3,686 research outputs found

    DEMO: Simulation of Realistic Mobility Model and Implementation of 802.11p (DSRC) for Vehicular Networks (VANET)

    Full text link
    An ad hoc network of vehicles (VANET) consists of vehicles that exchange information via radio in order to improve road safety, traffic management and do better distribution of traffic load in time and space. Along with this it allows Internet access for passengers and users of vehicles. A significant characteristic while studying VANETs is the requirement of having a mobility model that gives aspects of real vehicular traffic. These scenarios play an important role in performance of VANETs. In our paper we have demonstration and description of generating realistic mobility model using various tools such as eWorld, OpenStreetMap, SUMO and TraNS. Generated mobility scenario is added to NS-2.34 (Network Simulator) for analysis of DSR and AODV routing protocol under 802.11p (DSRC/WAVE) and 802.11a. Results after analysis shows 802.11p is more suitable than 802.11a for VANET.Comment: 4 pages, 6 figures, International Journal of Computer Applicatio

    Smart handoff technique for internet of vehicles communication using dynamic edge-backup node

    Get PDF
    © 2020 The Authors. Published by MDPI. This is an open access article available under a Creative Commons licence. The published version can be accessed at the following link on the publisher’s website: https://doi.org/10.3390/electronics9030524A vehicular adhoc network (VANET) recently emerged in the the Internet of Vehicles (IoV); it involves the computational processing of moving vehicles. Nowadays, IoV has turned into an interesting field of research as vehicles can be equipped with processors, sensors, and communication devices. IoV gives rise to handoff, which involves changing the connection points during the online communication session. This presents a major challenge for which many standardized solutions are recommended. Although there are various proposed techniques and methods to support seamless handover procedure in IoV, there are still some open research issues, such as unavoidable packet loss rate and latency. On the other hand, the emerged concept of edge mobile computing has gained crucial attention by researchers that could help in reducing computational complexities and decreasing communication delay. Hence, this paper specifically studies the handoff challenges in cluster based handoff using new concept of dynamic edge-backup node. The outcomes are evaluated and contrasted with the network mobility method, our proposed technique, and other cluster-based technologies. The results show that coherence in communication during the handoff method can be upgraded, enhanced, and improved utilizing the proposed technique.Published onlin

    Adoption of vehicular ad hoc networking protocols by networked robots

    Get PDF
    This paper focuses on the utilization of wireless networking in the robotics domain. Many researchers have already equipped their robots with wireless communication capabilities, stimulated by the observation that multi-robot systems tend to have several advantages over their single-robot counterparts. Typically, this integration of wireless communication is tackled in a quite pragmatic manner, only a few authors presented novel Robotic Ad Hoc Network (RANET) protocols that were designed specifically with robotic use cases in mind. This is in sharp contrast with the domain of vehicular ad hoc networks (VANET). This observation is the starting point of this paper. If the results of previous efforts focusing on VANET protocols could be reused in the RANET domain, this could lead to rapid progress in the field of networked robots. To investigate this possibility, this paper provides a thorough overview of the related work in the domain of robotic and vehicular ad hoc networks. Based on this information, an exhaustive list of requirements is defined for both types. It is concluded that the most significant difference lies in the fact that VANET protocols are oriented towards low throughput messaging, while RANET protocols have to support high throughput media streaming as well. Although not always with equal importance, all other defined requirements are valid for both protocols. This leads to the conclusion that cross-fertilization between them is an appealing approach for future RANET research. To support such developments, this paper concludes with the definition of an appropriate working plan

    MARINE: Man-in-the-middle attack resistant trust model IN connEcted vehicles

    Get PDF
    Vehicular Ad-hoc NETwork (VANET), a novel technology holds a paramount importance within the transportation domain due to its abilities to increase traffic efficiency and safety. Connected vehicles propagate sensitive information which must be shared with the neighbors in a secure environment. However, VANET may also include dishonest nodes such as Man-in-the-Middle (MiTM) attackers aiming to distribute and share malicious content with the vehicles, thus polluting the network with compromised information. In this regard, establishing trust among connected vehicles can increase security as every participating vehicle will generate and propagate authentic, accurate and trusted content within the network. In this paper, we propose a novel trust model, namely, Man-in-the-middle Attack Resistance trust model IN connEcted vehicles (MARINE), which identifies dishonest nodes performing MiTM attacks in an efficient way as well as revokes their credentials. Every node running MARINE system first establishes trust for the sender by performing multi-dimensional plausibility checks. Once the receiver verifies the trustworthiness of the sender, the received data is then evaluated both directly and indirectly. Extensive simulations are carried out to evaluate the performance and accuracy of MARINE rigorously across three MiTM attacker models and the bench-marked trust model. Simulation results show that for a network containing 35% MiTM attackers, MARINE outperforms the state of the art trust model by 15%, 18%, and 17% improvements in precision, recall and F-score, respectively.N/A
    • …
    corecore