112 research outputs found

    CSI4FS - A Markerless Augmented Reality Application for Forensic Science Crime Scene Investigation Training

    Get PDF
    A capstone submitted in partial fulfillment of the requirements for the degree of Doctor of Education in the College of Education at Morehead State University by Ian Levstein on April 9, 2018

    Augmented Reality in Forensics and Forensic Medicine - Current Status and Future Prospects

    Full text link
    Forensic investigations require a vast variety of knowledge and expertise of each specialist involved. With the increase in digitization and advanced technical possibilities, the traditional use of a computer with a screen for visualization and a mouse and keyboard for interactions has limitations, especially when visualizing the content in relation to the real world. Augmented reality (AR) can be used in such instances to support investigators in various tasks at the scene as well as later in the investigation process. In this article, we present current applications of AR in forensics and forensic medicine, the technological basics of AR, and the advantages that AR brings for forensic investigations. Furthermore, we will have a brief look at other fields of application and at future developments of AR in forensics

    Recent Developments and Future Challenges in Medical Mixed Reality

    Get PDF
    As AR technology matures, we have seen many applicationsemerge in entertainment, education and training. However, the useof AR is not yet common in medical practice, despite the great po-tential of this technology to help not only learning and training inmedicine, but also in assisting diagnosis and surgical guidance. Inthis paper, we present recent trends in the use of AR across all med-ical specialties and identify challenges that must be overcome tonarrow the gap between academic research and practical use of ARin medicine. A database of 1403 relevant research papers publishedover the last two decades has been reviewed by using a novel re-search trend analysis method based on text mining algorithm. Wesemantically identified 10 topics including varies of technologiesand applications based on the non-biased and in-personal cluster-ing results from the Latent Dirichlet Allocatio (LDA) model andanalysed the trend of each topic from 1995 to 2015. The statisticresults reveal a taxonomy that can best describes the developmentof the medical AR research during the two decades. And the trendanalysis provide a higher level of view of how the taxonomy haschanged and where the focus will goes. Finally, based on the valu-able results, we provide a insightful discussion to the current limi-tations, challenges and future directions in the field. Our objectiveis to aid researchers to focus on the application areas in medicalAR that are most needed, as well as providing medical practitioners with latest technology advancements

    INTEGRASI SIMULASI DALAM AUGMENTED REALITY PADA SISTEM PERNAPASAN MANUSIA

    Get PDF
    Sistem pernapasan adalah proses mengambil oksigen, melepaskan CO2 dan menggunakan energi yang dihasilkan. Sistem pernapasan terdiri dari rongga hidung, faring, laring, trakea, cabang bronkial, dan paru-paru. Sistem pernapsan pada manusia dapat dipelajari secara langsung dan tidak langsung. Namun, sumber belajar ini kurang menarik dan kurang interaktif. Oleh karena itu teknologi Augmented reality (AR) adalah solusi yang tepat untuk mengatasi masalah ini. Penelitian ini bertujuan untuk membuat aplikasi menggunakan teknologi augmented reality Tracking Markerkess Based dengan mengintegrasikan simulasi pernaapasan dengan animasi 3d. Sehingga memanfaatkan fitur kamera pada perangkat smartphone untuk mendeteksi permukaan datar, simuali animasi 3D akan muncul. Augmented reality adalah penggabungan suatu objek yang ada di dunia nyata (virtual) ke duania nyata dalam bentuk 2D atau 3D yang dapat dilihat dan didengar secara real time. Metode yang digunakan dalam penelitian ini adalah Markerless Based Tracking. Aplikasi integrase simulai dalam system pernapasan manusia augmented reality dapat digunakan oelh siswa, mahasiswa, generasi milenial dan masyarakat umum, sehingga memanfaatkan fitur kamera pada perangkat smartphone untuk mendeteksi permukaan data, simulasi animasi 3D akan muncul. Aplikasi ini akan berjalan pada platform mobile Android 7.0 (Nougeat) dan mendukung ArCore dengan kapasitas aplikasi 36,4MB

    The HoloLens in Medicine: A systematic Review and Taxonomy

    Full text link
    The HoloLens (Microsoft Corp., Redmond, WA), a head-worn, optically see-through augmented reality display, is the main player in the recent boost in medical augmented reality research. In medical settings, the HoloLens enables the physician to obtain immediate insight into patient information, directly overlaid with their view of the clinical scenario, the medical student to gain a better understanding of complex anatomies or procedures, and even the patient to execute therapeutic tasks with improved, immersive guidance. In this systematic review, we provide a comprehensive overview of the usage of the first-generation HoloLens within the medical domain, from its release in March 2016, until the year of 2021, were attention is shifting towards it's successor, the HoloLens 2. We identified 171 relevant publications through a systematic search of the PubMed and Scopus databases. We analyze these publications in regard to their intended use case, technical methodology for registration and tracking, data sources, visualization as well as validation and evaluation. We find that, although the feasibility of using the HoloLens in various medical scenarios has been shown, increased efforts in the areas of precision, reliability, usability, workflow and perception are necessary to establish AR in clinical practice.Comment: 35 pages, 11 figure

    The 2010 Horizon report

    Get PDF
    Titre de l'écran-titre (visionné le 22 mars 2010

    Odontology & artificial intelligence

    Get PDF
    Neste trabalho avaliam-se os trĂȘs fatores que fizeram da inteligĂȘncia artificial uma tecnologia essencial hoje em dia, nomeadamente para a odontologia: o desempenho do computador, Big Data e avanços algorĂ­tmicos. Esta revisĂŁo da literatura avaliou todos os artigos publicados na PubMed atĂ© Abril de 2019 sobre inteligĂȘncia artificial e odontologia. Ajudado com inteligĂȘncia artificial, este artigo analisou 1511 artigos. Uma ĂĄrvore de decisĂŁo (If/Then) foi executada para selecionar os artigos mais relevantes (217), e um algoritmo de cluster k-means para resumir e identificar oportunidades de inovação. O autor discute os artigos mais interessantes revistos e compara o que foi feito em inovação durante o International Dentistry Show, 2019 em ColĂłnia. Concluiu, assim, de forma crĂ­tica que hĂĄ uma lacuna entre tecnologia e aplicação clĂ­nica desta, sendo que a inteligĂȘncia artificial fornecida pela indĂșstria de hoje pode ser considerada um atraso para o clĂ­nico de amanhĂŁ, indicando-se um possĂ­vel rumo para a aplicação clĂ­nica da inteligĂȘncia artificial.There are three factors that have made artificial intelligence (AI) an essential technology today: the computer performance, Big Data and algorithmic advances. This study reviews the literature on AI and Odontology based on articles retrieved from PubMed. With the help of AI, this article analyses a large number of articles (a total of 1511). A decision tree (If/Then) was run to select the 217 most relevant articles-. Ak-means cluster algorithm was then used to summarize and identify innovation opportunities. The author discusses the most interesting articles on AI research and compares them to the innovation presented during the International Dentistry Show 2019 in Cologne. Three technologies available now are evaluated and three suggested options are been developed. The author concludes that AI provided by the industry today is a hold-up for the praticioner of tomorrow. The author gives his opinion on how to use AI for the profit of patients

    Augmented reality in open surgery

    Get PDF
    Augmented reality (AR) has been successfully providing surgeons an extensive visual information of surgical anatomy to assist them throughout the procedure. AR allows surgeons to view surgical field through the superimposed 3D virtual model of anatomical details. However, open surgery presents new challenges. This study provides a comprehensive overview of the available literature regarding the use of AR in open surgery, both in clinical and simulated settings. In this way, we aim to analyze the current trends and solutions to help developers and end/users discuss and understand benefits and shortcomings of these systems in open surgery. We performed a PubMed search of the available literature updated to January 2018 using the terms (1) “augmented reality” AND “open surgery”, (2) “augmented reality” AND “surgery” NOT “laparoscopic” NOT “laparoscope” NOT “robotic”, (3) “mixed reality” AND “open surgery”, (4) “mixed reality” AND “surgery” NOT “laparoscopic” NOT “laparoscope” NOT “robotic”. The aspects evaluated were the following: real data source, virtual data source, visualization processing modality, tracking modality, registration technique, and AR display type. The initial search yielded 502 studies. After removing the duplicates and by reading abstracts, a total of 13 relevant studies were chosen. In 1 out of 13 studies, in vitro experiments were performed, while the rest of the studies were carried out in a clinical setting including pancreatic, hepatobiliary, and urogenital surgeries. AR system in open surgery appears as a versatile and reliable tool in the operating room. However, some technological limitations need to be addressed before implementing it into the routine practice

    Designing and Evaluation of A Mixed Reality System for Crime Scene investigation training: A hybrid approach

    Get PDF
    Police investigation in real-life crime scenes is an essential aspect of forensic science education. However, the practicality of bringing young investigators to actual crime scenes is often hindered by the costs and challenges involved. In order to overcome these obstacles, new technologies such as mixed reality (MR) are being explored as potential solutions. MR technology offers an interactive and cost-effective way to simulate real-life crime scenes, providing a valuable training experience for young investigators. This paper presents a novel design of a MR system using Microsoft HoloLens 2.0, which is tailored to work in a spatial 3D scanned and reconstructed crime scene using FARO point cloud 3D scanner X130 blended with photogrammetry techniques. The system was developed through the lens of Experiential Learning Theory and designed using a participatory approach, providing a cost-effective solution to help trained Kuwaiti police officers enhance their investigative skills. In order to evaluate the system’s user experience and user interaction, the Questionnaire of User Interaction Satisfaction and User Experience Questionnaire were utilised. Forty-four young police officers evaluated the system. Police students showed positive levels of satisfaction with user interaction and overall user experience with minimal negative feedback. Female students showed higher satisfaction with the overall impression compared to male students. Based on the positive feedback regarding the system expansion, the system will be taken into the commercialisation stage in the future to be provided as an essential tool for crime scene education and investigation practices
    • 

    corecore