3 research outputs found

    Mobile Robot Lab Project to Introduce Engineering Students to Fault Diagnosis in Mechatronic Systems

    Get PDF
    This document is a self-archiving copy of the accepted version of the paper. Please find the final published version in IEEEXplore: http://dx.doi.org/10.1109/TE.2014.2358551This paper proposes lab work for learning fault detection and diagnosis (FDD) in mechatronic systems. These skills are important for engineering education because FDD is a key capability of competitive processes and products. The intended outcome of the lab work is that students become aware of the importance of faulty conditions and learn to design FDD strategies for a real system. To this end, the paper proposes a lab project where students are requested to develop a discrete event dynamic system (DEDS) diagnosis to cope with two faulty conditions in an autonomous mobile robot task. A sample solution is discussed for LEGO Mindstorms NXT robots with LabVIEW. This innovative practice is relevant to higher education engineering courses related to mechatronics, robotics, or DEDS. Results are also given of the application of this strategy as part of a postgraduate course on fault-tolerant mechatronic systems.This work was supported in part by the Spanish CICYT under Project DPI2011-22443

    The Design And Vlsi Implementation Of Digital Arithmatic Processors - A Case Study Of A Generalized Pipeline Cellular Array

    Get PDF
    A generalized pipeline array appeared in IEEE transaction in 1974. The array appeared in a few textbooks on computer arithmetic. From time to time, a number of papers appeared which reflected the modifications of this array. The objective of this thesis is to present the design and VLSI implementation of this array, which can add, subtract, multiply, divide, square and square root of binary numbers. In this thesis, we suggest a step-by-step procedure by which the design can be sent to MOSIS and to get the fabricated chip back. The array has been extended from 5 rows to 7 rows so that the extended operations can be performed. In particular, a procedure is developed by which the design and the implementation methodologies are suitable for 40 pin and 500 nm technologies. An algorithm has been developed by which one can predict and advance the maximum size and performance of the array. In addition, to increase data processing throughput, the extension of pipelining is conducted based on the original design. It is hoped that the design and implementation done here will go a long way in the development of advanced processors

    Design of teaching tools focused on control systems with virtual instruments

    Get PDF
    [ES] En este artículo se describe el diseño de tres herramientas didácticas enfocadas al aprendizaje de sistemas de control implementadas en el software de instrumentación virtual LabVIEW. Estas herramientas están dirigidas al análisis de estabilidad en sistemas de control, el diseño de compensadores utilizando la técnica del lugar geométrico de las raíces y el diseño de compensadores utilizando la técnica de respuesta en frecuencia con trazas de Bode. Cada una de estas herramientas didácticas cuenta con una interfaz gráfica amigable con el usuario. La ventaja de estas herramientas didácticas es que incluyen opciones para realizar simulación en las áreas de control que software especializado no tiene.[EN] This paper describes the design of three didactic tools focused on learning of control systems implemented in LabVIEW virtual instruments software. These tools are dedicated to stability analysis in control systems, compensator design using root locus approach and Bode diagrams in the frequency domain. Each of them has a friendly interface with the user. The advantage of these didactic tools is the several options to simulate some characteristics referent to control in contrast with others teaching tools.Martínez, J.; Padilla, A.; Rodríguez, E.; Jiménez, A.; Orozco, H. (2017). Diseño de Herramientas Didácticas Enfocadas al Aprendizaje de Sistemas de Control Utilizando Instrumentación Virtual. Revista Iberoamericana de Automática e Informática industrial. 14(4):424-433. https://doi.org/10.1016/j.riai.2017.03.003OJS424433144Aissou S., Rekioua D., Mezzai N., Rekioua T., Bacha S., 2015. Modeling and control of hybrid photovoltaic wind power system with battery storage. Energy Conversion and Management 89, 615-625. DOI: 10.1016/j.enconman.2014.10.034Armstrong S., Glavin M., Hurley W., 2008. Comparison of battery charging algorithms for standalone photovoltaic systems. IEEE Power Electronics Specialists Conference, 1469-1475. DOI: 10.1109/PESC.2008.4592143Balamuralithara B., Woods P., 2009. Virtual laboratories in engineering education: The simulation lab and remote lab. Computer Applications in Engineering Education 17(1), 108-118. DOI: 10.1002/cae.20186Bareno C., 2011. Teching/Learning Methods for Embedded Systems Using Copyleft Hardware. IEEE Latin America Transactions 9(4), 503-509. DOI: 10.1109/TLA.2011.5993735Chaos D., Chacón J., Lopez J., Dormido S., 2013. Virtual and remote robotic laboratory using EJS, MATLAB and LabVIEW. Sensors 13(2), 2595- 2612. DOI: 10.3390/s130202595Dorin B., Dumitru C., 2008. Photovoltaic laboratory for study of renewable solar energy. 43rd International Universities Power Engineering Conference, 1-5. DOI: 10.1109/UPEC.2008.4651577Ferreira A., Velosa Z., 2007. Experiencias y reflexiones sobre la enseñanza de la Electrónica en tiempos de grandes cambios científicos, tecnológicos y de globalización. IEEE Latin America Transactions 5(1), 62-69.Gomez A., Goy M., Herrera M., 2013. Design, implementation and evaluation of a FPGA embedded digital systems course at the university level. IEEE Latin America Transactions 11(1), 137-142. DOI: 10.1109/TLA.2013.6502792Gomez J., Mandow A., Fernandez J., García A., 2011. Using LEGO NXT mobile robots with LabVIEW for undergraduate courses on mechatronics. IEEE Transactions on Education 54(1), 41-47. DOI: 10.1109/TE.2010.2043359Gomez J., Mandow A., Fernández J., García A., 2015. Mobile Robot Lab Project to Introduce Engineering Students to Fault Diagnosis in Mechatronic Systems. IEEE Transactions on Education 58(3), 187-193. DOI: 10.1109/TE.2014.2358551Jiménez J., Soto F., De Jódar E., Villarejo J., Roca J., 2005. A new approach for teaching power electronics converter experiments. IEEE Transactions on Education 48(3), 513-519. DOI: 10.1109/TE.2005.852598Karp T., Gale R., Lowe L., Medina V., Beutlich E., 2010. Generation NXT: Building young engineers with LEGOs. IEEE Transactions on Education 53(1), 80-87. DOI: 10.1109/TE.2009.2024410Kwon D., Kim H., Shim J., Lee W., 2012. Algorithmic bricks: a tangible robot programming tool for elementary school students. IEEE Transactions on Education 55(4), 474-479. DOI: 10.1109/TE.2012.2190071Kyomugisha R., Bomugisha D., Mwikirize C., 2015. A remote Solar Photovoltaic laboratory based on the iLabs Shared Architecture (ISA). 12th International Conference on Remote Engineering and Virtual Instrumentation, 56-62. DOI: 10.1109/REV.2015.7087263Nise N., 2009a. Sistema de Control para Ingeniería. Editorial Patria. Tercera Edición, 329-340.Nise N., 2009b. Sistema de Control para Ingeniería. Editorial Patria. Tercera Edición, 422 - 585.Ogata K., 2010. Ingeniería de Control Moderna. Editorial Pearson. Quinta Edición, 212-218.Ordinez L., Alimenti O., 2013. A Constructivist Approach for Teaching Embedded Systems. IEEE Latin America Transactions 11(1), 572-578.Rasheduzzaman M., Chowdhury B., Bhaskara S., 2014. Converting an old machines lab into a functioning power network with a microgrid for education. IEEE Transactions on Power Systems 29(4), 1952-1962. DOI: 10.1109/TPWRS.2014.2304537Rodriguez J., Herrera G., Rivas E., 2011. Adjustable speed drive project for teaching a servo systems course laboratory. IEEE Transactions on Education 54(4), 657-666. DOI: 10.1109/TE.2011.2106213Santos C., Figueroa H., 2015. Free Visual FDTD 2D Simulator to Support the Telecommunication Teaching-Learning Process. IEEE Latin America Transactions 13(3), 818-824. DOI: 10.1109/TLA.2015.7069110Vasco A., Amaral M., Martins N., Bartholo V., 2011. Learning Objects to Suport the Teaching of Science. IEEE Latin America Transactions 9(3), 376-383. DOI: 10.1109/TLA.2011.5893787Zhan W., Porter J., Morgan J., 2014. Experiential learning of digital communication using LabVIEW. IEEE Transactions on Education 57(1), 34-41. DOI: 10.1109/TE.2013.226405
    corecore