19 research outputs found

    Modal Logics of Topological Relations

    Full text link
    Logical formalisms for reasoning about relations between spatial regions play a fundamental role in geographical information systems, spatial and constraint databases, and spatial reasoning in AI. In analogy with Halpern and Shoham's modal logic of time intervals based on the Allen relations, we introduce a family of modal logics equipped with eight modal operators that are interpreted by the Egenhofer-Franzosa (or RCC8) relations between regions in topological spaces such as the real plane. We investigate the expressive power and computational complexity of logics obtained in this way. It turns out that our modal logics have the same expressive power as the two-variable fragment of first-order logic, but are exponentially less succinct. The complexity ranges from (undecidable and) recursively enumerable to highly undecidable, where the recursively enumerable logics are obtained by considering substructures of structures induced by topological spaces. As our undecidability results also capture logics based on the real line, they improve upon undecidability results for interval temporal logics by Halpern and Shoham. We also analyze modal logics based on the five RCC5 relations, with similar results regarding the expressive power, but weaker results regarding the complexity

    Decidability of the interval temporal logic ABBar over the natural numbers

    Get PDF
    In this paper, we focus our attention on the interval temporal logic of the Allen's relations "meets", "begins", and "begun by" (ABBar for short), interpreted over natural numbers. We first introduce the logic and we show that it is expressive enough to model distinctive interval properties,such as accomplishment conditions, to capture basic modalities of point-based temporal logic, such as the until operator, and to encode relevant metric constraints. Then, we prove that the satisfiability problem for ABBar over natural numbers is decidable by providing a small model theorem based on an original contraction method. Finally, we prove the EXPSPACE-completeness of the proble

    A Modal Logic for Subject-Oriented Spatial Reasoning

    Get PDF
    We present a modal logic for representing and reasoning about space seen from the subject\u27s perspective. The language of our logic comprises modal operators for the relations "in front", "behind", "to the left", and "to the right" of the subject, which introduce the intrinsic frame of reference; and operators for "behind an object", "between the subject and an object", "to the left of an object", and "to the right of an object", employing the relative frame of reference. The language allows us to express nominals, hybrid operators, and a restricted form of distance operators which, as we demonstrate by example, makes the logic interesting for potential applications. We prove that the satisfiability problem in the logic is decidable and in particular PSpace-complete

    The intuitionistic temporal logic of dynamical systems

    Get PDF
    A dynamical system is a pair (X,f)(X,f), where XX is a topological space and f ⁣:XXf\colon X\to X is continuous. Kremer observed that the language of propositional linear temporal logic can be interpreted over the class of dynamical systems, giving rise to a natural intuitionistic temporal logic. We introduce a variant of Kremer's logic, which we denote ITLc{\sf ITL^c}, and show that it is decidable. We also show that minimality and Poincar\'e recurrence are both expressible in the language of ITLc{\sf ITL^c}, thus providing a decidable logic expressive enough to reason about non-trivial asymptotic behavior in dynamical systems

    A decidable weakening of Compass Logic based on cone-shaped cardinal directions

    Get PDF
    We introduce a modal logic, called Cone Logic, whose formulas describe properties of points in the plane and spatial relationships between them. Points are labelled by proposition letters and spatial relations are induced by the four cone-shaped cardinal directions. Cone Logic can be seen as a weakening of Venema's Compass Logic. We prove that, unlike Compass Logic and other projection-based spatial logics, its satisfiability problem is decidable (precisely, PSPACE-complete). We also show that it is expressive enough to capture meaningful interval temporal logics - in particular, the interval temporal logic of Allen's relations "Begins", "During", and "Later", and their transposes

    A decidable weakening of Compass Logic based on cone-shaped cardinal directions

    Get PDF
    We introduce a modal logic, called Cone Logic, whose formulas describeproperties of points in the plane and spatial relationships between them.Points are labelled by proposition letters and spatial relations are induced bythe four cone-shaped cardinal directions. Cone Logic can be seen as a weakeningof Venema's Compass Logic. We prove that, unlike Compass Logic and otherprojection-based spatial logics, its satisfiability problem is decidable(precisely, PSPACE-complete). We also show that it is expressive enough tocapture meaningful interval temporal logics - in particular, the intervaltemporal logic of Allen's relations "Begins", "During", and "Later", and theirtransposes

    Investigation of the tradeoff between expressiveness and complexity in description logics with spatial operators

    Get PDF
    Le Logiche Descrittive sono una famiglia di formalismi molto espressivi per la rappresentazione della conoscenza. Questi formalismi sono stati investigati a fondo dalla comunit\ue0 scientifica, ma, nonostante questo grosso interesse, sono state definite poche Description Logics con operatori spaziali e tutte centrate sul Region Connection Calculus. Nella mia tesi considero tutti i pi\uf9 importanti formalismi di Qualitative Spatial Reasoning per mereologie, mereo-topologie e informazioni sulla direzione e studio alcune tecniche generali di ibridazione. Nella tesi presento un\u2019introduzione ai principali formalismi di Qualitative Spatial Reasoning e le principali famiglie di Description Logics. Nel mio lavoro, introduco anche le tecniche di ibridazione per estendere le Description Logics al ragionamento su conoscenza spaziale e presento il potere espressivo dei linguaggi ibridi ottenuti. Vengono presentati infine un risultato generale di para-decidibilit\ue0 per logiche descrittive estese da composition-based role axioms e l\u2019analisi del tradeoff tra espressivit\ue0 e propriet\ue0 computazionali delle logiche descrittive spaziali.Description Logics are a family of expressive Knowledge-Representation formalisms that have been deeply investigated. Nevertheless the few examples of DLs with spatial operators in the current literature are defined to include only the spatial reasoning capabilities corresponding to the Region Connection Calculus. In my thesis I consider all the most important Qualitative Spatial Reasoning formalisms for mereological, mereo-topological and directional information and investigate some general hybridization techniques. I will present a short overview of the main formalisms of Qualitative Spatial Reasoning and the principal families of DLs. I introduce the hybridization techniques to extend DLs to QSR and present the expressiveness of the resulting hybrid languages. I also present a general paradecidability result for undecidable languages equipped with composition-based role axioms and the tradeoff analysis of expressiveness and computational properties for the spatial DLs

    Seeing, Knowing, doing : case studies in modal logic

    Get PDF
    Dans le domaine des jeux vidéos par exemple, surtout des jeux de rôles, les personnages virtuels perçoivent un environnement, en tirent des connaissances puis effectuent des actions selon leur besoin. De même en robotique, un robot perçoit son environnement à l'aide de capteurs/caméras, établit une base de connaissances et effectuent des mouvements etc. La description des comportements de ces agents virtuels et leurs raisonnements peut s'effectuer à l'aide d'un langage logique. Dans cette thèse, on se propose de modéliser les trois aspects "voir", "savoir" et "faire" et leurs interactions à l'aide de la logique modale. Dans une première partie, on modélise des agents dans un espace géométrique puis on définit une relation épistémique qui tient compte des positions et du regard des agents. Dans une seconde partie, on revisite la logique des actions "STIT" (see-to-it-that ou "faire en sorte que") qui permet de faire la différence entre les principes "de re" et "de dicto", contrairement à d'autres logiques modales des actions. Dans une troisième partie, on s'intéresse à modéliser quelques aspects de la théorie des jeux dans une variante de la logique "STIT" ainsi que des émotions contre-factuelles comme le regret. Tout au long de cette thèse, on s'efforcera de s'intéresser aux aspects logiques comme les complétudes des axiomatisations et la complexité du problème de satisfiabilité d'une formule logique. L'intégration des trois concepts "voir", "savoir" et "faire" dans une et une seule logique est évoquée en conclusion et reste une question ouverte.Agents are entities who perceive their environment and who perform actions. For instance in role playing video games, ennemies are agents who perceive some part of the virtual world and who can attack or launch a sortilege. Another example may concern robot assistance for disabled people: the robot perceives obstacles of the world and can alert humans or help them. Here, we try to give formal tools to model knowledge reasoning about the perception of their environment and about actions based, on modal logic. First, we give combine the standard epistemic modal logic with perception constructions of the form (agent a sees agent b). We give a semantics in terms of position and orientation of the agents in the space that can be a line (Lineland) or a plane (Flatland). Concerning Lineland, we provide a complete axiomatization and an optimal procedure for model-checking and satisfiability problem. Concerning Flatland, we show that both model-checking and satisfiability problem are decidable but the exact complexities and the axiomatization remain open problems. Thus, the logics of Lineland and Flatland are completely a new approach: their syntax is epistemic but their semantics concern spatial reasoning. Secondly, we study on the logic of agency ``see-to-it-that'' STIT made up of construction of the form [J]A standing for ``the coalition of agents J sees to it that A''. Our interest is motivated: STIT is strictly more expressive that standard modal logic for agency like Coalition Logic CL or Alternating-time Temporal Logic ATL. In CL or ATL the ``de re'' and ``de dicto'' problem is quite difficult and technical whereas if we combine STIT-operators with epistemic operators, we can solve it in a natural way. However this strong expressivity has a prize: the general version of STIT is undecidable. That is why we focus on some syntactic fragments of STIT: either we restrict the allowed coalitions J in constructions [J]A or we restrict the nesting of modal STIT-operators. We provide axiomatizations and complexity results. Finally, we give flavour to epistemic modal logic by adding STIT-operators. The logic STIT is suitable to express counterfactual statements like ``agent a could have choosen an action such that A have been true''. Thus we show how to model counterfactual emotions like regret, rejoicing, disappointment and elation in this framework. We also model epistemic games by adapting the logic STIT by giving explicitely names of actions in the language. In this framework, we can model the notion of rational agents but other kind of behaviour like altruism etc., Nash equilibrium and iterated deletion of strictly dominated strategies
    corecore