220 research outputs found

    Hybrid Satellite-Terrestrial Communication Networks for the Maritime Internet of Things: Key Technologies, Opportunities, and Challenges

    Get PDF
    With the rapid development of marine activities, there has been an increasing number of maritime mobile terminals, as well as a growing demand for high-speed and ultra-reliable maritime communications to keep them connected. Traditionally, the maritime Internet of Things (IoT) is enabled by maritime satellites. However, satellites are seriously restricted by their high latency and relatively low data rate. As an alternative, shore & island-based base stations (BSs) can be built to extend the coverage of terrestrial networks using fourth-generation (4G), fifth-generation (5G), and beyond 5G services. Unmanned aerial vehicles can also be exploited to serve as aerial maritime BSs. Despite of all these approaches, there are still open issues for an efficient maritime communication network (MCN). For example, due to the complicated electromagnetic propagation environment, the limited geometrically available BS sites, and rigorous service demands from mission-critical applications, conventional communication and networking theories and methods should be tailored for maritime scenarios. Towards this end, we provide a survey on the demand for maritime communications, the state-of-the-art MCNs, and key technologies for enhancing transmission efficiency, extending network coverage, and provisioning maritime-specific services. Future challenges in developing an environment-aware, service-driven, and integrated satellite-air-ground MCN to be smart enough to utilize external auxiliary information, e.g., sea state and atmosphere conditions, are also discussed

    Wireless Communication Technologies for Safe Cooperative Cyber Physical Systems

    Get PDF
    Cooperative Cyber-Physical Systems (Co-CPSs) can be enabled using wireless communication technologies, which in principle should address reliability and safety challenges. Safety for Co-CPS enabled by wireless communication technologies is a crucial aspect and requires new dedicated design approaches. In this paper, we provide an overview of five Co-CPS use cases, as introduced in our SafeCOP EU project, and analyze their safety design requirements. Next, we provide a comprehensive analysis of the main existing wireless communication technologies giving details about the protocols developed within particular standardization bodies. We also investigate to what extent they address the non-functional requirements in terms of safety, security and real time, in the different application domains of each use case. Finally, we discuss general recommendations about the use of different wireless communication technologies showing their potentials in the selected real-world use cases. The discussion is provided under consideration in the 5G standardization process within 3GPP, whose current efforts are inline to current gaps in wireless communications protocols for Co-CPSs including many future use casesinfo:eu-repo/semantics/publishedVersio

    5G-PPP Software Network Working Group:Network Applications: Opening up 5G and beyond networks 5G-PPP projects analysis

    Get PDF
    As part of the 5G-PPP Initiative, the Software Network Working Group prepared this white paper to demystify the concept of the Network Applications. In fact, the Network Application ecosystem is more than the introduction of new vertical applications that have interaction capabilities. It refers to the need for a separate middleware layer to simplify the implementation and deployment of vertical systems on a large scale. Specifically, third parties or network operators can contribute to Network Applications, depending on the level of interaction and trust. Different implementations have been conducted by the different projects considering different API types and different level of trust between the verticals and the owner of 5G platforms. In this paper, the different approaches considered by the projects are summarized. By analysing them, it appears three options of interaction between the verticals and the 5G platform owner: - aaS Model: it is the model where the vertical application consumes the Network Applications as a service. The vertical application deployed in the vertical service provider domain. It connects with the 3GPP network systems (EPS, 5GS) in one or more PLMN operator domain. - Hybrid: it is the model where the vertical instantiates a part of its Vertical App in the operator domain like the EDGE. The other part remains in the vertical domain. A similar approach has been followed in TS 23.286 related to the deployment of V2X server. - Coupled/Delegated: it is the model where the vertical delegates its app to the operator. The Network Applications will be composed and managed by the operator. This approach is the one followed in the platforms like 5G-EVE. In addition, the paper brings an analysis of the different API type deployed. It appears that the abstraction from network APIs to service APIs is necessary to hide the telco complexity making APIs easy to consume for verticals with no telco expertise and to adress data privacy requirements

    Seaport Data Space for Improving Logistic Maritime Operations

    Full text link
    [EN] The maritime industry expects several improvements to efficiently manage the operation processes by introducing Industry 4.0 enabling technologies. Seaports are the most critical point in the maritime logistics chain because of its multimodal and complex nature. Consequently, coordinated communication among any seaport stakeholders is vital to improving their operations. Currently, Electronic Data Interchange (EDI) and Port Community Systems (PCS), as primary enablers of digital seaports, have demonstrated their limitations to interchange information on time, accurately, efficiently, and securely, causing high operation costs, low resource management, and low performance. For these reasons, this contribution presents the Seaport Data Space (SDS) based on the Industrial Data Space (IDS) reference architecture model to enable a secure data sharing space and promote an intelligent transport multimodal terminal. Each seaport stakeholders implements the IDS connector to take part in the SDS and share their data. On top of SDS, a Big Data architecture is integrated to manage the massive data shared in the SDS and extract useful information to improve the decision-making. The architecture has been evaluated by enabling a port authority and a container terminal to share its data with a shipping company. As a result, several Key Performance Indicators (KPIs) have been developed by using the Big Data architecture functionalities. The KPIs have been shown in a dashboard to allow easy interpretability of results for planning vessel operations. The SDS environment may improve the communication between stakeholders by reducing the transaction costs, enhancing the quality of information, and exhibiting effectivenessThis work was supported in part by the European Union's Horizon 2020 Research and Innovation Programme through the PIXEL Port Project under Grant 769355, and in part by the Secretaria Nacional de Educacion Superior, Ciencia, Tecnologia e Innovacion (SENESCYT), EcuadorSarabia-Jácome, D.; Palau Salvador, CE.; Esteve Domingo, M.; Boronat, F. (2019). Seaport Data Space for Improving Logistic Maritime Operations. IEEE Access. 8:4372-4382. https://doi.org/10.1109/ACCESS.2019.2963283S43724382

    Introduction to the Special Issue on Sustainable Solutions for the Intelligent Transportation Systems

    Get PDF
    The intelligent transportation systems improve the transportation system’s operational efficiency and enhance its safety and reliability by high-tech means such as information technology, control technology, and computer technology. In recent years, sustainable development has become an important topic in intelligent transportation’s development, including new infrastructure and energy distribution, new energy vehicles and new transportation systems, and the development of low-carbon and intelligent transportation equipment. New energy vehicles’ development is a significant part of green transportation, and its automation performance improvement is vital for smart transportation. The development of intelligent transportation and green, low-carbon, and intelligent transportation equipment needs to be promoted, a significant feature of transportation development in the future. For intelligent infrastructure and energy distribution facilities, the electricity for popular electric vehicles and renewable energy, such as nuclear power and hydrogen power, should be considered

    Technologies and Applications for Big Data Value

    Get PDF
    This open access book explores cutting-edge solutions and best practices for big data and data-driven AI applications for the data-driven economy. It provides the reader with a basis for understanding how technical issues can be overcome to offer real-world solutions to major industrial areas. The book starts with an introductory chapter that provides an overview of the book by positioning the following chapters in terms of their contributions to technology frameworks which are key elements of the Big Data Value Public-Private Partnership and the upcoming Partnership on AI, Data and Robotics. The remainder of the book is then arranged in two parts. The first part “Technologies and Methods” contains horizontal contributions of technologies and methods that enable data value chains to be applied in any sector. The second part “Processes and Applications” details experience reports and lessons from using big data and data-driven approaches in processes and applications. Its chapters are co-authored with industry experts and cover domains including health, law, finance, retail, manufacturing, mobility, and smart cities. Contributions emanate from the Big Data Value Public-Private Partnership and the Big Data Value Association, which have acted as the European data community's nucleus to bring together businesses with leading researchers to harness the value of data to benefit society, business, science, and industry. The book is of interest to two primary audiences, first, undergraduate and postgraduate students and researchers in various fields, including big data, data science, data engineering, and machine learning and AI. Second, practitioners and industry experts engaged in data-driven systems, software design and deployment projects who are interested in employing these advanced methods to address real-world problems

    Real-time big data processing for anomaly detection : a survey

    Get PDF
    The advent of connected devices and omnipresence of Internet have paved way for intruders to attack networks, which leads to cyber-attack, financial loss, information theft in healthcare, and cyber war. Hence, network security analytics has become an important area of concern and has gained intensive attention among researchers, off late, specifically in the domain of anomaly detection in network, which is considered crucial for network security. However, preliminary investigations have revealed that the existing approaches to detect anomalies in network are not effective enough, particularly to detect them in real time. The reason for the inefficacy of current approaches is mainly due the amassment of massive volumes of data though the connected devices. Therefore, it is crucial to propose a framework that effectively handles real time big data processing and detect anomalies in networks. In this regard, this paper attempts to address the issue of detecting anomalies in real time. Respectively, this paper has surveyed the state-of-the-art real-time big data processing technologies related to anomaly detection and the vital characteristics of associated machine learning algorithms. This paper begins with the explanation of essential contexts and taxonomy of real-time big data processing, anomalous detection, and machine learning algorithms, followed by the review of big data processing technologies. Finally, the identified research challenges of real-time big data processing in anomaly detection are discussed. © 2018 Elsevier Lt

    Industry 4.0: Industrial IoT Enhancement and WSN Performance Analysis

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen
    • …
    corecore