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Abstract 

А survey of recent developments in the dynamic analysis of sandwich panels with face sheet-to-core
debonding is presented. The finite element method within the ABAQUSTM code is utilized. The emphasis
is directed to the procedures used to elaborate linear and non-linear models and to predict dynamic re-
sponse of the sandwich panels. Recently developed models are presented, which can be applied for struc-
tural health monitoring algorithms of real-scale sandwich panels. First, various popular theories of intact
sandwich panels are briefly mentioned and a model is proposed to effectively analyse the modal dynamics
of debonded and damaged (due to impact) sandwich panels. The influence of debonding size, form and
location, and number of such damage on the modal characteristics of sandwich panels are shown. For 
nonlinear analysis, models based on implicit and explicit time integration schemes are presented and dy-
namic response gained with those models are discussed. Finally, questions related to debonding progres-
sion at the face sheet-core interface when dynamic loading continues with time are briefly highlighted.

1 Introduction 

Sandwich panels have long been recognised as one of efficient structural elements. Due to their intrinsic
properties like a high bending stiffness at minimum mass, the capability to be tailored for specific uses, 
high damping properties, and a great potential for energy absorption, they have found applications in
diverse kinds of modern industries and structures. Along with advantages that suggest the sandwich con-
cept, the sandwich panels suffer the consequences of their constructive features. The large differences
between thicknesses and elastic moduli of the constitutive layers make the sandwich panels susceptible
to debonding of the face sheet from the core at their interface. The sources of debonding usually are a
result of imperfections in the manufacturing process, the degassing of the foam core under direct sunlight,
the ability for water absorption of cellular cores as a result a thaw-freezing cycle degrades the interface, 
low velocity impacts, stress concentrations due to localized loading, etc. The presence of debonding is
often invisible, but it affects the dynamics and the strength of sandwich structures as well as it may be-
come a reason of premature failure below the level of design loads, [1]. Therefore, a correct use of sand-
wich panels in different engineering applications requires a better knowledge of their mechanical behav-
iour, in particularly, their dynamic response. This knowledge can also provide a basis for non-destructive
health monitoring techniques. 

In modern sandwich panels, the core layer is often made of a soft and flexible material. This leads to the 
core compressibility and, as a result, to the change in the height of the core during deformation [2]. Thus, 
to a high-fidelity analysis of sandwich panels the physical phenomena such as nonlinear deformation pat-
terns in the core should be accounted for modelling. This makes the dynamic analysis of the sandwich 
panels more challenging than that of the laminates. Furthermore, high physical and geometrical mis-
matching is also an obstacle to handle sandwich panels using the equivalent single layer (ESL) two-dimen-
sional (2-D) finite element [3, 4] or dynamic stiffness element [5] models. In this regard, models adopting 
mixed theories or the layer-wise (LW) approach are preferable for sandwich structures, [6]. The latter has 
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given rise to a variety of high-order sandwich panels theories referred to as HSAPTs [7-9], in which the 
high-order effects in the sandwich panel do not result from some prior assumptions for the displacement 
field. These theories invite any plate/shell theory formulations for the face sheets and a 3-D elasticity 
theory or equivalent one for the core, [10-12].  

One of the other aspects that relates to the analysis issues of sandwich panels is a microscopically discrete 
structure of the core, e.g. truss cores, honeycomb cores, and corrugated or folded cores of various shapes. 
The traditional analysis scheme of such sandwich panels is, first, the core is simplified as an equivalent 
generally anisotropic homogeneous material and then modelled by using any theory and solution method. 
Thus, the analysis accuracy strongly depends on correct estimations of equivalent rigidities. Some exam-
ples of finite element analyses of sandwich panels with discrete cores can be found, e.g. in [13-18].  

Keeping in mind the challenges in modelling sandwich structures, many efforts have been made to study 
their vibration responses using both linear and nonlinear models. In doing so, some studies have used the 
assumptions on geometrical nonlinearity in the dynamics of sandwich panels, e.g. [19, 20], while the other 
ones have examined the influence of material nonlinearity. The effect of a viscoelastic core on damped 
forced oscillations has been considered, e.g. in [21, 22]. The problem of the interlaminar slip between 
constitutive layers in the nonlinear free vibration has also been discussed, e.g. in [23, 24]. Apart from 
these nonlinear problems, the dynamics of sandwich panels with debonding is another computationally 
challenging task, even when small displacements and a material linearity are assumed. The difficulties are 
concerned with modelling physical phenomena arising from debonding. First, the detached surfaces are 
free of shear and normal stresses as a result the overall stiffness of the structure is reduced. Second, 
during loading or oscillations these surfaces may slip longitudinally one with respect to another and/or 
undergo normal compressive stress if contact between them exists. Such local changes within the 
debonded region give rise to alterations in the global dynamics of sandwich panels and, also, the stress 
fields accompanying this dynamic behaviour may result in fracture in the face sheet-to-core interface. 

To simplify the nature of the problem, the earliest solutions on free vibration were based on the split 
beam approach under assumptions that the decoupled layers either freely overlap each other or are con-
strained to move together, [25-30]. Later, improved nonlinear models excluding penetration between the 
layers coming into contact were developed. In [31] to prevent overlapping, the dynamics of a delaminated 
beam was studied using a piecewise linear virtual spring model, whereas the kinematic contact conditions 
were established using the node-to-node contact model in [32]. To date, a large volume of the literature 
on this subject is available, [33]. Some recent advanced studies point at the need to use models accounting 
for coupling between normal and flexural actions in vibrations [34]. As found, it is a reason of parametri-
cally-induced vibration of delaminated beams and plates [35-37]. Other studies confirmed the efficiency 
of the LW-based finite element models compared to those using the ESL approach [38, 39], and showed 
that such models provide a stress recovery for localized effects [40]. 

Yet, the dynamic finite element analysis (FEA) contributes to developments of vibration control methods 
of sandwich structures [41, 42]. Alternatively, the results of the dynamic FEA of sandwich panels can be 
used for increasing the efficiency of the structural health monitoring (SHM). In the latter, natural frequen-
cies, mode shapes, frequency response functions and time or frequency domain data can be extracted 
from either linear or nonlinear dynamic FEA. For instance, in [43] natural frequencies extracting from the 
eigenvalue analysis have been used to detect and locate the saw cut within a composite plate, whereas 
mode shapes collected from a similar linear analysis have successfully been applied to the delamination 
location in a composite beam in [44]. Other authors have developed a strain-based damage index based 
on a linear model for the prediction of the delamination location in composite plates, [45]. The curvatures 
of mode shapes have been utilized for quantifying the damage magnitude in a honeycomb beam in [46]. 
Also, a linear dynamic analysis is used in FRF-based damage detection techniques [47]. In [48] such ap-
proach has successfully been implemented for detecting debonding in a honeycomb beam. For the sake 
of debonding detection, the linear dynamic FEA has been carried out in [49] to highlight the relative 
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changes of dynamic response between a healthy sandwich plate and a debonded one. More advanced 
techniques using modal dataset to detect debonding in sandwich structures can be found in some recent 
works, e.g. [50-52].  

Motivated by the idea to examine the influence of debonding on the modal dynamics of sandwich panels 
in detail, a number of numerical and experimental studies have been performed during the last two dec-
ades. For instance, in [53-55] natural frequencies and corresponding vibration modes have been calcu-
lated for flexible debonded sandwich beams. The changes of the modal characteristics in sandwich plates 
caused by debonding in dependence of the debonding size and form, and of boundary conditions and 
sandwich core properties have been presented in [56]. Similar researches using linear models to study the 
dynamic behaviour of sandwich plates undergone a post-impact damage or containing a multi-debonding 
have been carried out in [57-59] and [60-62], respectively. A linear model has been also adopted to ex-
amine a dynamic stability of a delaminated beam under harmonic longitudinal loading in [63]. An experi-
mental study on the modal dynamics of a delaminated plate has been done in [64]. Changes in the peaks 
and valleys of the FRFs due to delamination in a honeycomb sandwich beam have been proven by exper-
imental tests in [65]. Effects of the debonding length on fatigue and vibration of sandwich composites 
have been tested in [66].  

Because, in general, the dynamics of composite structures is rather nonlinear, the numerical simulations 
could throw light on the nature of various nonlinear mechanisms, in particular, due to debonding in turn 
this knowledge can make the SHM methodologies more confidence, [67, 68]. Insight into the real-life 
dynamics of debonded sandwich panels can be gained by accounting for the “real contact” conditions 
between the debonded parts. Hence, nonlinear models have been developed to handle the nonlinearities 
caused by either or both of the factors, viz. opening and closing of the debonding (breathing), and con-
tact/impact between the debonded layers during vibration. In [69] the contact problem in delaminated 
surfaces has been modelled in terms of fictitious linear springs to study the dynamic transient behaviour 
of a delaminated plate. An analytical model of a 1-D sandwich beam accounting for the real contact has 
been created in [70] to examine the influence of the contact phenomenon on the transient behaviour of 
the beam. In [71-73] an explicit 3-D finite element contact model has been developed with ABAQUS for 
analysing the transient dynamics of an impacted sandwich panel. This model has also been used in [74, 
75] to study the effect of the debonding size on the transient dynamic response and the stress state in 
sandwich plates. Other contact models addressed to discovering the role of inter-laminar contact on the 
nonlinear dynamics of sandwich and laminated panels accounting for geometrical nonlinearity have been 
proposed in [76-78]. A nonlinear contact model within an implicit approach has been elaborated in [79, 
80] to explore the dynamics of sandwich panels with debonding, which are subjected to harmonic forces. 
The research reported a complex dynamic behaviour of such panels highly dependent on the driving fre-
quency that is inherent in structures with conditions of friction and contact, [81]. A potential of such non-
linear models to identify damages in composite structures has been demonstrated in [82].  

The discussion above clearly demonstrates that high-fidelity dynamic finite element analysis methods of 
sandwich panels based on linear and nonlinear models are still needed for many engineering problems. It 
seems that research on the modelling aspects of the dynamics of sandwich panels with debonding is scat-
tered across different models and diverse research areas. Often such studies exploit only one either linear 
or nonlinear model, and then it is not so easy to juxtapose them within the same problem being consid-
ered. Besides, many of the studies are focused on sandwich beams or unidirectional panels. This spatial 
reduction simplifies the nature of the physical phenomena, because it dictates a specific structural behav-
iour. To the best of our knowledge there is a deficiency of 3-D models for studying the dynamic behaviour 
of debonded sandwich plates. Some of them have been developed in our previous papers. The present 
work can be viewed as a comprehensive survey summarizing the recent developments in 3-D finite ele-
ment modelling of the dynamics of sandwich plates with debonding. Our previous findings in this research 
area are considered and re-examined under the light of our goal to characterize the dynamic behaviour 
of sandwich panels with debonding ranging from free vibration to nonlinear oscillations by both linear 
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and nonlinear 3-D finite element models. So, the present work takes a step towards the classification of 
computational models for quantitative estimating the dynamics of sandwich panels with debonding and  
understanding the responses of such structures based on the numerical examples. 

2 Outlines of dynamic FEAs 

In this Section, basic aspects of the finite element procedures used in the current work to perform dy-
namic finite element analyses (FEAs) are briefly presented. 

2.1 Equations of motion 

The finite element analysis of the system of elements provides the solution of the equations of motion 
corresponding to the nodal degrees of freedom, which, in general, can be written as follows [83]: 

  𝑭𝑡
𝐼 + 𝑭𝑡

𝐷 + 𝑭𝑡
𝑖𝑛𝑡 = 𝑭𝑡

𝑒𝑥𝑡, (1) 

where t is a certain moment of time, 𝑭𝐼 , 𝑭𝐷 , 𝑭𝑖𝑛𝑡 and 𝑭𝑒𝑥𝑡 stand for inertia, damping, internally and 
externally applied forces, respectively. In the case of a linear problem, eq. (1) reads as 

  𝐌𝑼̈ + 𝐂𝑼̇ + 𝐊𝑼 = 𝑭𝑡
𝑒𝑥𝑡, (2) 

where 𝐌, 𝐂, and 𝐊 are, respectively, mass, damping and stiffness matrices of the element assemblage, 

and 𝑼 are nodal points displacements, and 𝑼̇ and 𝑼̈ are their time derivatives referring to nodal velocities 
and accelerations, respectively. The matrices of the physical properties of the finite elements are related 

to the force vectors as 𝑭𝑡
𝐼 = 𝐌𝑼̈, 𝑭𝑡

𝐷 = 𝐂𝑼̇ and 𝑭𝑡
𝑖𝑛𝑡 = 𝐊𝑼. Under assumptions that initial conditions and 

boundary conditions applied to the system remain unchanged during loading, the solution of eq. (2) com-
pletely describes a linear response of the system.  

In presence contact between elements of the system, the system response is linear, if other nonlinearities 
except contact do not exist, only prior to the contact conditions met. Otherwise changes in boundary 
conditions at a certain load level occur. Then, eq. (2) is to be supplemented by contact constraints imposed 
at a set of all prospective contact pairs over the loading time as follows: 

  𝑔𝑁 ≥ 0, 𝑡𝑁 ≤ 0, 𝑡𝑁𝑔𝑁 = 0, 𝑡𝑁𝑔̇𝑁 = 0 (3) 

and the constraints appropriate for the prescription of a Coulomb friction law, e.g. as [84] 

  Ψ𝑇 = ‖𝒕𝑇‖ − 𝜇𝑡𝑁 ≤ 0, ℒ𝜐𝒈𝑇 = 𝜒
𝒕𝑇

‖𝒕𝑇‖
, 𝜒 ≥ 0, χΨ𝑇 = 0. (4) 

In eqs. (3) and (4), 𝑔𝑁 and 𝒈𝑇 stand for normal and tangential “gap” functions defined for all active contact 
pairs, 𝑡𝑁 and 𝒕𝑇 are normal and tangential contact traction acting at those pairs, ℒ𝜐 is a Lie derivative (a 
convective derivative that defines a frame invariant measure of rate of 𝒈𝑇 in the case of slipping), 𝜇 is the 
coefficient of friction and 𝜒 is a non-negative scalar. For conciseness, we skip details and refer to works in 
this area, e.g. [84]. The contact traction contributes to equilibrium of the system as contact force vector 

𝑭𝐶  acting on some nodal points at a certain moment of time t, i.e. eq. (2) takes a form: 

  𝐌𝑼̈ + 𝐂𝑼̇ + 𝐊𝑼 + 𝑭𝐶 (𝑼) = 𝑭𝑡
𝑒𝑥𝑡, (5) 

2.2 Eigenvalue problem 

Dynamic characteristics of a linear structural system (2) are governed by the natural frequencies and the 
corresponding mode shapes. The determination of them requires the solution of an eigenvalue problem: 
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  𝐊𝝓 = 𝜔2𝐌𝝓. (6) 

Herein  is an undamped circular frequency and 𝝓 is the corresponding vibration mode. Then, n uncou-
pled solutions of eq. (6) can be composed in the form convenient for frequency extraction: 

  𝐊𝚽 = 𝐌𝚽𝛀2, (7) 

where in the matrix 𝚽 the columns are orthogonalized mass-normalized eigenvectors 𝝓̅1, … , 𝝓̅𝑛 and 
𝛀2 = 𝑑𝑖𝑎𝑔(𝜔1

2 … 𝜔𝑛
2) is a diagonal matrix containing squared eigenfrequencies.  

2.3 Mode-based dynamic analysis 

To provide predictions of the steady-state dynamic response of a linear system (2) due to harmonic exci-

tation 𝑭𝑡 = 𝑭𝑒𝑖𝛺̅𝑡 at a given driving frequency 𝛺̅, a modal superposition method can be used. Then, in 
the modal subspace eq. (2) takes the form: 

  𝐌̃𝑸̈ + 𝐂̃𝑸̇ + 𝐊̃𝑸 = 𝚽𝑇𝑭𝑡. (8) 

Here the nodal displacements 𝑼 = 𝚽𝑸 are expressed in terms of the vector of generalized displacements 

 𝑸 and the normal modes 𝚽 being found from the eigenvalue analysis; 𝐌̃, 𝐂̃ and 𝐊̃ are the projections of 

𝐌, 𝐂, and 𝐊 onto the modal subspace, i.e. 𝐌̃ = 𝚽𝑇𝐌𝚽, 𝐂̃ = 𝚽𝑇𝐂𝚽 and 𝐊̃ = 𝚽𝑇𝐊𝚽, and 𝚽𝑇𝑭𝑡 = 𝑭̃𝑒𝑖𝛺̅𝑡. 

In the case of linear analysis 𝐌̃ is the identity matrix, 𝐊̃ = 𝑑𝑖𝑎𝑔(𝜔𝑖
2) and if no damping coupling 𝐂̃ =

𝑑𝑖𝑎𝑔(2𝜔𝑖 𝜉𝑖 ), where 𝜉𝑖  are modal damping rations. Hence, the equations in the system (8) with respect 

to the generalized displacements are decoupled and for the r-th mode have the form: 

  𝑸𝑟
̈ + 𝑑𝑖𝑎𝑔(2𝜔𝑟 𝜉𝑟 )𝑸𝑟

̇ + 𝑑𝑖𝑎𝑔(𝜔𝑟
2)𝑸𝑟 = 𝑭̃𝑟𝑒𝑖𝛺̅𝑡. (9) 

Once the all 𝑸 are evaluated, the physical response of the original system in terms of nodal displacements, 
velocities, accelerations, and stresses can be recovered. The analysis is done as a frequency sweep by 
applying the loading at a series of different frequencies and recording the system response, [85].  

2.4 Direct integration analyses 

The equations in the system (5) cannot be solved independently, a direct integration over time is required. 
One would normally resort to numerical approximation procedures to do it. The explicit central difference 

time integrator used in ABAQUS/Explicit [85] presents eq. (5) at a typical time increment t in the form: 

  𝑼̈𝑡 = 𝐌̃−𝟏[𝑭𝑡
𝑒𝑥𝑡 − 𝑭𝐷 (𝑼̇𝑡) − 𝑭𝑖𝑛𝑡(𝑼𝑡) + 𝑭𝐶 (𝑼𝑡)], (10) 

where 𝐌̃  is a lumped mass matrix obtained by transform of the consistent mass matrix, and the veloci-
ties and the displacements are calculated at each time increment according to the expressions: 

  𝑼̇
𝑡+

1

2
Δ𝑡

= 𝑼̇
𝑡−

1

2
∆𝑡

+ Δ𝑡𝑼̈𝑡, 

  𝑼𝑡+Δ𝑡 = 𝑼𝑡 + ∆𝑡𝑼̇
𝑡+

1

2
∆𝑡

. (11) 

This explicit time integration scheme is conditionally stable only. An approximation to its stability limit can 

be achieved by evaluating the highest modal natural frequency 𝜔𝑚𝑎𝑥 in the FE mesh as  Δ𝑡 ≤
2

𝜔𝑚𝑎𝑥
, [83]. 

The implicit Hilber-Hughes-Taylor (HHT) temporal integrator is used by ABAQUS/Standard [85]. This inte-
gration scheme applied to eq. (5) yields 
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  𝐌𝑼̈𝑡+Δ𝑡 + 𝐂𝑼̇𝑡+Δ𝑡 + 𝐊𝑼𝑡+𝛼Δ𝑡 + 𝑭𝐶 (𝑼𝑡+𝛼Δ𝑡) = 𝑭𝑡+𝛼Δ𝑡
𝑒𝑥𝑡 , (12) 

where 

  𝑼𝑡+𝛼Δ𝑡 = 𝛼𝑼𝑡+Δ𝑡 + (1 − 𝛼)𝑼𝑡, 

  𝑼𝑡+Δ𝑡 = 𝑼𝑡 + Δ𝑡𝑼̇𝑡 +
Δ𝑡2

2
[(1 − 2𝛽)𝑼̈𝑡 + 2𝛽𝑼̈𝑡+Δ𝑡], (13) 

  𝑼̇𝑡+Δ𝑡 = 𝑼̇𝑡 + Δ𝑡[(1 − 𝛾)𝑼̈𝑡 + 𝛾𝑼̈𝑡+Δ𝑡]. 

The unconditional stability occurs for −
1

3
≤ 𝛼 ≤ 0, 𝛽 =

1

4
(1 − 𝛼)2 and 𝛾 =

1

2
− 𝛼, [83]. The linearized 

problem in eq. (12) within the j-th Newton-Raphson iteration has the form: 

  
𝜕

𝜕𝑼
[𝐌𝑼̈ + 𝐂𝑼̇ + 𝐊𝑼 + 𝑭𝐶 (𝑼)]

𝑼𝑡+𝛼Δ𝑡
𝑗 ∆𝑼 = 

  𝑭𝑡+𝛼Δ𝑡
𝑒𝑥𝑡 − 𝑴𝑼̈𝑡+∆𝑡

𝑗
− 𝑪𝑼̇𝑡+∆𝑡

𝑗
− 𝑲𝑼𝑡+𝛼∆𝑡

𝑗
− 𝑭𝐶 (𝑼𝑡+𝛼∆𝑡

𝑗
) (14) 

with updating unknowns as 𝑼𝑡+𝛼∆𝑡
𝑗+1

= 𝑼𝑡+𝛼∆𝑡
𝑗

+ ∆𝑼. 

2.5 Modelling workflow 

In Fig. 1 the modelling workflow followed in this work is summarized. The finite element analyses car-
ried out with ABAQUS are presented in the order of their computational cost and modelling complexity, 
that is the computational procedures mentioned above and used in those analyses and some ap-
proaches and features applied to the development of linear and nonlinear models. Thereby, for sand-
wich panels, first, the frequency eigenvalue analysis (6) and the modal-based harmonic analysis (8) are 
performed using linear models and, then, the general nonlinear dynamics under an impulse load and 
harmonic loading are worked out using explicit (9) and implicit (12) time integration schemes. Both a 
debonded sandwich panel and the same healthy one are simulated in the calculations. By tracking the 
differences between their dynamic responses, the effects of debonding on the linear and nonlinear 
dynamic behaviour of the sandwich panel are evaluated. Moreover, using both linear and nonlinear 
models for the same sandwich panel, the impact each of them for highlighting dynamic effects can be 
clearly seen. 

 

Figure 1: Workflow followed in this work. 

3 Aspects of model discretization 

The first step in а finite element analysis is the discretization process, in which the actual continuous 
structure is idealized as an assemblage of discrete finite elements interconnected at node. The number 
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and type of finite elements selected for this, in essence, depends on the physical complexity of the struc-
ture and the required accuracy in the displacements and stresses [83]. In accordance with the discussion 
above, various theories and, as a result, modelling techniques for the FEA of sandwich panels are possible. 
A summary of sandwich finite element models that are available for modelling, in particular with the 
ABAQUS code, are collected in Table 1. 

Table 1: Summary of techniques on finite element modelling of sandwich panels [11, 12]. 

No. Modelling schemes Comments 

1 Homogenous shell elements based on either 
CPT1 or FSDT2 

Simple efficient for general analysis. Transverse 
compressibility is neglected. 

2 Layered shell elements with shear defor-
mation 

Computationally efficient. Transverse compressibility 
is ignored. 

3 Plane stress/plane strain elements modelling 
sandwich cross section 

Applicable to 2-D and axisymmetric problems only. 

4 Plane stress/plane strain elements for the 
core and beam elements for skins 

Skin is idealized by Euler-Bernoulli beam element. 

5 Solid-brick elements for the core and con-
ventional shell elements for skins 

Compressibility is accounted for the core. Conven-
tional shell elements may suffer from shear-locking. 

6 3D model with solid-brick elements for both 
the core and the skins 

Computationally very expensive model. 

7 3D model with layered solid cross-section No restrictions on the core and skins kinematics. 

8 Layer-wise models combining 3-D solid and 
continuum shell elements 

Core compressibility can be accounted. 

1 Classical plate theory; 
2 First order shear deformation theory 

3.1 Layerwise based model 

To tackle the problem at hand, the model handling the core flexibility and the transverse shear variation, 
and the geometry and location of an embedded debonded zone has been tailored in ABAQUS using the 
layerwise shell-solid approach (No. 5 in Table 1). This modelling strategy has been used and tested for 
modelling various static and dynamic problems related to sandwich panels in our previous works, e.g. 
[10,11,13,56]. In the present paper this model is revised and unified for running both linear and nonlinear 
analyses by switching  appropriate options and/or assigning new features and properties available in the 
pre-processing stage and solvers of ABAQUS [85].The main emphasis of this finite element model is that 
it realizes the layer-wise HSAPT-like approach for the sandwich structure establishing no restrictions on 
the core kinematics and allowing independent moving of top and bottom skins with respect to each other. 
In this regard, the upper and lower skins are discretized with the eight-node 24-DOF quadrilateral  

(a)  

(b)   

(c)  

Figure 2: Aspects of finite element discretization: (a) a 3-D model of sandwich plate; (b) continuous shell finite 
element; and (c) solid brick finite element. 
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continuum shell elements obeying the assumptions of the FSDT theory within the ESL approach, while the 
core is discretized with the eight-node 20-DOF hexahedral (brick) elements [85] as shown in Fig. 2. The 
degree of freedoms (DOFs) of the brick and continuum shell elements are conveniently coupled with each 
other, so no additional compatibility conditions at the interface between skins and core is needed. Hence, 
the final governing equations of the sandwich structure assemble the displacements variables of the up-
per and lower skins, and the core automatically ensure the continuity of displacements at the interfaces 
between them. In the case of a heterogeneous core material (honeycomb), the core was replaced by an 
equivalent model of anisotropic material. 

A sandwich panel that has one or more arbitrary debonded regions at one or two of its skin-to-core inter-
faces is geometrically idealized using the multipartition discretization. The 3-D mesh of the debonded 
sandwich plate consists of four different parts connected with each other through the shared nodes. 
These parts are discretised by applying different mesh methods and mesh densities, Fig. 3. That is, a fine 
mesh is used for the debonded zone, the next zone surrounding the debonded one has a gradually de-
creasing mesh density, and a coarse mesh is introduced for the core to minimize a CPU time in calcula-
tions. In the model, the mesh size is suitable to be refined to get a required convergence. Debonding is 
modelled by creating a small gap (about 1% of the face sheet thickness) between the face sheet and the 
core. No artificial adjustment of either material properties or geometrical entities is made within the 
debonded region to ensure a physically real case as close as possible.  

 
Figure 3: A 3-D finite element model of sandwich plate with a penny-shaped debonded region, [10]. 

As seen in Fig. 3, the finite element mode consists of two types of interfacial regions, viz. a ‘‘fully bonded 
zone’’ and a ‘‘debonded zone’’. In general, the detached surfaces within the debonded region may contact 
each other, i.e. they can slip one with respect to the other in any longitudinal direction, or can come into 
contact/impact vertically either entirely or partially involving only some their zones. Contact models de-
veloped using the ABAQUS code to handle the behaviour between the detached skin and core in linear 
and nonlinear dynamic FEAs are discussed below. 

3.2 Models with spring element 

In the modal dynamics of debonded sandwich panels, a spring element ‘SPRING2’ is introduced between 
the double nodes within the debonded area (Fig. 4 a). The stiffness of the spring element is assumed to 
be zero in the case of tension and to be a large value in compression, i.e. when the relative transverse 

displacement between the face sheet and the core u goes to zero. Since any inelastic effects are deac-
tivated for modal analyses [85], we approximate the behaviour of the spring element by its two discrete 
states as shown in Fig. 4 b. In such way we are able easy to activate one of the two “contact” options in 
the modal dynamics. That is, setting a zero stiffness to the spring elements, the contact behaviour of the 
detached parts is described by the free delamination model, i.e. the interfaces move freely, while a non-
zero stiffness value of those elements realizes the constrained delamination model between them that 
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restrains the face sheet and the core to move together. So, a contact problem between the face sheet 
and core in linear dynamic FEAs is reduced to using either “mode constrained” or “mode free” delamina-
tion model, [26-29]. It should be noticed that although, the spring elements with given non-linear consti-
tutive laws enable modelling contact in a general dynamic analysis, they are less convenient for handling 
the debonding problem than the surface contact definition used in this work and considered below. 

  

 

(a) (b)  
Figure 4: A detailed view of the linear model sandwich plate with debonding, [56]: (a) zoomed debonded zone; 

and (b) constitutive behaviour of the spring element. 
 

3.3 Models with “real contact” 

A general dynamic analysis enables to represent "real contact" as a result a nonlinear finite element model 
is addressed to considerations. In this case, between the surfaces of parts I and II within the debonded 
zone (Fig. 3) contact definitions are imposed. The surface-to-surface contact formulation in terms of slave 
and master surfaces is used. The relative motion of the contacting surfaces in the contact simulation is 
described with small sliding kinematics that allows their separation and sliding, as shown in Fig. 5. This is 
a reasonable assumption because of small oscillations in the debonded zone, but it is more computation-
ally effective than a finite formulation that is especially important in the case of 3-D simulations.  

   
(a) (b) (c) 

Figure 5: Spatial behaviour of contacting surfaces: (a) full contact or closing; (b) partial contact; and (c) no con-
tact or opening. 

The constitutive behaviour of the surfaces coming into contact in the normal direction is assumed to be 
governed by the ‘hard contact’ model. The model implies that the interacting surfaces transmit no contact 
pressure unless the nodes of the slave surface contact the master surface and no penetration is allowed 
at each constraint location. In the case of friction, an isotropic Coulomb friction model is adopted to model 
frictional stick and slip phenomena. To resolve the contact constraints imposed on the mentioned surfaces 
during the dynamic analysis, appropriate contact algorithms are run in calculations. The kinematic predic-
tor/corrector algorithm is used in the explicit dynamic FEA in the case of impulse loading, while the pen-
alty algorithm processes contact interactions for the implicit dynamic FEA when harmonic excitations are 
assumed to occur. The former algorithm strictly enforces contact constraints and allows an explicit updat-
ing contact forces in the calculations, Fig. 6 a. The latter scheme has a weaker enforcement of contact 
constraints, Fig. 6 b, but is less computationally expensive than other methods available in ABAQUS, e.g. 
the method of Lagrange multipliers. A detailed description of these contact schemes can be found, e.g. in 
[74,75,79,80]. Furthermore, the finite element models accounting for “real contact” can recover stress 
distributions caused by both contact/impact actions and deformations. Hence, these models can provide 
a strength assessment of the face sheet-to-core interface and, in essence, are able to estimate a possibility 
of separation between the core and the face sheet along their interface, where a debonding failure often 
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initiates. However, to track the debonding progression, additional modelling efforts are needed, as shown 
later. 

  
(a) (b) 

Figure 6: Schemes of contact algorithms, [85]: (a) kinematic predictor/corrector; and (b) penalty enforcement. 

3.4 Models of impacted sandwich panels 

Low velocity impacts induce barely visible impact damage (BVID), which may be one of the reasons of 
debonding occurrence in sandwich panels, [86]. Therefore, the modelling of the dynamics of sandwich 
panels with impact-induced damage directly falls into the objectives of this work. In according with the 
experimental findings, a sandwich plate damaged by low-velocity impact has a combination of failure 
modes among of which damage of the face sheet, core crushing and face sheet-to-core debonding are 
primary. Fig. 7 a shows the key geometrical parameters of the representative cross-section of the sand-
wich specimen assumed to be impacted by a spherical object: the peak depth of the residual face sheet 

indentation, 𝛿𝑑𝑒𝑛𝑡 the peak depth associated with core crushing, 𝛿𝑐𝑟 the cavity (debonding), 𝛿𝑐𝑎𝑣devel-
oped between the face sheet and the core as a consequence of differences in their indentation depths 
and the radii of the planar dimension of the impacted face sheet, 𝑅𝑑𝑒𝑛𝑡, and the crushed core, 𝑅𝑐𝑟, [86]. 

 

 

(a) (b) 
Figure 7: Impact-damaged region: (a) key geometrical parameters, [86]; and (b) finite element discretization. 

The modelling strategy of sandwich panels which had been damaged by impact is the same as described 
above, except the post-impact zone itself. The damage imparted into the face sheet and the core because 
of an impact event is simulated by reducing elastic properties of the finite elements in the damaged re-
gions. Appropriate reduction coefficients are used for this purpose. For the crushed core, the stiffness of 
elements is reduced gradually around the damaged site, as shown by a colour gradient in Fig. 7 b. The 
residual indentations of the impacted face sheet and the crushed core are modelled as curvilinear sur-
faces, and the cavity between them is presented as well. The spring elements and the contact models 
mentioned above are introduced between appropriate surfaces of the impacted zone in the case of linear 
and nonlinear dynamic analyses, respectively.  

4 Numerical studies 

An overview of the use of the linear and nonlinear finite elements models considered above concerning 
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the dynamics of sandwich panels is presented in this Section. In this regard, some computational examples 
taken from the our previous works are revised and the main results are briefly discussed below.  

Table 2: Material properties of sandwich panels used in the calculations. 

Examples Ref. Constituents 

1 [10] 

Face sheets, f = 1627 kgm-3 
E1, GPa E2 = E3, GPa G12 = G13, GPa G23, GPa 12 = 13 23 
131.0 10.34 6.895 6.205 0.22 0.49 

Core, c = 97, kgm-3 
E1 = E2, GPa E3, GPa G12 = G13, GPa G23, GPa 12 13 = 23 

6.89010-3 6.89010-3 3.45010-3 3.45010-3 0.0 0.0 

2 [53] 

Face sheets  

f = 4400, kgm-3, Ef = 36.0, GPa,  = 0.3 

Core, c = 52, kgm-3 

Ec = 50.0, MPa, Gc = 21.0, MPa 

3-5 [73] 

Face sheets, f = 1650 kgm-3 

E1 = E3, GPa E2, GPa G12 = G23, GPa G13, GPa 12 13 = 23 

19.3 3.48 1.65 7.70 0.05 0.25 

Core, c = 52 kgm-3, Ec = 85.0, MPa, Gc = 30.0, Mpa,  = 0.42 

6-9 [56] 

Face sheets, f = 1650 kgm-3 

E1, GPa E2 = E3, GPa G12 = G13, GPa G23, GPa 12 13 = 23 

140 10 4.6 3.8 0.25 0.25 

Honeycomb core, c = 57.17 kgm-3 

E1 = E2, GPa E3, GPa G12, GPa G13, GPa G23, GPa 12=13=23 

0.46110-3 1.464 0.19410-3 341.710-3 192.110-3 0.31 

cH100 = 100, kgm-3, Ec = 105.0, MPa, Gc = 45.0, MPa,  = 0.32 

cH200 = 200, kgm-3, Ec = 230.0, MPa, Gc = 85.0, MPa,  = 0.33 

4.1 Linear dynamic analyses 

Example 1. To make evident the effect of ’soft’ core on the free vibration kinematics of the sandwich 
panel, the free vibration analysis of a fully bonded sandwich plate is considered first. A squared simply 
supported plate with a side a = 200 mm and the total thickness h = 20 mm has been analysed. The sand-
wich plate layout corresponds to a five-layer structure 0/90/core/0/90, where face sheets are made of a 
composite anisotropic material, while the core is isotropic. The ratio between the face sheet and core 
thicknesses is 10, whereas the mismatching in material properties is the order of 103 as shown in Table 2.  

  
(a) (b) 

 
 

(c) (d) 
Figure 8: Contour plots of the mode shapes of sandwich plate with flexible core: (a) an in-plane mode; (b) a 

shear mode; (c) and (d) pumping modes, [10]. 
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In the finite element mesh, one continuum shell element with the two-layer cross-section scheme across 
the thickness of the face sheets and five solid elements across the thickness of the core are used. In plane, 
the plate is discretized by 50 elements along each its edge. Apart from the bending modes, the sandwich 
plate with flexible core exhibits in-plane, shear (twisting) and symmetric out-of-plane (pumping) modes, 
Fig. 8. For the latter modes, the core is removed from the corresponding contour plots for the better 
presentation of this phenomenon. The pumping modes indicate that the two face sheets move vertically 
in the opposite direction that relates to the changes of the plate height. Therefore, the layerwise shell-
solid finite element model proposed for modelling sandwich plates with a flexible core is capable to cap-
ture such nonclassical effects. 

Example 2. Firstly, the linear model with spring elements has been verified by comparing the natural fre-
quencies and corresponding mode shapes of a debonded sandwich beam with those that are known in 
the literature [53]. A sandwich beam cored by foam with rectangular cross-section contains a deboned 
zone at its middle span, Fig. 9. Material properties of the beam are listed in Table 2. 

 
Figure 9: A debonded sandwich beam with foam core, [53]. 

A comparison of first six natural frequencies of the debonded sandwich beam is presented in Table 3. The 
mode shapes associated with the appropriate natural frequencies are shown in Fig. 10.  

Table 3: Comparison of natural frequencies (Hz) of intact and debonded foam cored sandwich beams. 

Mode 
Intact Debonded 

[53] [55] Present [53] [55] Present 

1 289.3 293.52 293.46 288.98 293.52 293.07 
2 683.3 722.96 707.09 388.32 360.81 433.67 
3 1096.9 1139.51 1106.7 1093.2 1139.31 1093.2 
4 1151.6 1545.91 1495.8 1146.9 1146.32 1132.0 
5 1778.2 - 1818.7 1771.3 1769.9 1769.9 
6 1895.3 1863.62 1918.1 1842.2 1948.35 2080.2 

It follows from the analysis that debonding reduces the natural frequencies compared to those of the 
same intact beam and this reduction is different for each mode. Apart from the global modal forms, the 
mode shapes of the debonded beam demonstrate both local and coupled shapes of vibration as well. 

  
(a) (b) 

  

(c) (d) 

  

(f) (g) 
Figure 10: Mode shapes of the debonded sandwich beam corresponding to natural frequencies: (a) 293.07 Hz, 

(b) 433.67 Hz, (c) 1093.2 Hz, (d) 1132.0 Hz, (f) 1769.9 Hz, and (g) 2080.2 Hz 
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Example 3. The free vibration analysis of a sandwich plate containing a penny-shaped debonded zone is 
further demonstrated. The plate with a 50 mm thick foam core and a 2.4 mm thick each of the face sheets 
is simply supported. The planar dimensions of the plate are of 270 mm by 180 mm. The radius of the 

debonded zone, 𝑟𝑑 is of 20 mm, i.e. the damage parameter defined as 𝐷% = 𝜋𝑟𝑑
2 𝐴𝑡𝑜𝑡𝑎𝑙⁄  is about 5 % of 

the plate area, 𝐴𝑡𝑜𝑡𝑎𝑙. The material properties of each plate layer are presented in Table 2.  

 
Figure 11: The shift in natural frequencies of the debonded sandwich plate. 

The influence of debonding on the modal parameters of the sandwich plate reveals, first, the change of 
the order of frequencies and the existence of new ones in the spectrum. This happens due to local or 
coupled modes relating to debonding. Second, the reduction of the low natural frequencies occurs, espe-
cially, for bending modes. Herewith, the decreasing strongly depends on the mode shape. In the case of 
the natural frequencies associated with in-plane modes, there are practically no changes, and the changes 
are small for shear modes. Finally, the debonding affects the high frequencies in another manner than the 
lower ones, but there is no a defined trend as a mode number increases. In the high part of the spectrum, 
there exist frequencies which are even higher than those of the intact plate, i.e. the thickening phenom-
enon occurs, [64]. The shift in natural frequencies as result of comparing the healthy plate with the 
debonded one, is presented in Fig. 11, and several local mode shapes of the debonded sandwich plate are 
illustrated in Fig. 12. 

   
(a) (b) (c) 

Figure 12: Local mode shapes in the debonded sandwich plate: (a) (1,1); (b) (1,2); and (c) (1,3). 

Example 4. The next step, the mode-base steady-state dynamic analysis of the intact and debonded sand-
wich plates from the previous example is carried out. A harmonic concentrated load is applied at the 
centre of the bottom (undamaged in the case of the debonded plate) face sheet and the driving frequency 
is swept within a given frequency interval from 800Hz to 4000Hz. This interval was chosen to encompass 
the biggest part of the frequency spectrum of the plates. Frequency response functions (FRFs) calculated 
at the central point of the top face sheet, which have been extracted from this analysis for the both intact 
and debonded sandwich plates are shown in Fig. 13. The difference between the FRF curves of those 
sandwich plates is very well visible. The shift in the resonance peaks and the existence of new ones on the 
FRF curve of the debonded plate are clearly demonstrated. Thus, this analysis visibly illustrates the influ-
ence of the debonding on the modal dynamics of sandwich panels, i.e. both the frequency shifting and 
the presence of new frequencies in the frequency spectrum of the debonded plate are highlighted, as 
found in the previous frequency analysis. 
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Figure 13: The FRFs obtained at the centre of the top face sheet of debonded and same intact sandwich plates. 

Example 5. A sandwich plate with material properties and geometry same as in the previous example is 
assumed to be impacted by a hemispherical body. Thus, the sandwich plate with the impact-induced dam-
age so such 𝑅𝑑𝑒𝑛𝑡 = 𝑅𝑐𝑟 = 30 mm as shown in Fig. 7 is analysed. The influence of each key parameter of 
the impacted zone on the natural frequencies of the sandwich plate is examined. The calculations showed 
that the frequencies are practically not sensitive to the cavity depth, the face sheet indentation and a 
level of the core crushing, and only the face sheet damage level causes small visible changes in the fre-
quency spectrum, Fig. 14. Herewith, the frequencies were changing in the manner mentioned above with 
increasing the plane size of the impacted zone, 𝑟𝑑 = 𝑅𝑑𝑒𝑛𝑡 only. That is, the latter parameter is a main 
factor that may manifest the impact damage within a sandwich plate if the linear model is used. It should 
be noted that mode shapes are more sensitive to changes of the key parameters of the impacted zone, 
but the differences between them are hardly recognized for each varying key parameter. 

In this regard, further, the effect of the planar size of the debonded zone, its form, location within the 
plate area and number of such zones (one or two) on natural frequencies and mode shapes is studied. 
The different boundary conditions and core properties are considered as well. 

(a)  (b)  

 

(c)  (d)  
Figure 14: The influence of the key parameters of the impacted zone on the natural frequencies, [57]. 
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Example 6. A simply supported rectangular sandwich plate of 180135 mm2 with a 7 mm thick honeycomb 
core and an 1 mm thick each CFRP face sheet is considered. A penny-shaped debonded zone is located at 
the plate centre between the core and the top face sheet. The damage impaired by debonding is evalu-
ated using the parameter 𝐷%. The material properties of the plate constituents are listed in Table 2. To 
study the influence of the core type, light H100 and heavy H200 PVC foams are used as a core material in 
calculations, Table 2. The main conclusion of those research is that the bigger size of debonding, the larger 
its influence on the modal characteristics of sandwich plates regardless the debonding form, the core type 
used and the boundary conditions applied. While each of those mentioned parameters affects the modal 
dynamics in a different way. Moreover, the results obtained in the eigenvalue analysis illustrate the fact 
that with increasing the debonding size the frequency crossover and veering phenomena can be observed 
for certain vibrational modes, as shown in Fig. 15.  

 
Figure 15: The influence of the debonding size on the natural frequencies, [56]. 

Example 7. Next, numerical investigations are performed to study the effect debonding location. A simply 
supported rectangular sandwich plate of 270 mm length and 185 mm width with the face sheets the same 
as in Example 2 and the core made of H100 PVC foam is examined. The thicknesses of the face sheets and 
the core are 2.4 mm and 50 mm, respectively. The plate contains either single or two equally sized penny-
shaped debonded zones inflicting a total damage of 𝐷%=10 %. Different positions of single debonding and 
two equally sized debondings within the plate area are considered, as shown in Fig. 16.  

D1 D2 D3 D4 

    
DD1 DD2 DD3 DD4 

    
Figure 16: Location of penny-shaped debonded zones within the area of the sandwich plate: 𝐷𝑖 stands for a sin-

gle debonding, 𝐷𝐷𝑖 stands for two equally sized debondings, where 𝑖 = 1,4̅̅ ̅̅  is a position number. 

In Fig. 17a one can see that the first five natural frequencies of the debonded plates are shifted more from 
the intact one when debonding is situated near the corner (D4) and less for centrally located debonding 
(D1). The locations of debonding near the edges are intermediate cases between the mentioned two po-
sitions. Although debonding at the transverse edge more affects the frequencies. The higher modes follow 
the similar patterns of shifting with some exceptions for the several high modes. 
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(a) 

 
(b) 

Figure 17: Natural frequency shifting for the debonded sandwich plate depending on location of: (a) single 
debonding; and (b) two equally sized debondings. 

The comparative results for the debonded plate with two equally sized debonding are presented in 
Fig. 17 b. In general, the natural frequencies and their appropriate mode shapes highly depend on the 
location of the two debondings within the plate area. As seen from Fig. 17 b the two debondings, located 
along the longitudinal midline (DD2), most affects the frequencies of the plate. In the other cases of the 
debonding location, it influences on the frequency changes in different ways, but in a lesser extent than 
in DD2. Such tendency is retained for all modes from the lower to higher ones. More findings for this 
research can be found in detail in [56, 60], where this problem is better emphasized and extensively dis-
cussed with a large number of examples. 

4.2 Explicit dynamic analysis 

As mentioned earlier, the linear model is not able to account for contact and friction between the de-
tached face sheet and core in the debonded zone, whereas nonlinear models can do it. The role of the 
contact behaviour on the dynamics of sandwich panels with debonding is evaluated in the next sections.  

Example 8. An explicit transient dynamic analysis is carried out. In this regard, the sandwich plate with the 
impacted region such as in Example 3 is excited with an impulse load applied to the centre of the health 
bottom face sheet. In the explicit analysis, the friction coefficient, 𝜇 is accepted as 0.1, and the modal 
damping ratio is adopted as 1 % of the critical value. The comparison of results obtained for the intact and 
same debonded sandwich plates clearly demonstrated a high need of accounting for "real contact" mod-
elling to properly capture the complex dynamic effects of debonded sandwich panels. The differences in 
transient time histories of the longitudinal strains calculated at the central point of the impacted top face 
sheet and the same point of the intact plate are shown in Fig. 18 a. As one can see if contact is neglected, 
the calculations lead to sufficiently incorrect results, which mainly overestimate the amplitude of the dy-
namic response. Moreover, the importance of accounting for contact increases with enlarging the size of 
the impacted zone, as seen in Fig. 18 b.  
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(a) (b) 

Figure 18: The influence of contact on longitudinal strain, [73]: (a) models with and without contact; and (b) 
models with different sizes of the debonded zone. 

Besides, the computations revealed that varying the other key geometric parameters of the impacted 
zone (Fig. 7), visible changes can also be observed in the transient response of the damaged sandwich 
plate, Fig. 19. That is, in contrast to the modal dynamics, the transient dynamic behaviour is sensitive to 
all the damage factors induced by impact. However, it is difficult to evaluate the severity each parameter. 
In general, the time signals obtained for two different values of the parameter are not well-comparable 
between themselves. However, the debonding of bigger in-plane size can be easily differentiated from 
the transient signals for different sizes of the debonding. 

  
(a) (b) 

  
(c) (d) 

Figure 19: The transient behaviour of the impacted sandwich plate depending on, [72]: (a) indentation of face 
sheet; (b) cavity between face sheet and core; (c) level of core crushing; and (d) level of face sheet damage. 

In Fig. 20 one can see that the amplitude, time lag of free decay oscillations and attenuation (viewed as 
trend-lines of oscillations) of displacement time curves calculated at the central plate point are clearly 
magnified with increasing the size of the debonded zone. This is an evidence of increasing the internal 
damping capacity in the debonded plate due to the presence of debonding. Thereby, the debonding in-
troduces into the oscillations additional dissipative mechanisms caused by contact/impact and friction 
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phenomena between the detached face sheet and core. 

  
(a) (b) 

Figure 20: Transient response for different sizes of debonding at the central plate point, [75]: (a) displacement 
curves; and (b) displacement curves trend-lines. 

Also, due to those interactions between the detached surfaces the contact-induced stresses arise in the 
debonded zone. These stresses may play a critical role in the localized effects and, as a result, in the global 
response of the sandwich plate, because they are able to contribute into development of the face sheet-
to-core fracture mechanisms. Fig. 21 shows the transient time signals of the Mises stresses calculated at 
the centre and the point of boundary of the debonded zone on the top face sheet. More detailed results, 
regarding the transient dynamic response and the dynamic stress state occurring in the debonded sand-
wich plate can be found in our papers [10,75,79]. 

  
(a) (b) 

Figure 21: Transient time history of the Mises stress calculated at the points, [79]: (a) centre of the top face 
sheet; and (b) boundary of the debonded zone on the top face sheet. 

4.3 Implicit dynamic analysis 

Example 9. To gain a deeper insight into nonlinear dynamics of sandwich plates with debonding, a long-
term dynamic behaviour of a simply supported sandwich plate with a central penny-shaped debonded 
zone is studied. The geometrical and mechanical properties of the plate are adopted as such in Example 
6. The plate is subjected to harmonic loading with a driving frequency Ω at the central point of the health 
bottom face sheet. A wide range of the driving frequencies defined as a fraction of the fundamental fre-
quency of the same intact sandwich plate, 𝜂 = Ω 𝑓0⁄  is examined. One of the main trends, which could be 
identified from the simulations, is the fact that the dynamic response of the debonded sandwich plate is 
strongly frequency dependent, as shown in Figs. 22-28. The time signals are presented at either the cen-
tral point of the damaged top face sheet (N1), or the central points of the debonded region between the 
remaining plate (N2) and the detached skin (N3) or the points near boundary of the debonded region 
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between the remaining plate (N4) and the detached skin (N5) in a time range, when the steady state 
motion of the vibrating sandwich plate has been achieved.  

Fig. 22 illustrates a periodic motion of the debonded sandwich plate with the frequency same as the ex-
citation one. This motion goes without contact between the detached face sheet and core. That is, there 
are no local effects in the debonded region and global oscillations of the plate occur only.  

   
(a) (b) (c) 

Figure 22: Steady state dynamic response at 𝜂 = 1
2⁄  (Ω = 500 Hz), [80]: (a) displacement time histories at poins 

N2 and N3; (b) phase portrait at point N1; and (c) frequency spectra of the displacement signals at point N1.  

Retaining the excitation amplitude and increasing the driving frequency leads to arising the contact be-
haviour between the detached segments in the sandwich plate. In Fig. 23 a periodic motion of the 
debonded sandwich plate with one contact per each excitation is demonstrated. It is clearly seen that the 
periodically colliding detached surfaces produce harmonics which are integer multiples of the forcing fre-
quency.  

   
(a) (b) (c) 

Figure 23: Steady state dynamic response at 𝜂 = 3
4⁄  (Ω = 800 Hz), [80]: (a) displacement time histories at poins 

N2 and N3; (b) phase portrait at point N1; and (c) frequency spectra of the displacement signals at point N1. 

Although one contact per each excitation cycle also occurs in the case study shown in Fig. 24, the qualita-
tive character of response of the debonded plate differs significantly from the previous case. The dynamic 
behaviour of the debonded plate is a period-one motion. And, in this case the oscillations of the debonded 
and intact plates are not coincident in the phase. This happens because impact-like contacts prevail in the 
interactions between the face sheet and the remaining part of the plate. Moreover, the orbit of phase 
trajectory of the debonded plate is remarkably deformed due to this contact.  
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(a) (b) (c) 
Figure 24: Steady state dynamic response at 𝜂 = 2.0 (Ω = 2000 Hz): (a) displacement time histories at poins N2 

and N3; (b) phase portrait at point N1; and (c) frequency spectra of the displacement signals at point N1.  

A period-two motion of the debonded sandwich plate has been detected at the driving frequency 𝜂 = 3, 
Fig. 25. The plate vibrates in such way that the detached skin and the remaining part come into contact 
twice per cycle of excitation. Such contacts generate both harmonics and halves of the harmonics of the 
excitation frequency in the spectral signals of the debonded plate.  

   

(a) (b) (c) 
Figure 25: Steady state dynamic response at 𝜂 = 3 (Ω = 3000 Hz): (a) displacement time histories at poins N2 
and N3, [80]; (b) phase portrait at point N1; and (c) frequency spectra of the displacement signals at point N1. 

Fig. 26 presents a behaviour of the debonded plate that has no contact at the centre of the debonded 
zone, but there exist two contacts per each cycle of excitation at the points near the debonding boundary. 
It is worth to notice that the existence of such behaviour as partial contact (Fig. 5a) has been established 
only due to 3-D modelling of the dynamics of debonded plate. Because of such type of intermittent con-
tact, the global dynamics of the debonded sandwich plate differs from the intact one. A phase shift be-
tween the displacement time signals of the both plates is clearly seen in Fig. 26 d. 

   
(a) (b) (c) 

   

(d) (f) (g) 
Figure 26: Steady state dynamic response at 𝜂 = 4 (Ω = 4000 Hz): (a)-(b) displacement and velocity time 

histories at poins N2 and N3; (c) displacement time histories at poins N4 and N5, [80]; (d) displacement time 
histories at poin N1, [80]; (f) phase portrait at point N1, [80]; and (g) frequency spectra of the displacement 

signals at point N1. 

The general steady state dynamic response of the debonded plate at 𝜂 = 5 is demonstrated in Fig. 27. 
One can see a quasi-periodic motion of the plate at this driving frequency. The frequency spectrum along 
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with the peaks at integer numbers of the excitation frequency and halves of the harmonics exhibits also 
sidebands consisting of at least two components clearly visible on the frequency-axis. These frequencies 
produced by almost regular contacts within the debonded zone are incommensurate with the excitation 
frequency of the external load.  

   
(a) (b) (c) 

   
(d) (f) (g) 

Figure 27: Steady state dynamic response at 𝜂 = 5 (Ω = 5000 Hz): (a)-(b) displacement and velocity time 
histories at poins N2 and N3; (c) frequency spectra of the displacement signals at point N1; (d) displacement 

time histories at poin N1; (f) phase portrait at point N1, [80]; and (g) Poincaré section at point N1. 

The harmonic excitations of the debonded sandwich plate at the driving frequency about of 7000 Hz, i.e. 
(𝜂 ≈ 7) is shown in Fig. 28. One can see that contacts between the remaining plate part and the detached 
skin are not regular. The trajectory of the debonded plate in the phase plane does not repeat itself ever 
again for the excitation periods. Moreover, a set of points in the Poincare section corresponds to irregular 
variations of the motion from one excitation cycle to another one. From the frequency spectrum graph, 
one can see that the spectral spikes are surrounded by a distribution of frequencies having the character 
of a broadband. Thereby, the oscillations of the debonded plate at the given driving frequency looks like 
a chaotic motion.  

   
(a) (b) (c) 
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(d) (f) (g) 
Figure 28: Steady state dynamic response at 𝜂 = 7 (Ω = 7000 Hz): (a)-(b) displacement and velocity time 

histories at poins N2 and N3; (c) frequency spectra of the displacement signals at point N1; (d) displacement 
time histories at poin N1; (f) phase portrait at point N1, [80]; and (g) Poincaré section at point N1, [80]. 

Although we went through each case and explained each of the dependencies found, one can highlight 
our papers [79,80], which can be viewed for further insights and details in this area. 

5. Further research 

Although number of studies on the dynamic behaviour of delaminated or debonded composite panels is 
widely reported in literature, research on the effects of delamination or debonding on strength and dam-
age tolerance of composite panels subjected to dynamic loading is limited. The dynamic fracture analysis 
of debonded sandwich panels is challenging and demands expertise in damage and fracture mechanics, 
and material science to guide this research. For better understanding and prediction multiple failure 
mechanisms occurring in sandwich structures in a dynamic environment more reliable and efficient nu-
merical methods should be devised. The most popular methods that can be potentially used and partially 
have been already applied to for getting this purpose are briefly discussed with only few selected refer-
ences below. Because, as the authors may suppose, it is a matter of future more extensive research. 

5.1. Virtual crack closure technique (VCCT) 

The delamination/debonding growth can be modelled by the VCCT. This method is based on the Griffith 
crack growth criterion within the framework of the linear elastic fracture mechanics (LEFM). That is, a 
debonding grows if the energy released at its propagation is equal or larger than the energy required to 
create a new crack surface. This critical energy release rate or fracture toughness is derived from appro-
priate fracture tests. The current energy release is calculated under an assumption that the energy re-
quired to extend and to close the crack 𝑎 over a length ∆𝑎 are identical. A progressive delamination in 
laminated panels under static loading has been studied using the VCCT, e.g. in [87-90] among many oth-
ers, whereas studies on the delamination growth with VCCT under dynamic conditions can be found in 
few publications only, e.g. in [91,92]. 

5.2. Cohesive zone model (CZM) 

A cohesive zone model allows for simulation of both the onset and growth of delamination/debonding in 
one approach. It uses cohesive elements placed at the interface between constitutive layers. The ele-
ments are endowed by a certain traction-separation law that combines a stress-based analysis to predict 
the onset of delamination/debonding, and fracture mechanics based approach to govern its growth. In 
contrast to the VCCT, which uses one parameter, namely the critical energy release rate, the CZM requires 
two parameters to be defined: fracture toughness and interfacial strength stresses. Modelling dynamic 
delamination growth in laminated panels with the CZM approach can be found, e.g. in [93,94], while the 
dynamic progression of debonding between the face sheet and the core in sandwich plates has been sim-
ulated with CZM, e.g. in [95-97]. 

5.3. Extended finite element method (XFEM) 

The conventional finite element method is a versatile and powerful tool for the analysis of structural re-
sponse of composite panels. Both the VCCT and CZM approaches can be implemented into the finite ele-
ment formulation. However, the FEM uses a fixed mesh, within which the crack propagation is assumed 
as either releasing mesh nodes or removing finite elements. The XFEM no longer requires the mesh to be 
linked to discontinuities and their propagation. It uses enriched finite elements based on the partition of 
unity to make a complete or partial intersection of the finite element by the crack and introduces level 
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sets to model the crack surface and the crack front, while maintaining the same mesh. Jump-like discon-
tinuous functions are added to displacement interpolation functions for the completely intersected ele-
ments, while the elements where the crack front exists are supplemented by the asymptotic displace-
ments fields resulting from the LEFM. The use of XFEM models for simulating quasi-static and dynamic 
delamination growth in laminated composites have been found, e.g. in recent papers [98-100].  

5.4. Peridynamics 

Purpose of peridynamics is to unify the mechanics of continuous and discontinuous media within a single, 
consistent set of equations. This is reached with using integral equations, in contrast with the classical 
theory of continuum mechanics based on PDEs. In numerical implementation, the peridynamic approach 
is reduced to meshless and Lagrangian method, where the fracture analysis is carried out within the 
framework of the bond-based peridynamic theory. The latter incorporates damage in the pairwise force 
function allowing bonds to break when their elongation exceeds some prescribed value. After a bond 
breaks, it no longer sustains any force, and the endpoints are effectively disconnected from each other, 
and the force it was carrying is redistributed to other bonds that have not yet broken. This increased load 
makes it more likely that these other bonds will break too. The process of bond breakage and load redis-
tribution, leading to further breakage, simulates cracks growth in the peridynamic model. Thus, the 
method enables predicting complex fracture phenomena such as spontaneous crack nucleation and crack 
branching, curving and arrest. The model requires prescribed bond properties such as the stiffness con-
stant and critical stretch, which are continuous functions of bond orientation in the principal material 
axes. An application of the peridynamics to predict delamination initiation and growth in laminated com-
posites has been presented, e.g. in [101,102].  

5.5. Phase field methods 

A conceptually new computational approach to model fracture relying on phase field formulations has 
gained in the recent years. Fracture phase field models make the use of a continuous scalar variable – the 
crack field order parameter to distinguish the fully broken and intact material phases. In such way, the 
sharp discontinuity is approximated through a smooth transition (diffuse transition zone) between the 
different values of the order parameter associated with the adjoining material phases. Thus, a crack phase 
field is set, while the evolution of this field due to loading models the fracture process. The description of 
fracture follows from the solution of a coupled non-linear system of (quasi-static or dynamic) stress equi-
librium equations and a gradient-type evolution equation for the crack phase field. Furthermore, the finite 
element implementation is straightforward in both two and three dimensions, using the classical FEM 
without any modification of initial meshes or shape functions. Examples of phase field models adopted 
for simulating fracture and damage in composite materials can be found, e.g. in [103-105].  

The commercial finite element codes which may implement these techniques are ABAQUS, ANSYS, MSC 
Marc, and MSC Nastran, etc. With this implementation, the performance and accuracy of those different 
approaches should be systematically investigated for both the numerical competence and the adequacy 
of the modelled behaviour to real structural response. Consequently, their application to the progressive 
delamination/debonding problems in practical structures is, as yet, limited and rather is a subject of future 
research activity. 

6 Conclusions 

Debonding is an inherent potential reason for the structural failure in sandwich panels possessing the 
adhesively bonded structure. Hence, detailed knowledge about its influence on the dynamic behaviour of 
the sandwich composite is highly required. In this regard, reliable numerical prediction methods are of 
importance. In this paper the linear and nonlinear finite element models developed by the authors to 
examine the dynamics of sandwich panels with pre-existing debonding are comprehensively reviewed and 
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prospects of further investigations on this topic are briefly discussed. The structural problem at hand has 
been numerically solved using the ABAQUS package. Numerical results ranging from linear free and forced 
vibration of debonded sandwich panels to their general non-linear dynamics accounting for contact and 
friction are presented. A typical sandwich plate configuration has been discretized with shell and solid 
finite elements in accordance with the HSAPT-like assumptions. In the modal dynamic analyses a spring 
finite element separated the face sheet from the core in the debonded region, while contact and friction 
laws representing the unique sources of non‐linearity are imposed between them in the case of general 
dynamic analysis.  

Observations from the present work suggest the following conclusions. First, one can point out that the 
pumping effect or symmetric vibration modes occurring in sandwich panels with soft flexible cores can be 
efficiently simulated using the proposed layerwise shell-solid finite element models. This result is of im-
portance for developing 3-D models that are able to accurately predict the dynamic behaviour of 
debonded sandwich panels. Second, the 3-D finite element models created using the mentioned model-
ling strategy in conjunction with spring elements are relevant for solving a range of problems of the modal 
dynamics of sandwich panels with both an artificial flaw embedded into the face sheet/core bond and a 
post-impact circular damage involving indentation, face sheet/core interface degradation and defect of 
core. The calculated natural frequencies and associated mode shapes have been in good compliance with 
results obtained by some other authors using other methods. The various parametric studies carried out 
in terms of debonding parameters such as size, location and number may deserve an attention for apply-
ing these results to developing appropriate structural health monitoring techniques. The major findings 
from the present studies are general decreasing of natural frequencies of debonded plates compared to 
the same intact ones, possible thickening phenomenon, changing in the order of frequencies in the spec-
trum and/or appearance of new frequencies there and potential existence of the crossover phenomenon. 
The steady-state mode-based analyses based on the same models highlighted the occurrence of new fre-
quencies on the frequency response curve. Meanwhile, it was observed that the mode shapes may give 
less useful information in the sense of debonding detection since they are highly dependent on location 
of the debonded zone within the plate area. 

In the present paper is also noticed that although many advances have been made in simulation and anal-
ysis of the modal dynamics of sandwich panels with damaged face sheet-to-core interface, the general 
dynamic analysis of such structures remains challenging and requires expertise in physical nature of the 
behaviour and accurate numerical methods applied to guide further theoretical research. Local debonding 
may leads to significant changes in the global dynamics such that the dynamic response may become 
nonlinear even under initially linear conditions. This is the next conclusion that follows from this research. 
Nonlinearities are mainly related to intermittent contact and friction between the detached face sheet 
and core during global oscillations of the plate. The present numerical studies clearly showed that under 
long-term harmonic loading, the changes of the driving frequency leads to significant alterations in the 
type of interactions between the debonded face sheet and the remaining part as a result the dynamic 
response of the sandwich plate may be either periodic, or only quasi-periodic, or even chaotic. In the case 
of an impulse load the major finding is that transient time history responses are very sensitive to the size 
and severity of the debonding. Thus, the nonlinear models’ methodology presented herein can be 
deemed to be a promising prediction approach for discovering a variety of physical phenomena occurring 
in debonded sandwich panels and for examining the effect each of them on the dynamics at the design 
stage. The obtained results may give a possibility to devise new structural health monitoring techniques 
more sensitive than the ones using modal dynamics to identify the delamination/debonding damage on 
the structural level. Besides, the present work mentions that there is a need to extend the study of 
debonding on strength and damage tolerance of sandwich plates subjected to dynamic loads. Because 
the debonding onset and the debonding evolution are critical issues to ensure a structural reliability of 
sandwich panels. 
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