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PREFACE 

The design and implementation of arithmetic processors is taken up in this thesis. As 

a case study, a generalized pipeline array is discussed. A generalized pipeline array 

appeared in IEEE transaction in 1974. The array appeared in a few textbooks on 

computer arithmetic. From time to time, a number of papers appeared which reflected the 

modifications of this array. The objective of this thesis is to present the design and VLSI 

implementation of arithmetic processors. As a case study the design and VLSI 

implementation of a generalized pipeline cellular array is taken up in this thesis. This 

array can add, subtract, multiply, divide, square and square root of binary numbers. In this 

thesis, we suggest a step-by-step procedure by which the design can be sent to MOSIS 

and to get the fabricated chip back. The array has been extended from 5 rows to 7 rows so 

that the extended operations can be performed. In particular, a procedure is developed by 

which the design and the implementation methodologies are suitable for 40 pin and 500 

nm technologies. An algorithm has been developed by which one can predict and meet 

the requirements of constrains like chip area. In order to increase data processing 

throughput, the extension of pipelining is conducted. It is hoped that the design and 

implementation done here will go a long way in the development of advanced arithmetic 

processors. 
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CHAPTER 1 INTRODUCTION  

There has always been interest in the design of new digital systems and processors. 

Several authors have been proposing from time to time advanced adders, multipliers, etc. 

as these are basic elements of computation. In order to improve speed and accuracy, 

different authors have been suggesting algorithms for better computation. A generalized 

pipeline array first appeared in IEEE Transaction on Computers in 1974 [1]. This array 

can perform various arithmetic operations such as add, subtract, multiply, divide, square 

and square root. The array also was introduced in a number of textbooks of pipeline 

architectures such as [2] [3] [4] and [5]. Agrawal [6] [7] also extended this array in a 

number of papers. Papers such as [8] also extended this design as binary processors 

suitable for optical processing. Singh et al [9] presented the VLSI implementation of this 

array. More recent studies such as [10], [11], [12] and [13] also discuss the designs and 

applications of arithmetic units in processors. The objective of this thesis is to present the 

various design considerations and VLSI implementation of this array. In this thesis, we 

present a step-by-step procedure by which the array can be implemented as a VLSI chip. 

The thesis gives an approach by which the design can be extended to higher number of 

bits for various operations. The thesis also gives an algorithm by which the limits of the 

design such as memory, chip area, input/output pins and acceptable delays are designed. 

In addition, to increase data processing throughput, the array is extended using pipelining 

based on the original design, which is discussed in this thesis. The FPGA implementation 

of the array is discussed and simulation results are included. 
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Introduction to Arithmetic Processors 

The appearance of low-cost computers on integrated circuits has revolutionized 

modern society. Nowadays people use general-purpose processors in computers are used 

for their daily computational tasks such as text processing, multimedia streaming, and 

online communication. In addition, many more microprocessors are now a critical part of 

embedded systems, providing digital enhancement for a kinds of objects ranging from 

appliances to automobiles to cellphones and industrial control systems. 

The main use of the first microprocessors emerged in the beginning of 1970s were 

for digital calculators, capable of performing 4-bit arithmetic calculations. Other systems 

followed soon after used various kinds of microprocessors with very few bits such as 

4-bit and 8-bit, in applications such as terminals, printers, and various kinds of 

automation systems. Figure 1 shows the micro-architecture of a typical example of 

general-purpose microprocessors. This figure from [44] is reproduced here as a ready 

reference. 

In addition to general-purpose microprocessors, several specialized processing 

devices include special architecture are proposed with enhanced arithmetic units to 

support various special-purpose applications for data processing. For example digital 

signal processors (DSP, as shown in Figure 2 [44]) usually include specialized arithmetic 

unit for signal processing. Another example is the graphics processing units (GPU), 

which also include special arithmetic units different from general-purpose 

microprocessors which are used for single instruction, multiple data (SIMD) applications 

such as vector processing. 
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Figure 1: Intel 8087 microarchitecture [44]. 
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Figure 2: DSP chip from Texas Instruments [44] 
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Current Designs in Arithmetic Units 

Arithmetic processors, or arithmetic logic units (ALU) including inside a processor, 

is a digital circuit that perform various arithmetic. ALUs are the central building blocks of 

microprocessors, including general-purpose ones and special-purpose ones, where the 

actual computation is performed. 

 Before introducing the arithmetic processor called generalized pipeline array, 

several typical designs of arithmetic processors or arithmetic units are introduced first as 

case studies. They are TI 8847, MIPS R3010 and Weitek 3364. 

The TI 8847 (as shown in Figure 3), is a high-speed, double-precision floating point 

and integer arithmetic processor from Texas Instruments [14]. 



6 

 

 

 
Figure 3: TI 8847 [44] 
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The MIPS R3010 (as shown in Figure 4) is an arithmetic co-processor for the MIPS 

R3000 series RISC processors. R3000 FPU can perform various arithmetic operations 

such as conversion with single or double-precision numbers.. 
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Figure 4: MIPS R3010 [44] 
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The Weitek 3364 (as shown in Figure 5) 64-bit arithmetic unit was designed for 

high-speed operations in a pipelined environment [45]. 
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Figure 5: Weitek 3364 [44] 
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The arithmetic processor which is called generalized pipeline cellular array which is 

described in the thesis and upon which various extensions are made later is introduced 

here briefly. This arithmetic processor consists an array made up of 2 kinds of cells: 

control cells and arithmetic cells. Once connected together, it can perform various kinds 

of arithmetic operations such as add, subtract, multiply, divide, square and square root. 

Compared to other commercial products introduced earlier, this design has several 

advantages. First, it can achieve relative high performance with low cost given the limited 

design constrains. Second, it’s easily expandable, which means the design can be further 

expanded easily with just attaching more well-defined modules together with existing 

modules instead of starting over, when a better technology is available. In addition, these 

well-defined modules share the same level complexity, which means having almost the 

same delays. In addition, each stage doesn’t depend on each other. These features make 

this design suitable for pipelining. Finally, due to its low complexity, it can easily achieve 

a fast throughput compared to other designs. 

Table 1 shows the comparison between the generalized pipeline cellular array 

(extended version in this thesis) and the above other 3 arithmetic processors. 
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Table 1: Comparison between the generalized pipeline cellular array and Other 

Arithmetic Processors 

Technical Parameters TI 8847 

MIPS 

R3010 

Weitek 

3364 

generalized 

pipeline 

cellular array 

(Extended) 

Clock cycle time (ns) 30 40 50 70 

Size (mil2) 156,180 114,857 147,600 1255 

Transistors 180,000 75,000 165,000 5000 

Pins 207 84 168 30 

Cycles/add 2 2 2 1 

Cycles/multiplication 3 5 2 1 

Cycles/divide 11 19 17 1 

Cycles/square root 14 - 30 1 
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The generalized pipeline cellular array is introduced and extended in this thesis. In 

addition a case study for a VLSI implementation procedure is discussed. This generalized 

pipeline cellular array provides an alternative way in arithmetic processor design, in an 

environment of limited resources while achieving high performance and flexibility. These 

characteristics make it suitable for products in such applications and also suitable for 

VLSI design education. 
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Introduction to Digital VLSI Design 

The digital design is a basic subject which is taught in almost all engineering schools 

in the entire world. However, for the last several decades, the methodologies of design 

are changing. Previously in the textbooks of digital design, procedures were given in the 

form of dedicated gates such as NAND and NOR. With the advancement of time, the new 

books [15] and [16] started to introduce designs in hardware description language (HDL) 

such as Verilog and VHDL. The students can start digital logic designs in register transfer 

level (RTL) and test them on simulators and FPGA. These books usually include a 

number of examples written in HDL for basic components such as adders, multiplexers, 

etc. However, most of them don't cover the procedure for VLSI design. There are books 

of another type which only stress on the topic of VLSI design, such as [17] and [18]. 

Although the contents of these books are thorough and comprehensive, they only stress 

on theory and fail to provide a hands-on procedure for VLSI design. There are also 

reading materials provided by the software vendors such as [19] and [20] and software 

build-in "manpage", but these documents are more like manuals to look up than tutorials 

to follow, and usually assume readers to have prior technical experiences, which cause 

them too hard for university students to follow. Another kind of available resources for 

educational VLSI design courses are the documents and tutorials maintained either by 

online communities, such as [21] or course handouts from other educational institutes 

such as [22] and [23]. However, they are usually incomplete, inconsistent, outdated, or 

only applicable to specific environments. To the best the author's knowledge, there is only 

one book by Erik Brunvand [24] which could be used for the purpose of VLSI design for 
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students, but it has not been updated for many years and many procedures in that book 

can no longer be applied to the new environment. There are also a number of papers in 

which the ways of teaching digital design in laboratories are discussed. For example, [25], 

[26] and [27] provide many discussions on the teaching method for VLSI design in 

University laboratories. Papers such as [28] and [29] also provide many insights on this 

topic. But they all fail to provide a complete, up-to-date and easy-to-follow procedure for 

VLSI digital design, by which the students in the VLSI laboratories can use any digital 

design in HDL languages such as Verilog and turn it into a chip with commercial software 

such as Cadence, and then send it for fabrication. In this thesis, a procedure is given, as a 

case study of one example, which will be helpful for the students to take any design in 

Verilog HDL language to complete the VLSI design of a chip. 

This thesis also provides a step-by-step procedure for the VLSI design to facilitate 

digital VLSI design education, using the generalized pipeline cellular array, which is a 

high-performance easily-expandable arithmetic processor. 
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Review of Existing Implementation of generalized pipeline cellular array 

For completeness, a thesis review of the pipeline array is given first [1] [9]. The 

generalized pipeline cellular array includes of two types of essentially cells: arithmetic 

cells and control cells. The diagrams of the arithmetic cells and control cells are shown in 

Figure 6 and Figure 7 respectively. 

 
  Figure 6: Arithmetic cell. 

 
Figure 7: Control cell. 

Boolean expressions of arithmetic cell are as follows. 

S = [A ⊕ (B ⊕ X) ⊕ C] · Fi + A · Fi' (1) 

C0 = (B ⊕ X) · (A + C1) + A · C1 (2) 

D = B · C + C · Fi (3) 

E = B + C · Fi (4) 

Boolean expression of control cell is as follows. 

Fi = C0 · X + Pi · X' (5) 
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After connecting those cells in the way shown in Figure 8, it becomes a system 

which can perform various arithmetic operations, thus gaining the name “generalized 

pipeline cellular array”. The operations and parameters of this pipeline array is 

summarized in Table 2. Based on these information, various arithmetic operations can be 

performed once the pipeline array is built. 

Table 2: Operations of the pipeline array. 

Operation 
Input Output 

X P C B A F S 

Square 0 operand 0100000 0011111 all 0 
don't 

care 
result 

Square Root 1 all 0 0100000 0011111 
operan

d 
result 

don't 

care 

Multiplication 0 
multiplie

r 

multiplican

d 
B = C all 0 

don't 

care 
result 

Division 1 all 0 divisor B = C 
dividen

d 
result 

don't 

care 
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Figure 8: Organization of the pipeline array. 
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Arrangement of the Thesis 

The organization of this thesis is as follows. Chapter 2 extends the original 5-row 

design of the pipeline array to a 7-row design to illustrate the way of extending the 

pipeline array. Chapter 3 discusses the design constrains met in the process of the VLSI 

implementation of the pipeline array, and an algorithm which can be incorporated in the 

design process to meet the design constrains. Chapter 4 discusses the extension of 

pipelining in order to increase the pipeline array's throughput. Chapter 5 summarizes and 

concludes this thesis. 
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Conclusion 

This chapter introduces the concept of arithmetic processors, and then several current 

commercial designs. It introduces the generalized pipeline cellular array and comparisons 

are made against other arithmetic processors. This chapter introduces the concept of 

VLSI procedure. A brief review of the existing design of the generalized pipeline cellular 

array is discussed. The review of arithmetic processors and a generalized cellular array 

will help in the better design of advanced arithmetic processors and their VLSI 

implementation. 
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CHAPTER 2 EXTENSION OF THE PIPELINE ARRAY 

Introduction 

The original design of pipeline array only contains 5 rows of pipeline stages, which 

limits the number of input or output pins. This fact limits the accuracy of the pipeline 

array. Due to the advancement of VLSI technology, it's possible to put more resources on 

a single chip. Hence higher speed and accuracy can be achieved by extending the pipeline 

array. 

The design and implementation of digital systems is taken up in this thesis. As a case 

study, the extension of the number of rows of the original generalized pipeline array is 

discussed. The generalized pipeline cellular array is extended such that it provides an 

alternative way in arithmetic processor design, in an environment of limited resources 

while achieving high performance and flexibility. These characteristics make it also 

suitable for being used as a case study in digital VLSI design education. 
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Design 

Based on the original design of 5 rows as shown in Figure 9, more rows can be added 

to increase the number of bits upon which can be computed, to achieve higher speed and 

accuracy. For example, the pipeline array is extended to 7 rows as shown in Figure 10, as 

additional cells are added in the shaded area.  

Once the additional cells are added and connected together, the original design of 

pipeline array is extended. Notice that the design here only serves as an illustration of the 

way of extending the pipeline array. In theory, any number of rows can be added to the 

pipeline array as long as the design can meet the area and timing budget. 

The behavior Verilog code for this design is listed in the Appendix. 
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Figure 9: Pipeline array with 7 rows. 



25 

 

 
Figure 10: Place and route result on FPGA. 
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Implementation 

In this section, a step-by-step procedure for VLSI digital design is given, for the 

7-row implementation of the pipeline array. 

There are many fabrication technologies available nowadays, from various 

fabrication facilities such as GlobalFoundries and TSMC, in technologies such as 14 nm, 

28 nm, 40 nm, 65 nm, 0.13 µm and 0.18 µm and so on [30]. Since we use the MOSIS 

Educational Program (MEP) for free fabrication service, which limits us to use the ON 

Semi 0.50 µm CMOS (C5N) technology [30], C5N is used in this procedure. However, 

the general procedure is the same for other technologies. There are many computer aided 

design (CAD) software available for VLSI design, such as Cadence and Synopsys. This 

procedure uses Cadence Encounter Digital Implementation Systems 14.00, Cadence 

Virtuoso Design Environment 6.15 along with NCSU CDK 1.6.0 [21], UofU Technology 

Library and UofU Standard Cell Library [24].  

This procedure consists of 3 parts, each of which represents one major step for the 

VLSI design. They are logic synthesis, place and route and chip assembly respectively, 

which are introduced for the rest of this section. In the end, the procedure for MOSIS 

submission is given. 
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Logic Synthesis 

In digital logic design, logic synthesis is a procedure by which a behavior-level HDL 

code describing the function of a circuit, is turned into a gate-level netlist which describes 

the implementation of a design in terms of logic gates, typically using a computer 

program called a synthesis tool. 

In this subsection, a procedure for synthesis is given. For the concision of this 

procedure, the exact meanings of commands are not further explained. These commands 

are covered by the official manuals [31]. There are other alternative RTL synthesizers 

available as well, such as Design Compiler by Synopsys. If tools other than what's 

described here are used, it's advised to refer to their respective manuals. The detailed 

procedure and codes used are included in [32]. 

1) Tools: Cadence Encounter RTL Compiler 

2) Prerequisites before This Step: 

Behavior Verilog Code (e.g. "simple.v") 

Tcl Script for RC Compiler ("rc.cmd", given in Appendix) 

NCSU CDK Library ("ncsu-cdk-1.7.0.beta/") 

UofU Technology Library ("UofU_TechLib_ami06/") 

UofU Standard Cell Library ("UofU_Digital_v1_2/") 

3) Destination Files Generated After This Step: 

Netlist Verilog Code ("nl.v") 

4) Steps: 

a) Modify rc.cmd based on the requirement (as shown in Figure 11). 
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Line 3: Change UofU standard cell library path to where it's installed. 

Line 7: Change "gpca40p.v" to the file name of Verilog code (e.g. "simple.v"). 

Line 8: Change "gpca40p" to the top-level entity name (e.g. "simple"). 

 
Figure 11: rc.cmd. 

b) Run 

$ rc -files rc.cmd 

c) Check the result (Figure 12) 

In the end, a netlist file called "nl.v" is generated containing information which 

will be used later for place and route. 

If everything goes smooth as above, continue to the next step. If anything goes wrong, 

fix it first before continuing further. 
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Figure 12: Synthesis summary generated by RC Compiler. 
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Place and Route 

"Place and route" is a stage in the process of VLSI design, in which the location to 

place all the logic elements within a generally limited amount of space and the way of all 

the wires needed to connect the logic elements are decided.  

In this section, a procedure for "place and route" is given. For the brevity of this 

procedure, the exact meanings of commands are not further explained. These commands 

are covered by the official manuals [33]. If the reader is interested in using GUI 

commands instead of TCL scripts, please refer to EDI System Menu Reference [34] and 

textbooks [24] for more information. The detailed procedure and codes used are included 

in [32]. 

1) Tools: Cadence Encounter RTL-to-GDSII System 

2) Prerequisites before This Step: 

Netlist Verilog Code ("nl.v" from the last step) 

Tcl Script for RC Compiler ("encounter.cmd", given in Appendix) 

Tcl Script for Multi-Mode Multi-Corner ("mmmc.tcl", given in Appendix) 

Synopsys Design Constraints ("typical.sdc", given in Appendix) 

NCSU CDK Library ("ncsu-cdk-1.7.0.beta/") 

UofU Technology Library ("UofU_TechLib_ami06/") 

UofU Standard Cell Library ("UofU_Digital_v1_2/") 

3) Destination Files Generated After This Step: 

Optimized Netlist Verilog Code ("nlopt.v") 

Design Exchange Format (DEF) File (e.g. "simple.def") 
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4) Steps: 

a) Modify Tcl Script for RC Compiler ("encounter.cmd", Figure 13) 

Line 10, 24: May change UofU standard cell library path to where it's installed 

Line 13, 99: Change "gpca40p" to the top-level entity name (e.g. "simple") 

 
Figure 13: encounter.cmd. 

b) Modify Tcl Script for Multi-Mode Multi-Corner ("mmmc.tcl", Figure 14) 

Line 11: May change UofU standard cell library path to where it's installed 

 
Figure 14: mmmc.tcl. 

c) Run 

$ encounter -init encounter.cmd 

d) Check the result 

It should run all the way to the final step without any errors if the above steps are 



32 

 

followed correctly, as shown in Figure 15 and Figure 16. In the end, a DEF file (e.g. 

"simple.def") for the chip layout (without pad frame) as well as a netlist file called 

"nlopt.v" is generated. 

 
Figure 15: Final view in Encounter. 
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Figure 16: DRC report generated by Encounter. 
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Chip Assembly 

As a requirement by AMI05 technology [35], design should be submitted along with 

pad frame. This section gives the procedure to assemble the pad frame with the chip. For 

brevity of this procedure, the exact meanings of commands are not further explained. 

These commands are covered by the official manuals [36]. Materials such as textbooks 

[24] also have many useful information for reference. The detailed procedure and codes 

used are included in [32]. 

1) Tools: 

Cadence Virtuoso Design Environment 

2) Prerequisites before this step: 

Optimized Netlist Verilog Code ("nlopt.v" from last step) 

DEF File (e.g. "simple.def" from last step) 

NCSU CDK Library ("ncsu-cdk-1.7.0.beta/") 

UofU Technology Library ("UofU_TechLib_ami06/") 

UofU Standard Cell Library ("UofU_Digital_v1_2/") 

3) Destination Files Generated After This Step: 

GDSII Stream File (e.g. "simple_final.gds") 

4) Steps: 

a) Launch Cadence Virtuoso Design Environment 

$ virtuoso 

b) Create New Library (Figure 17 to Figure 20) 
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Figure 17: Create New Library with Virtuoso. 

 



36 

 

 
Figure 18: "New Library" window of Virtuoso. 
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Figure 19: "Technology File for New Library" window of Virtuoso. 

 
Figure 20: "Technology File for New Library" window of Virtuoso. 
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c) Import Optimized Netlist Verilog Code ("nlopt.v" from last step) and DEF 

File (e.g. "simple.def" from last step). As shown in Figure 21 to Figure 25. 

 
Figure 21: Import netlist with Virtuoso. 
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Figure 22: "Verilog In" window of Virtuoso. 
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Figure 23: Import DEF with Virtuoso. 

 
Figure 24: "DEF In" window of Virtuoso. 
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Figure 25: "DEF In" successful translation prompt. 

Once both layouts (from DEF) and schematic (from netlist in this section) are 

generated, DRC, Extract and LVS should be performed, as shown in Figure 26 to 34. 

 
Figure 26: Start DRC from Virtuoso Layout Suite. 
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Figure 27: "DRC" window of Virtuoso. 

 
Figure 28: Report of successful DRC. 
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Figure 29: Start Extract from Virtuoso Layout Suite. 
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Figure 30: "Extractor" window of Virtuoso. 

 
Figure 31: Report of successful Extract. 
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Figure 32: Start LVS from Virtuoso Layout Suite. 
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Figure 33: "Artist LVS" window of Virtuoso. 

 
Figure 34: "Artist LVS" successful LVS prompt. 
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d) Customize Pad Frame (Figure 35 to 41) 

 
Figure 35: Copy pad frame in Virtuoso. 
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Figure 36: "Copy Cell" window of Virtuoso. 
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Figure 37: Initial schematic view of the pad frame. 
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Modify the used pads in the pad frame (both schematic and layout), from "pad_nc" to 

"pad_in" or "pad_out". 

 
Figure 38: Add input pads in schematic. 
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Figure 39: Add output pads in schematic. 
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Figure 40: Add input pads in layout. 
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Figure 41: Add output pads in layout. 
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Add pins to pad frame (both schematic and layout). The pad frame works like a 

wraparound. The external pins of the pad frame (e.g. "Frame1_38") have the same name 

as the chip layout (e.g. "gpca40p"), and the internal pins of the pad frame connecting the 

chip layout use original names affixed by "_i" (Hence e.g. "clk" becomes "clk_i.) This 

procedure is shown in Figure 42 to Figure 55. 
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Figure 42: Add pins to the pad frame in schematic. 
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Figure 43: Add pins to the pad frame schematic (detailed view). 
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Same for the layout by tapping the ports with pins 

 
Figure 44: "Create Shape Pin" Window of Virtuoso. 
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Figure 45: Add pins to the pad frame layout (detailed view). 
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DRC, Extract, LVS to make sure no rule is violated. 

 
Figure 46: Start DRC from Virtuoso Layout Suite. 
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Figure 47: Report of successful DRC. 

 
Figure 48: Start Extract from Virtuoso Layout Suite. 
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Figure 49: Report of successful Extract. 

 
Figure 50: Start LVS from Virtuoso Layout Suite. 
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Figure 51: "Artist LVS" window of Virtuoso. 

 
Figure 52: "Artist LVS" successful LVS prompt. 
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Generate symbol for the pad frame. 

 
Figure 53: Create symbol view from schematic view. 
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Figure 54: "CellView from CellView" window of Virtuoso. 

 
Figure 55: Final symbol view of the pad frame. 
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e) Final Chip Assembly (Add Pad Frame) 

With both the core of the chip ("simple") and the pad frame (modified 

"Frame1_38") are ready, creating a new cell to put them together. This procedure is 

shown in Figure 56 to 72. 

Create a new Cell View (I call it "gpca40p_final"). 

 
Figure 56: Create new "Cell View" from Virtuoso Layout Suite 
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Figure 57: "New File" window of Virtuoso. 

Instantiate both the core of the chip ("gpca40p") and the pad frame (modified 

"Frame1_38") (by pressing "I" to instantiate instances). 
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Figure 58: Create the final schematic view. 
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Figure 59: Routed schematic view. 
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Then add the pins. 

 
Figure 60: "Add Pins" window of Virtuoso. 
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Final schematic view is shown below. 

 
Figure 61: Final schematic view. 
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Then create the final layout view from the schematic. 

 
Figure 62: "Startup Option" window of Virtuoso. 

 
Figure 63: "Startup Option" window of Virtuoso. 
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In the new empty layout view 

 
Figure 64: Start "Generate Layout" of Virtuoso. 
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Figure 65: "Generate Layout" window of Virtuoso. 
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Then place the pad frame ("Frame1_38") inside the "PR Boundary", and the core of 

the chip ("gpca40p") inside the pad frame. 

 
Figure 66: Component placement in Virtuoso. 
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Connect the "add!" (Pad 57) and "god!" (Pad 7) to the power ring. 

 
Figure 67: Connect the "add!" (Pad 57) and "god!" (Pad 7) to the power ring. 



76 

 

Then invoke Automatic Routing. 

 
Figure 68: "Automatic Routing" window of Virtuoso. 
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The following is the final layout. Fill the empty space with poly fills to meet 

minimum polysilicon density required by AMI05 [35]. 

 
Figure 69: Final layout in Virtuoso. 
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DRC, Extract, LVS. They should give no error or warning. 

 
Figure 70: Report of successful DRC. 

 
Figure 71: Report of successful Extract. 
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Figure 72: "Artist LVS" successful LVS prompt. 
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f) Export GDSII Stream File ("simple_final.gds") 

This procedure is shown in Figure 73 to Figure 78. This is the file to be sent for 

fabrication. 

This is the file to be sent for fabrication. 

 
Figure 73: Start "Stream Out" from Virtuoso Layout Suite. 

 
Figure 74: "Show Options" in "XStream Out" window of Virtuoso. 



81 

 

"Show Options", then tab "Layers", "Load ..." 

 
Figure 75: "Load..." in "XStream Out" window of Virtuoso. 
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Select "streamOutLayermap" then hit "Open" 

 
Figure 76: Choose file for the "XStream Out". 
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Click "Translate". 

 
Figure 77: "Translate" in "XStream Out" window of Virtuoso. 
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It should produce no error and the only warning is about "nodrc:drawing" (and a 

possible overwriting existing file warning). 

 
Figure 78: "Stream out translation complete" successful prompt. 
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Design Submission 

In this section, the procedure for MOSIS submission with the MOSIS Educational 

Program (MEP) is given as a reference. More information is available in documents from 

MOSIS [37], and adapted from [38]. 

1) Fill in "MOSIS New Project Request Form": 

Run Type: Shared IC Fabrication Run 

Design Rules: Scalable CMOS 

Technology: SCN3M_SUBM (if the second layer of poly is not used); 

SCN3ME_SUBM (if the second layer of poly is used). 

Design Name and Password 

Export Control: Standard 

Substrate: none 

Needs Library Installation: No 

IP Included: none 

Fill Authorized: Yes 

Foundry: On Semi 

Intended Disposition: Research 

Design Size X and Y: Size including pads 

Pad Count: How many pads used in the design (including signals and power) 

Quantity Packaged: 5 

Package Name: Depends on the design 

Rotation in Package: None 
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Bonding Diagram Supplier: MOSIS 

Downbond Locations: None 

Quantity Unpackaged: 0 

2) Fill in "Fabricate Form": 

Go to Project Request -> Fabricate 

Layout Transfer Method: I will upload layout via secure web form (HTTPS) 

Compression/Encryption: Uncompressed 

Generate the checksum and Count for the GDS file (Figure 79) 

Layout Status: Final 

Layout Format: GDS 

Top Structure: the name of the top-level (e.g. "simple") 

 
Figure 79: Generating checksum with GNU cksum 
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Results 

The array has been extended to 7 rows, which can achieve operations of bigger 

number. The result is summarized in Table 3. The design has been sent to MOSIS for 

fabrication. 

Table 3. Summary of the 7-row extension 

Operation Original Extended 

Multiply 7 by 5 9 by 7 

Divide 7 by 4 9 by 6 

Square 5 7 

Square root 10 14 
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Conclusion 

In this chapter, the original design of pipeline array with 5 rows is extended to 7 rows 

as a case study. By extending this array to 7 rows, one can have the arithmetic operations 

of increased number of bits. Although the extension up to 7 rows is discussed in this 

chapter, the procedure can be applied to any number of rows. We have to limit the 

number of rows so as to take into account the size of the chip to be developed. In addition, 

the VLSI implementation of such a design has been discussed and detailed procedure for 

the implementation is included. The design has been sent to MOSIS for fabrication. The 

chip will be tested once we get the fabricated chip back. The behavior Verilog code for 

this design is listed in the Appendix. 
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CHAPTER 3 DESIGN TO MEET TECHNICAL CONSTRAINS 

Introduction 

The VLSI work flow is an iterative process, which introduces problem. For example, 

if a design itself turns out requiring too much resource such as area at the end of the 

physical design phase, the entire design are to be reset and start over again, which is time 

consuming. There is no way to mitigate this issue because the actual dimension of the 

design is only known after physical design. If a method is found, such that the resource 

requirement of the design is estimated based on the contains first, then starting the design 

with this estimated information in mind, the problem incurred by this design iteration is 

much mitigated or even eliminated if the estimation algorithm is accurate enough.  

For the design of the pipeline array, traditionally at the specification phase, the 

designer picks up a number as the number of rows of the pipeline array, then continues 

the design process. Once the physical design phase is finished, the layout is checked to 

make sure that it's within constrains such as pin count and area. If the design cannot meet 

these contains, the designer then modifies the specification and start over again. For this 

VLSI implementation of the pipeline array, ideally the design can go infinitely large with 

infinite accuracy, but here are two technical constrains posed by MOSIS Educational 

Program: maximum pin count and chip area. According to the documents from MOSIS 

[30], the design should be within 1 tiny chip unit (TCU), which means the design should 

only contains 40 pins maximum and the area should be within 1500 µm by 1500 µm 

including pad frame (approximately 810000 µm2 of usable core area [24]).  

In this chapter, an algorithm is devised, such that the pin count and the chip area of 
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the pipeline can be estimated based on the number of rows, which is introduced in the 

following section. The procedure for VLSI implementation of this design is also given. 
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Design 

This algorithm is derived in the following way. 8 experimental designs of the 

pipeline array are conducted, with 1 to 8 rows respectively. The number of rows in these 

experimental designs is specifically chosen to be small enough to keep the complexity of 

the circuit low, so that they don't require much effort to design. Then data of the cost of 

these designs such as pin count and chip area are collected for further analysis to derive 

the estimation algorithm. These sample data are summarized Table 4 and illustrated in 

Figure 80 and Figure 81 respectively. 

Table 4: Summary of resource requirement of pipeline array designs. 

Number of rows Pin count chip area (µm2) gate count (standard cell) 

1 14 16330 22 

2 22 48730 64 

3 30 95515 127 

4 38 154548 207 

5 46 229781 304 

6 54 314345 418 

7 62 407462 558 

8 70 524880 697 
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Figure 80: Number of row vs. pin count. 

 
Figure 81: Number of row vs. chip area. 
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Based on this information, a statistic method called least squares [39] is used as the 

approach of cost estimation. The method of least squares is a way in regression analysis 

to the estimate solution of systems, so that the overall solution minimizes the sum of the 

squares of individual errors. The objective of least square is to adjust the parameters of a 

model function to best fit a data set. 

For pin count estimation, linear least square are used to estimate pin counts. Given 

the sample data sets, the goal is to find the relationship of the pin count (y) and the 

number of rows (x)  such that it can best fit the sample data sets. The 

calculation begins by solving the linear equations below. 

 (6) 

After substituting the variables with the sample data sets shown in Table 4, the result 

is as follows. 

 (7) 

Hence the estimation function of the relationship of the pin count (y) and the number 

of rows (x) is given below. 

 (8) 

For chip area estimation, quadratic least square are used to estimate chip area 

because area is a quadratic function of the number of rows. Given the sample data sets, 

the goal is to find the relationship of the chip area (y) and number of rows (x) 

 such that it can best fit the sample data sets. The calculation begins by 

solving the linear equations below. 
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 (9) 

Then substitute the variables with the sample data sets shown in Table 4. 

 (10) 

Hence the estimation function of the relationship of the chip area (y) and the number 

of rows (x) is given below. 

 (11) 

Due to the limitations of the MOSIS Educational Program (MEP) [30] and the 

fabrication budget allotted, the VLSI implementation should be within 1 tiny chip unit 

(TCU), which means the design should only contains 40 pins maximum and the area 

should be within 1500 µm by 1500 µm including pad frame (approximately 900 µm by 

900 µm of usable core area [24]). According to the estimation formula 11 substituting y 

equals 900 * 900: 

900 * 900  (12) 

 The positive root of the above equation equals 10.17, which estimates that the 

maximum number of rows allowed for this given area is 10.  

To solve the excessive pin count issue, multiplexers are used in the design. As 

illustrated in Table 2, for each operation, not all inputs and outputs are used. Some inputs 

and outputs are either constant or "don't care", which are not needed to be connected 

externally. Only inputs and outputs for variable signals of data are needed to be connected. 

Based on this observation, the solution of designing to fit within 40 pins is devised, as 
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illustrated in Figure 82. 

 
Figure 82: Overview of the pipeline array implementation within 40 pins. 

To achieve such an implementation, multiplexers are used as a wraparound between 

the original design and the pad frame, as illustrated in Figure 83. Based on what operation 

is to be performed indicated by signal "op", the multiplexers drives the original circuit to 

either constant signals or the desired signals of data inputs, as indicated in Table 2. These 

signals are ready to let the pipeline array circuit to operate correctly. Once the operation 

of the pipeline array is done, the results are selected by another set of multiplexers, to 

drive the data output pins. The operations of the new design are illustrated in Table 5. 

The behavior Verilog code for this design is listed in the Appendix. 



96 

 

 
Figure 83: Logic diagram (partial) of the implementation within 40 pins. 
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Table 5: Operations of the new implementation within 40 pins. 

 

Operation 

Input Output 

op din0 din1 dout 

Square 00 P don't care S 

Square Root 01 A don't care F 

Multiplication 10 B = C P S 

Division 11 A B=C F 

In order to make sure the circuit operates correctly as required, it's simulated in 

functional simulator and implemented on FPGA, to see if it ready meets the requirement. 

The functional simulator used here is called ModelSim by Mentor Graphics [40]. The 

functional simulation of this circuit is shown in Figure 84. In this simulation, all 4 

operations (namely square, square root, multiplication and division) are tested with 

random data sets. According to the result shown in Figure 84, all the results of 

calculations done by this circuit are mathematically correct, hence the circuit functions 

exactly the same as required. 
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Figure 84: Simulation result of the implementation within 40 pins. 
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A field-programmable gate array (FPGA) is an integrated circuit which can be configured 

flexibly by the designer, hence gaining the name "field-programmable" [41]. This 

functionality makes FPGA useful in the process of VLSI design. The circuit described 

here is implemented on FPGA for verification and validation before implementing in 

VLSI. Result of synthesis, place and route on FPGA with Altera Quartus II software [42] 

is shown in Figure 85 and Figure 86 respectively. Then the circuit is tested on the FPGA. 

Once the circuit is fully validated, it is ready to be implemented in VLSI. 
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Figure 85: Synthesis result of FPGA. 
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Figure 86: Place and route result (partial) on FPGA. 
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Implementation 

In this section, a step-by-step procedure for VLSI digital design is given, for the 

40-pin implementation of the pipeline array. 

There are many fabrication technologies available nowadays, from various 

fabrication facilities such as GlobalFoundries and TSMC, in technologies such as 14 nm, 

28 nm, 40 nm, 65 nm, 0.13 µm and 0.18 µm and so on [30]. Since we use the MOSIS 

Educational Program (MEP) for free fabrication service, which limits us to use the ON 

Semi 0.50 µm CMOS (C5N) technology [30], C5N is used in this procedure. However, 

the general procedure is the same for other technologies. There are many computer aided 

design (CAD) software available for VLSI design, such as Cadence and Synopsys. This 

procedure uses Cadence Encounter Digital Implementation Systems 14.00, Cadence 

Virtuoso Design Environment 6.15 along with NCSU CDK 1.6.0 [21], UofU Technology 

Library and UofU Standard Cell Library [24].  

This procedure consists of 3 parts, each of which represents one major step for the VLSI 

design. They are logic synthesis, place and route and chip assembly respectively, which 

are introduced for the rest of this section. In the end, the procedure for MOSIS 

submission is given. 
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Logic Synthesis 

In digital logic design, logic synthesis is a procedure by which a behavior-level HDL 

code describing the function of a circuit, is turned into a gate-level netlist which describes 

the implementation of a design in terms of logic gates, typically using a computer 

program called a synthesis tool. 

In this subsection, a procedure for synthesis is given. For the concision of this 

procedure, the exact meanings of commands are not further explained. These commands 

are covered by the official manuals [31]. There are other alternative RTL synthesizers 

available as well, such as Design Compile7r by Synopsys. If tools other than what's 

described here are used, it's advised to refer to their respective manuals. The detailed 

procedure and codes used are included in [32]. 

1) Tools: Cadence Encounter RTL Compiler 

2) Prerequisites before This Step: 

Behavior Verilog Code (e.g. "simple.v") 

Tcl Script for RC Compiler ("rc.cmd", given in Appendix) 

NCSU CDK Library ("ncsu-cdk-1.7.0.beta/") 

UofU Technology Library ("UofU_TechLib_ami06/") 

UofU Standard Cell Library ("UofU_Digital_v1_2/") 

3) Destination Files Generated After This Step: 

Netlist Verilog Code ("nl.v") 

4) Steps: 

a) Modify rc.cmd based on the requirement (as shown in Figure 87). 
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Line 3: Change UofU standard cell library path to where it's installed. 

Line 7: Change "gpca40p.v" to the file name of Verilog code (e.g. "simple.v"). 

Line 8: Change "gpca40p" to the top-level entity name (e.g. "simple"). 

 
Figure 87: rc.cmd. 

b) Run 

$ rc -files rc.cmd 

c) Check the result (Figure 88) 

In the end, a netlist file called "nl.v" (Figure 89) is generated containing 

information which will be used later for place and route. 

If everything goes smooth as above, continue to the next step. If anything goes wrong, 

fix it first before continuing further. 
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Figure 88: Synthesis summary generated by RC Compiler. 
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Figure 89: Synthesis summary generated by RC Compiler. 
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Place and Route 

"Place and route" is a stage in the process of VLSI design, in which the location to 

place all the logic elements within a generally limited amount of space and the way of all 

the wires needed to connect the logic elements are decided.  

In this section, a procedure for "place and route" is given. For the brevity of this 

procedure, the exact meanings of commands are not further explained. These commands 

are covered by the official manuals [33]. If the reader is interested in using GUI 

commands instead of TCL scripts, please refer to EDI System Menu Reference [34] and 

textbooks [24] for more information. The detailed procedure and codes used are included 

in [32]. 

1) Tools: Cadence Encounter RTL-to-GDSII System 

2) Prerequisites before This Step: 

Netlist Verilog Code ("nl.v" from the last step) 

Tcl Script for RC Compiler ("encounter.cmd", given in Appendix) 

Tcl Script for Multi-Mode Multi-Corner ("mmmc.tcl", given in Appendix) 

Synopsys Design Constraints ("typical.sdc", given in Appendix) 

NCSU CDK Library ("ncsu-cdk-1.7.0.beta/") 

UofU Technology Library ("UofU_TechLib_ami06/") 

UofU Standard Cell Library ("UofU_Digital_v1_2/") 

3) Destination Files Generated After This Step: 

Optimized Netlist Verilog Code ("nlopt.v") 

Design Exchange Format (DEF) File (e.g. "simple.def") 
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4) Steps: 

a) Modify Tcl Script for RC Compiler ("encounter.cmd", Figure 90) 

Line 10, 24: May change UofU standard cell library path to where it's installed 

Line 13, 99: Change "gpca40p" to the top-level entity name (e.g. "simple") 

 
Figure 90: encounter.cmd. 

b) Modify Tcl Script for Multi-Mode Multi-Corner ("mmmc.tcl", Figure 91) 

Line 11: May change UofU standard cell library path to where it's installed 

 
Figure 91: mmmc.tcl. 

c) Run 

$ encounter -init encounter.cmd 

d) Check the result 

It should run all the way to the final step without any errors if the above steps are 
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followed correctly, as shown in Figure 92 and Figure 93. In the end, a DEF file (e.g. 

"simple.def") for the chip layout (without pad frame) as well as a netlist file called 

"nlopt.v" is generated. 

 
Figure 92: Final view in Encounter. 
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Figure 93: DRC report generated by Encounter. 
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Chip Assembly 

As a requirement by AMI05 technology [35], design should be submitted along with 

pad frame. This section gives the procedure to assemble the pad frame with the chip. For 

the brevity of this procedure, the exact meanings of commands are not further explained. 

These commands are covered by the official manuals [36]. Materials such as textbooks 

[24] also have many useful information for reference. The detailed procedure and codes 

used are included in [32]. 

1) Tools: 

Cadence Virtuoso Design Environment 

2) Prerequisites before this step: 

Optimized Netlist Verilog Code ("nlopt.v" from last step) 

DEF File (e.g. "simple.def" from last step) 

NCSU CDK Library ("ncsu-cdk-1.7.0.beta/") 

UofU Technology Library ("UofU_TechLib_ami06/") 

UofU Standard Cell Library ("UofU_Digital_v1_2/") 

3) Destination Files Generated After This Step: 

GDSII Stream File (e.g. "simple_final.gds") 

4) Steps: 

a) Launch Cadence Virtuoso Design Environment 

$ virtuoso 

b) Create New Library (Figure 94 to Figure 97) 
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Figure 94: Create New Library with Virtuoso. 
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Figure 95: "New Library" window of Virtuoso. 
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Figure 96: "Technology File for New Library" window of Virtuoso. 

 
Figure 97: "Technology File for New Library" window of Virtuoso. 
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c) Import Optimized Netlist Verilog Code ("nlopt.v" from last step) and DEF 

File (e.g. "simple.def" from last step). As shown in Figure 98 to Figure 102. 

 
Figure 98: Import netlist with Virtuoso. 
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Figure 99: "Verilog In" window of Virtuoso. 
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Figure 100: Import DEF with Virtuoso. 

 
Figure 101: "DEF In" window of Virtuoso. 



118 

 

 
Figure 102: "DEF In" successful translation prompt. 

Once both layouts (from DEF) and schematic (from netlist in this section) are 

generated, DRC, Extract and LVS should be performed, as shown in Figure 103 to 111. 

 
Figure 103: Start DRC from Virtuoso Layout Suite. 
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Figure 104: "DRC" window of Virtuoso. 

 
Figure 105: Report of successful DRC. 
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Figure 106: Start Extract from Virtuoso Layout Suite. 
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Figure 107: "Extractor" window of Virtuoso. 

 
Figure 108: Report of successful Extract. 
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Figure 109: Start LVS from Virtuoso Layout Suite. 
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Figure 110: "Artist LVS" window of Virtuoso. 

 
Figure 111: "Artist LVS" successful LVS prompt. 
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d) Customize Pad Frame (Figure 112 to 132) 

 
Figure 112: Copy pad frame in Virtuoso. 
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Figure 113: "Copy Cell" window of Virtuoso. 
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Figure 114: Initial schematic view of the pad frame. 
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Modify the used pads in the pad frame (both schematic and layout), from "pad_nc" to 

"pad_in" or "pad_out". 

 
Figure 115: Add input pads in schematic. 
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Figure 116: Add output pads in schematic. 
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Figure 117: Add input pads in layout. 
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Figure 118: Add output pads in layout. 
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Add pins to pad frame (both schematic and layout). The pad frame works like a 

wraparound. The external pins of the pad frame (e.g. "Frame1_38") have the same name 

as the chip layout (e.g. "gpca40p"), and the internal pins of the pad frame connecting the 

chip layout use original names affixed by "_i" (Hence e.g. "clk" becomes "clk_i.) This 

procedure is shown in Figure 119 to Figure 132. 
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Figure 119: Add pins to the pad frame in schematic. 
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Figure 120: Add pins to the pad frame schematic (detailed view). 
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Same for the layout by tapping the ports with pins 

 
Figure 121: "Create Shape Pin" Window of Virtuoso. 
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Figure 122: Add pins to the pad frame layout (detailed view). 
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DRC, Extract, LVS to make sure no rule is violated. 

 
Figure 123: Start DRC from Virtuoso Layout Suite. 
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Figure 124: Report of successful DRC. 

 
Figure 125: Start Extract from Virtuoso Layout Suite. 
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Figure 126: Report of successful Extract. 

 
Figure 127: Start LVS from Virtuoso Layout Suite. 
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Figure 128: "Artist LVS" window of Virtuoso. 

 
Figure 129: "Artist LVS" successful LVS prompt. 
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Generate symbol for the pad frame. 

 
Figure 130: Create symbol view from schematic view. 
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Figure 131: "CellView from CellView" window of Virtuoso. 

 
Figure 132: Final symbol view of the pad frame. 
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e) Final Chip Assembly (Add Pad Frame) 

With both the core of the chip ("simple") and the pad frame (modified 

"Frame1_38") are ready, creating a new cell to put them together. This procedure is 

shown in Figure 133 to 149. 

Create a new Cell View (I call it "gpca40p_final"). 

 
Figure 133: Create new "Cell View" from Virtuoso Layout Suite 
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Figure 134: "New File" window of Virtuoso. 

Instantiate both the core of the chip ("gpca40p") and the pad frame (modified 

"Frame1_38") (by pressing "I" to instantiate instances). 
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Figure 135: Create the final schematic view. 
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Figure 136: Routed schematic view. 
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Then add the pins. 

 
Figure 137: "Add Pins" window of Virtuoso. 
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Final schematic view is shown below. 

 
Figure 138: Final schematic view. 
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Then create the final layout view from the schematic. 

 
Figure 139: "Startup Option" window of Virtuoso. 

 
Figure 140: "Startup Option" window of Virtuoso. 
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In the new empty layout view 

 
Figure 141: Start "Generate Layout" of Virtuoso. 
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Figure 142: "Generate Layout" window of Virtuoso. 
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Then place the pad frame ("Frame1_38") inside the "PR Boundary", and the core of 

the chip ("gpca40p") inside the pad frame. 

 
Figure 143: Component placement in Virtuoso. 
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Connect the "add!" (Pad 57) and "god!" (Pad 7) to the power ring. 

 
Figure 144: Connect the "add!" (Pad 57) and "god!" (Pad 7) to the power ring. 
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Then invoke Automatic Routing. 

 
Figure 145: "Automatic Routing" window of Virtuoso. 
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The following is the final layout. Fill the empty space with poly fills to meet 

minimum polysilicon density required by AMI05 [35]. 

 
Figure 146: Final layout in Virtuoso. 
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DRC, Extract, LVS. They should give no error or warning. 

 
Figure 147: Report of successful DRC. 

 
Figure 148: Report of successful Extract. 
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Figure 149: "Artist LVS" successful LVS prompt. 
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f) Export GDSII Stream File ("simple_final.gds") 

This procedure is shown in Figure 150 to Figure 155. This is the file to be sent 

for fabrication. 

This is the file to be sent for fabrication. 

 
Figure 150: Start "Stream Out" from Virtuoso Layout Suite. 

 
Figure 151: "Show Options" in "XStream Out" window of Virtuoso. 
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"Show Options", then tab "Layers", "Load ..." 

 
Figure 152: "Load..." in "XStream Out" window of Virtuoso. 
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Select "streamOutLayermap" then hit "Open" 

 
Figure 153: Choose file for the "XStream Out". 
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Click "Translate". 

 
Figure 154: "Translate" in "XStream Out" window of Virtuoso. 
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It should produce no error and the only warning is about "nodrc:drawing" (and a 

possible overwriting existing file warning). 

 
Figure 155: "Stream out translation complete" successful prompt. 
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Design Submission 

In this section, the procedure for MOSIS submission with the MOSIS Educational 

Program (MEP) is given as a reference. More information is available in documents from 

MOSIS [37], and adapted from [38]. 

1) Fill in "MOSIS New Project Request Form": 

Run Type: Shared IC Fabrication Run 

Design Rules: Scalable CMOS 

Technology: SCN3M_SUBM (if the second layer of poly is not used); 

SCN3ME_SUBM (if the second layer of poly is used). 

Design Name and Password 

Export Control: Standard 

Substrate: none 

Needs Library Installation: No 

IP Included: none 

Fill Authorized: Yes 

Foundry: On Semi 

Intended Disposition: Research 

Design Size X and Y: Size including pads 

Pad Count: How many pads used in the design (including signals and power) 

Quantity Packaged: 5 

Package Name: Depends on the design 

Rotation in Package: None 
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Bonding Diagram Supplier: MOSIS 

Downbond Locations: None 

Quantity Unpackaged: 0 

2) Fill in "Fabricate Form": 

Go to Project Request -> Fabricate 

Layout Transfer Method: I will upload layout via secure web form (HTTPS) 

Compression/Encryption: Uncompressed 

Generate the checksum and Count for the GDS file (Figure 156) 

Layout Status: Final 

Layout Format: GDS 

Top Structure: the name of the top-level (e.g. "simple") 

 
Figure 156: Generating checksum with GNU cksum 
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Results 

Using the estimation algorithm devised in this chapter, the design fully meets the 

design requirements. The result is summarized in Table 6 and Table 7 respectively. The 

design has been sent to MOSIS for fabrication. 

Table 6. Summary of operations of the extension within constrains 

Operation Original Extended 

Multiply 7 by 5 12 by 10 

Divide 7 by 4 12 by 9 

Square 5 10 

Square root 10 20 

 

Table 7. Summary of pin count of the extension within constrains 

 Original Extended 

Pin Number 86 30 
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Conclusion 

In this chapter, an algorithm is devised, such that the pin count and the chip area of 

the pipeline can be estimated based on the number of rows. The expressions for this 

estimation algorithm based on least square are also given. The graphs explaining the 

algorithm are included. These graphs help in finding the relationship between the number 

of rows and the chip area. Such algorithms will help in the development of advanced 

arithmetic processors. In addition, the VLSI implementation of such a design has been 

discussed and detailed procedure for the implementation is included. The parameters have 

been met in the design. The design has been sent to MOSIS for fabrication. The chip will 

be tested once we get the fabricated chip back. The behavior Verilog code for this design 

is listed in the Appendix. 
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CHAPTER 4 EXTENSION FOR PIPELINING 

Introduction 

The original implementation proposed by [9] does not include the implementation of 

intermediate stage registers. The signals traverse through the array. The array is purely a 

combinational logic. To increase the throughput of the pipeline array to perform 

arithmetic computation, a technique called pipelining is used. The design and 

implementation of digital systems is taken up in this thesis. As a case study, the extension 

for pipelining upon the original generalized pipeline array is discussed. The generalized 

pipeline cellular array is introduced and extended such that it provides an alternative way 

in arithmetic processor design, in an environment of limited resources while achieving 

high performance and flexibility. These characteristics make it also suitable for being 

used as a case study in digital VLSI design education. 

In computing, a pipeline is a series of data processing stages, in which the output of 

one stage is the input of the next one. The basic idea of pipelining is to split a major task 

into several balanced stages, in which the operations within stages of a pipeline are often 

carried out in parallel. In this fashion although the latency of data processing is slightly 

increased because the use of buffer, ideally the throughput of data processing is increased 

multiple times by the number of pipeline stages. This idea is illustrated in Figure 157 

[43]. 
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Figure 157: Pipelining technique. 
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Design 

The design of this extension for pipelining based on the original array is illustrated in 

Figure 158. 

 
Figure 158: Design extension for pipelining. 
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The Verilog code in behavior model for this design is listed in the Appendix. 

Before actual implementation, the correctness of this design should be verified. To 

achieve this, the design is simulated and then implemented on FPGA, in the same form as 

the designs in previous chapters.  

The functional simulation of this circuit is shown in Figure 159. In this simulation, 

all 4 operations (namely square, square root, multiplication and division) are tested with 

random data sets. According to the simulation result shown in Figure 159, all the results 

of calculations done by this circuit are mathematically correct, hence the circuit functions 

exactly the same as required. Compared to the previous designs, the output is delayed 5 

cycles, as there are 5 stages in the pipelined design. In the meantime, since a new 

operation can be issued into the pipeline on every cycle, with simpler stages producing 

less delay, the throughput of data processing is achieved. 

Result of FPGA synthesis and static timing analysis of maximum frequency on 

FPGA is shown in Figure 160 and Figure 161 respectively.  
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Figure 159: Simulation result of the pipeline-extended design. 
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Figure 160: Result of FPGA synthesis. 
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Figure 161: Result of FPGA static timing analysis of maximum frequency. 



173 

 

Implementation 

In this section, a step-by-step procedure for VLSI digital design is given, for the 

pipelined implementation of the pipeline array. 

There are many fabrication technologies available nowadays, from various 

fabrication facilities such as GlobalFoundries and TSMC, in technologies such as 14 nm, 

28 nm, 40 nm, 65 nm, 0.13 µm and 0.18 µm and so on [30]. Since we use the MOSIS 

Educational Program (MEP) for free fabrication service, which limits us to use the ON 

Semi 0.50 µm CMOS (C5N) technology [30], C5N is used in this procedure. However, 

the general procedure is the same for other technologies. There are many computer aided 

design (CAD) software available for VLSI design, such as Cadence and Synopsys. This 

procedure uses Cadence Encounter Digital Implementation Systems 14.00, Cadence 

Virtuoso Design Environment 6.15 along with NCSU CDK 1.6.0 [30], UofU Technology 

Library and UofU Standard Cell Library [24].  

This procedure consists of 3 parts, each of which represents one major step for the 

VLSI design. They are logic synthesis, place and route and chip assembly respectively, 

which are introduced for the rest of this section. In the end, the procedure for MOSIS 

submission is given. 



174 

 

Logic Synthesis 

In digital logic design, logic synthesis is a procedure by which a behavior-level HDL 

code describing the function of a circuit, is turned into a gate-level netlist which describes 

the implementation of a design in terms of logic gates, typically using a computer 

program called a synthesis tool. 

In this subsection, a procedure for synthesis is given. For the concision of this 

procedure, the exact meanings of commands are not further explained. These commands 

are covered by the official manuals [31]. There are other alternative RTL synthesizers 

available as well, such as Design Compiler by Synopsys. If tools other than what's 

described here are used, it's advised to refer to their respective manuals. The detailed 

procedure and codes used are included in [32]. 

1) Tools: Cadence Encounter RTL Compiler 

2) Prerequisites before This Step: 

Behavior Verilog Code (e.g. "simple.v") 

Tcl Script for RC Compiler ("rc.cmd", given in Appendix) 

NCSU CDK Library ("ncsu-cdk-1.7.0.beta/") 

UofU Technology Library ("UofU_TechLib_ami06/") 

UofU Standard Cell Library ("UofU_Digital_v1_2/") 

3) Destination Files Generated After This Step: 

Netlist Verilog Code ("nl.v") 

4) Steps: 

a) Modify rc.cmd based on the requirement (as shown in Figure 162). 
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Line 3: Change UofU standard cell library path to where it's installed. 

Line 7: Change "gpca40p.v" to the file name of Verilog code (e.g. "simple.v"). 

Line 8: Change "gpca40p" to the top-level entity name (e.g. "simple"). 

 
Figure 162: rc.cmd. 

b) Run 

$ rc -files rc.cmd 

c) Check the result (Figure 163) 

In the end, a netlist file called "nl.v" (Figure 164) is generated containing 

information which will be used later for place and route. 

If everything goes smooth as above, continue to the next step. If anything goes wrong, 

fix it first before continuing further. 
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Figure 163: Synthesis summary generated by RC Compiler. 
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Figure 164: Synthesis summary generated by RC Compiler. 
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Place and Route 

"Place and route" is a stage in the process of VLSI design, in which the location to 

place all the logic elements within a generally limited amount of space and the way of all 

the wires needed to connect the logic elements are decided.  

In this section, a procedure for "place and route" is given. For the brevity of this 

procedure, the exact meanings of commands are not further explained. These commands 

are covered by the official manuals [33]. If the reader is interested in using GUI 

commands instead of TCL scripts, please refer to EDI System Menu Reference [34] and 

textbooks [24] for more information. The detailed procedure and codes used are included 

in [32]. 

1) Tools: Cadence Encounter RTL-to-GDSII System 

2) Prerequisites before This Step: 

Netlist Verilog Code ("nl.v" from the last step) 

Tcl Script for RC Compiler ("encounter.cmd", given in Appendix) 

Tcl Script for Multi-Mode Multi-Corner ("mmmc.tcl", given in Appendix) 

Synopsys Design Constraints ("typical.sdc", given in Appendix) 

NCSU CDK Library ("ncsu-cdk-1.7.0.beta/") 

UofU Technology Library ("UofU_TechLib_ami06/") 

UofU Standard Cell Library ("UofU_Digital_v1_2/") 

3) Destination Files Generated After This Step: 

Optimized Netlist Verilog Code ("nlopt.v") 

Design Exchange Format (DEF) File (e.g. "simple.def") 
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4) Steps: 

a) Modify Tcl Script for RC Compiler ("encounter.cmd", Figure 165) 

Line 10, 24: May change UofU standard cell library path to where it's installed 

Line 13, 99: Change "gpca40p" to the top-level entity name (e.g. "simple") 

 
Figure 165: encounter.cmd. 

b) Modify Tcl Script for Multi-Mode Multi-Corner ("mmmc.tcl", Figure 166) 

Line 11: May change UofU standard cell library path to where it's installed 

 
Figure 166: mmmc.tcl. 

c) Run 

$ encounter -init encounter.cmd 

d) Check the result 

It should run all the way to the final step without any errors if the above steps are 
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followed correctly, as shown in Figure 167 and Figure 168. In the end, a DEF file 

(e.g. "simple.def") for the chip layout (without pad frame) as well as a netlist file 

called "nlopt.v" is generated. 

 
Figure 167: Final view in Encounter. 
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Figure 168: DRC report generated by Encounter. 
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Chip Assembly 

As a requirement by AMI05 technology [35], design should be submitted along with 

pad frame. This section gives the procedure to assemble the pad frame with the chip. For 

the brevity of this procedure, the exact meanings of commands are not further explained. 

These commands are covered by the official manuals [36]. Materials such as textbooks 

[24] also have many useful information for reference. The detailed procedure and codes 

used are included in [32]. 

1) Tools: 

Cadence Virtuoso Design Environment 

2) Prerequisites before this step: 

Optimized Netlist Verilog Code ("nlopt.v" from last step) 

DEF File (e.g. "simple.def" from last step) 

NCSU CDK Library ("ncsu-cdk-1.7.0.beta/") 

UofU Technology Library ("UofU_TechLib_ami06/") 

UofU Standard Cell Library ("UofU_Digital_v1_2/") 

3) Destination Files Generated After This Step: 

GDSII Stream File (e.g. "simple_final.gds") 

4) Steps: 

a) Launch Cadence Virtuoso Design Environment 

$ virtuoso 

b) Create New Library (Figure 169 to Figure 172) 
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Figure 169: Create New Library with Virtuoso. 
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Figure 170: "New Library" window of Virtuoso. 
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Figure 171: "Technology File for New Library" window of Virtuoso. 

 
Figure 172: "Technology File for New Library" window of Virtuoso. 
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c) Import Optimized Netlist Verilog Code ("nlopt.v" from last step) and DEF 

File (e.g. "simple.def" from last step). As shown in Figure 173 to Figure 177. 

 
Figure 173: Import netlist with Virtuoso. 
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Figure 174: "Verilog In" window of Virtuoso. 
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Figure 175: Import DEF with Virtuoso. 

 
Figure 176: "DEF In" window of Virtuoso. 
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Figure 177: "DEF In" successful translation prompt. 

Once both layouts (from DEF) and schematic (from netlist in this section) are 

generated, DRC, Extract and LVS should be performed, as shown in Figure 178 to 193. 

 
Figure 178: Start DRC from Virtuoso Layout Suite. 

 



190 

 

 
Figure 179: "DRC" window of Virtuoso. 

 
Figure 180: Report of successful DRC. 
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Figure 181: Start Extract from Virtuoso Layout Suite. 
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Figure 182: "Extractor" window of Virtuoso. 

 
Figure 183: Report of successful Extract. 
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Figure 184: Start LVS from Virtuoso Layout Suite. 
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Figure 185: "Artist LVS" window of Virtuoso. 

 
Figure 186: "Artist LVS" successful LVS prompt. 
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d) Customize Pad Frame (Figure 182 to 202) 

 
Figure 187: Copy pad frame in Virtuoso. 
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Figure 188: "Copy Cell" window of Virtuoso. 
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Figure 189: Initial schematic view of the pad frame. 
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Modify the used pads in the pad frame (both schematic and layout), from "pad_nc" to 

"pad_in" or "pad_out". 

 
Figure 190: Add input pads in schematic. 
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Figure 191: Add output pads in schematic. 
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Figure 192: Add input pads in layout. 
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Figure 193: Add output pads in layout. 
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Add pins to pad frame (both schematic and layout). The pad frame works like a 

wraparound. The external pins of the pad frame (e.g. "Frame1_38") have the same name 

as the chip layout (e.g. "gpca40p"), and the internal pins of the pad frame connecting the 

chip layout use original names affixed by "_i" (Hence e.g. "clk" becomes "clk_i.) This 

procedure is shown in Figure 194 to Figure 207. 
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Figure 194: Add pins to the pad frame in schematic. 
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Figure 195: Add pins to the pad frame schematic (detailed view). 
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Same for the layout by tapping the ports with pins 

 
Figure 196: "Create Shape Pin" Window of Virtuoso. 
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Figure 197: Add pins to the pad frame layout (detailed view). 
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DRC, Extract, LVS to make sure no rule is violated. 

 
Figure 198: Start DRC from Virtuoso Layout Suite. 
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Figure 199: Report of successful DRC. 

 
Figure 200: Start Extract from Virtuoso Layout Suite. 
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Figure 201: Report of successful Extract. 

 
Figure 202: Start LVS from Virtuoso Layout Suite. 
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Figure 203: "Artist LVS" window of Virtuoso. 

 
Figure 204: "Artist LVS" successful LVS prompt. 
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Generate symbol for the pad frame. 

 
Figure 205: Create symbol view from schematic view. 
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Figure 206: "CellView from CellView" window of Virtuoso. 

 
Figure 207: Final symbol view of the pad frame. 
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e) Final Chip Assembly (Add Pad Frame) 

With both the core of the chip ("simple") and the pad frame (modified 

"Frame1_38") are ready, creating a new cell to put them together. This procedure is 

shown in Figure 208 to 224. 

Create a new Cell View (I call it "gpca40p_final"). 

 
Figure 208: Create new "Cell View" from Virtuoso Layout Suite 
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Figure 209: "New File" window of Virtuoso. 

Instantiate both the core of the chip ("gpca40p") and the pad frame (modified 

"Frame1_38") (by pressing "I" to instantiate instances). 
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Figure 210: Create the final schematic view. 
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Figure 211: Routed schematic view. 
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Then add the pins. 

 
Figure 212: "Add Pins" window of Virtuoso. 
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Final schematic view is shown below. 

 
Figure 213: Final schematic view. 
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Then create the final layout view from the schematic. 

 
Figure 214: "Startup Option" window of Virtuoso. 

 
Figure 215: "Startup Option" window of Virtuoso. 
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In the new empty layout view 

 
Figure 216: Start "Generate Layout" of Virtuoso. 
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Figure 217: "Generate Layout" window of Virtuoso. 
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Then place the pad frame ("Frame1_38") inside the "PR Boundary", and the core of 

the chip ("gpca40p") inside the pad frame. 

 
Figure 218: Component placement in Virtuoso. 



223 

 

Connect the "add!" (Pad 57) and "god!" (Pad 7) to the power ring. 

 
Figure 219: Connect the "add!" (Pad 57) and "god!" (Pad 7) to the power ring. 
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Then invoke Automatic Routing. 

 
Figure 220: "Automatic Routing" window of Virtuoso. 
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The following is the final layout. Fill the empty space with poly fills to meet 

minimum polysilicon density required by AMI05 [35]. 

 
Figure 221: Final layout in Virtuoso. 
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DRC, Extract, LVS. They should give no error or warning. 

 
Figure 222: Report of successful DRC. 

 
Figure 223: Report of successful Extract. 



227 

 

 
Figure 224: "Artist LVS" successful LVS prompt. 
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f) Export GDSII Stream File ("simple_final.gds") 

This procedure is shown in Figure 225 to Figure 230. This is the file to be sent 

for fabrication. 

This is the file to be sent for fabrication. 

 
Figure 225: Start "Stream Out" from Virtuoso Layout Suite. 

 
Figure 226: "Show Options" in "XStream Out" window of Virtuoso. 
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"Show Options", then tab "Layers", "Load ..." 

 
Figure 227: "Load..." in "XStream Out" window of Virtuoso. 
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Select "streamOutLayermap" then hit "Open" 

 
Figure 228: Choose file for the "XStream Out". 
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Click "Translate". 

 
Figure 229: "Translate" in "XStream Out" window of Virtuoso. 
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It should produce no error and the only warning is about "nodrc:drawing" (and a 

possible overwriting existing file warning). 

 
Figure 230: "Stream out translation complete" successful prompt. 
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Design Submission 

In this section, the procedure for MOSIS submission with the MOSIS Educational 

Program (MEP) is given as a reference. More information is available in documents from 

MOSIS [37], and adapted from [38]. 

1) Fill in "MOSIS New Project Request Form": 

Run Type: Shared IC Fabrication Run 

Design Rules: Scalable CMOS 

Technology: SCN3M_SUBM (if the second layer of poly is not used); 

SCN3ME_SUBM (if the second layer of poly is used). 

Design Name and Password 

Export Control: Standard 

Substrate: none 

Needs Library Installation: No 

IP Included: none 

Fill Authorized: Yes 

Foundry: On Semi 

Intended Disposition: Research 

Design Size X and Y: Size including pads 

Pad Count: How many pads used in the design (including signals and power) 

Quantity Packaged: 5 

Package Name: Depends on the design 

Rotation in Package: None 
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Bonding Diagram Supplier: MOSIS 

Downbond Locations: None 

Quantity Unpackaged: 0 

2) Fill in "Fabricate Form": 

Go to Project Request -> Fabricate 

Layout Transfer Method: I will upload layout via secure web form (HTTPS) 

Compression/Encryption: Uncompressed 

Generate the checksum and Count for the GDS file (Figure 231) 

Layout Status: Final 

Layout Format: GDS 

Top Structure: the name of the top-level (e.g. "simple") 

 
Figure 231: Generating checksum with GNU cksum 



235 

 

Results 

The extended new design achieves higher throughput then the original design while 

fully meets the design constrains. The result is summarized in Table 8. The design has 

been sent to MOSIS for fabrication. 

Table 8: Implementation Summary of the Pipelined Design 

 Original Extended 

Maximum delay (ns) 44.13 14.24 

Maximum frequency (MHz) 22.7 70.2 

Maximum throughput (million operations per second) 22.7 70.20 
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Conclusion 

In this chapter, the concept of pipelining is briefly discussed. The original pipeline 

array does not discuss the implementation of the intermediate stage registers used in the 

pipeline array. This is a merely a combinational circuit. This array is improved to include 

intermediate stage registers. Instead of a pure combination circuit, it is now a sequential 

circuit and this circuit also has a clock. Such an improvement will help in the 

development of advanced pipelined arithmetic processors. The array is also implemented 

on FPGA and VLSI. The design has been sent to MOSIS for fabrication. The behavior 

Verilog code for this design is listed in the Appendix. 
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CHAPTER 5 SUMMARY AND CONCLUSION 

Introduction 

In this thesis, a VLSI implementation of a generalized pipeline array has been 

discussed and detailed procedure for the implementation is included. The procedure 

requires the simulation on FPGA. The approaches for extending the array so as to meet 

40-pin requirements of the MOSIS design are discussed. The parameters such as expected 

delays, size, and memory have been met in the design. Then the original design is further 

extended for pipelining operation. The design has been sent to MOSIS for fabrication. 

The chip will be tested once we get the fabricated chip back. 
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Summary and Conclusion 

A generalized pipeline array appeared in IEEE transaction in 1974. The array 

appeared in a few textbooks on computer arithmetic. From time to time, a number of 

papers appeared which reflected the modifications of this array. The objective of this 

thesis is to present the design and VLSI implementation of this array. The array can add, 

subtract, multiply, divide, square and square root of binary numbers. In this thesis, we 

suggest various extensions upon the original design, and step-by-step procedures by 

which the design can be sent to MOSIS and to get the fabricated chip back.  

In Chapter 2, the array has been extended from 5 rows to 7 rows so that the extended 

operations can be performed. In particular, a procedure is developed by which the design 

and the implementation methodologies are suitable for 40 pin and 500 nm technologies. 

In Chapter 3, an algorithm has been developed by which one can predict and advance 

the maximum size and performance of the array. A procedure for VLSI implementation of 

such a design using such an algorithm is also given. 

In Chapter 4, the extension of pipelining is conducted based on the original design to 

increase data processing throughput. A procedure for VLSI implementation of the 

pipelined design is also given. 

In particular, in order to achieve the following operations, the parameters of the 

design are listed in Table 9. The derivation process is given in the thesis. 

It is hoped that the design and implementation done here will go a long way in the 

development of arithmetic units of advanced processors. 
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Table 9: Result of Extended generalized pipeline cellular array 

Operations # of bytes # of rows # of cols Area (µm2) 

Multiply 1 8 17 523060 

Divide 2 8 17 523060 

Square 1 by 1 8 17 523060 

Square root 2 by 1 9 19 647571 
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Contribution 

 The main contributions of this thesis are: 

 1. The review of existing literatures with the view to develop advanced arithmetic 

processors. Such processors can possibly be used in future computers. 

2. Development of algorithms which can improve the design of arithmetic processors 

based on the number of rows or columns with a view to have a specified chip area and the 

number of input/output pins. 

3. Extension of pipeline arrays so as to include pipelined part. 

4. Development of unified procedure for VLSI implementation of chips which can be 

sent to MOSIS for fabrication and get the fabricated chip back and tested. Please note that 

the developed procedure herein works if the Verilog code is synthesizable. Future efforts 

are needed so as to decide in advance whether the code is synthesizable or not. If not, the 

code can be modified so as to be synthesizable. 

This thesis first introduces the generalized cellular pipeline array, followed by 

analysis of various extensions of the original design, which makes the design more 

suitable for modern arithmetic processors, including extension from the original 5-row 

design to 7-row design (and any number of rows beyond), an algorithm developed to 

estimate the maximum number of rows in advance with given technology constrains, and 

an optimized pipeline implementation based on the original design. These designs can be 

used as the arithmetic unit within a project, and it also provides references for modern 

arithmetic processors designs. 

The second part of this thesis introduces a step-by-step procedure by which the VLSI 
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implementation is carried out, using the generalized cellular pipeline array as a case study 

in this process. This design and implementation procedure can serve as a reference 

material for VLSI designers and students in digital design courses in universities. 
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Problems for Future Work 

Due to the scope of this thesis, since the requirement of timing is not demanding, no 

timing analysis and optimization during physical implementation is conducted. To further 

optimize the operation of the pipeline array, timing analysis and optimization is to be 

conducted in the future. 

Due to the technical constrains when conducting this thesis, only 500 nm technology 

is available. In addition, the chip area is limited to 1500 µm by 1500 µm and the pin 

count is limited to 40 pins. When new technologies are available in the future, the 

estimation algorithm is to be extended to adapt the new technologies. 

Due to the scope of this thesis, since the requirement of timing is not demanding, the 

pipeline is not fully balanced and optimized. To further optimize the operation of the 

pipeline array, techniques such as timing analysis are to be incorporated to further 

optimize the operation of the pipeline. 

 Problems such as “parallelism versus pipelining, help of FPGAs in parallelism, using 

2 Spartan 3s in parallel” are also possible works of future study. 
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APPENDIX A Verilog Code for the 7 Row Extension 

// Verilog implementation of "A GENERALIZED PIPELINE CELLULAR 

ARRAY" by 

// Harpreet Singh, Shashank Kamthan, Dharma Agarwal, Lubna 

Alazzawi 

// All codes here are imitating what's described in the papers 

given by Dr. Singh, and it is claimed by Dr. Singh to be at least 

useful at all 

// top-level entity: "gpca" 

 

// arithmetic cell 

module ac 

( 

input wire A, B, C, X, F, C1, 

output wire S, D, E, C0 

); 

 

assign S = ((A ^ (B ^ X) ^ C1) & F) | (A & ~F); 

assign C0 = ((B ^ X) & (A | C1)) | (A & C1); 

assign D = C & (B | F); 

assign E = B | (C & F); 

endmodule 

 

module cc 

( 

input wire X, P, C0, 

output wire F 

); 

 

assign F = (C0 & X) | (P & ~X); 

endmodule 

 

module gpca 

( 

input wire   X, 

input wire [1:7] P, 

input wire [1:9] B, C, 

input wire [1:14] A, 

output wire [1:7] F, 

output wire [1:15] S 

); 

 

wire [1:7] FI; 
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wire [1:3] C1; 

wire [1:5] C2; 

wire [1:7] C3; 

wire [1:9] C4; 

wire [1:11] C5; 

wire [1:13] C6; 

wire [1:15] C7; 

wire [1:3] S1; 

wire [1:5] S2; 

wire [1:7] S3; 

wire [1:9] S4; 

wire [1:11] S5; 

wire [1:13] S6; 

wire [1:15] S7; 

wire [1:3] D1; 

wire [1:5] D2; 

wire [1:7] D3; 

wire [1:9] D4; 

wire [1:11] D5; 

wire [1:13] D6; 

wire [1:3] E1; 

wire [1:5] E2; 

wire [1:7] E3; 

wire [1:9] E4; 

wire [1:11] E5; 

wire [1:13] E6; 

 

assign F[1] = C1[1]; 

assign F[2] = C2[1]; 

assign F[3] = C3[1]; 

assign F[4] = C4[1]; 

assign F[5] = C5[1]; 

assign F[6] = C6[1]; 

assign F[7] = C7[1]; 

 

assign S = S7; 

 

// control cells (X,P,C0 / F) 

cc cc1(X, P[1], C1[1], FI[1]); 

cc cc2(X, P[2], C2[1], FI[2]); 

cc cc3(X, P[3], C3[1], FI[3]); 

cc cc4(X, P[4], C4[1], FI[4]); 

cc cc5(X, P[5], C5[1], FI[5]); 

cc cc6(X, P[6], C6[1], FI[6]); 
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cc cc7(X, P[7], C6[1], FI[7]); 

 

// arithmetic cells of row 1(A,B,C,X,F,C1/S,D,E,C0) 

ac ac11(.A(1'b0), .B(B[1]), .C(C[1]), .X(X), .F(FI[1]),

 .C1(C1[2]), .S(S1[1]), .D(D1[1]), .E(E1[1]),

 .C0(C1[1])); 

ac ac12(.A(A[1]), .B(B[2]), .C(C[2]), .X(X), .F(FI[1]),

 .C1(C1[3]), .S(S1[2]), .D(D1[2]), .E(E1[2]),

 .C0(C1[2])); 

ac ac13(.A(A[2]), .B(B[3]), .C(C[3]), .X(X), .F(FI[1]),

 .C1(X),  .S(S1[3]), .D(D1[3]), .E(E1[3]),

 .C0(C1[3])); 

 

// arithmetic cells of row 2(A,B,C,X,F,C1/S,D,E,C0) 

ac ac21(.A(S1[1]), .B(1'b0), .C(1'b0), .X(X),

 .F(FI[2]), .C1(C2[2]), .S(S2[1]), .D(D2[1]), .E(E2[1]),

 .C0(C2[1])); 

ac ac22(.A(S1[2]), .B(D1[1]), .C(E1[1]), .X(X),

 .F(FI[2]), .C1(C2[3]), .S(S2[2]), .D(D2[2]), .E(E2[2]),

 .C0(C2[2])); 

ac ac23(.A(S1[3]), .B(D1[2]), .C(E1[2]), .X(X),

 .F(FI[2]), .C1(C2[4]), .S(S2[3]), .D(D2[3]), .E(E2[3]),

 .C0(C2[3])); 

ac ac24(.A(A[3]), .B(D1[3]), .C(E1[3]), .X(X), .F(FI[2]),

 .C1(C2[5]), .S(S2[4]), .D(D2[4]), .E(E2[4]),

 .C0(C2[4])); 

ac ac25(.A(A[4]), .B(B[4]), .C(C[4]), .X(X), .F(FI[2]),

 .C1(X),  .S(S2[5]), .D(D2[5]), .E(E2[5]),

 .C0(C2[5])); 

 

// arithmetic cells of row 3(A,B,C,X,F,C1/S,D,E,C0) 

ac ac31(.A(S2[1]), .B(1'b0), .C(1'b0), .X(X),

 .F(FI[3]), .C1(C3[2]), .S(S3[1]), .D(D3[1]), .E(E3[1]),

 .C0(C3[1])); 

ac ac32(.A(S2[2]), .B(D2[1]), .C(E2[1]), .X(X),

 .F(FI[3]), .C1(C3[3]), .S(S3[2]), .D(D3[2]), .E(E3[2]),

 .C0(C3[2])); 

ac ac33(.A(S2[3]), .B(D2[2]), .C(E2[2]), .X(X),

 .F(FI[3]), .C1(C3[4]), .S(S3[3]), .D(D3[3]), .E(E3[3]),

 .C0(C3[3])); 

ac ac34(.A(S2[4]), .B(D2[3]), .C(E2[3]), .X(X),

 .F(FI[3]), .C1(C3[5]), .S(S3[4]), .D(D3[4]), .E(E3[4]),

 .C0(C3[4])); 

ac ac35(.A(S2[5]), .B(D2[4]), .C(E2[4]), .X(X),
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 .F(FI[3]), .C1(C3[6]), .S(S3[5]), .D(D3[5]), .E(E3[5]),

 .C0(C3[5])); 

ac ac36(.A(A[5]), .B(D2[5]), .C(E2[5]), .X(X), .F(FI[3]),

 .C1(C3[7]), .S(S3[6]), .D(D3[6]), .E(E3[6]),

 .C0(C3[6])); 

ac ac37(.A(A[6]), .B(B[5]), .C(C[5]), .X(X), .F(FI[3]),

 .C1(X),  .S(S3[7]), .D(D3[7]), .E(E3[7]),

 .C0(C3[7])); 

 

// arithmetic cells of row 4(A,B,C,X,F,C1/S,D,E,C0) 

ac ac41(.A(S3[1]), .B(1'b0), .C(1'b0), .X(X),

 .F(FI[4]), .C1(C4[2]), .S(S4[1]), .D(D4[1]), .E(E4[1]),

 .C0(C4[1])); 

ac ac42(.A(S3[2]), .B(D3[1]), .C(E3[1]), .X(X),

 .F(FI[4]), .C1(C4[3]), .S(S4[2]), .D(D4[2]), .E(E4[2]),

 .C0(C4[2])); 

ac ac43(.A(S3[3]), .B(D3[2]), .C(E3[2]), .X(X),

 .F(FI[4]), .C1(C4[4]), .S(S4[3]), .D(D4[3]), .E(E4[3]),

 .C0(C4[3])); 

ac ac44(.A(S3[4]), .B(D3[3]), .C(E3[3]), .X(X),

 .F(FI[4]), .C1(C4[5]), .S(S4[4]), .D(D4[4]), .E(E4[4]),

 .C0(C4[4])); 

ac ac45(.A(S3[5]), .B(D3[4]), .C(E3[4]), .X(X),

 .F(FI[4]), .C1(C4[6]), .S(S4[5]), .D(D4[5]), .E(E4[5]),

 .C0(C4[5])); 

ac ac46(.A(S3[6]), .B(D3[5]), .C(E3[5]), .X(X),

 .F(FI[4]), .C1(C4[7]), .S(S4[6]), .D(D4[6]), .E(E4[6]),

 .C0(C4[6])); 

ac ac47(.A(S3[7]), .B(D3[6]), .C(E3[6]), .X(X),

 .F(FI[4]), .C1(C4[8]), .S(S4[7]), .D(D4[7]), .E(E4[7]),

 .C0(C4[7])); 

ac ac48(.A(A[7]), .B(D3[7]), .C(E3[7]), .X(X), .F(FI[4]),

 .C1(C4[9]), .S(S4[8]), .D(D4[8]), .E(E4[8]),

 .C0(C4[8])); 

ac ac49(.A(A[8]), .B(B[6]), .C(C[6]), .X(X), .F(FI[4]),

 .C1(X),  .S(S4[9]), .D(D4[9]), .E(E4[9]),

 .C0(C4[9])); 

 

// arithmetic cells of row 5(A,B,C,X,F,C1/S,D,E,C0) 

ac ac51(.A(S4[1]), .B(1'b0), .C(1'b0), .X(X),

 .F(FI[5]), .C1(C5[2]), .S(S5[1]), .D(D5[1]), .E(E5[1]),

 .C0(C5[1])); 

ac ac52(.A(S4[2]), .B(D4[1]), .C(E4[1]), .X(X),

 .F(FI[5]), .C1(C5[3]), .S(S5[2]), .D(D5[2]), .E(E5[2]),
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 .C0(C5[2])); 

ac ac53(.A(S4[3]), .B(D4[2]), .C(E4[2]), .X(X),

 .F(FI[5]), .C1(C5[4]), .S(S5[3]), .D(D5[3]), .E(E5[3]),

 .C0(C5[3])); 

ac ac54(.A(S4[4]), .B(D4[3]), .C(E4[3]), .X(X),

 .F(FI[5]), .C1(C5[5]), .S(S5[4]), .D(D5[4]), .E(E5[4]),

 .C0(C5[4])); 

ac ac55(.A(S4[5]), .B(D4[4]), .C(E4[4]), .X(X),

 .F(FI[5]), .C1(C5[6]), .S(S5[5]), .D(D5[5]), .E(E5[5]),

 .C0(C5[5])); 

ac ac56(.A(S4[6]), .B(D4[5]), .C(E4[5]), .X(X),

 .F(FI[5]), .C1(C5[7]), .S(S5[6]), .D(D5[6]), .E(E5[6]),

 .C0(C5[6])); 

ac ac57(.A(S4[7]), .B(D4[6]), .C(E4[6]), .X(X),

 .F(FI[5]), .C1(C5[8]), .S(S5[7]), .D(D5[7]), .E(E5[7]),

 .C0(C5[7])); 

ac ac58(.A(S4[8]), .B(D4[7]), .C(E4[7]), .X(X),

 .F(FI[5]), .C1(C5[9]), .S(S5[8]), .D(D5[8]), .E(E5[8]),

 .C0(C5[8])); 

ac ac59(.A(S4[9]), .B(D4[8]), .C(E4[8]), .X(X),

 .F(FI[5]), .C1(C5[10]),.S(S5[9]), .D(D5[9]), .E(E5[9]),

 .C0(C5[9])); 

ac ac5a(.A(A[9]), .B(D4[9]), .C(E4[9]), .X(X), .F(FI[5]),

 .C1(C5[11]),.S(S5[10]), .D(D5[10]), .E(E5[10]),

 .C0(C5[10])); 

ac ac5b(.A(A[10]), .B(B[7]), .C(C[7]), .X(X),

 .F(FI[5]), .C1(X),  .S(S5[11]), .D(D5[11]), .E(E5[11]),

 .C0(C5[11])); 

 

// arithmetic cells of row 6(A,B,C,X,F,C1/S,D,E,C0) 

ac ac61(.A(S5[1]), .B(1'b0), .C(1'b0), .X(X),

 .F(FI[6]), .C1(C6[2]), .S(S6[1]), .D(D6[1]), .E(E6[1]),

 .C0(C6[1])); 

ac ac62(.A(S5[2]), .B(D5[1]), .C(E5[1]), .X(X),

 .F(FI[6]), .C1(C6[3]), .S(S6[2]), .D(D6[2]), .E(E6[2]),

 .C0(C6[2])); 

ac ac63(.A(S5[3]), .B(D5[2]), .C(E5[2]), .X(X),

 .F(FI[6]), .C1(C6[4]), .S(S6[3]), .D(D6[3]), .E(E6[3]),

 .C0(C6[3])); 

ac ac64(.A(S5[4]), .B(D5[3]), .C(E5[3]), .X(X),

 .F(FI[6]), .C1(C6[5]), .S(S6[4]), .D(D6[4]), .E(E6[4]),

 .C0(C6[4])); 

ac ac65(.A(S5[5]), .B(D5[4]), .C(E5[4]), .X(X),

 .F(FI[6]), .C1(C6[6]), .S(S6[5]), .D(D6[5]), .E(E6[5]),
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 .C0(C6[5])); 

ac ac66(.A(S5[6]), .B(D5[5]), .C(E5[5]), .X(X),

 .F(FI[6]), .C1(C6[7]), .S(S6[6]), .D(D6[6]), .E(E6[6]),

 .C0(C6[6])); 

ac ac67(.A(S5[7]), .B(D5[6]), .C(E5[6]), .X(X),

 .F(FI[6]), .C1(C6[8]), .S(S6[7]), .D(D6[7]), .E(E6[7]),

 .C0(C6[7])); 

ac ac68(.A(S5[8]), .B(D5[7]), .C(E5[7]), .X(X),

 .F(FI[6]), .C1(C6[9]), .S(S6[8]), .D(D6[8]), .E(E6[8]),

 .C0(C6[8])); 

ac ac69(.A(S5[9]), .B(D5[8]), .C(E5[8]), .X(X),

 .F(FI[6]), .C1(C6[10]),.S(S6[9]), .D(D6[9]), .E(E6[9]),

 .C0(C6[9])); 

ac ac6a(.A(S5[10]), .B(D5[9]), .C(E5[9]), .X(X),

 .F(FI[6]), .C1(C6[11]),.S(S6[10]), .D(D6[10]), .E(E6[10]),

 .C0(C6[10])); 

ac ac6b(.A(S5[11]), .B(D5[10]), .C(E5[10]), .X(X),

 .F(FI[6]), .C1(C6[12]),.S(S6[11]), .D(D6[11]), .E(E6[11]),

 .C0(C6[11])); 

ac ac6c(.A(A[11]), .B(D5[11]), .C(E5[11]), .X(X),

 .F(FI[6]), .C1(C6[13]),.S(S6[12]), .D(D6[12]), .E(E6[12]),

 .C0(C6[12])); 

ac ac6d(.A(A[12]), .B(B[8]), .C(C[8]), .X(X),

 .F(FI[6]), .C1(X),  .S(S6[13]), .D(D6[13]), .E(E6[13]),

 .C0(C6[13])); 

 

// arithmetic cells of row 7(A,B,C,X,F,C1/S,D,E,C0) 

ac ac71(.A(S6[1]), .B(1'b0), .C(1'b0), .X(X),

 .F(FI[7]), .C1(C7[2]), .S(S7[1]), .D(), .E(),

 .C0(C7[1])); 

ac ac72(.A(S6[2]), .B(D6[1]), .C(E6[1]), .X(X),

 .F(FI[7]), .C1(C7[3]), .S(S7[2]), .D(), .E(),

 .C0(C7[2])); 

ac ac73(.A(S6[3]), .B(D6[2]), .C(E6[2]), .X(X),

 .F(FI[7]), .C1(C7[4]), .S(S7[3]), .D(), .E(),

 .C0(C7[3])); 

ac ac74(.A(S6[4]), .B(D6[3]), .C(E6[3]), .X(X),

 .F(FI[7]), .C1(C7[5]), .S(S7[4]), .D(), .E(),

 .C0(C7[4])); 

ac ac75(.A(S6[5]), .B(D6[4]), .C(E6[4]), .X(X),

 .F(FI[7]), .C1(C7[6]), .S(S7[5]), .D(), .E(),

 .C0(C7[5])); 

ac ac76(.A(S6[6]), .B(D6[5]), .C(E6[5]), .X(X),

 .F(FI[7]), .C1(C7[7]), .S(S7[6]), .D(), .E(),
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 .C0(C7[6])); 

ac ac77(.A(S6[7]), .B(D6[6]), .C(E6[6]), .X(X),

 .F(FI[7]), .C1(C7[8]), .S(S7[7]), .D(), .E(),

 .C0(C7[7])); 

ac ac78(.A(S6[8]), .B(D6[7]), .C(E6[7]), .X(X),

 .F(FI[7]), .C1(C7[9]), .S(S7[8]), .D(), .E(),

 .C0(C7[8])); 

ac ac79(.A(S6[9]), .B(D6[8]), .C(E6[8]), .X(X),

 .F(FI[7]), .C1(C7[10]),.S(S7[9]), .D(), .E(),

 .C0(C7[9])); 

ac ac7a(.A(S6[10]), .B(D6[9]), .C(E6[9]), .X(X),

 .F(FI[7]), .C1(C7[11]),.S(S7[10]), .D(), .E(),

 .C0(C7[10])); 

ac ac7b(.A(S6[11]), .B(D6[10]), .C(E6[10]), .X(X),

 .F(FI[7]), .C1(C7[12]),.S(S7[11]), .D(), .E(),

 .C0(C7[11])); 

ac ac7c(.A(S6[12]), .B(D6[11]), .C(E6[11]), .X(X),

 .F(FI[7]), .C1(C7[13]),.S(S7[12]), .D(), .E(),

 .C0(C7[12])); 

ac ac7d(.A(S6[13]), .B(D6[12]), .C(E6[12]), .X(X),

 .F(FI[7]), .C1(C7[14]),.S(S7[13]), .D(), .E(),

 .C0(C7[13])); 

ac ac7e(.A(A[13]), .B(D6[13]), .C(E6[13]), .X(X),

 .F(FI[7]), .C1(C7[15]),.S(S7[14]), .D(), .E(),

 .C0(C7[14])); 

ac ac7f(.A(A[14]), .B(B[9]), .C(C[9]), .X(X),

 .F(FI[7]), .C1(X),  .S(S7[15]), .D(), .E(),

 .C0(C7[15])); 

endmodule 
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APPENDIX B Verilog Code for the Extension to Meet Design Constrains 

// Verilog implementation of "A GENERALIZED PIPELINE CELLULAR 

ARRAY" by 

// Harpreet Singh, Shashank Kamthan, Dharma Agarwal, Lubna 

Alazzawi 

// All codes here are imitating what's described in the papers 

given by Dr. Singh, and it is claimed by Dr. Singh to be at least 

useful at all 

// top-level entity: "gpca40p" 

 

// arithmetic cell 

module ac 

( 

input wire A, B, C, X, F, C1, 

output wire S, D, E, C0 

); 

 

assign S = ((A ^ (B ^ X) ^ C1) & F) | (A & ~F); 

assign C0 = ((B ^ X) & (A | C1)) | (A & C1); 

assign D = C & (B | F); 

assign E = B | (C & F); 

endmodule 

 

module cc 

( 

input wire X, P, C0, 

output wire F 

); 

 

assign F = (C0 & X) | (P & ~X); 

endmodule 

 

module gpca 

( 

input wire   X, 

input wire [1:5] P, 

input wire [1:7] B, C, 

input wire [1:10] A, 

output wire [1:5] F, 

output wire [1:11] S 

); 

 

wire [1:5] FI; 
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wire [1:3] C1; 

wire [1:5] C2; 

wire [1:7] C3; 

wire [1:9] C4; 

wire [1:11] C5; 

wire [1:3] S1; 

wire [1:5] S2; 

wire [1:7] S3; 

wire [1:9] S4; 

wire [1:3] D1; 

wire [1:5] D2; 

wire [1:7] D3; 

wire [1:9] D4; 

wire [1:3] E1; 

wire [1:5] E2; 

wire [1:7] E3; 

wire [1:9] E4; 

 

assign F[1] = C1[1]; 

assign F[2] = C2[1]; 

assign F[3] = C3[1]; 

assign F[4] = C4[1]; 

assign F[5] = C5[1]; 

 

// control cells (X,P,C0 / F) 

cc cc1(X, P[1], C1[1], FI[1]); 

cc cc2(X, P[2], C2[1], FI[2]); 

cc cc3(X, P[3], C3[1], FI[3]); 

cc cc4(X, P[4], C4[1], FI[4]); 

cc cc5(X, P[5], C5[1], FI[5]); 

 

// arithmetic cells of row 1(A,B,C,X,F,C1/S,D,E,C0) 

ac ac11(.A(1'b0), .B(B[1]), .C(C[1]), .X(X), .F(FI[1]),

 .C1(C1[2]), .S(S1[1]), .D(D1[1]), .E(E1[1]),

 .C0(C1[1])); 

ac ac12(.A(A[1]), .B(B[2]), .C(C[2]), .X(X), .F(FI[1]),

 .C1(C1[3]), .S(S1[2]), .D(D1[2]), .E(E1[2]),

 .C0(C1[2])); 

ac ac13(.A(A[2]), .B(B[3]), .C(C[3]), .X(X), .F(FI[1]),

 .C1(X),  .S(S1[3]), .D(D1[3]), .E(E1[3]),

 .C0(C1[3])); 

 

// arithmetic cells of row 2(A,B,C,X,F,C1/S,D,E,C0) 

ac ac21(.A(S1[1]), .B(1'b0), .C(1'b0), .X(X),
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 .F(FI[2]), .C1(C2[2]), .S(S2[1]), .D(D2[1]), .E(E2[1]),

 .C0(C2[1])); 

ac ac22(.A(S1[2]), .B(D1[1]), .C(E1[1]), .X(X),

 .F(FI[2]), .C1(C2[3]), .S(S2[2]), .D(D2[2]), .E(E2[2]),

 .C0(C2[2])); 

ac ac23(.A(S1[3]), .B(D1[2]), .C(E1[2]), .X(X),

 .F(FI[2]), .C1(C2[4]), .S(S2[3]), .D(D2[3]), .E(E2[3]),

 .C0(C2[3])); 

ac ac24(.A(A[3]), .B(D1[3]), .C(E1[3]), .X(X), .F(FI[2]),

 .C1(C2[5]), .S(S2[4]), .D(D2[4]), .E(E2[4]),

 .C0(C2[4])); 

ac ac25(.A(A[4]), .B(B[4]), .C(C[4]), .X(X), .F(FI[2]),

 .C1(X),  .S(S2[5]), .D(D2[5]), .E(E2[5]),

 .C0(C2[5])); 

 

// arithmetic cells of row 3(A,B,C,X,F,C1/S,D,E,C0) 

ac ac31(.A(S2[1]), .B(1'b0), .C(1'b0), .X(X),

 .F(FI[3]), .C1(C3[2]), .S(S3[1]), .D(D3[1]), .E(E3[1]),

 .C0(C3[1])); 

ac ac32(.A(S2[2]), .B(D2[1]), .C(E2[1]), .X(X),

 .F(FI[3]), .C1(C3[3]), .S(S3[2]), .D(D3[2]), .E(E3[2]),

 .C0(C3[2])); 

ac ac33(.A(S2[3]), .B(D2[2]), .C(E2[2]), .X(X),

 .F(FI[3]), .C1(C3[4]), .S(S3[3]), .D(D3[3]), .E(E3[3]),

 .C0(C3[3])); 

ac ac34(.A(S2[4]), .B(D2[3]), .C(E2[3]), .X(X),

 .F(FI[3]), .C1(C3[5]), .S(S3[4]), .D(D3[4]), .E(E3[4]),

 .C0(C3[4])); 

ac ac35(.A(S2[5]), .B(D2[4]), .C(E2[4]), .X(X),

 .F(FI[3]), .C1(C3[6]), .S(S3[5]), .D(D3[5]), .E(E3[5]),

 .C0(C3[5])); 

ac ac36(.A(A[5]), .B(D2[5]), .C(E2[5]), .X(X), .F(FI[3]),

 .C1(C3[7]), .S(S3[6]), .D(D3[6]), .E(E3[6]),

 .C0(C3[6])); 

ac ac37(.A(A[6]), .B(B[5]), .C(C[5]), .X(X), .F(FI[3]),

 .C1(X),  .S(S3[7]), .D(D3[7]), .E(E3[7]),

 .C0(C3[7])); 

 

// arithmetic cells of row 4(A,B,C,X,F,C1/S,D,E,C0) 

ac ac41(.A(S3[1]), .B(1'b0), .C(1'b0), .X(X),

 .F(FI[4]), .C1(C4[2]), .S(S4[1]), .D(D4[1]), .E(E4[1]),

 .C0(C4[1])); 

ac ac42(.A(S3[2]), .B(D3[1]), .C(E3[1]), .X(X),

 .F(FI[4]), .C1(C4[3]), .S(S4[2]), .D(D4[2]), .E(E4[2]),
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 .C0(C4[2])); 

ac ac43(.A(S3[3]), .B(D3[2]), .C(E3[2]), .X(X),

 .F(FI[4]), .C1(C4[4]), .S(S4[3]), .D(D4[3]), .E(E4[3]),

 .C0(C4[3])); 

ac ac44(.A(S3[4]), .B(D3[3]), .C(E3[3]), .X(X),

 .F(FI[4]), .C1(C4[5]), .S(S4[4]), .D(D4[4]), .E(E4[4]),

 .C0(C4[4])); 

ac ac45(.A(S3[5]), .B(D3[4]), .C(E3[4]), .X(X),

 .F(FI[4]), .C1(C4[6]), .S(S4[5]), .D(D4[5]), .E(E4[5]),

 .C0(C4[5])); 

ac ac46(.A(S3[6]), .B(D3[5]), .C(E3[5]), .X(X),

 .F(FI[4]), .C1(C4[7]), .S(S4[6]), .D(D4[6]), .E(E4[6]),

 .C0(C4[6])); 

ac ac47(.A(S3[7]), .B(D3[6]), .C(E3[6]), .X(X),

 .F(FI[4]), .C1(C4[8]), .S(S4[7]), .D(D4[7]), .E(E4[7]),

 .C0(C4[7])); 

ac ac48(.A(A[7]), .B(D3[7]), .C(E3[7]), .X(X), .F(FI[4]),

 .C1(C4[9]), .S(S4[8]), .D(D4[8]), .E(E4[8]),

 .C0(C4[8])); 

ac ac49(.A(A[8]), .B(B[6]), .C(C[6]), .X(X), .F(FI[4]),

 .C1(X),  .S(S4[9]), .D(D4[9]), .E(E4[9]),

 .C0(C4[9])); 

 

// arithmetic cells of row 5(A,B,C,X,F,C1/S,D,E,C0) 

ac ac51(.A(S4[1]), .B(1'b0), .C(1'b0), .X(X),

 .F(FI[5]), .C1(C5[2]), .S(S[1]), .D(), .E(),

 .C0(C5[1])); 

ac ac52(.A(S4[2]), .B(D4[1]), .C(E4[1]), .X(X),

 .F(FI[5]), .C1(C5[3]), .S(S[2]), .D(), .E(),

 .C0(C5[2])); 

ac ac53(.A(S4[3]), .B(D4[2]), .C(E4[2]), .X(X),

 .F(FI[5]), .C1(C5[4]), .S(S[3]), .D(), .E(),

 .C0(C5[3])); 

ac ac54(.A(S4[4]), .B(D4[3]), .C(E4[3]), .X(X),

 .F(FI[5]), .C1(C5[5]), .S(S[4]), .D(), .E(),

 .C0(C5[4])); 

ac ac55(.A(S4[5]), .B(D4[4]), .C(E4[4]), .X(X),

 .F(FI[5]), .C1(C5[6]), .S(S[5]), .D(), .E(),

 .C0(C5[5])); 

ac ac56(.A(S4[6]), .B(D4[5]), .C(E4[5]), .X(X),

 .F(FI[5]), .C1(C5[7]), .S(S[6]), .D(), .E(),

 .C0(C5[6])); 

ac ac57(.A(S4[7]), .B(D4[6]), .C(E4[6]), .X(X),

 .F(FI[5]), .C1(C5[8]), .S(S[7]), .D(), .E(),
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 .C0(C5[7])); 

ac ac58(.A(S4[8]), .B(D4[7]), .C(E4[7]), .X(X),

 .F(FI[5]), .C1(C5[9]), .S(S[8]), .D(), .E(),

 .C0(C5[8])); 

ac ac59(.A(S4[9]), .B(D4[8]), .C(E4[8]), .X(X),

 .F(FI[5]), .C1(C5[10]),.S(S[9]), .D(), .E(),

 .C0(C5[9])); 

ac ac5a(.A(A[9]), .B(D4[9]), .C(E4[9]), .X(X), .F(FI[5]),

 .C1(C5[11]),.S(S[10]), .D(), .E(), .C0(C5[10])); 

ac ac5b(.A(A[10]), .B(B[7]), .C(C[7]), .X(X),

 .F(FI[5]), .C1(X),  .S(S[11]), .D(), .E(),

 .C0(C5[11])); 

 

endmodule 

 

module gpca40p 

( 

input wire [1:0] op, 

input wire [9:0] din0, 

input wire [6:0] din1, 

output reg [10:0] dout 

); 

//   op[1:0] din0[9:0]  din1[6:0]  dout[10:0] 

(TBD) 

//     

// sq  00  P[1:5]   7'bx   S[1:11]   

 (X=1'b0, B=7'b0011111, C=7'b0100000, P=din0[4:0], A=10'b0) 

// sqr  01  A[1:10]   7'bx   {6'bx, F[1:5]} 

 (X=1'b1, B=7'b0011111, C=7'b0100000, P=5'b0, A=din0[9:0]) 

// mult 10  B[1:7], C[1:7] {2'bx, P[1:5]} S[1:11]   

 (X=1'b0, B=C=din0[6:0], P=din1[4:0], A=10'b0) 

// div  11  A[10:1]   B[7:1], C[7:1] {7'bx, F[2:5]}

  (X=1'b1, B=C=din1[0:6], P=5'b0, A=din0[0:9]) 

 

/* input */ 

reg   X; 

reg [1:5] P; 

reg [1:7] B, C; 

reg [1:10] A; 

 

/* output */ 

wire [1:5] F; 

wire [1:11] S; 
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/* original circuit */ 

gpca inst_gpca (X, P, B, C, A, F, S); 

 

/* multiplexer */ 

always @* begin 

/* default */ 

X  = 1'bx; 

P[1:5] = 5'bx; 

B[1:7] = 7'bx; 

C[1:7] = 7'bx; 

A[1:10] = 10'bx; 

 

dout[10:0] = 11'bx; 

 

case(op) 

2'b00: begin 

X  = 1'b0; 

P[1:5] = din0[4:0]; 

B[1:7] = 7'b0011111; 

C[1:7] = 7'b0100000; 

A[1:10] = 10'b0; 

 

dout[10:0] = S[1:11]; 

end 

2'b01: begin 

X  = 1'b1; 

P[1:5] = 5'b0; 

B[1:7] = 7'b0011111; 

C[1:7] = 7'b0100000; 

A[1:10] = din0[9:0]; 

 

dout[10:0] = {6'b0, F[1:5]}; 

end 

2'b10: begin 

X  = 1'b0; 

P[1:5] = din1[4:0]; 

B[1:7] = din0[6:0]; 

C[1:7] = din0[6:0]; 

A[1:10] = 10'b0; 

 

dout[10:0] = S[1:11]; 

end 

2'b11: begin 

X  = 1'b1; 



256 

 

P[1:5] = 5'b0; 

B[1:7] = {din1[0], din1[1], din1[2], din1[3], din1[4], 

din1[5], din1[6]}; 

C[1:7] = {din1[0], din1[1], din1[2], din1[3], din1[4], 

din1[5], din1[6]}; 

A[1:10] = {din0[0], din0[1], din0[2], din0[3], din0[4], 

din0[5], din0[6], din0[7], din0[8], din0[9]}; 

 

dout[10:0] = {7'b0, F[5], F[4], F[3], F[2]}; 

end 

default: begin 

end 

endcase 

end 

endmodule 
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APPENDIX C Verilog Code for the Extension of Pipelining 

// Verilog implementation of "A GENERALIZED PIPELINE CELLULAR 

ARRAY" by 

// Harpreet Singh, Shashank Kamthan, Dharma Agarwal, Lubna 

Alazzawi 

// All codes here are imitating what's described in the papers 

given by Dr. Singh, and it is claimed by Dr. Singh to be at least 

useful at all 

// top-level entity: "gpca40p" 

 

// arithmetic cell 

module ac 

( 

input wire A, B, C, X, F, C1, 

output wire S, D, E, C0 

); 

 

assign S = ((A ^ (B ^ X) ^ C1) & F) | (A & ~F); 

assign C0 = ((B ^ X) & (A | C1)) | (A & C1); 

assign D = C & (B | F); 

assign E = B | (C & F); 

endmodule 

 

module cc 

( 

input wire X, P, C0, 

output wire F 

); 

 

assign F = (C0 & X) | (P & ~X); 

endmodule 

 

module gpca 

( 

input wire   clk, rst, 

input wire   X, 

input wire [1:5] P,  // [1:nrow] 

input wire [1:7] C,  // [1:(nrow + 2)] 

input wire [1:7] B,  // [1:(nrow + 2)] 

input wire [1:10] A,  // [1:(2*nrow)] 

output reg [1:5] F,  // [1:nrow] 

output reg [1:11] S  // [1:(2*nrow + 1)] 

); 
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/* stage 0 */ 

reg   s0_X_r; 

reg [1:5] s0_P_r; 

reg [1:7] s0_C_r; 

reg [1:7] s0_B_r; 

reg [1:10] s0_A_r; 

 

wire  s0_F; 

wire [1:3] s0_C0; 

 

/* stage 1 */ 

reg   s1_X_r, s1_X_n; 

reg [2:5] s1_P_r, s1_P_n; 

reg [4:7] s1_C_r, s1_C_n; 

reg [4:7] s1_B_r, s1_B_n; 

reg [3:10] s1_A_r, s1_A_n; 

 

reg [1:3] s1_S_r; 

reg [1:3] s1_D_r; 

reg [1:3] s1_E_r; 

reg [1:1] s1_F_r, s1_F_n; 

 

wire [1:3] s1_S_n; 

wire [1:3] s1_D_n; 

wire [1:3] s1_E_n; 

 

wire  s1_F; 

wire [1:5] s1_C0; 

 

/* stage 2 */ 

reg   s2_X_r, s2_X_n; 

reg [3:5] s2_P_r, s2_P_n; 

reg [5:7] s2_C_r, s2_C_n; 

reg [5:7] s2_B_r, s2_B_n; 

reg [5:10] s2_A_r, s2_A_n; 

 

reg [1:5] s2_S_r; 

reg [1:5] s2_D_r; 

reg [1:5] s2_E_r; 

reg [1:2] s2_F_r, s2_F_n; 

 

wire [1:5] s2_S_n; 

wire [1:5] s2_D_n; 
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wire [1:5] s2_E_n; 

 

wire  s2_F; 

wire [1:7] s2_C0; 

 

/* stage 3 */ 

reg   s3_X_r, s3_X_n; 

reg [4:5] s3_P_r, s3_P_n; 

reg [6:7] s3_C_r, s3_C_n; 

reg [6:7] s3_B_r, s3_B_n; 

reg [7:10] s3_A_r, s3_A_n; 

 

reg [1:7] s3_S_r; 

reg [1:7] s3_D_r; 

reg [1:7] s3_E_r; 

reg [1:3] s3_F_r, s3_F_n; 

 

wire [1:7] s3_S_n; 

wire [1:7] s3_D_n; 

wire [1:7] s3_E_n; 

 

wire  s3_F; 

wire [1:9] s3_C0; 

 

 

/* stage 4 */ 

reg   s4_X_r, s4_X_n; 

reg [5:5] s4_P_r, s4_P_n; 

reg [7:7] s4_C_r, s4_C_n; 

reg [7:7] s4_B_r, s4_B_n; 

reg [9:10] s4_A_r, s4_A_n; 

 

reg [1:9] s4_S_r; 

reg [1:9] s4_D_r; 

reg [1:9] s4_E_r; 

reg [1:4] s4_F_r, s4_F_n; 

 

wire [1:9] s4_S_n; 

wire [1:9] s4_D_n; 

wire [1:9] s4_E_n; 

 

wire  s4_F; 

wire [1:11] s4_C0; 
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/* stage 5 */ 

reg [1:11] s5_S_r; 

reg [1:11] s5_D_r; 

reg [1:11] s5_E_r; 

reg [1:5] s5_F_r, s5_F_n; 

 

wire [1:11] s5_S_n; 

wire [1:11] s5_D_n; 

wire [1:11] s5_E_n; 

 

/*** stage 0 ***/ 

always @(posedge clk, posedge rst) begin 

if(rst) begin 

s0_X_r <= 1'bx; 

s0_P_r <= 5'bx; 

s0_C_r <= 7'bx; 

s0_B_r <= 7'bx; 

s0_A_r <= 10'bx; 

end else begin 

s0_X_r <= X; 

s0_P_r <= P; 

s0_C_r <= C; 

s0_B_r <= B; 

s0_A_r <= A; 

end 

end 

 

always @* begin 

s1_X_n   = s0_X_r     ; 

s1_P_n[2:5]  = s0_P_r[2:5]    ; 

s1_C_n[4:7]  = s0_C_r[4:7]    ; 

s1_B_n[4:7]  = s0_B_r[4:7]    ; 

s1_A_n[3:10] = s0_A_r[3:10]    ; 

s1_F_n[1:1]  = {s0_C0[1]}    ; 

end 

 

/* control cell of row 1 (X,P,C0 / F) */ 

cc cc1(s0_X_r, s0_P_r[1], s0_C0[1], s0_F); 

 

/* arithmetic cells of row 1 (A,B,C,X,F,C1/S,D,E,C0) */ 

ac ac11(.A(1'b0),  .B(s0_B_r[1]), .C(s0_C_r[1]), .X(s0_X_r),

 .F(s0_F), .C1(s0_C0[2]), .S(s1_S_n[1]), .D(s1_D_n[1]),

 .E(s1_E_n[1]), .C0(s0_C0[1]) ); 

ac ac12(.A(s0_A_r[1]), .B(s0_B_r[2]), .C(s0_C_r[2]),
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 .X(s0_X_r), .F(s0_F), .C1(s0_C0[3]), .S(s1_S_n[2]),

 .D(s1_D_n[2]), .E(s1_E_n[2]), .C0(s0_C0[2]) ); 

ac ac13(.A(s0_A_r[2]), .B(s0_B_r[3]), .C(s0_C_r[3]),

 .X(s0_X_r), .F(s0_F), .C1(s0_X_r), .S(s1_S_n[3]),

 .D(s1_D_n[3]), .E(s1_E_n[3]), .C0(s0_C0[3]) ); 

 

/*** stage 1 ***/ 

always @(posedge clk, posedge rst) begin 

if(rst) begin 

s1_X_r <= 1'bx; 

s1_P_r <= 4'bx; 

s1_C_r <= 4'bx; 

s1_B_r <= 4'bx; 

s1_A_r <= 8'bx; 

s1_S_r <= 3'bx; 

s1_D_r <= 3'bx; 

s1_E_r <= 3'bx; 

s1_F_r <= 1'bx; 

end else begin 

s1_X_r <= s1_X_n; 

s1_P_r <= s1_P_n; 

s1_C_r <= s1_C_n; 

s1_B_r <= s1_B_n; 

s1_A_r <= s1_A_n; 

s1_S_r <= s1_S_n; 

s1_D_r <= s1_D_n; 

s1_E_r <= s1_E_n; 

s1_F_r <= s1_F_n; 

end 

end 

 

always @* begin 

s2_X_n   = s1_X_r     ; 

s2_P_n[3:5]  = s1_P_r[3:5]    ; 

s2_C_n[5:7]  = s1_C_r[5:7]    ; 

s2_B_n[5:7]  = s1_B_r[5:7]    ; 

s2_A_n[5:10] = s1_A_r[5:10]    ; 

s2_F_n[1:2]  = {s1_F_r[1:1], s1_C0[1]} ; 

end 

 

/* control cell of row 2 (X,P,C0 / F) */ 

cc cc2(s1_X_r, s1_P_r[2], s1_C0[1], s1_F); 

 

/* arithmetic cells of row 2 (A,B,C,X,F,C1/S,D,E,C0) */ 
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ac ac21(.A(s1_S_r[1]), .B(1'b0),  .C(1'b0), 

 .X(s1_X_r), .F(s1_F), .C1(s1_C0[2]), .S(s2_S_n[1]),

 .D(s2_D_n[1]), .E(s2_E_n[1]), .C0(s1_C0[1]) ); 

ac ac22(.A(s1_S_r[2]), .B(s1_D_r[1]), .C(s1_E_r[1]),

 .X(s1_X_r), .F(s1_F), .C1(s1_C0[3]), .S(s2_S_n[2]),

 .D(s2_D_n[2]), .E(s2_E_n[2]), .C0(s1_C0[2]) ); 

ac ac23(.A(s1_S_r[3]), .B(s1_D_r[2]), .C(s1_E_r[2]),

 .X(s1_X_r), .F(s1_F), .C1(s1_C0[4]), .S(s2_S_n[3]),

 .D(s2_D_n[3]), .E(s2_E_n[3]), .C0(s1_C0[3]) ); 

ac ac24(.A(s1_A_r[3]), .B(s1_D_r[3]), .C(s1_E_r[3]),

 .X(s1_X_r), .F(s1_F), .C1(s1_C0[5]), .S(s2_S_n[4]),

 .D(s2_D_n[4]), .E(s2_E_n[4]), .C0(s1_C0[4]) ); 

ac ac25(.A(s1_A_r[4]), .B(s1_B_r[4]), .C(s1_C_r[4]),

 .X(s1_X_r), .F(s1_F), .C1(s1_X_r), .S(s2_S_n[5]),

 .D(s2_D_n[5]), .E(s2_E_n[5]), .C0(s1_C0[5]) ); 

 

/*** stage 2 ***/ 

always @(posedge clk, posedge rst) begin 

if(rst) begin 

s2_X_r <= 1'bx; 

s2_P_r <= 3'bx; 

s2_C_r <= 3'bx; 

s2_B_r <= 3'bx; 

s2_A_r <= 6'bx; 

s2_S_r <= 5'bx; 

s2_D_r <= 5'bx; 

s2_E_r <= 5'bx; 

s2_F_r <= 2'bx; 

end else begin 

s2_X_r <= s2_X_n; 

s2_P_r <= s2_P_n; 

s2_C_r <= s2_C_n; 

s2_B_r <= s2_B_n; 

s2_A_r <= s2_A_n; 

s2_S_r <= s2_S_n; 

s2_D_r <= s2_D_n; 

s2_E_r <= s2_E_n; 

s2_F_r <= s2_F_n; 

end 

end 

 

always @* begin 

s3_X_n   = s2_X_r     ; 

s3_P_n[4:5]  = s2_P_r[4:5]    ; 
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s3_C_n[6:7]  = s2_C_r[6:7]    ; 

s3_B_n[6:7]  = s2_B_r[6:7]    ; 

s3_A_n[7:10] = s2_A_r[7:10]    ; 

s3_F_n[1:3]  = {s2_F_r[1:2], s2_C0[1]} ; 

end 

 

/* control cell of row 3 (X,P,C0 / F) */ 

cc cc3(s2_X_r, s2_P_r[3], s2_C0[1], s2_F); 

 

/* arithmetic cells of row 3 (A,B,C,X,F,C1/S,D,E,C0) */ 

ac ac31(.A(s2_S_r[1]), .B(1'b0),  .C(1'b0), 

 .X(s2_X_r), .F(s2_F), .C1(s2_C0[2]), .S(s3_S_n[1]),

 .D(s3_D_n[1]), .E(s3_E_n[1]), .C0(s2_C0[1])); 

ac ac32(.A(s2_S_r[2]), .B(s2_D_r[1]), .C(s2_E_r[1]),

 .X(s2_X_r), .F(s2_F), .C1(s2_C0[3]), .S(s3_S_n[2]),

 .D(s3_D_n[2]), .E(s3_E_n[2]), .C0(s2_C0[2])); 

ac ac33(.A(s2_S_r[3]), .B(s2_D_r[2]), .C(s2_E_r[2]),

 .X(s2_X_r), .F(s2_F), .C1(s2_C0[4]), .S(s3_S_n[3]),

 .D(s3_D_n[3]), .E(s3_E_n[3]), .C0(s2_C0[3])); 

ac ac34(.A(s2_S_r[4]), .B(s2_D_r[3]), .C(s2_E_r[3]),

 .X(s2_X_r), .F(s2_F), .C1(s2_C0[5]), .S(s3_S_n[4]),

 .D(s3_D_n[4]), .E(s3_E_n[4]), .C0(s2_C0[4])); 

ac ac35(.A(s2_S_r[5]), .B(s2_D_r[4]), .C(s2_E_r[4]),

 .X(s2_X_r), .F(s2_F), .C1(s2_C0[6]), .S(s3_S_n[5]),

 .D(s3_D_n[5]), .E(s3_E_n[5]), .C0(s2_C0[5])); 

ac ac36(.A(s2_A_r[5]), .B(s2_D_r[5]), .C(s2_E_r[5]),

 .X(s2_X_r), .F(s2_F), .C1(s2_C0[7]), .S(s3_S_n[6]),

 .D(s3_D_n[6]), .E(s3_E_n[6]), .C0(s2_C0[6])); 

ac ac37(.A(s2_A_r[6]), .B(s2_B_r[5]), .C(s2_C_r[5]),

 .X(s2_X_r), .F(s2_F), .C1(s2_X_r), .S(s3_S_n[7]),

 .D(s3_D_n[7]), .E(s3_E_n[7]), .C0(s2_C0[7])); 

 

/*** stage 3 ***/ 

always @(posedge clk, posedge rst) begin 

if(rst) begin 

s3_X_r <= 1'bx; 

s3_P_r <= 2'bx; 

s3_C_r <= 2'bx; 

s3_B_r <= 2'bx; 

s3_A_r <= 4'bx; 

s3_S_r <= 7'bx; 

s3_D_r <= 7'bx; 

s3_E_r <= 7'bx; 

s3_F_r <= 3'bx; 
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end else begin 

s3_X_r <= s3_X_n; 

s3_P_r <= s3_P_n; 

s3_C_r <= s3_C_n; 

s3_B_r <= s3_B_n; 

s3_A_r <= s3_A_n; 

s3_S_r <= s3_S_n; 

s3_D_r <= s3_D_n; 

s3_E_r <= s3_E_n; 

s3_F_r <= s3_F_n; 

end 

end 

 

always @* begin 

s4_X_n   = s3_X_r     ; 

s4_P_n[5:5]  = s3_P_r[5:5]    ; 

s4_C_n[7:7]  = s3_C_r[7:7]    ; 

s4_B_n[7:7]  = s3_B_r[7:7]    ; 

s4_A_n[9:10] = s3_A_r[9:10]    ; 

s4_F_n[1:4]  = {s3_F_r[1:3], s3_C0[1]} ; 

end 

 

/* control cell of row 4 (X,P,C0 / F) */ 

cc cc4(s3_X_r, s3_P_r[4], s3_C0[1], s3_F); 

 

/* arithmetic cells of row 4 (A,B,C,X,F,C1/S,D,E,C0) */ 

ac ac41(.A(s3_S_r[1]), .B(1'b0),  .C(1'b0), 

 .X(s3_X_r), .F(s3_F), .C1(s3_C0[2]), .S(s4_S_n[1]),

 .D(s4_D_n[1]), .E(s4_E_n[1]), .C0(s3_C0[1])); 

ac ac42(.A(s3_S_r[2]), .B(s3_D_r[1]), .C(s3_E_r[1]),

 .X(s3_X_r), .F(s3_F), .C1(s3_C0[3]), .S(s4_S_n[2]),

 .D(s4_D_n[2]), .E(s4_E_n[2]), .C0(s3_C0[2])); 

ac ac43(.A(s3_S_r[3]), .B(s3_D_r[2]), .C(s3_E_r[2]),

 .X(s3_X_r), .F(s3_F), .C1(s3_C0[4]), .S(s4_S_n[3]),

 .D(s4_D_n[3]), .E(s4_E_n[3]), .C0(s3_C0[3])); 

ac ac44(.A(s3_S_r[4]), .B(s3_D_r[3]), .C(s3_E_r[3]),

 .X(s3_X_r), .F(s3_F), .C1(s3_C0[5]), .S(s4_S_n[4]),

 .D(s4_D_n[4]), .E(s4_E_n[4]), .C0(s3_C0[4])); 

ac ac45(.A(s3_S_r[5]), .B(s3_D_r[4]), .C(s3_E_r[4]),

 .X(s3_X_r), .F(s3_F), .C1(s3_C0[6]), .S(s4_S_n[5]),

 .D(s4_D_n[5]), .E(s4_E_n[5]), .C0(s3_C0[5])); 

ac ac46(.A(s3_S_r[6]), .B(s3_D_r[5]), .C(s3_E_r[5]),

 .X(s3_X_r), .F(s3_F), .C1(s3_C0[7]), .S(s4_S_n[6]),

 .D(s4_D_n[6]), .E(s4_E_n[6]), .C0(s3_C0[6])); 
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ac ac47(.A(s3_S_r[7]), .B(s3_D_r[6]), .C(s3_E_r[6]),

 .X(s3_X_r), .F(s3_F), .C1(s3_C0[8]), .S(s4_S_n[7]),

 .D(s4_D_n[7]), .E(s4_E_n[7]), .C0(s3_C0[7])); 

ac ac48(.A(s3_A_r[7]), .B(s3_D_r[7]), .C(s3_E_r[7]),

 .X(s3_X_r), .F(s3_F), .C1(s3_C0[9]), .S(s4_S_n[8]),

 .D(s4_D_n[8]), .E(s4_E_n[8]), .C0(s3_C0[8])); 

ac ac49(.A(s3_A_r[8]), .B(s3_B_r[6]), .C(s3_C_r[6]),

 .X(s3_X_r), .F(s3_F), .C1(s3_X_r), .S(s4_S_n[9]),

 .D(s4_D_n[9]), .E(s4_E_n[9]), .C0(s3_C0[9])); 

 

/*** stage 4 ***/ 

always @(posedge clk, posedge rst) begin 

if(rst) begin 

s4_X_r <= 1'bx; 

s4_P_r <= 1'bx; 

s4_C_r <= 1'bx; 

s4_B_r <= 1'bx; 

s4_A_r <= 2'bx; 

s4_S_r <= 9'bx; 

s4_D_r <= 9'bx; 

s4_E_r <= 9'bx; 

s4_F_r <= 4'bx; 

end else begin 

s4_X_r <= s4_X_n; 

s4_P_r <= s4_P_n; 

s4_C_r <= s4_C_n; 

s4_B_r <= s4_B_n; 

s4_A_r <= s4_A_n; 

s4_S_r <= s4_S_n; 

s4_D_r <= s4_D_n; 

s4_E_r <= s4_E_n; 

s4_F_r <= s4_F_n; 

end 

end 

 

always @* begin 

s5_F_n[1:5]  = {s4_F_r[1:4], s4_C0[1]} ; 

end 

 

/* control cell of row 5 (X,P,C0 / F) */ 

cc cc5(s4_X_r, s4_P_r[5], s4_C0[1], s4_F); 

 

/* arithmetic cells of row 5 (A,B,C,X,F,C1/S,D,E,C0) */ 

ac ac51(.A(s4_S_r[1]), .B(1'b0),  .C(1'b0), 
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 .X(s4_X_r), .F(s4_F), .C1(s4_C0[2]), .S(s5_S_n[1]),

 .D(s5_D_n[1]), .E(s5_E_n[1]), .C0(s4_C0[1])); 

ac ac52(.A(s4_S_r[2]), .B(s4_D_r[1]), .C(s4_E_r[1]),

 .X(s4_X_r), .F(s4_F), .C1(s4_C0[3]), .S(s5_S_n[2]),

 .D(s5_D_n[2]), .E(s5_E_n[2]), .C0(s4_C0[2])); 

ac ac53(.A(s4_S_r[3]), .B(s4_D_r[2]), .C(s4_E_r[2]),

 .X(s4_X_r), .F(s4_F), .C1(s4_C0[4]), .S(s5_S_n[3]),

 .D(s5_D_n[3]), .E(s5_E_n[3]), .C0(s4_C0[3])); 

ac ac54(.A(s4_S_r[4]), .B(s4_D_r[3]), .C(s4_E_r[3]),

 .X(s4_X_r), .F(s4_F), .C1(s4_C0[5]), .S(s5_S_n[4]),

 .D(s5_D_n[4]), .E(s5_E_n[4]), .C0(s4_C0[4])); 

ac ac55(.A(s4_S_r[5]), .B(s4_D_r[4]), .C(s4_E_r[4]),

 .X(s4_X_r), .F(s4_F), .C1(s4_C0[6]), .S(s5_S_n[5]),

 .D(s5_D_n[5]), .E(s5_E_n[5]), .C0(s4_C0[5])); 

ac ac56(.A(s4_S_r[6]), .B(s4_D_r[5]), .C(s4_E_r[5]),

 .X(s4_X_r), .F(s4_F), .C1(s4_C0[7]), .S(s5_S_n[6]),

 .D(s5_D_n[6]), .E(s5_E_n[6]), .C0(s4_C0[6])); 

ac ac57(.A(s4_S_r[7]), .B(s4_D_r[6]), .C(s4_E_r[6]),

 .X(s4_X_r), .F(s4_F), .C1(s4_C0[8]), .S(s5_S_n[7]),

 .D(s5_D_n[7]), .E(s5_E_n[7]), .C0(s4_C0[7])); 

ac ac58(.A(s4_S_r[8]), .B(s4_D_r[7]), .C(s4_E_r[7]),

 .X(s4_X_r), .F(s4_F), .C1(s4_C0[9]), .S(s5_S_n[8]),

 .D(s5_D_n[8]), .E(s5_E_n[8]), .C0(s4_C0[8])); 

ac ac59(.A(s4_S_r[9]), .B(s4_D_r[8]), .C(s4_E_r[8]),

 .X(s4_X_r), .F(s4_F), .C1(s4_C0[10]), .S(s5_S_n[9]),

 .D(s5_D_n[9]), .E(s5_E_n[9]), .C0(s4_C0[9])); 

ac ac5a(.A(s4_A_r[9]), .B(s4_D_r[9]), .C(s4_E_r[9]),

 .X(s4_X_r), .F(s4_F), .C1(s4_C0[11]), .S(s5_S_n[10]),

 .D(s5_D_n[10]), .E(s5_E_n[10]), .C0(s4_C0[10])); 

ac ac5b(.A(s4_A_r[10]), .B(s4_B_r[7]), .C(s4_C_r[7]),

 .X(s4_X_r), .F(s4_F), .C1(s4_X_r), .S(s5_S_n[11]),

 .D(s5_D_n[11]), .E(s5_E_n[11]), .C0(s4_C0[11])); 

 

/*** stage 5 (output) ***/ 

always @(posedge clk, posedge rst) begin 

if(rst) begin 

s5_S_r <= 11'bx; 

s5_D_r <= 11'bx; 

s5_E_r <= 11'bx; 

s5_F_r <= 5'bx; 

end else begin 

s5_S_r <= s5_S_n; 

s5_D_r <= s5_D_n; 

s5_E_r <= s5_E_n; 
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s5_F_r <= s5_F_n; 

end 

end 

 

always @* begin 

F = s5_F_r; 

S = s5_S_r; 

end 

endmodule 

 

module gpca40p 

( 

input wire   clk, rst,  

input wire [1:0] op, 

input wire [9:0] din0, 

input wire [6:0] din1, 

output reg [10:0] dout 

); 

//   op[1:0] din0[9:0]  din1[6:0]  dout[10:0] 

(TBD) 

//     

// sq  00  P[1:5]   7'bx   S[1:11]   

 (X=1'b0, B=7'b0011111, C=7'b0100000, P=din0[4:0], A=10'b0) 

// sqr  01  A[1:10]   7'bx   {6'bx, F[1:5]} 

 (X=1'b1, B=7'b0011111, C=7'b0100000, P=5'b0, A=din0[9:0]) 

// mult 10  B[1:7], C[1:7] {2'bx, P[1:5]} S[1:11]   

 (X=1'b0, B=C=din0[6:0], P=din1[4:0], A=10'b0) 

// div  11  A[10:1]   B[7:1], C[7:1] {7'bx, F[2:5]}

  (X=1'b1, B=C=din1[0:6], P=5'b0, A=din0[0:9]) 

 

/* input */ 

reg   X; 

reg [1:5] P; 

reg [1:7] B, C; 

reg [1:10] A; 

 

/* output */ 

wire [1:5] F; 

wire [1:11] S; 

 

/* operation */ 

reg [1:0] op_r [0:5]; 

 

/* original circuit */ 
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gpca inst_gpca (clk, rst, 

X, P, C, B, A,  

F, S); 

 

/* operation delay */ 

always @(posedge clk, posedge rst) begin 

if(rst) begin 

op_r[0] <= 2'bx; 

op_r[1] <= 2'bx; 

op_r[2] <= 2'bx; 

op_r[3] <= 2'bx; 

op_r[4] <= 2'bx; 

op_r[5] <= 2'bx; 

end else begin 

op_r[0] <= op; 

op_r[1] <= op_r[0]; 

op_r[2] <= op_r[1]; 

op_r[3] <= op_r[2]; 

op_r[4] <= op_r[3]; 

op_r[5] <= op_r[4]; 

end 

end 

 

/* multiplexer (input)*/ 

always @* begin 

case(op) 

2'b00: begin 

X  = 1'b0; 

P[1:5] = din0[4:0]; 

B[1:7] = 7'b0011111; 

C[1:7] = 7'b0100000; 

A[1:10] = 10'b0; 

end 

2'b01: begin 

X  = 1'b1; 

P[1:5] = 5'b0; 

B[1:7] = 7'b0011111; 

C[1:7] = 7'b0100000; 

A[1:10] = din0[9:0]; 

end 

2'b10: begin 

X  = 1'b0; 

P[1:5] = din1[4:0]; 

B[1:7] = din0[6:0]; 
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C[1:7] = din0[6:0]; 

A[1:10] = 10'b0; 

end 

2'b11: begin 

X  = 1'b1; 

P[1:5] = 5'b0; 

B[1:7] = {din1[0], din1[1], din1[2], din1[3], din1[4], 

din1[5], din1[6]}; 

C[1:7] = {din1[0], din1[1], din1[2], din1[3], din1[4], 

din1[5], din1[6]}; 

A[1:10] = {din0[0], din0[1], din0[2], din0[3], din0[4], 

din0[5], din0[6], din0[7], din0[8], din0[9]}; 

end 

default: begin 

X  = 1'bx; 

P[1:5] = 5'bx; 

B[1:7] = 7'bx; 

C[1:7] = 7'bx; 

A[1:10] = 10'bx; 

end 

endcase 

end 

 

/* multiplexer (output)*/ 

always @* begin 

case(op_r[5]) 

2'b00: begin 

dout[10:0] = S[1:11]; 

end 

2'b01: begin 

dout[10:0] = {6'b0, F[1:5]}; 

end 

2'b10: begin 

dout[10:0] = S[1:11]; 

end 

2'b11: begin 

dout[10:0] = {7'b0, F[5], F[4], F[3], F[2]}; 

end 

default: begin 

dout[10:0] = 11'bx; 

end 

endcase 

end 

endmodule 
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APPENDIX D Script for Cadence Encounter RTL Compiler (rc.cmd) 

set_attribute hdl_search_path {./} 

set_attribute lib_search_path {./} 

set_attribute library [list 

/opt/cds/lib/UofU_Digital_v1_2/UofU_Digital_v1_4.lib] 

set_attribute information_level 6 

set_attribute ungroup true 

set_attribute write_vlog_unconnected_port_style none 

read_hdl -v2001 simple.v 

elaborate simple 

synthesize -to_mapped 

write_hdl -mapped > nl.v 

q 
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APPENDIX E Script for Cadence Encounter (encounter.cmd) 

set_global _enable_mmmc_by_default_flow      

$CTE::mmmc_default 

suppressMessage ENCEXT-2799 

win 

set conf_qxconf_file NULL 

set conf_qxlib_file NULL 

set defHierChar / 

set init_gnd_net gnd! 

set init_pwr_net vdd! 

set init_mmmc_file mmmc.tcl 

set init_lef_file 

/opt/cds/lib/UofU_Digital_v1_2/UofU_Digital_v1_4.lef 

set lsgOCPGainMult 1.000000 

set init_verilog nl.v 

set init_top_cell simple 

create_rc_corner    -name typical \ 

-preRoute_res {1.0} \ 

-preRoute_cap {1.0} \ 

-preRoute_clkres {0.0} \ 

-preRoute_clkcap {0.0} \ 

-postRoute_res {1.0} \ 

-postRoute_cap {1.0} \ 

-postRoute_xcap {1.0} \ 

-postRoute_clkres {0.0} \ 

-postRoute_clkcap {0.0}  

create_library_set -name typical -timing 

{/opt/cds/lib/UofU_Digital_v1_2/UofU_Digital_v1_4.lib}  

create_constraint_mode -name typical -sdc_files {typical.sdc}  

create_delay_corner -name typical -library_set {typical} 

-rc_corner {typical}  

create_analysis_view -name typical -constraint_mode {typical} 

-delay_corner {typical}  

init_design 

 

 

floorPlan -site core -r 1 0.4 30 30 30 30 

saveDesign floorplan.enc 

 

set sprCreateIeStripeNets {} 

set sprCreateIeStripeLayers {} 

set sprCreateIeStripeWidth 10.0 

set sprCreateIeStripeSpacing 4.0 
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set sprCreateIeStripeThreshold 1.0 

set sprCreateIeStripeNets {} 

set sprCreateIeStripeLayers {} 

set sprCreateIeStripeWidth 10.0 

set sprCreateIeStripeSpacing 4.0 

set sprCreateIeStripeThreshold 1.0 

set sprCreateIeRingNets {} 

set sprCreateIeRingLayers {} 

set sprCreateIeRingWidth 1.0 

set sprCreateIeRingSpacing 1.0 

set sprCreateIeRingOffset 1.0 

set sprCreateIeRingThreshold 1.0 

set sprCreateIeRingJogDistance 1.0 

addRing -center 1 -stacked_via_top_layer metal3 -around core 

-jog_distance 1.5 -threshold 1.5 -nets {gnd! vdd!} 

-stacked_via_bottom_layer metal1 -layer {bottom metal1 top 

metal1 right metal2 left metal2} -width 9 -spacing 1.8 -offset 

1.5 

set sprCreateIeStripeNets {} 

set sprCreateIeStripeLayers {} 

set sprCreateIeStripeWidth 10.0 

set sprCreateIeStripeSpacing 4.0 

set sprCreateIeStripeThreshold 1.0 

addStripe -block_ring_top_layer_limit metal3 

-max_same_layer_jog_length 5.0 -snap_wire_center_to_grid Grid 

-padcore_ring_bottom_layer_limit metal1 -set_to_set_distance 

100 -stacked_via_top_layer metal3 

-padcore_ring_top_layer_limit metal3 -spacing 0.9 

-merge_stripes_value 1.5 -layer metal2 

-block_ring_bottom_layer_limit metal1 -width 1.5 -nets {gnd! 

vdd!} -stacked_via_bottom_layer metal1 

saveDesign power.enc 

 

globalNetConnect vdd! -type tiehi -module {} 

globalNetConnect gnd! -type tielo -module {} 

 

sroute -connect { blockPin padPin padRing corePin } 

-layerChangeRange { metal1 metal3 } -blockPinTarget 

{ nearestRingStripe nearestTarget } -padPinPortConnect 

{ allPort oneGeom } -checkAlignedSecondaryPin 1 -blockPin 

useLef -allowJogging 1 -crossoverViaBottomLayer metal1 

-allowLayerChange 1 -targetViaTopLayer metal3 

-crossoverViaTopLayer metal3 -targetViaBottomLayer metal1 

-nets { gnd! vdd! } 
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setPlaceMode -fp false 

placeDesign -prePlaceOpt 

 

setOptMode -fixCap true -fixTran true -fixFanoutLoad false 

optDesign -preCTS 

createClockTreeSpec -file Clock.ctstch 

clockDesign -specFile Clock.ctstch -outDir clock_report 

-fixedInstBeforeCTS 

setOptMode -fixCap true -fixTran true -fixFanoutLoad false 

optDesign -postCTS 

 

setNanoRouteMode -quiet -timingEngine {} 

setNanoRouteMode -quiet -routeWithTimingDriven 1 

setNanoRouteMode -quiet -routeWithSiPostRouteFix 0 

setNanoRouteMode -quiet -drouteStartIteration default 

setNanoRouteMode -quiet -routeTopRoutingLayer default 

setNanoRouteMode -quiet -routeBottomRoutingLayer default 

setNanoRouteMode -quiet -drouteEndIteration default 

setNanoRouteMode -quiet -routeWithTimingDriven true 

setNanoRouteMode -quiet -routeWithSiDriven false 

routeDesign -globalDetail 

 

setDelayCalMode -engine aae -SIAware false 

setOptMode -fixCap true -fixTran true -fixFanoutLoad false 

optDesign -postRoute 

 

getFillerMode -quiet 

addFiller -cell FILL8 FILL4 FILL2 FILL -prefix FILLER 

 

verifyConnectivity -type all -error 1000 -warning 50 

 

setVerifyGeometryMode -area { 0 0 0 0 } -minWidth true 

-minSpacing true -minArea true -sameNet true -short true 

-overlap false -offRGrid false -offMGrid true -mergedMGridCheck 

true -minHole true -implantCheck true -minimumCut true -minStep 

true -viaEnclosure true -antenna false -insuffMetalOverlap true 

-pinInBlkg false -diffCellViol true -sameCellViol false 

-padFillerCellsOverlap true -routingBlkgPinOverlap true 

-routingCellBlkgOverlap true -regRoutingOnly false 

-stackedViasOnRegNet false -wireExt true -useNonDefaultSpacing 

false -maxWidth true -maxNonPrefLength -1 -error 1000 -warning 

50 

verifyGeometry 
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saveDesign final.enc 

defOut -floorplan -netlist -routing simple.def 

saveNetlist -flat -replaceTieConnection nlopt.v 

# then one may need to add 1'b0/0'b0 manually 



275 

 

APPENDIX F Multi-Mode Multi-Corner Script (mmmc.tcl) 

create_rc_corner    -name typical \ 

-preRoute_res {1.0} \ 

-preRoute_cap {1.0} \ 

-preRoute_clkres {0.0} \ 

-preRoute_clkcap {0.0} \ 

-postRoute_res {1.0} \ 

-postRoute_cap {1.0} \ 

-postRoute_xcap {1.0} \ 

-postRoute_clkres {0.0} \ 

-postRoute_clkcap {0.0}  

create_library_set -name typical -timing 

{/opt/cds/lib/UofU_Digital_v1_2/UofU_Digital_v1_4.lib}  

create_constraint_mode -name typical -sdc_files {typical.sdc}  

create_delay_corner -name typical -library_set {typical} 

-rc_corner {typical}  

create_analysis_view -name typical -constraint_mode {typical} 

-delay_corner {typical}  

set_analysis_view -setup {typical} -hold {typical} 
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APPENDIX G Synopsys Design Constraints (typical.sdc) 

set sdc_version 1.6 

create_clock [get_ports clk] -period 100 -waveform {0 50} 
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ABSTRACT 

THE DESIGN AND VLSI IMPLEMENTATION OF DIGITAL ARITHMATIC 

PROCESSORS - 

A CASE STUDY OF A GENERALIZED PIPELINE CELLULAR ARRAY 

by 

YUDI XIE 

December 2015 

Advisor: Dr. Harpreet Singh 

Major: Computer Engineering 

Degree: Master of Science 

A generalized pipeline array appeared in IEEE transaction in 1974. The array 

appeared in a few textbooks on computer arithmetic. From time to time, a number of 

papers appeared which reflected the modifications of this array. The objective of this 

thesis is to present the design and VLSI implementation of this array, which can add, 

subtract, multiply, divide, square and square root of binary numbers. In this thesis, we 

suggest a step-by-step procedure by which the design can be sent to MOSIS and to get 

the fabricated chip back. The array has been extended from 5 rows to 7 rows so that the 

extended operations can be performed. In particular, a procedure is developed by which 

the design and the implementation methodologies are suitable for 40 pin and 500 nm 

technologies. An algorithm has been developed by which one can predict and advance the 

maximum size and performance of the array. In addition, to increase data processing 

throughput, the extension of pipelining is conducted based on the original design. It is 

hoped that the design and implementation done here will go a long way in the 

development of advanced processors. 
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