8,508 research outputs found

    Waiting time dynamics of priority-queue networks

    Full text link
    We study the dynamics of priority-queue networks, generalizations of the binary interacting priority queue model introduced by Oliveira and Vazquez [Physica A {\bf 388}, 187 (2009)]. We found that the original AND-type protocol for interacting tasks is not scalable for the queue networks with loops because the dynamics becomes frozen due to the priority conflicts. We then consider a scalable interaction protocol, an OR-type one, and examine the effects of the network topology and the number of queues on the waiting time distributions of the priority-queue networks, finding that they exhibit power-law tails in all cases considered, yet with model-dependent power-law exponents. We also show that the synchronicity in task executions, giving rise to priority conflicts in the priority-queue networks, is a relevant factor in the queue dynamics that can change the power-law exponent of the waiting time distribution.Comment: 5 pages, 3 figures, minor changes, final published versio

    Anticipatory Mobile Computing: A Survey of the State of the Art and Research Challenges

    Get PDF
    Today's mobile phones are far from mere communication devices they were ten years ago. Equipped with sophisticated sensors and advanced computing hardware, phones can be used to infer users' location, activity, social setting and more. As devices become increasingly intelligent, their capabilities evolve beyond inferring context to predicting it, and then reasoning and acting upon the predicted context. This article provides an overview of the current state of the art in mobile sensing and context prediction paving the way for full-fledged anticipatory mobile computing. We present a survey of phenomena that mobile phones can infer and predict, and offer a description of machine learning techniques used for such predictions. We then discuss proactive decision making and decision delivery via the user-device feedback loop. Finally, we discuss the challenges and opportunities of anticipatory mobile computing.Comment: 29 pages, 5 figure

    Exploring the Affective Loop

    Get PDF
    Research in psychology and neurology shows that both body and mind are involved when experiencing emotions (Damasio 1994, Davidson et al. 2003). People are also very physical when they try to communicate their emotions. Somewhere in between beings consciously and unconsciously aware of it ourselves, we produce both verbal and physical signs to make other people understand how we feel. Simultaneously, this production of signs involves us in a stronger personal experience of the emotions we express. Emotions are also communicated in the digital world, but there is little focus on users' personal as well as physical experience of emotions in the available digital media. In order to explore whether and how we can expand existing media, we have designed, implemented and evaluated /eMoto/, a mobile service for sending affective messages to others. With eMoto, we explicitly aim to address both cognitive and physical experiences of human emotions. Through combining affective gestures for input with affective expressions that make use of colors, shapes and animations for the background of messages, the interaction "pulls" the user into an /affective loop/. In this thesis we define what we mean by affective loop and present a user-centered design approach expressed through four design principles inspired by previous work within Human Computer Interaction (HCI) but adjusted to our purposes; /embodiment/ (Dourish 2001) as a means to address how people communicate emotions in real life, /flow/ (Csikszentmihalyi 1990) to reach a state of involvement that goes further than the current context, /ambiguity/ of the designed expressions (Gaver et al. 2003) to allow for open-ended interpretation by the end-users instead of simplistic, one-emotion one-expression pairs and /natural but designed expressions/ to address people's natural couplings between cognitively and physically experienced emotions. We also present results from an end-user study of eMoto that indicates that subjects got both physically and emotionally involved in the interaction and that the designed "openness" and ambiguity of the expressions, was appreciated and understood by our subjects. Through the user study, we identified four potential design problems that have to be tackled in order to achieve an affective loop effect; the extent to which users' /feel in control/ of the interaction, /harmony and coherence/ between cognitive and physical expressions/,/ /timing/ of expressions and feedback in a communicational setting, and effects of users' /personality/ on their emotional expressions and experiences of the interaction

    A cameraphone-based approach for the generation of 3D models from paper sketches

    Get PDF
    Parts of the research work disclosed in this paper are subject to a pending patent application number 2130.Due to the advantages it offers, a sketch-based user-interface (UI) has been utilised in various domains, such as 3D modelling, 'graphical user-interface' design, 3D animation of cartoon characters, etc. However, its benefits have not yet been adequately exploited with those of a mobile phone, despite that the latter is nowadays a widely used wireless handheld device for mobile communication. Given this scenario, this paper discloses a novel approach of using a paper sketch-based UI, which combines the benefits of paper sketching and those of a cameraphone (a mobile phone with an integrated camera), in the domain of early form design modelling. More specifically, the framework disclosed and evaluated in this paper, enables users to remotely obtain visual representations of 3D geometric models from freehand sketches by combining the portability of paper with that of cameraphones. Based on this framework, a prototype tool has been implemented and evaluated. Despite the limitations of the current prototype tool, the evaluation results of the framework s underlying concepts and of the prototype tool collectively indicate that the idea disclosed in this paper contributes in providing users with a mobile sketch-based interface, which can also be used in other domains, beyond early form design modelling.peer-reviewe

    Using Volunteer Tracking Information for Activity-Based Travel Demand Modeling and Finding Dynamic Interaction-Based Joint-Activity Opportunities

    Get PDF
    Technology used for real-time locating is being used to identify and track the movements of individuals in real time. With the increased use of mobile technology by individuals, we are now able to explore more potential interactions between people and their living environment using real-time tracking and communication technologies. One of the potentials that has hardly been taken advantage of is to use cell phone tracking information for activity-based transportation study. Using GPS-embedded smart phones, it is convenient to continuously record our trajectories in a day with little information loss. As smart phones get cheaper and hence attract more users, the potential information source for self-tracking data is pervasive. This study provides a cell phone plus web method that collects volunteer cell phone tracking data and uses an algorithm to identify the allocation of activities and traveling in space and time. It also provides a step that incorporates user-participated prompted recall attribute identification (travel modes and activity types) which supplements the data preparation for activity-based travel demand modeling. Besides volunteered geospatial information collection, cell phone users’ real-time locations are often collected by service providers such as Apple, AT&T and many other third-party companies. This location data has been used in turn to boost new location-based services. However, few applications have been seen to address dynamic human interactions and spatio-temporal constraints of activities. This study sets up a framework for a new kind of location-based service that finds joint-activity opportunities for multiple individuals, and demonstrates its feasibility using a spatio-temporal GIS approach

    Multimodal person recognition for human-vehicle interaction

    Get PDF
    Next-generation vehicles will undoubtedly feature biometric person recognition as part of an effort to improve the driving experience. Today's technology prevents such systems from operating satisfactorily under adverse conditions. A proposed framework for achieving person recognition successfully combines different biometric modalities, borne out in two case studies
    corecore