13 research outputs found

    Interactive maps: What we know and what we need to know

    Get PDF
    This article provides a review of the current state of science regarding cartographic interaction a complement to the traditional focus within cartography on cartographic representation. Cartographic interaction is defined as the dialog between a human and map mediated through a computing device and is essential to the research into interactive cartography geovisualization and geovisual analytics. The review is structured around six fundamental questions facing a science of cartographic interaction: (1) what is cartographic interaction (e.g. digital versus analog interactions interaction versus interfaces stages of interaction interactive maps versus mapping systems versus map mash-ups); (2) why provide cartographic interaction (e.g. visual thinking geographic insight the stages of science the cartographic problematic); (3) when should cartographic interaction be provided (e.g. static versus interactive maps interface complexity the productivity paradox flexibility versus constraint work versus enabling interactions); (4) who should be provided with cartographic interaction (e.g. user-centered design user ability expertise and motivation adaptive cartography and geocollaboration); (5) where should cartographic interaction be provided (e.g. input capabilities bandwidth and processing power display capabilities mobile mapping and location-based services); and (6) how should cartographic interaction be provided (e.g. interaction primitives objective-based versus operator-based versus operand-based taxonomies interface styles interface design)? The article concludes with a summary of research questions facing cartographic interaction and offers an outlook for cartography as a field of study moving forward

    Survey on geographic visual display techniques in epidemiology: Taxonomy and characterization

    Get PDF
    Many works have been done on the topic of Geographic Visual Display with different objectives and approaches. There are studies to compare the traditional cartography techniques (the traditional term of Geographic Visual Display (GVD) without Human-Computer Interaction (HCI)) to Modern GIS which are also known as Geo-visualization, some literature differentiates and highlight the commonalities of features and architectures of different Geographic Visual Display tools (from layers and clusters to dot and color and more). Furthermore, with the existence of more advanced tools which support data exploration, few tasks are done to evaluate how those tools are used to handle complex and multivariate spatial-temporal data. Several test on usability and interactivity of tools toward user's needs or preferences, some even develop frameworks that address user's concern in a wide array of tasks, and others prove how these tools are able to stimulate the visual thought process and help in decision making or event prediction amongst decision-makers. This paper surveyed and categorized these research articles into 2 categories: Traditional Cartography (TC) and Geo-visualization (G). This paper will classify each category by their techniques and tasks that contribute to the significance of data representation in Geographic Visual Display and develop perspectives of each area and evaluating trends of Geographic Visual Display Techniques. Suggestions and ideas on what mechanisms can be used to improve and diversify Geographic Visual Display Techniques are provided at the end of this survey

    A human factors perspective on volunteered geographic information

    Get PDF
    This thesis takes a multidisciplinary approach to understanding the unique abilities of Volunteered Geographic Information (VGI) to enhance the utility of online mashups in ways not achievable with Professional Geographic Information (PGI). The key issues currently limiting the use of successful of VGI are the concern for quality, accuracy and value of the information, as well as the polarisation and bias of views within the user community. This thesis reviews different theoretical approaches in Human Factors, Geography, Information Science and Computer Science to help understand the notion of user judgements relative to VGI within an online environment (Chapter 2). Research methods relevant to a human factors investigation are also discussed (Chapter 3). (Chapter 5) The scoping study established the fundamental insights into the terminology and nature of VGI and PGI, a range of users were engaged through a series of qualitative interviews. This led the development of a framework on VGI (Chapter 4), and comparative description of users in relation to one another through a value framework (Chapter 5). Study Two produced qualitative multi-methods investigation into how users perceive VGI and PGI in use (Chapter 6), demonstrating similarities and the unique ability for VGI to provide utility to consumers. Chapter Seven and Study Three brought insight into the specific abilities for VGI to enhance the user judgement of online information within an information relevance context (Chapter 7 and 8). In understanding the outcomes of these studies, this thesis discusses how users perceive VGI as different from PGI in terms of its benefit to consumers from a user centred design perspective (Chapter 9). In particular, the degree to which user concerns are valid, the limitation of VGI in application and its potential strengths in enriching the user experiences of consumers engaged within an information search. In conclusion, specific contributions and avenues for further work are highlighted (Chapter 10)

    European Handbook of Crowdsourced Geographic Information

    Get PDF
    This book focuses on the study of the remarkable new source of geographic information that has become available in the form of user-generated content accessible over the Internet through mobile and Web applications. The exploitation, integration and application of these sources, termed volunteered geographic information (VGI) or crowdsourced geographic information (CGI), offer scientists an unprecedented opportunity to conduct research on a variety of topics at multiple scales and for diversified objectives. The Handbook is organized in five parts, addressing the fundamental questions: What motivates citizens to provide such information in the public domain, and what factors govern/predict its validity?What methods might be used to validate such information? Can VGI be framed within the larger domain of sensor networks, in which inert and static sensors are replaced or combined by intelligent and mobile humans equipped with sensing devices? What limitations are imposed on VGI by differential access to broadband Internet, mobile phones, and other communication technologies, and by concerns over privacy? How do VGI and crowdsourcing enable innovation applications to benefit human society? Chapters examine how crowdsourcing techniques and methods, and the VGI phenomenon, have motivated a multidisciplinary research community to identify both fields of applications and quality criteria depending on the use of VGI. Besides harvesting tools and storage of these data, research has paid remarkable attention to these information resources, in an age when information and participation is one of the most important drivers of development. The collection opens questions and points to new research directions in addition to the findings that each of the authors demonstrates. Despite rapid progress in VGI research, this Handbook also shows that there are technical, social, political and methodological challenges that require further studies and research

    Spatial and Temporal Sentiment Analysis of Twitter data

    Get PDF
    The public have used Twitter world wide for expressing opinions. This study focuses on spatio-temporal variation of georeferenced Tweets’ sentiment polarity, with a view to understanding how opinions evolve on Twitter over space and time and across communities of users. More specifically, the question this study tested is whether sentiment polarity on Twitter exhibits specific time-location patterns. The aim of the study is to investigate the spatial and temporal distribution of georeferenced Twitter sentiment polarity within the area of 1 km buffer around the Curtin Bentley campus boundary in Perth, Western Australia. Tweets posted in campus were assigned into six spatial zones and four time zones. A sentiment analysis was then conducted for each zone using the sentiment analyser tool in the Starlight Visual Information System software. The Feature Manipulation Engine was employed to convert non-spatial files into spatial and temporal feature class. The spatial and temporal distribution of Twitter sentiment polarity patterns over space and time was mapped using Geographic Information Systems (GIS). Some interesting results were identified. For example, the highest percentage of positive Tweets occurred in the social science area, while science and engineering and dormitory areas had the highest percentage of negative postings. The number of negative Tweets increases in the library and science and engineering areas as the end of the semester approaches, reaching a peak around an exam period, while the percentage of negative Tweets drops at the end of the semester in the entertainment and sport and dormitory area. This study will provide some insights into understanding students and staff ’s sentiment variation on Twitter, which could be useful for university teaching and learning management

    European Handbook of Crowdsourced Geographic Information

    Get PDF
    "This book focuses on the study of the remarkable new source of geographic information that has become available in the form of user-generated content accessible over the Internet through mobile and Web applications. The exploitation, integration and application of these sources, termed volunteered geographic information (VGI) or crowdsourced geographic information (CGI), offer scientists an unprecedented opportunity to conduct research on a variety of topics at multiple scales and for diversified objectives. The Handbook is organized in five parts, addressing the fundamental questions: What motivates citizens to provide such information in the public domain, and what factors govern/predict its validity?What methods might be used to validate such information? Can VGI be framed within the larger domain of sensor networks, in which inert and static sensors are replaced or combined by intelligent and mobile humans equipped with sensing devices? What limitations are imposed on VGI by differential access to broadband Internet, mobile phones, and other communication technologies, and by concerns over privacy? How do VGI and crowdsourcing enable innovation applications to benefit human society? Chapters examine how crowdsourcing techniques and methods, and the VGI phenomenon, have motivated a multidisciplinary research community to identify both fields of applications and quality criteria depending on the use of VGI. Besides harvesting tools and storage of these data, research has paid remarkable attention to these information resources, in an age when information and participation is one of the most important drivers of development. The collection opens questions and points to new research directions in addition to the findings that each of the authors demonstrates. Despite rapid progress in VGI research, this Handbook also shows that there are technical, social, political and methodological challenges that require further studies and research.

    A Pattern Approach to Examine the Design Space of Spatiotemporal Visualization

    Get PDF
    Pattern language has been widely used in the development of visualization systems. This dissertation applies a pattern language approach to explore the design space of spatiotemporal visualization. The study provides a framework for both designers and novices to communicate, develop, evaluate, and share spatiotemporal visualization design on an abstract level. The touchstone of the work is a pattern language consisting of fifteen design patterns and four categories. In order to validate the design patterns, the researcher created two visualization systems with this framework in mind. The first system displayed the daily routine of human beings via a polygon-based visualization. The second system showed the spatiotemporal patterns of co-occurring hashtags with a spiral map, sunburst diagram, and small multiples. The evaluation results demonstrated the effectiveness of the proposed design patterns to guide design thinking and create novel visualization practices

    Drones and Geographical Information Technologies in Agroecology and Organic Farming

    Get PDF
    Although organic farming and agroecology are normally not associated with the use of new technologies, it’s rapid growth, new technologies are being adopted to mitigate environmental impacts of intensive production implemented with external material and energy inputs. GPS, satellite images, GIS, drones, help conventional farming in precision supply of water, pesticides, fertilizers. Prescription maps define the right place and moment for interventions of machinery fleets. Yield goal remains the key objective, integrating a more efficient use or resources toward an economic-environmental sustainability. Technological smart farming allows extractive agriculture entering the sustainability era. Societies that practice agroecology through the development of human-environmental co-evolutionary systems represent a solid model of sustainability. These systems are characterized by high-quality agroecosystems and landscapes, social inclusion, and viable economies. This book explores the challenges posed by the new geographic information technologies in agroecology and organic farming. It discusses the differences among technology-laden conventional farming systems and the role of technologies in strengthening the potential of agroecology. The first part reviews the new tools offered by geographic information technologies to farmers and people. The second part provides case studies of most promising application of technologies in organic farming and agroecology: the diffusion of hyperspectral imagery, the role of positioning systems, the integration of drones with satellite imagery. The third part of the book, explores the role of agroecology using a multiscale approach from the farm to the landscape level. This section explores the potential of Geodesign in promoting alliances between farmers and people, and strengthening food networks, whether through proximity urban farming or asserting land rights in remote areas in the spirit of agroecological transition. The Open Access version of this book, available at www.taylorfrancis.com, has been made available under a Creative Commons 4.0 license
    corecore