8
r=1[MAC(θr)]. The computation of this average MAC matrix yields

[MAC] =




0.9677 0.0018 0.0594 0.0299 0.0045 0.0120 0.0018 0.0313
0.0004 0.9600 0.0098 0.0284 0.0029 0.0387 0.0625 0.0006
0.0508 0.0139 0.9606 0.0027 0.0035 0.0058 0.0490 0.0230
0.0198 0.0105 0.0019 0.9761 0.0079 0.0040 0.0270 0.0301
0.0129 0.0010 0.0012 0.0005 0.9775 0.0040 0.0270 0.0301
0.0006 0.0302 0.0341 0.0000 0.0121 0.9124 0.0055 0.0068
0.0010 0.0774 0.0135 0.0547 0.0006 0.0077 0.9177 0.0002
0.0862 0.0002 0.0070 0.0232 0.0123 0.0079 0.0199 0.8053




C. Chen, D. Duhamel, C. Soize, second revision October 2005, first revision June 2005, submitted in October 2004 to JSV 14



The matrix [MAC] allows the optimal number ν to be defined (number of experimental elastic

modes which can be associated with elastic modes computed with the updated mean finite

element model). Fixing an error less than 4%, this matrix shows that the diagonal terms are

dominant and larger or equal to 0.96 for ν = 5. The optimal value is then ν = 5.

One has now to estimate the dispersion parameters of the three random matrices using

ν = 5. Let [Ψexp
ν (θr)] be the (m × ν) real matrix whose columns are the ν elastic modes

of experimental sandwich panel r associated with the first experimental eigenfrequencies

0 < ωexp
1 (θr) ≤ . . . ≤ ωexp

ν (θr) and let [Φν ] be the (m × ν) real matrix whose columns

are the ν first elastic modes calculated with the updated mean finite element model and

associated with eigenfrequencies 0 < ω1 ≤ . . . ≤ ων . Let [ M̃
exp
ν (θr)], [ D̃

exp
ν (θr)] and

[ K̃exp
ν (θr)] be the corresponding experimental generalized mass, damping and stiffness matri-

ces of experimental sandwich panel r directly deduced from the experimental modal analysis

and such that [ M̃
exp
ν (θr)]αα′ = µ

exp
α (θr)δαα′ , [ D̃

exp
ν (θr)]αα′ = 2ξ

exp
α (θr)µ

exp
α (θr)ω

exp
α (θr)δαα′

and [ K̃exp
ν (θr)]αα′ = µexpα (θr) (ωexp

α (θr))
2δαα′ . Let [Mν ], [Dν] and [Kν] be the random ma-

trices associated with the mean reduced matrix model of dimension ν and defined in Section

6. Since the experimental elastic modes differ from the elastic modes constructed with the

updated mean finite element model (due to uncertainties), matrices [ M̃ exp
ν (θr)], [ D̃exp

ν (θr)]

and [ K̃exp
ν (θr)] are not represented in the same vector subspace than [Mν ], [Dν ] and [Kν] (or

equivalently than [Mν ], [Dν ] and [Kν ]). However, it can be written that

[Ψexp
ν (θr)] q̃

exp(θr) = [Φν ] qexp(θr) , (12)

in which q̃exp(θr) is the  m-vector of the experimental generalized coordinates and where

qexp(θr) is the corresponding  m-vector of the generalized coordinates in the mean-model

basis. By construction, the matrix [Ψ
exp
ν (θr)]

T [Ψ
exp
ν (θr)] ∈ !ν(") is invertible. Introducing

the left pseudo-inverse
(
[Ψ

exp
ν (θr)]

T [Ψ
exp
ν (θr)]

)−1
[Ψ

exp
ν (θr)]

T ∈ !ν,m(") of [Ψ
exp
ν (θr)] ∈!m,ν("), Eq. (12) yields

q̃exp(θr) = [Sexp
ν (θr)] q

exp(θr) , (13)

in which the matrix [Sexp
ν (θr)] ∈ !ν(") is written as

[Sexp
ν (θr)] =

(
[Ψexp

ν (θr)]
T [Ψexp

ν (θr)]
)−1

[Ψexp
ν (θr)]

T [Φν ] . (14)

The matrix transformation defined by Eqs. (13)-(14) allows the experimental matrices

[M̃
exp
ν (θr)], [D̃

exp
ν (θr)] and [K̃

exp
ν (θr)] to be transformed into the matrices [M

exp
ν (θr)],
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[Dexp
ν (θr)] and [Kexp

ν (θr)], which are defined by

[M exp
ν (θr)] = [Sexp

ν (θr)]
T [M̃ exp

ν (θr)] [S
exp
ν (θr)] ∈  +

ν (!)

[Dexp
ν (θr)] = [Sexp

ν (θr)]
T [D̃exp

ν (θr)] [S
exp
ν (θr)] ∈  +

ν (!)

[Kexp
ν (θr)] = [Sexp

ν (θr)]
T [K̃exp

ν (θr)] [S
exp
ν (θr)] ∈  +

ν (!) . (15)

Let A be M , D or K. One can then introduce the matrix [Gexp
Aν

(θr)] ∈  +
n (!) such that

[A
exp
ν (θr)] = [LAν

]T [G
exp
Aν

(θr)] [LAν
] in which the invertible upper triangular matrix [LAν

] ∈ ν(!) is such that [Aν ] = [LAν
]T [LAν

] ∈  +
n (!). Therefore, matrix [Gexp

Aν
(θr)] is given by

the equation,

[Gexp
Aν

(θr)] = [LAν
]−T [Aexp

ν (θr)] [LAν
]−1 ∈  +

ν (!) . (16)

Consequently, the eight realizations {[G
exp
Aν

(θr)], r = 1, . . . , 8} of randommatrix [GAν
] defined

by Eq. (11) have effectively been constructed. The dispersion parameter δA of random matrix

[Aν ], defined by Eq. (10) for n = ν = 5, has to be chosen independent of n and is then

estimated by

δA =

{
1

8ν

8∑

r=1

‖ [Gexp
Aν

(θr)] − [Iν ] ‖2
F

}1/2

. (17)

From Eq. (17), it can be deduced that δM = 0.23, δD = 0.43 and δK = 0.25. Consequently,

these values represent the dispersion parameters for random matrices [Mn], [Dn] and [Kn].

These dispersion parameters are taken as constants independent of dimension n.

Since the number of experimental panels is relatively small (8 panels are used), the quality

of the estimation of δA defined by Eq. (17) could be questionnable. Nevertheless, as explain

below, such an estimation is perfectly correct. In Ref. [20], the convergence of the estimator

δ̂A used to calculate the estimation δA defined by Eq. (17) has been studied and one reuses

this result. Applying this result for a dimension ν = 5 of the random matrix [G
exp
Aν

] and for 8

realizations, yields a standard deviation σ
δ̂A

of the estimator δ̂A which is equal to 0.0146 for

δM = 0.23, to 0.0328 for δD = 0.43 and to 0.0171 for δK = 0.25. Consequently, although the

number of realizations is relatively small (8 panels), the estimator is reasonably converged and

then, the estimation can be considered as correct. This unexpected and unusual result is due to

the struture of the random matrix [Gexp
Aν

]. As it can be seen in Eq. (11), for n = ν, this random

matrix depends on ν×(ν+1)/2 independent random variables, i.e, on 15 independent random

variables. Consequently, each realization of this random matrix is spanned by the realizations

of 15 independent random variables, and therefore, the estimation δA is performed by using

8 × 15 = 120 realizations of independent random variables. In general, such an argument is
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wrong, but in the present case, due to the structure of the random matrix [Gexp
Aν

] and due to

Eq. (10) defining δA, this result holds and has been proved in studying the standard deviation

σ
δ̂A

of estimator δ̂A (see Ref. [20]).

8. Confidence region prediction for the FRF and experimental comparisons

8.1. Confidence region prediction with the non-parametric probabilistic model

We are interested in the construction of the confidence region associated with a probability

level Pc = 0.96 for the modulus of the random cross frequency response functions between

point N0 and points N1, N2 and N3. Let ω 7→ W (ω) = | − ω2 Yn
k (ω)| in which k is

the degree of freedom corresponding to the z-displacement at points N1, N2 and N3, and

where Yn(ω) is the random vector given by Eqs. (5) and (6). This confidence region is

constructed by using the sample quantiles [20]. For ω fixed in B, let FW (ω) be the cumulative

distribution function (continuous from the right) of random variableW (ω) which is such that

FW (ω)(w) = P (W (ω) ≤ w) . For 0 < p < 1, the pth quantile or fractile of FW (ω) is defined

as

ζ(p) = inf{w : FW (ω)(w) ≥ p} . (18)

Then, the upper envelope w+(ω) and the lower envelope w−(ω) of the confidence region are

defined by

w+(ω) = ζ((1 + Pc)/2) , w−(ω) = ζ((1 − Pc)/2) . (19)

The estimation of w+(ω) and w−(ω) is performed as follows. Let w1(ω) = W (ω; θ1), . . . ,

wns
(ω) = W (ω; θns

) be the ns independent realizations of random variableW (ω) associated

with the independent realizations θ1, . . . , θns
. Let w̃1(ω) < . . . < w̃ns

(ω) be the order

statistics associated with w1(ω), . . . , wns
(ω). Therefore, one has the following estimation

w+(ω) ≃ w̃j+(ω) , j+ = fix(ns(1 + Pc)/2) , (20)

w−(ω) ≃ w̃j−(ω) , j− = fix(ns(1 − Pc)/2) , (21)

in which fix(z) is the integer part of the real number z.

The confidence region of the random cross frequency response functions are calculated by

using Eqs. (5)-(11) and (20)-(21). Random Eqs. (5) and (6) are solved by using the Monte

Carlo numerical simulation with ns realizations. The realization Q
n(ω; aℓ) of the  n-valued

random variable Qn(ω) is the solution of the deterministic matrix equation

(
−ω2 [Mn(aℓ)] + iω [Dn(aℓ)] + [Kn(aℓ)]

)
Qn(ω; aℓ) = F

n(ω) , ω ∈ B . (22)
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in which [Mn(aℓ)], [Dn(aℓ)] and [Kn(aℓ)] are the realizations of the random matrices [Mn],

[Dn] and [Kn] respectively. The convergence of the random solution of Eq. (6) with respect to

the number ns of realizations can be analyzed in studying the mapping

ns 7→ Conv(ns) =
1

ns

ns∑

ℓ=1

∫

B

‖Qn(ω; aℓ)‖
2 dω , (23)

in whichQn(ω; a1), . . . ,Q
n(ω; ans

) are the ns realizations of the  n-valued random variable

Qn(ω). Figure 10 displays the graph of the function ns 7→ Conv(ns) for n = 200. The

convergence is reached for ns = 1200.

8.2. Prediction and experimental comparison

Figures 11, 12 and 13 display the confidence region prediction for the random cross frequency

response functions between pointN0 and pointsN1,N2 andN3 respectively, calculated with

ns = 2000 realizations and n = 200. These figures show how the experimental cross FRF

corresponding to the 8 panels are positioned with respect to this confidence region. In addition,

each figure displays the graph of the numerical cross FRF calculated with the updated mean

reduced matrix model and the graph of the mean value of the random cross FRF calculated with

the non-parametric probabilistic model. It should be noted that the experimental responses

belong almost always to the predicted confidence region but sometimes, do not belong to the

confidence region. In particular, it is due to the fact that the predicted confidence region is

calculated with a probability level 0.96 and not with the level 1! Consequently, these figures

show that the prediction compared with the experiments is good.

9. Conclusions

The methodology proposed to experimentally indentify the non-parametric probabilistic ap-

proach which allows model and data uncertainties to be taken into account in structural dy-

namics has been validated. The experimental results obtained for a set of 8 light sandwich

panels show the sensitivity of the dynamical response of the panels in the medium-frequency

range. The use of the simplified usual laminated composite thin plate theory, for construct-

ing the predictive dynamical mean model, introduces significant model uncertainties in the

medium-frequency range. Since such dynamical systems are very sensitive to uncertainties

and taking into account the presence of data and model uncertainties in the mean mechanical

model, the introduction of a probabilistic model of model uncertainties is necessary to improve

the predictability of the mean model in the medium-frequency range. The confidence regions

of the cross frequency response functions of the stochastic systems are then constructed and are
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compared to the experimental cross frequency response functions for the 8 sandwich panels.

The prediction compared with the experiments is good.
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Figure captions

Fig.1: Step 2 of the manufacturing process of a sandwich panel

Figure 2: Graphs of the 8 experimental cross FRFbetween point N0 and point N1 corresponding

to the 8 sandwich panels. Horizontal axis: frequency in Hertz. Vertical axis: log10 of the

modulus of the acceleration inm/s2.

Figure 3: Graphs of the 8 experimental cross FRFbetween point N0 and point N2 corresponding

to the 8 sandwich panels. Horizontal axis: frequency in Hertz. Vertical axis: log10 of the

modulus of the acceleration inm/s2.

Figure 4: Graphs of the 8 experimental cross FRFbetween point N0 and point N3 corresponding

to the 8 sandwich panels. Horizontal axis: frequency in Hertz. Vertical axis: log10 of the

modulus of the acceleration inm/s2.

Figure 5: Convergence of the cross frequency response function between point N0 and point

N1 for three finite element meshes: 32 × 32 (thin solid line), 64 × 64 ( thick solid line),

128 × 64 (thin dashed line). Horizontal axis: frequency in Hertz. Vertical axis: log10 of the

modulus of the acceleration inm/s2.

Figure 6: Convergence of the L2-norm in space and in frequency of z-acceleration response

(vertical axis) versus the dimension of the updated mean reduced matrix model (horizontal

axis).

Figure 7: Graphs of the cross FRF between pointN0 and pointN1. Horizontal axis: frequency

in Hertz. Vertical axis: log10 of the modulus of the acceleration inm/s
2. Experimental cross

FRF corresponding to the 8 panels (8 thin solid lines). Numerical cross FRF calulated with the

updated mean reduced matrix model (thick solid line)

Figure 8: Graphs of the cross FRF between pointN0 and pointN2. Horizontal axis: frequency

in Hertz. Vertical axis: log10 of the modulus of the acceleration inm/s
2. Experimental cross

FRF corresponding to the 8 panels (8 thin solid lines). Numerical cross FRF calulated with the

updated mean reduced matrix model (thick solid line)

Figure 9: Graphs of the cross FRF between pointN0 and pointN3. Horizontal axis: frequency

in Hertz. Vertical axis: log10 of the modulus of the acceleration inm/s
2. Experimental cross

FRF corresponding to the 8 panels (8 thin solid lines). Numerical cross FRF calulated with the

updated mean reduced matrix model (thick solid line)
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Figure 10: Convergence of the random solution with respect to the number of realizations:

Graph of function ns 7→ Conv(ns). Horizontal axis: ns. Vertical axis: Conv(ns).

Figure 11: Confidence region prediction for the random cross FRF between pointN0 and point

N1. Horizontal axis: frequency inHertz. Vertical axis: log10 of themodulus of the acceleration

inm/s2. Experimental cross FRF corresponding to the 8 panels (8 thin solid lines). Numerical

cross FRF calculated with the updated mean reduced matrix model (thick solid line). Mean

value of the random cross FRF calculated with the non-parametric probabilistic model (thin

dashed line). Confidence region of the random cross FRF calculated with the non-parametric

probabilistic model (grey region).

Figure 12: Confidence region prediction for the random cross FRF between pointN0 and point

N2. Horizontal axis: frequency inHertz. Vertical axis: log10 of themodulus of the acceleration

inm/s2. Experimental cross FRF corresponding to the 8 panels (8 thin solid lines). Numerical

cross FRF calculated with the updated mean reduced matrix model (thick solid line). Mean

value of the random cross FRF calculated with the non-parametric probabilistic model (thin

dashed line). Confidence region of the random cross FRF calculated with the non-parametric

probabilistic model (grey region).

Figure 13: Confidence region prediction for the random cross FRF between pointN0 and point

N3. Horizontal axis: frequency inHertz. Vertical axis: log10 of themodulus of the acceleration

inm/s2. Experimental cross FRF corresponding to the 8 panels (8 thin solid lines). Numerical

cross FRF calculated with the updated mean reduced matrix model (thick solid line). Mean

value of the random cross FRF calculated with the non-parametric probabilistic model (thin

dashed line). Confidence region of the random cross FRF calculated with the non-parametric

probabilistic model (grey region).
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