
Wayne State University

Wayne State University Theses

1-1-2015

The Design And Vlsi Implementation Of Digital
Arithmatic Processors - A Case Study Of A
Generalized Pipeline Cellular Array
Yudi Xie
Wayne State University,

Follow this and additional works at: https://digitalcommons.wayne.edu/oa_theses

Part of the Computer Engineering Commons

This Open Access Thesis is brought to you for free and open access by DigitalCommons@WayneState. It has been accepted for inclusion in Wayne
State University Theses by an authorized administrator of DigitalCommons@WayneState.

Recommended Citation
Xie, Yudi, "The Design And Vlsi Implementation Of Digital Arithmatic Processors - A Case Study Of A Generalized Pipeline Cellular
Array" (2015). Wayne State University Theses. 462.
https://digitalcommons.wayne.edu/oa_theses/462

http://digitalcommons.wayne.edu/?utm_source=digitalcommons.wayne.edu%2Foa_theses%2F462&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/?utm_source=digitalcommons.wayne.edu%2Foa_theses%2F462&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wayne.edu/oa_theses?utm_source=digitalcommons.wayne.edu%2Foa_theses%2F462&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wayne.edu/oa_theses?utm_source=digitalcommons.wayne.edu%2Foa_theses%2F462&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.wayne.edu%2Foa_theses%2F462&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wayne.edu/oa_theses/462?utm_source=digitalcommons.wayne.edu%2Foa_theses%2F462&utm_medium=PDF&utm_campaign=PDFCoverPages

THE DESIGN AND VLSI IMPLEMENTATION OF DIGITAL ARITHMATIC

PROCESSORS -

A CASE STUDY OF A GENERALIZED PIPELINE CELLULAR ARRAY

by

YUDI XIE

THESIS

Submitted to the Graduate School

of Wayne State University,

Detroit, Michigan

in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE

2015

MAJOR: COMPUTER ENGINEERING

Approved By:

Advisor Date

© COPYRIGHT BY

YUDI XIE

2015

All Rights Reserved

ii

DEDICATION

To my parents.

iii

ACKNOWLEDGMENTS

The author is thankful to Dr. Harpreet Singh for suggesting the problem and

providing expertise which greatly assisted this research. The author is also thankful to

committee members Dr. Le Yi Wang and Dr. Nabil Sarhan.

iv

PREFACE

The design and implementation of arithmetic processors is taken up in this thesis. As

a case study, a generalized pipeline array is discussed. A generalized pipeline array

appeared in IEEE transaction in 1974. The array appeared in a few textbooks on

computer arithmetic. From time to time, a number of papers appeared which reflected the

modifications of this array. The objective of this thesis is to present the design and VLSI

implementation of arithmetic processors. As a case study the design and VLSI

implementation of a generalized pipeline cellular array is taken up in this thesis. This

array can add, subtract, multiply, divide, square and square root of binary numbers. In this

thesis, we suggest a step-by-step procedure by which the design can be sent to MOSIS

and to get the fabricated chip back. The array has been extended from 5 rows to 7 rows so

that the extended operations can be performed. In particular, a procedure is developed by

which the design and the implementation methodologies are suitable for 40 pin and 500

nm technologies. An algorithm has been developed by which one can predict and meet

the requirements of constrains like chip area. In order to increase data processing

throughput, the extension of pipelining is conducted. It is hoped that the design and

implementation done here will go a long way in the development of advanced arithmetic

processors.

v

TABLE OF CONTENTS

DEDICATION .. ii

ACKNOWLEDGMENTS ... iii

PREFACE .. iv

LIST OF TABLES ... viii

LIST OF FIGURES ... ix

CHAPTER 1 INTRODUCTION ...1

Introduction to Arithmetic Processors ...2

Current Designs in Arithmetic Units..5

Introduction to VLSI Design ...14

Review of Existing Implementation ..17

Arrangement of the Thesis ...20

Conclusion ...21

CHAPTER 2 EXTENSION OF THE PIPELINE ARRAY ...22

Introduction ..22

Design ..23

Implementation ..26

Logic Synthesis ..27

Place and Route..30

Chip Assembly ...34

Design Submission...85

Results ..87

vi

Conclusion ...88

CHAPTER 3 DESIGN TO MEET TECHNICAL CONSTRAINS89

Introduction ..89

Design ..91

Implementation ..102

Logic Synthesis ..103

Place and Route..107

Chip Assembly ... 111

Design Submission...162

Results ..164

Conclusion ...165

CHAPTER 4 EXTENSION FOR PIPELINING ...166

Introduction ..166

Design ..168

Implementation ..173

Logic Synthesis ..174

Place and Route..178

Chip Assembly ...182

Design Submission...233

Results ..235

Conclusion ...236

CHAPTER 5 SUMMARY AND CONCLUSION ...237

vii

Introduction ..237

Summary and Conclusion ..238

Contribution ...240

Problems for Future Work ..242

APPENDIX A Verilog Code for the 7 Row Extension ..243

APPENDIX B Verilog Code for the Extension to Meet Design Constrains250

APPENDIX C Verilog Code for the Extension of Pipelining ..257

APPENDIX D Script for Cadence Encounter RTL Compiler (rc.cmd)...........................270

APPENDIX E Script for Cadence Encounter (encounter.cmd)271

APPENDIX F Multi-Mode Multi-Corner Script (mmmc.tcl) ...275

APPENDIX G Synopsys Design Constraints (typical.sdc) ...276

REFERENCES ..277

ABSTRACT ...282

AUTOBIOGRAPHICAL STATEMENT ...283

viii

LIST OF TABLES

Table 1: Comparison between the Array and Other Arithmetic Processors 12

Table 2: Operations of the pipeline array. ... 18

Table 3. Summary of the 7-row extension .. 87

Table 4: Summary of resource requirement of pipeline array designs. 91

Table 5: Operations of the new implementation within 40 pins. 97

Table 6. Summary of operations of the extension within constrains 164

Table 7. Summary of pin count of the extension within constrains 164

Table 8: Implementation Summary of the Pipelined Design .. 235

Table 9: Result of Extended generalized pipeline cellular array 239

ix

LIST OF FIGURES

Figure 1: Intel 8087 microarchitecture. .. 3

Figure 2: DSP chip from Texas Instruments (TI) .. 4

Figure 3: TI 8847 .. 6

Figure 4: MIPS R3010 .. 8

Figure 5: Weitek 3364 ... 10

Figure 6: Arithmetic cell. .. 17

Figure 7: Control cell. ... 17

Figure 8: Organization of the pipeline array. .. 19

Figure 9: Pipeline array with 7 rows. .. 24

Figure 10: Place and route result on FPGA. ... 25

Figure 11: rc.cmd. ... 28

Figure 12: Synthesis summary generated by RC Compiler. ... 29

Figure 13: encounter.cmd.. 31

Figure 14: mmmc.tcl. .. 31

Figure 15: Final view in Encounter. .. 32

Figure 16: DRC report generated by Encounter. .. 33

Figure 17: Create New Library with Virtuoso. ... 35

Figure 18: "New Library" window of Virtuoso. ... 36

Figure 19: "Technology File for New Library" window of Virtuoso................................ 37

Figure 20: "Technology File for New Library" window of Virtuoso................................ 37

Figure 21: Import netlist with Virtuoso. ... 38

file:///D:/Users/Administrator/Desktop/thesis-long.doc%23_Toc438139105
file:///D:/Users/Administrator/Desktop/thesis-long.doc%23_Toc438139106
file:///D:/Users/Administrator/Desktop/thesis-long.doc%23_Toc438139107

x

Figure 22: "Verilog In" window of Virtuoso. .. 39

Figure 23: Import DEF with Virtuoso. .. 40

Figure 24: "DEF In" window of Virtuoso. .. 40

Figure 25: "DEF In" successful translation prompt. ... 41

Figure 26: Start DRC from Virtuoso Layout Suite. .. 41

Figure 27: "DRC" window of Virtuoso. .. 42

Figure 28: Report of successful DRC. .. 42

Figure 29: Start Extract from Virtuoso Layout Suite. ... 43

Figure 30: "Extractor" window of Virtuoso. ... 44

Figure 31: Report of successful Extract. ... 44

Figure 32: Start LVS from Virtuoso Layout Suite. ... 45

Figure 33: "Artist LVS" window of Virtuoso. .. 46

Figure 34: "Artist LVS" successful LVS prompt. ... 46

Figure 35: Copy pad frame in Virtuoso. ... 47

Figure 36: "Copy Cell" window of Virtuoso. ... 48

Figure 37: Initial schematic view of the pad frame. ... 49

Figure 38: Add input pads in schematic. ... 50

Figure 39: Add output pads in schematic. ... 51

Figure 40: Add input pads in layout. ... 52

Figure 41: Add output pads in layout. ... 53

Figure 42: Add pins to the pad frame in schematic. ... 55

Figure 43: Add pins to the pad frame schematic (detailed view). 56

xi

Figure 44: "Create Shape Pin" Window of Virtuoso. .. 57

Figure 45: Add pins to the pad frame layout (detailed view). .. 58

Figure 46: Start DRC from Virtuoso Layout Suite. .. 59

Figure 47: Report of successful DRC. .. 60

Figure 48: Start Extract from Virtuoso Layout Suite. ... 60

Figure 49: Report of successful Extract. ... 61

Figure 50: Start LVS from Virtuoso Layout Suite. ... 61

Figure 51: "Artist LVS" window of Virtuoso. .. 62

Figure 52: "Artist LVS" successful LVS prompt. ... 62

Figure 53: Create symbol view from schematic view. .. 63

Figure 54: "CellView from CellView" window of Virtuoso. .. 64

Figure 55: Final symbol view of the pad frame. ... 64

Figure 56: Create new "Cell View" from Virtuoso Layout Suite 65

Figure 57: "New File" window of Virtuoso. ... 66

Figure 58: Create the final schematic view. .. 67

Figure 59: Routed schematic view. ... 68

Figure 60: "Add Pins" window of Virtuoso. ... 69

Figure 61: Final schematic view. .. 70

Figure 62: "Startup Option" window of Virtuoso. .. 71

Figure 63: "Startup Option" window of Virtuoso. .. 71

Figure 64: Start "Generate Layout" of Virtuoso. .. 72

Figure 65: "Generate Layout" window of Virtuoso. ... 73

xii

Figure 66: Component placement in Virtuoso. ... 74

Figure 67: Connect the "add!" (Pad 57) and "god!" (Pad 7) to the power ring. 75

Figure 68: "Automatic Routing" window of Virtuoso. ... 76

Figure 69: Final layout in Virtuoso. .. 77

Figure 70: Report of successful DRC. .. 78

Figure 71: Report of successful Extract. ... 78

Figure 72: "Artist LVS" successful LVS prompt. ... 79

Figure 73: Start "Stream Out" from Virtuoso Layout Suite. ... 80

Figure 74: "Show Options" in "XStream Out" window of Virtuoso. 80

Figure 75: "Load..." in "XStream Out" window of Virtuoso. ... 81

Figure 76: Choose file for the "XStream Out". ... 82

Figure 77: "Translate" in "XStream Out" window of Virtuoso. 83

Figure 78: "Stream out translation complete" successful prompt. 84

Figure 79: Generating checksum with GNU cksum ... 86

Figure 80: Number of row vs. pin count. .. 92

Figure 81: Number of row vs. chip area. .. 92

Figure 82: Overview of the pipeline array implementation within 40 pins. 95

Figure 83: Logic diagram (partial) of the implementation within 40 pins. 96

Figure 84: Simulation result of the implementation within 40 pins. 98

Figure 85: Synthesis result of FPGA. ... 100

Figure 86: Place and route result (partial) on FPGA. ... 101

Figure 87: rc.cmd. ... 104

xiii

Figure 88: Synthesis summary generated by RC Compiler. ... 105

Figure 89: Synthesis summary generated by RC Compiler. ... 106

Figure 90: encounter.cmd.. 108

Figure 91: mmmc.tcl. .. 108

Figure 92: Final view in Encounter. .. 109

Figure 93: DRC report generated by Encounter. ... 110

Figure 94: Create New Library with Virtuoso. .. 112

Figure 95: "New Library" window of Virtuoso. .. 113

Figure 96: "Technology File for New Library" window of Virtuoso............................... 114

Figure 97: "Technology File for New Library" window of Virtuoso............................... 114

Figure 98: Import netlist with Virtuoso. .. 115

Figure 99: "Verilog In" window of Virtuoso. ... 116

Figure 100: Import DEF with Virtuoso. ... 117

Figure 101: "DEF In" window of Virtuoso. ... 117

Figure 102: "DEF In" successful translation prompt. .. 118

Figure 103: Start DRC from Virtuoso Layout Suite. ... 118

Figure 104: "DRC" window of Virtuoso. ... 119

Figure 105: Report of successful DRC. ... 119

Figure 106: Start Extract from Virtuoso Layout Suite. ... 120

Figure 107: "Extractor" window of Virtuoso. ... 121

Figure 108: Report of successful Extract. ... 121

Figure 109: Start LVS from Virtuoso Layout Suite. ... 122

xiv

Figure 110: "Artist LVS" window of Virtuoso. ... 123

Figure 111: "Artist LVS" successful LVS prompt. ... 123

Figure 112: Copy pad frame in Virtuoso. .. 124

Figure 113: "Copy Cell" window of Virtuoso. .. 125

Figure 114: Initial schematic view of the pad frame. ... 126

Figure 115: Add input pads in schematic. ... 127

Figure 116: Add output pads in schematic. ... 128

Figure 117: Add input pads in layout. ... 129

Figure 118: Add output pads in layout. ... 130

Figure 119: Add pins to the pad frame in schematic. .. 132

Figure 120: Add pins to the pad frame schematic (detailed view). 133

Figure 121: "Create Shape Pin" Window of Virtuoso. .. 134

Figure 122: Add pins to the pad frame layout (detailed view). 135

Figure 123: Start DRC from Virtuoso Layout Suite. .. 136

Figure 124: Report of successful DRC. .. 137

Figure 125: Start Extract from Virtuoso Layout Suite. ... 137

Figure 126: Report of successful Extract. ... 138

Figure 127: Start LVS from Virtuoso Layout Suite. ... 138

Figure 128: "Artist LVS" window of Virtuoso. .. 139

Figure 129: "Artist LVS" successful LVS prompt. ... 139

Figure 130: Create symbol view from schematic view. .. 140

Figure 131: "CellView from CellView" window of Virtuoso. .. 141

xv

Figure 132: Final symbol view of the pad frame. ... 141

Figure 133: Create new "Cell View" from Virtuoso Layout Suite 142

Figure 134: "New File" window of Virtuoso. ... 143

Figure 135: Create the final schematic view. .. 144

Figure 136: Routed schematic view. ... 145

Figure 137: "Add Pins" window of Virtuoso. ... 146

Figure 138: Final schematic view. .. 147

Figure 139: "Startup Option" window of Virtuoso. .. 148

Figure 140: "Startup Option" window of Virtuoso. .. 148

Figure 141: Start "Generate Layout" of Virtuoso. .. 149

Figure 142: "Generate Layout" window of Virtuoso. ... 150

Figure 143: Component placement in Virtuoso. ... 151

Figure 144: Connect the "add!" (Pad 57) and "god!" (Pad 7) to the power ring. 152

Figure 145: "Automatic Routing" window of Virtuoso. ... 153

Figure 146: Final layout in Virtuoso. .. 154

Figure 147: Report of successful DRC. .. 155

Figure 148: Report of successful Extract. ... 155

Figure 149: "Artist LVS" successful LVS prompt. ... 156

Figure 150: Start "Stream Out" from Virtuoso Layout Suite. ... 157

Figure 151: "Show Options" in "XStream Out" window of Virtuoso. 157

Figure 152: "Load..." in "XStream Out" window of Virtuoso. 158

Figure 153: Choose file for the "XStream Out". ... 159

xvi

Figure 154: "Translate" in "XStream Out" window of Virtuoso..................................... 160

Figure 155: "Stream out translation complete" successful prompt. 161

Figure 156: Generating checksum with GNU cksum ... 163

Figure 157: Pipelining technique. ... 167

Figure 158: Design extension for pipelining. ... 168

Figure 159: Simulation result of the pipeline-extended design. 170

Figure 160: Result of FPGA synthesis. ... 171

Figure 161: Result of FPGA static timing analysis of maximum frequency. 172

Figure 162: rc.cmd. ... 175

Figure 163: Synthesis summary generated by RC Compiler. ... 176

Figure 164: Synthesis summary generated by RC Compiler. ... 177

Figure 165: encounter.cmd.. 179

Figure 166: mmmc.tcl. .. 179

Figure 167: Final view in Encounter. .. 180

Figure 168: DRC report generated by Encounter. .. 181

Figure 169: Create New Library with Virtuoso. ... 183

Figure 170: "New Library" window of Virtuoso. ... 184

Figure 171: "Technology File for New Library" window of Virtuoso............................ 185

Figure 172: "Technology File for New Library" window of Virtuoso............................ 185

Figure 173: Import netlist with Virtuoso. ... 186

Figure 174: "Verilog In" window of Virtuoso. .. 187

Figure 175: Import DEF with Virtuoso. .. 188

xvii

Figure 176: "DEF In" window of Virtuoso. .. 188

Figure 177: "DEF In" successful translation prompt. ... 189

Figure 178: Start DRC from Virtuoso Layout Suite. .. 189

Figure 179: "DRC" window of Virtuoso. .. 190

Figure 180: Report of successful DRC. .. 190

Figure 181: Start Extract from Virtuoso Layout Suite. ... 191

Figure 182: "Extractor" window of Virtuoso. ... 192

Figure 183: Report of successful Extract. ... 192

Figure 184: Start LVS from Virtuoso Layout Suite. ... 193

Figure 185: "Artist LVS" window of Virtuoso. .. 194

Figure 186: "Artist LVS" successful LVS prompt. ... 194

Figure 187: Copy pad frame in Virtuoso. ... 195

Figure 188: "Copy Cell" window of Virtuoso. ... 196

Figure 189: Initial schematic view of the pad frame. ... 197

Figure 190: Add input pads in schematic. ... 198

Figure 191: Add output pads in schematic. ... 199

Figure 192: Add input pads in layout. ... 200

Figure 193: Add output pads in layout. ... 201

Figure 194: Add pins to the pad frame in schematic. ... 203

Figure 195: Add pins to the pad frame schematic (detailed view). 204

Figure 196: "Create Shape Pin" Window of Virtuoso. .. 205

Figure 197: Add pins to the pad frame layout (detailed view). 206

xviii

Figure 198: Start DRC from Virtuoso Layout Suite. .. 207

Figure 199: Report of successful DRC. .. 208

Figure 200: Start Extract from Virtuoso Layout Suite. ... 208

Figure 201: Report of successful Extract. ... 209

Figure 202: Start LVS from Virtuoso Layout Suite. ... 209

Figure 203: "Artist LVS" window of Virtuoso. .. 210

Figure 204: "Artist LVS" successful LVS prompt. ... 210

Figure 205: Create symbol view from schematic view. ... 211

Figure 206: "CellView from CellView" window of Virtuoso. .. 212

Figure 207: Final symbol view of the pad frame. ... 212

Figure 208: Create new "Cell View" from Virtuoso Layout Suite 213

Figure 209: "New File" window of Virtuoso. ... 214

Figure 210: Create the final schematic view. .. 215

Figure 211: Routed schematic view. ... 216

Figure 212: "Add Pins" window of Virtuoso. ... 217

Figure 213: Final schematic view. .. 218

Figure 214: "Startup Option" window of Virtuoso. .. 219

Figure 215: "Startup Option" window of Virtuoso. .. 219

Figure 216: Start "Generate Layout" of Virtuoso. .. 220

Figure 217: "Generate Layout" window of Virtuoso. ... 221

Figure 218: Component placement in Virtuoso. ... 222

Figure 219: Connect the "add!" (Pad 57) and "god!" (Pad 7) to the power ring. 223

xix

Figure 220: "Automatic Routing" window of Virtuoso. ... 224

Figure 221: Final layout in Virtuoso. .. 225

Figure 222: Report of successful DRC. .. 226

Figure 223: Report of successful Extract. ... 226

Figure 224: "Artist LVS" successful LVS prompt. ... 227

Figure 225: Start "Stream Out" from Virtuoso Layout Suite. ... 228

Figure 226: "Show Options" in "XStream Out" window of Virtuoso. 228

Figure 227: "Load..." in "XStream Out" window of Virtuoso. 229

Figure 228: Choose file for the "XStream Out". ... 230

Figure 229: "Translate" in "XStream Out" window of Virtuoso..................................... 231

Figure 230: "Stream out translation complete" successful prompt. 232

Figure 231: Generating checksum with GNU cksum ... 234

1

CHAPTER 1 INTRODUCTION

There has always been interest in the design of new digital systems and processors.

Several authors have been proposing from time to time advanced adders, multipliers, etc.

as these are basic elements of computation. In order to improve speed and accuracy,

different authors have been suggesting algorithms for better computation. A generalized

pipeline array first appeared in IEEE Transaction on Computers in 1974 [1]. This array

can perform various arithmetic operations such as add, subtract, multiply, divide, square

and square root. The array also was introduced in a number of textbooks of pipeline

architectures such as [2] [3] [4] and [5]. Agrawal [6] [7] also extended this array in a

number of papers. Papers such as [8] also extended this design as binary processors

suitable for optical processing. Singh et al [9] presented the VLSI implementation of this

array. More recent studies such as [10], [11], [12] and [13] also discuss the designs and

applications of arithmetic units in processors. The objective of this thesis is to present the

various design considerations and VLSI implementation of this array. In this thesis, we

present a step-by-step procedure by which the array can be implemented as a VLSI chip.

The thesis gives an approach by which the design can be extended to higher number of

bits for various operations. The thesis also gives an algorithm by which the limits of the

design such as memory, chip area, input/output pins and acceptable delays are designed.

In addition, to increase data processing throughput, the array is extended using pipelining

based on the original design, which is discussed in this thesis. The FPGA implementation

of the array is discussed and simulation results are included.

2

Introduction to Arithmetic Processors

The appearance of low-cost computers on integrated circuits has revolutionized

modern society. Nowadays people use general-purpose processors in computers are used

for their daily computational tasks such as text processing, multimedia streaming, and

online communication. In addition, many more microprocessors are now a critical part of

embedded systems, providing digital enhancement for a kinds of objects ranging from

appliances to automobiles to cellphones and industrial control systems.

The main use of the first microprocessors emerged in the beginning of 1970s were

for digital calculators, capable of performing 4-bit arithmetic calculations. Other systems

followed soon after used various kinds of microprocessors with very few bits such as

4-bit and 8-bit, in applications such as terminals, printers, and various kinds of

automation systems. Figure 1 shows the micro-architecture of a typical example of

general-purpose microprocessors. This figure from [44] is reproduced here as a ready

reference.

In addition to general-purpose microprocessors, several specialized processing

devices include special architecture are proposed with enhanced arithmetic units to

support various special-purpose applications for data processing. For example digital

signal processors (DSP, as shown in Figure 2 [44]) usually include specialized arithmetic

unit for signal processing. Another example is the graphics processing units (GPU),

which also include special arithmetic units different from general-purpose

microprocessors which are used for single instruction, multiple data (SIMD) applications

such as vector processing.

3

Figure 1: Intel 8087 microarchitecture [44].

4

Figure 2: DSP chip from Texas Instruments [44]

5

Current Designs in Arithmetic Units

Arithmetic processors, or arithmetic logic units (ALU) including inside a processor,

is a digital circuit that perform various arithmetic. ALUs are the central building blocks of

microprocessors, including general-purpose ones and special-purpose ones, where the

actual computation is performed.

 Before introducing the arithmetic processor called generalized pipeline array,

several typical designs of arithmetic processors or arithmetic units are introduced first as

case studies. They are TI 8847, MIPS R3010 and Weitek 3364.

The TI 8847 (as shown in Figure 3), is a high-speed, double-precision floating point

and integer arithmetic processor from Texas Instruments [14].

6

Figure 3: TI 8847 [44]

7

The MIPS R3010 (as shown in Figure 4) is an arithmetic co-processor for the MIPS

R3000 series RISC processors. R3000 FPU can perform various arithmetic operations

such as conversion with single or double-precision numbers..

8

Figure 4: MIPS R3010 [44]

9

The Weitek 3364 (as shown in Figure 5) 64-bit arithmetic unit was designed for

high-speed operations in a pipelined environment [45].

10

Figure 5: Weitek 3364 [44]

11

The arithmetic processor which is called generalized pipeline cellular array which is

described in the thesis and upon which various extensions are made later is introduced

here briefly. This arithmetic processor consists an array made up of 2 kinds of cells:

control cells and arithmetic cells. Once connected together, it can perform various kinds

of arithmetic operations such as add, subtract, multiply, divide, square and square root.

Compared to other commercial products introduced earlier, this design has several

advantages. First, it can achieve relative high performance with low cost given the limited

design constrains. Second, it’s easily expandable, which means the design can be further

expanded easily with just attaching more well-defined modules together with existing

modules instead of starting over, when a better technology is available. In addition, these

well-defined modules share the same level complexity, which means having almost the

same delays. In addition, each stage doesn’t depend on each other. These features make

this design suitable for pipelining. Finally, due to its low complexity, it can easily achieve

a fast throughput compared to other designs.

Table 1 shows the comparison between the generalized pipeline cellular array

(extended version in this thesis) and the above other 3 arithmetic processors.

12

Table 1: Comparison between the generalized pipeline cellular array and Other

Arithmetic Processors

Technical Parameters TI 8847

MIPS

R3010

Weitek

3364

generalized

pipeline

cellular array

(Extended)

Clock cycle time (ns) 30 40 50 70

Size (mil2) 156,180 114,857 147,600 1255

Transistors 180,000 75,000 165,000 5000

Pins 207 84 168 30

Cycles/add 2 2 2 1

Cycles/multiplication 3 5 2 1

Cycles/divide 11 19 17 1

Cycles/square root 14 - 30 1

13

The generalized pipeline cellular array is introduced and extended in this thesis. In

addition a case study for a VLSI implementation procedure is discussed. This generalized

pipeline cellular array provides an alternative way in arithmetic processor design, in an

environment of limited resources while achieving high performance and flexibility. These

characteristics make it suitable for products in such applications and also suitable for

VLSI design education.

14

Introduction to Digital VLSI Design

The digital design is a basic subject which is taught in almost all engineering schools

in the entire world. However, for the last several decades, the methodologies of design

are changing. Previously in the textbooks of digital design, procedures were given in the

form of dedicated gates such as NAND and NOR. With the advancement of time, the new

books [15] and [16] started to introduce designs in hardware description language (HDL)

such as Verilog and VHDL. The students can start digital logic designs in register transfer

level (RTL) and test them on simulators and FPGA. These books usually include a

number of examples written in HDL for basic components such as adders, multiplexers,

etc. However, most of them don't cover the procedure for VLSI design. There are books

of another type which only stress on the topic of VLSI design, such as [17] and [18].

Although the contents of these books are thorough and comprehensive, they only stress

on theory and fail to provide a hands-on procedure for VLSI design. There are also

reading materials provided by the software vendors such as [19] and [20] and software

build-in "manpage", but these documents are more like manuals to look up than tutorials

to follow, and usually assume readers to have prior technical experiences, which cause

them too hard for university students to follow. Another kind of available resources for

educational VLSI design courses are the documents and tutorials maintained either by

online communities, such as [21] or course handouts from other educational institutes

such as [22] and [23]. However, they are usually incomplete, inconsistent, outdated, or

only applicable to specific environments. To the best the author's knowledge, there is only

one book by Erik Brunvand [24] which could be used for the purpose of VLSI design for

15

students, but it has not been updated for many years and many procedures in that book

can no longer be applied to the new environment. There are also a number of papers in

which the ways of teaching digital design in laboratories are discussed. For example, [25],

[26] and [27] provide many discussions on the teaching method for VLSI design in

University laboratories. Papers such as [28] and [29] also provide many insights on this

topic. But they all fail to provide a complete, up-to-date and easy-to-follow procedure for

VLSI digital design, by which the students in the VLSI laboratories can use any digital

design in HDL languages such as Verilog and turn it into a chip with commercial software

such as Cadence, and then send it for fabrication. In this thesis, a procedure is given, as a

case study of one example, which will be helpful for the students to take any design in

Verilog HDL language to complete the VLSI design of a chip.

This thesis also provides a step-by-step procedure for the VLSI design to facilitate

digital VLSI design education, using the generalized pipeline cellular array, which is a

high-performance easily-expandable arithmetic processor.

16

17

Review of Existing Implementation of generalized pipeline cellular array

For completeness, a thesis review of the pipeline array is given first [1] [9]. The

generalized pipeline cellular array includes of two types of essentially cells: arithmetic

cells and control cells. The diagrams of the arithmetic cells and control cells are shown in

Figure 6 and Figure 7 respectively.

 Figure 6: Arithmetic cell.

Figure 7: Control cell.

Boolean expressions of arithmetic cell are as follows.

S = [A ⊕ (B ⊕ X) ⊕ C] · Fi + A · Fi' (1)

C0 = (B ⊕ X) · (A + C1) + A · C1 (2)

D = B · C + C · Fi (3)

E = B + C · Fi (4)

Boolean expression of control cell is as follows.

Fi = C0 · X + Pi · X' (5)

18

After connecting those cells in the way shown in Figure 8, it becomes a system

which can perform various arithmetic operations, thus gaining the name “generalized

pipeline cellular array”. The operations and parameters of this pipeline array is

summarized in Table 2. Based on these information, various arithmetic operations can be

performed once the pipeline array is built.

Table 2: Operations of the pipeline array.

Operation
Input Output

X P C B A F S

Square 0 operand 0100000 0011111 all 0
don't

care
result

Square Root 1 all 0 0100000 0011111
operan

d
result

don't

care

Multiplication 0
multiplie

r

multiplican

d
B = C all 0

don't

care
result

Division 1 all 0 divisor B = C
dividen

d
result

don't

care

19

Figure 8: Organization of the pipeline array.

20

Arrangement of the Thesis

The organization of this thesis is as follows. Chapter 2 extends the original 5-row

design of the pipeline array to a 7-row design to illustrate the way of extending the

pipeline array. Chapter 3 discusses the design constrains met in the process of the VLSI

implementation of the pipeline array, and an algorithm which can be incorporated in the

design process to meet the design constrains. Chapter 4 discusses the extension of

pipelining in order to increase the pipeline array's throughput. Chapter 5 summarizes and

concludes this thesis.

21

Conclusion

This chapter introduces the concept of arithmetic processors, and then several current

commercial designs. It introduces the generalized pipeline cellular array and comparisons

are made against other arithmetic processors. This chapter introduces the concept of

VLSI procedure. A brief review of the existing design of the generalized pipeline cellular

array is discussed. The review of arithmetic processors and a generalized cellular array

will help in the better design of advanced arithmetic processors and their VLSI

implementation.

22

CHAPTER 2 EXTENSION OF THE PIPELINE ARRAY

Introduction

The original design of pipeline array only contains 5 rows of pipeline stages, which

limits the number of input or output pins. This fact limits the accuracy of the pipeline

array. Due to the advancement of VLSI technology, it's possible to put more resources on

a single chip. Hence higher speed and accuracy can be achieved by extending the pipeline

array.

The design and implementation of digital systems is taken up in this thesis. As a case

study, the extension of the number of rows of the original generalized pipeline array is

discussed. The generalized pipeline cellular array is extended such that it provides an

alternative way in arithmetic processor design, in an environment of limited resources

while achieving high performance and flexibility. These characteristics make it also

suitable for being used as a case study in digital VLSI design education.

23

Design

Based on the original design of 5 rows as shown in Figure 9, more rows can be added

to increase the number of bits upon which can be computed, to achieve higher speed and

accuracy. For example, the pipeline array is extended to 7 rows as shown in Figure 10, as

additional cells are added in the shaded area.

Once the additional cells are added and connected together, the original design of

pipeline array is extended. Notice that the design here only serves as an illustration of the

way of extending the pipeline array. In theory, any number of rows can be added to the

pipeline array as long as the design can meet the area and timing budget.

The behavior Verilog code for this design is listed in the Appendix.

24

Figure 9: Pipeline array with 7 rows.

25

Figure 10: Place and route result on FPGA.

26

Implementation

In this section, a step-by-step procedure for VLSI digital design is given, for the

7-row implementation of the pipeline array.

There are many fabrication technologies available nowadays, from various

fabrication facilities such as GlobalFoundries and TSMC, in technologies such as 14 nm,

28 nm, 40 nm, 65 nm, 0.13 µm and 0.18 µm and so on [30]. Since we use the MOSIS

Educational Program (MEP) for free fabrication service, which limits us to use the ON

Semi 0.50 µm CMOS (C5N) technology [30], C5N is used in this procedure. However,

the general procedure is the same for other technologies. There are many computer aided

design (CAD) software available for VLSI design, such as Cadence and Synopsys. This

procedure uses Cadence Encounter Digital Implementation Systems 14.00, Cadence

Virtuoso Design Environment 6.15 along with NCSU CDK 1.6.0 [21], UofU Technology

Library and UofU Standard Cell Library [24].

This procedure consists of 3 parts, each of which represents one major step for the

VLSI design. They are logic synthesis, place and route and chip assembly respectively,

which are introduced for the rest of this section. In the end, the procedure for MOSIS

submission is given.

27

Logic Synthesis

In digital logic design, logic synthesis is a procedure by which a behavior-level HDL

code describing the function of a circuit, is turned into a gate-level netlist which describes

the implementation of a design in terms of logic gates, typically using a computer

program called a synthesis tool.

In this subsection, a procedure for synthesis is given. For the concision of this

procedure, the exact meanings of commands are not further explained. These commands

are covered by the official manuals [31]. There are other alternative RTL synthesizers

available as well, such as Design Compiler by Synopsys. If tools other than what's

described here are used, it's advised to refer to their respective manuals. The detailed

procedure and codes used are included in [32].

1) Tools: Cadence Encounter RTL Compiler

2) Prerequisites before This Step:

Behavior Verilog Code (e.g. "simple.v")

Tcl Script for RC Compiler ("rc.cmd", given in Appendix)

NCSU CDK Library ("ncsu-cdk-1.7.0.beta/")

UofU Technology Library ("UofU_TechLib_ami06/")

UofU Standard Cell Library ("UofU_Digital_v1_2/")

3) Destination Files Generated After This Step:

Netlist Verilog Code ("nl.v")

4) Steps:

a) Modify rc.cmd based on the requirement (as shown in Figure 11).

28

Line 3: Change UofU standard cell library path to where it's installed.

Line 7: Change "gpca40p.v" to the file name of Verilog code (e.g. "simple.v").

Line 8: Change "gpca40p" to the top-level entity name (e.g. "simple").

Figure 11: rc.cmd.

b) Run

$ rc -files rc.cmd

c) Check the result (Figure 12)

In the end, a netlist file called "nl.v" is generated containing information which

will be used later for place and route.

If everything goes smooth as above, continue to the next step. If anything goes wrong,

fix it first before continuing further.

29

Figure 12: Synthesis summary generated by RC Compiler.

30

Place and Route

"Place and route" is a stage in the process of VLSI design, in which the location to

place all the logic elements within a generally limited amount of space and the way of all

the wires needed to connect the logic elements are decided.

In this section, a procedure for "place and route" is given. For the brevity of this

procedure, the exact meanings of commands are not further explained. These commands

are covered by the official manuals [33]. If the reader is interested in using GUI

commands instead of TCL scripts, please refer to EDI System Menu Reference [34] and

textbooks [24] for more information. The detailed procedure and codes used are included

in [32].

1) Tools: Cadence Encounter RTL-to-GDSII System

2) Prerequisites before This Step:

Netlist Verilog Code ("nl.v" from the last step)

Tcl Script for RC Compiler ("encounter.cmd", given in Appendix)

Tcl Script for Multi-Mode Multi-Corner ("mmmc.tcl", given in Appendix)

Synopsys Design Constraints ("typical.sdc", given in Appendix)

NCSU CDK Library ("ncsu-cdk-1.7.0.beta/")

UofU Technology Library ("UofU_TechLib_ami06/")

UofU Standard Cell Library ("UofU_Digital_v1_2/")

3) Destination Files Generated After This Step:

Optimized Netlist Verilog Code ("nlopt.v")

Design Exchange Format (DEF) File (e.g. "simple.def")

31

4) Steps:

a) Modify Tcl Script for RC Compiler ("encounter.cmd", Figure 13)

Line 10, 24: May change UofU standard cell library path to where it's installed

Line 13, 99: Change "gpca40p" to the top-level entity name (e.g. "simple")

Figure 13: encounter.cmd.

b) Modify Tcl Script for Multi-Mode Multi-Corner ("mmmc.tcl", Figure 14)

Line 11: May change UofU standard cell library path to where it's installed

Figure 14: mmmc.tcl.

c) Run

$ encounter -init encounter.cmd

d) Check the result

It should run all the way to the final step without any errors if the above steps are

32

followed correctly, as shown in Figure 15 and Figure 16. In the end, a DEF file (e.g.

"simple.def") for the chip layout (without pad frame) as well as a netlist file called

"nlopt.v" is generated.

Figure 15: Final view in Encounter.

33

Figure 16: DRC report generated by Encounter.

34

Chip Assembly

As a requirement by AMI05 technology [35], design should be submitted along with

pad frame. This section gives the procedure to assemble the pad frame with the chip. For

brevity of this procedure, the exact meanings of commands are not further explained.

These commands are covered by the official manuals [36]. Materials such as textbooks

[24] also have many useful information for reference. The detailed procedure and codes

used are included in [32].

1) Tools:

Cadence Virtuoso Design Environment

2) Prerequisites before this step:

Optimized Netlist Verilog Code ("nlopt.v" from last step)

DEF File (e.g. "simple.def" from last step)

NCSU CDK Library ("ncsu-cdk-1.7.0.beta/")

UofU Technology Library ("UofU_TechLib_ami06/")

UofU Standard Cell Library ("UofU_Digital_v1_2/")

3) Destination Files Generated After This Step:

GDSII Stream File (e.g. "simple_final.gds")

4) Steps:

a) Launch Cadence Virtuoso Design Environment

$ virtuoso

b) Create New Library (Figure 17 to Figure 20)

35

Figure 17: Create New Library with Virtuoso.

36

Figure 18: "New Library" window of Virtuoso.

37

Figure 19: "Technology File for New Library" window of Virtuoso.

Figure 20: "Technology File for New Library" window of Virtuoso.

38

c) Import Optimized Netlist Verilog Code ("nlopt.v" from last step) and DEF

File (e.g. "simple.def" from last step). As shown in Figure 21 to Figure 25.

Figure 21: Import netlist with Virtuoso.

39

Figure 22: "Verilog In" window of Virtuoso.

40

Figure 23: Import DEF with Virtuoso.

Figure 24: "DEF In" window of Virtuoso.

41

Figure 25: "DEF In" successful translation prompt.

Once both layouts (from DEF) and schematic (from netlist in this section) are

generated, DRC, Extract and LVS should be performed, as shown in Figure 26 to 34.

Figure 26: Start DRC from Virtuoso Layout Suite.

42

Figure 27: "DRC" window of Virtuoso.

Figure 28: Report of successful DRC.

43

Figure 29: Start Extract from Virtuoso Layout Suite.

44

Figure 30: "Extractor" window of Virtuoso.

Figure 31: Report of successful Extract.

45

Figure 32: Start LVS from Virtuoso Layout Suite.

46

Figure 33: "Artist LVS" window of Virtuoso.

Figure 34: "Artist LVS" successful LVS prompt.

47

d) Customize Pad Frame (Figure 35 to 41)

Figure 35: Copy pad frame in Virtuoso.

48

Figure 36: "Copy Cell" window of Virtuoso.

49

Figure 37: Initial schematic view of the pad frame.

50

Modify the used pads in the pad frame (both schematic and layout), from "pad_nc" to

"pad_in" or "pad_out".

Figure 38: Add input pads in schematic.

51

Figure 39: Add output pads in schematic.

52

Figure 40: Add input pads in layout.

53

Figure 41: Add output pads in layout.

54

Add pins to pad frame (both schematic and layout). The pad frame works like a

wraparound. The external pins of the pad frame (e.g. "Frame1_38") have the same name

as the chip layout (e.g. "gpca40p"), and the internal pins of the pad frame connecting the

chip layout use original names affixed by "_i" (Hence e.g. "clk" becomes "clk_i.) This

procedure is shown in Figure 42 to Figure 55.

55

Figure 42: Add pins to the pad frame in schematic.

56

Figure 43: Add pins to the pad frame schematic (detailed view).

57

Same for the layout by tapping the ports with pins

Figure 44: "Create Shape Pin" Window of Virtuoso.

58

Figure 45: Add pins to the pad frame layout (detailed view).

59

DRC, Extract, LVS to make sure no rule is violated.

Figure 46: Start DRC from Virtuoso Layout Suite.

60

Figure 47: Report of successful DRC.

Figure 48: Start Extract from Virtuoso Layout Suite.

61

Figure 49: Report of successful Extract.

Figure 50: Start LVS from Virtuoso Layout Suite.

62

Figure 51: "Artist LVS" window of Virtuoso.

Figure 52: "Artist LVS" successful LVS prompt.

63

Generate symbol for the pad frame.

Figure 53: Create symbol view from schematic view.

64

Figure 54: "CellView from CellView" window of Virtuoso.

Figure 55: Final symbol view of the pad frame.

65

e) Final Chip Assembly (Add Pad Frame)

With both the core of the chip ("simple") and the pad frame (modified

"Frame1_38") are ready, creating a new cell to put them together. This procedure is

shown in Figure 56 to 72.

Create a new Cell View (I call it "gpca40p_final").

Figure 56: Create new "Cell View" from Virtuoso Layout Suite

66

Figure 57: "New File" window of Virtuoso.

Instantiate both the core of the chip ("gpca40p") and the pad frame (modified

"Frame1_38") (by pressing "I" to instantiate instances).

67

Figure 58: Create the final schematic view.

68

Figure 59: Routed schematic view.

69

Then add the pins.

Figure 60: "Add Pins" window of Virtuoso.

70

Final schematic view is shown below.

Figure 61: Final schematic view.

71

Then create the final layout view from the schematic.

Figure 62: "Startup Option" window of Virtuoso.

Figure 63: "Startup Option" window of Virtuoso.

72

In the new empty layout view

Figure 64: Start "Generate Layout" of Virtuoso.

73

Figure 65: "Generate Layout" window of Virtuoso.

74

Then place the pad frame ("Frame1_38") inside the "PR Boundary", and the core of

the chip ("gpca40p") inside the pad frame.

Figure 66: Component placement in Virtuoso.

75

Connect the "add!" (Pad 57) and "god!" (Pad 7) to the power ring.

Figure 67: Connect the "add!" (Pad 57) and "god!" (Pad 7) to the power ring.

76

Then invoke Automatic Routing.

Figure 68: "Automatic Routing" window of Virtuoso.

77

The following is the final layout. Fill the empty space with poly fills to meet

minimum polysilicon density required by AMI05 [35].

Figure 69: Final layout in Virtuoso.

78

DRC, Extract, LVS. They should give no error or warning.

Figure 70: Report of successful DRC.

Figure 71: Report of successful Extract.

79

Figure 72: "Artist LVS" successful LVS prompt.

80

f) Export GDSII Stream File ("simple_final.gds")

This procedure is shown in Figure 73 to Figure 78. This is the file to be sent for

fabrication.

This is the file to be sent for fabrication.

Figure 73: Start "Stream Out" from Virtuoso Layout Suite.

Figure 74: "Show Options" in "XStream Out" window of Virtuoso.

81

"Show Options", then tab "Layers", "Load ..."

Figure 75: "Load..." in "XStream Out" window of Virtuoso.

82

Select "streamOutLayermap" then hit "Open"

Figure 76: Choose file for the "XStream Out".

83

Click "Translate".

Figure 77: "Translate" in "XStream Out" window of Virtuoso.

84

It should produce no error and the only warning is about "nodrc:drawing" (and a

possible overwriting existing file warning).

Figure 78: "Stream out translation complete" successful prompt.

85

Design Submission

In this section, the procedure for MOSIS submission with the MOSIS Educational

Program (MEP) is given as a reference. More information is available in documents from

MOSIS [37], and adapted from [38].

1) Fill in "MOSIS New Project Request Form":

Run Type: Shared IC Fabrication Run

Design Rules: Scalable CMOS

Technology: SCN3M_SUBM (if the second layer of poly is not used);

SCN3ME_SUBM (if the second layer of poly is used).

Design Name and Password

Export Control: Standard

Substrate: none

Needs Library Installation: No

IP Included: none

Fill Authorized: Yes

Foundry: On Semi

Intended Disposition: Research

Design Size X and Y: Size including pads

Pad Count: How many pads used in the design (including signals and power)

Quantity Packaged: 5

Package Name: Depends on the design

Rotation in Package: None

86

Bonding Diagram Supplier: MOSIS

Downbond Locations: None

Quantity Unpackaged: 0

2) Fill in "Fabricate Form":

Go to Project Request -> Fabricate

Layout Transfer Method: I will upload layout via secure web form (HTTPS)

Compression/Encryption: Uncompressed

Generate the checksum and Count for the GDS file (Figure 79)

Layout Status: Final

Layout Format: GDS

Top Structure: the name of the top-level (e.g. "simple")

Figure 79: Generating checksum with GNU cksum

87

Results

The array has been extended to 7 rows, which can achieve operations of bigger

number. The result is summarized in Table 3. The design has been sent to MOSIS for

fabrication.

Table 3. Summary of the 7-row extension

Operation Original Extended

Multiply 7 by 5 9 by 7

Divide 7 by 4 9 by 6

Square 5 7

Square root 10 14

88

Conclusion

In this chapter, the original design of pipeline array with 5 rows is extended to 7 rows

as a case study. By extending this array to 7 rows, one can have the arithmetic operations

of increased number of bits. Although the extension up to 7 rows is discussed in this

chapter, the procedure can be applied to any number of rows. We have to limit the

number of rows so as to take into account the size of the chip to be developed. In addition,

the VLSI implementation of such a design has been discussed and detailed procedure for

the implementation is included. The design has been sent to MOSIS for fabrication. The

chip will be tested once we get the fabricated chip back. The behavior Verilog code for

this design is listed in the Appendix.

89

CHAPTER 3 DESIGN TO MEET TECHNICAL CONSTRAINS

Introduction

The VLSI work flow is an iterative process, which introduces problem. For example,

if a design itself turns out requiring too much resource such as area at the end of the

physical design phase, the entire design are to be reset and start over again, which is time

consuming. There is no way to mitigate this issue because the actual dimension of the

design is only known after physical design. If a method is found, such that the resource

requirement of the design is estimated based on the contains first, then starting the design

with this estimated information in mind, the problem incurred by this design iteration is

much mitigated or even eliminated if the estimation algorithm is accurate enough.

For the design of the pipeline array, traditionally at the specification phase, the

designer picks up a number as the number of rows of the pipeline array, then continues

the design process. Once the physical design phase is finished, the layout is checked to

make sure that it's within constrains such as pin count and area. If the design cannot meet

these contains, the designer then modifies the specification and start over again. For this

VLSI implementation of the pipeline array, ideally the design can go infinitely large with

infinite accuracy, but here are two technical constrains posed by MOSIS Educational

Program: maximum pin count and chip area. According to the documents from MOSIS

[30], the design should be within 1 tiny chip unit (TCU), which means the design should

only contains 40 pins maximum and the area should be within 1500 µm by 1500 µm

including pad frame (approximately 810000 µm2 of usable core area [24]).

In this chapter, an algorithm is devised, such that the pin count and the chip area of

90

the pipeline can be estimated based on the number of rows, which is introduced in the

following section. The procedure for VLSI implementation of this design is also given.

91

Design

This algorithm is derived in the following way. 8 experimental designs of the

pipeline array are conducted, with 1 to 8 rows respectively. The number of rows in these

experimental designs is specifically chosen to be small enough to keep the complexity of

the circuit low, so that they don't require much effort to design. Then data of the cost of

these designs such as pin count and chip area are collected for further analysis to derive

the estimation algorithm. These sample data are summarized Table 4 and illustrated in

Figure 80 and Figure 81 respectively.

Table 4: Summary of resource requirement of pipeline array designs.

Number of rows Pin count chip area (µm2) gate count (standard cell)

1 14 16330 22

2 22 48730 64

3 30 95515 127

4 38 154548 207

5 46 229781 304

6 54 314345 418

7 62 407462 558

8 70 524880 697

92

Figure 80: Number of row vs. pin count.

Figure 81: Number of row vs. chip area.

93

Based on this information, a statistic method called least squares [39] is used as the

approach of cost estimation. The method of least squares is a way in regression analysis

to the estimate solution of systems, so that the overall solution minimizes the sum of the

squares of individual errors. The objective of least square is to adjust the parameters of a

model function to best fit a data set.

For pin count estimation, linear least square are used to estimate pin counts. Given

the sample data sets, the goal is to find the relationship of the pin count (y) and the

number of rows (x) such that it can best fit the sample data sets. The

calculation begins by solving the linear equations below.

 (6)

After substituting the variables with the sample data sets shown in Table 4, the result

is as follows.

 (7)

Hence the estimation function of the relationship of the pin count (y) and the number

of rows (x) is given below.

 (8)

For chip area estimation, quadratic least square are used to estimate chip area

because area is a quadratic function of the number of rows. Given the sample data sets,

the goal is to find the relationship of the chip area (y) and number of rows (x)

 such that it can best fit the sample data sets. The calculation begins by

solving the linear equations below.

94

 (9)

Then substitute the variables with the sample data sets shown in Table 4.

 (10)

Hence the estimation function of the relationship of the chip area (y) and the number

of rows (x) is given below.

 (11)

Due to the limitations of the MOSIS Educational Program (MEP) [30] and the

fabrication budget allotted, the VLSI implementation should be within 1 tiny chip unit

(TCU), which means the design should only contains 40 pins maximum and the area

should be within 1500 µm by 1500 µm including pad frame (approximately 900 µm by

900 µm of usable core area [24]). According to the estimation formula 11 substituting y

equals 900 * 900:

900 * 900 (12)

 The positive root of the above equation equals 10.17, which estimates that the

maximum number of rows allowed for this given area is 10.

To solve the excessive pin count issue, multiplexers are used in the design. As

illustrated in Table 2, for each operation, not all inputs and outputs are used. Some inputs

and outputs are either constant or "don't care", which are not needed to be connected

externally. Only inputs and outputs for variable signals of data are needed to be connected.

Based on this observation, the solution of designing to fit within 40 pins is devised, as

95

illustrated in Figure 82.

Figure 82: Overview of the pipeline array implementation within 40 pins.

To achieve such an implementation, multiplexers are used as a wraparound between

the original design and the pad frame, as illustrated in Figure 83. Based on what operation

is to be performed indicated by signal "op", the multiplexers drives the original circuit to

either constant signals or the desired signals of data inputs, as indicated in Table 2. These

signals are ready to let the pipeline array circuit to operate correctly. Once the operation

of the pipeline array is done, the results are selected by another set of multiplexers, to

drive the data output pins. The operations of the new design are illustrated in Table 5.

The behavior Verilog code for this design is listed in the Appendix.

96

Figure 83: Logic diagram (partial) of the implementation within 40 pins.

97

Table 5: Operations of the new implementation within 40 pins.

Operation

Input Output

op din0 din1 dout

Square 00 P don't care S

Square Root 01 A don't care F

Multiplication 10 B = C P S

Division 11 A B=C F

In order to make sure the circuit operates correctly as required, it's simulated in

functional simulator and implemented on FPGA, to see if it ready meets the requirement.

The functional simulator used here is called ModelSim by Mentor Graphics [40]. The

functional simulation of this circuit is shown in Figure 84. In this simulation, all 4

operations (namely square, square root, multiplication and division) are tested with

random data sets. According to the result shown in Figure 84, all the results of

calculations done by this circuit are mathematically correct, hence the circuit functions

exactly the same as required.

98

Figure 84: Simulation result of the implementation within 40 pins.

99

A field-programmable gate array (FPGA) is an integrated circuit which can be configured

flexibly by the designer, hence gaining the name "field-programmable" [41]. This

functionality makes FPGA useful in the process of VLSI design. The circuit described

here is implemented on FPGA for verification and validation before implementing in

VLSI. Result of synthesis, place and route on FPGA with Altera Quartus II software [42]

is shown in Figure 85 and Figure 86 respectively. Then the circuit is tested on the FPGA.

Once the circuit is fully validated, it is ready to be implemented in VLSI.

100

Figure 85: Synthesis result of FPGA.

101

Figure 86: Place and route result (partial) on FPGA.

102

Implementation

In this section, a step-by-step procedure for VLSI digital design is given, for the

40-pin implementation of the pipeline array.

There are many fabrication technologies available nowadays, from various

fabrication facilities such as GlobalFoundries and TSMC, in technologies such as 14 nm,

28 nm, 40 nm, 65 nm, 0.13 µm and 0.18 µm and so on [30]. Since we use the MOSIS

Educational Program (MEP) for free fabrication service, which limits us to use the ON

Semi 0.50 µm CMOS (C5N) technology [30], C5N is used in this procedure. However,

the general procedure is the same for other technologies. There are many computer aided

design (CAD) software available for VLSI design, such as Cadence and Synopsys. This

procedure uses Cadence Encounter Digital Implementation Systems 14.00, Cadence

Virtuoso Design Environment 6.15 along with NCSU CDK 1.6.0 [21], UofU Technology

Library and UofU Standard Cell Library [24].

This procedure consists of 3 parts, each of which represents one major step for the VLSI

design. They are logic synthesis, place and route and chip assembly respectively, which

are introduced for the rest of this section. In the end, the procedure for MOSIS

submission is given.

103

Logic Synthesis

In digital logic design, logic synthesis is a procedure by which a behavior-level HDL

code describing the function of a circuit, is turned into a gate-level netlist which describes

the implementation of a design in terms of logic gates, typically using a computer

program called a synthesis tool.

In this subsection, a procedure for synthesis is given. For the concision of this

procedure, the exact meanings of commands are not further explained. These commands

are covered by the official manuals [31]. There are other alternative RTL synthesizers

available as well, such as Design Compile7r by Synopsys. If tools other than what's

described here are used, it's advised to refer to their respective manuals. The detailed

procedure and codes used are included in [32].

1) Tools: Cadence Encounter RTL Compiler

2) Prerequisites before This Step:

Behavior Verilog Code (e.g. "simple.v")

Tcl Script for RC Compiler ("rc.cmd", given in Appendix)

NCSU CDK Library ("ncsu-cdk-1.7.0.beta/")

UofU Technology Library ("UofU_TechLib_ami06/")

UofU Standard Cell Library ("UofU_Digital_v1_2/")

3) Destination Files Generated After This Step:

Netlist Verilog Code ("nl.v")

4) Steps:

a) Modify rc.cmd based on the requirement (as shown in Figure 87).

104

Line 3: Change UofU standard cell library path to where it's installed.

Line 7: Change "gpca40p.v" to the file name of Verilog code (e.g. "simple.v").

Line 8: Change "gpca40p" to the top-level entity name (e.g. "simple").

Figure 87: rc.cmd.

b) Run

$ rc -files rc.cmd

c) Check the result (Figure 88)

In the end, a netlist file called "nl.v" (Figure 89) is generated containing

information which will be used later for place and route.

If everything goes smooth as above, continue to the next step. If anything goes wrong,

fix it first before continuing further.

105

Figure 88: Synthesis summary generated by RC Compiler.

106

Figure 89: Synthesis summary generated by RC Compiler.

107

Place and Route

"Place and route" is a stage in the process of VLSI design, in which the location to

place all the logic elements within a generally limited amount of space and the way of all

the wires needed to connect the logic elements are decided.

In this section, a procedure for "place and route" is given. For the brevity of this

procedure, the exact meanings of commands are not further explained. These commands

are covered by the official manuals [33]. If the reader is interested in using GUI

commands instead of TCL scripts, please refer to EDI System Menu Reference [34] and

textbooks [24] for more information. The detailed procedure and codes used are included

in [32].

1) Tools: Cadence Encounter RTL-to-GDSII System

2) Prerequisites before This Step:

Netlist Verilog Code ("nl.v" from the last step)

Tcl Script for RC Compiler ("encounter.cmd", given in Appendix)

Tcl Script for Multi-Mode Multi-Corner ("mmmc.tcl", given in Appendix)

Synopsys Design Constraints ("typical.sdc", given in Appendix)

NCSU CDK Library ("ncsu-cdk-1.7.0.beta/")

UofU Technology Library ("UofU_TechLib_ami06/")

UofU Standard Cell Library ("UofU_Digital_v1_2/")

3) Destination Files Generated After This Step:

Optimized Netlist Verilog Code ("nlopt.v")

Design Exchange Format (DEF) File (e.g. "simple.def")

108

4) Steps:

a) Modify Tcl Script for RC Compiler ("encounter.cmd", Figure 90)

Line 10, 24: May change UofU standard cell library path to where it's installed

Line 13, 99: Change "gpca40p" to the top-level entity name (e.g. "simple")

Figure 90: encounter.cmd.

b) Modify Tcl Script for Multi-Mode Multi-Corner ("mmmc.tcl", Figure 91)

Line 11: May change UofU standard cell library path to where it's installed

Figure 91: mmmc.tcl.

c) Run

$ encounter -init encounter.cmd

d) Check the result

It should run all the way to the final step without any errors if the above steps are

109

followed correctly, as shown in Figure 92 and Figure 93. In the end, a DEF file (e.g.

"simple.def") for the chip layout (without pad frame) as well as a netlist file called

"nlopt.v" is generated.

Figure 92: Final view in Encounter.

110

Figure 93: DRC report generated by Encounter.

111

Chip Assembly

As a requirement by AMI05 technology [35], design should be submitted along with

pad frame. This section gives the procedure to assemble the pad frame with the chip. For

the brevity of this procedure, the exact meanings of commands are not further explained.

These commands are covered by the official manuals [36]. Materials such as textbooks

[24] also have many useful information for reference. The detailed procedure and codes

used are included in [32].

1) Tools:

Cadence Virtuoso Design Environment

2) Prerequisites before this step:

Optimized Netlist Verilog Code ("nlopt.v" from last step)

DEF File (e.g. "simple.def" from last step)

NCSU CDK Library ("ncsu-cdk-1.7.0.beta/")

UofU Technology Library ("UofU_TechLib_ami06/")

UofU Standard Cell Library ("UofU_Digital_v1_2/")

3) Destination Files Generated After This Step:

GDSII Stream File (e.g. "simple_final.gds")

4) Steps:

a) Launch Cadence Virtuoso Design Environment

$ virtuoso

b) Create New Library (Figure 94 to Figure 97)

112

Figure 94: Create New Library with Virtuoso.

113

Figure 95: "New Library" window of Virtuoso.

114

Figure 96: "Technology File for New Library" window of Virtuoso.

Figure 97: "Technology File for New Library" window of Virtuoso.

115

c) Import Optimized Netlist Verilog Code ("nlopt.v" from last step) and DEF

File (e.g. "simple.def" from last step). As shown in Figure 98 to Figure 102.

Figure 98: Import netlist with Virtuoso.

116

Figure 99: "Verilog In" window of Virtuoso.

117

Figure 100: Import DEF with Virtuoso.

Figure 101: "DEF In" window of Virtuoso.

118

Figure 102: "DEF In" successful translation prompt.

Once both layouts (from DEF) and schematic (from netlist in this section) are

generated, DRC, Extract and LVS should be performed, as shown in Figure 103 to 111.

Figure 103: Start DRC from Virtuoso Layout Suite.

119

Figure 104: "DRC" window of Virtuoso.

Figure 105: Report of successful DRC.

120

Figure 106: Start Extract from Virtuoso Layout Suite.

121

Figure 107: "Extractor" window of Virtuoso.

Figure 108: Report of successful Extract.

122

Figure 109: Start LVS from Virtuoso Layout Suite.

123

Figure 110: "Artist LVS" window of Virtuoso.

Figure 111: "Artist LVS" successful LVS prompt.

124

d) Customize Pad Frame (Figure 112 to 132)

Figure 112: Copy pad frame in Virtuoso.

125

Figure 113: "Copy Cell" window of Virtuoso.

126

Figure 114: Initial schematic view of the pad frame.

127

Modify the used pads in the pad frame (both schematic and layout), from "pad_nc" to

"pad_in" or "pad_out".

Figure 115: Add input pads in schematic.

128

Figure 116: Add output pads in schematic.

129

Figure 117: Add input pads in layout.

130

Figure 118: Add output pads in layout.

131

Add pins to pad frame (both schematic and layout). The pad frame works like a

wraparound. The external pins of the pad frame (e.g. "Frame1_38") have the same name

as the chip layout (e.g. "gpca40p"), and the internal pins of the pad frame connecting the

chip layout use original names affixed by "_i" (Hence e.g. "clk" becomes "clk_i.) This

procedure is shown in Figure 119 to Figure 132.

132

Figure 119: Add pins to the pad frame in schematic.

133

Figure 120: Add pins to the pad frame schematic (detailed view).

134

Same for the layout by tapping the ports with pins

Figure 121: "Create Shape Pin" Window of Virtuoso.

135

Figure 122: Add pins to the pad frame layout (detailed view).

136

DRC, Extract, LVS to make sure no rule is violated.

Figure 123: Start DRC from Virtuoso Layout Suite.

137

Figure 124: Report of successful DRC.

Figure 125: Start Extract from Virtuoso Layout Suite.

138

Figure 126: Report of successful Extract.

Figure 127: Start LVS from Virtuoso Layout Suite.

139

Figure 128: "Artist LVS" window of Virtuoso.

Figure 129: "Artist LVS" successful LVS prompt.

140

Generate symbol for the pad frame.

Figure 130: Create symbol view from schematic view.

141

Figure 131: "CellView from CellView" window of Virtuoso.

Figure 132: Final symbol view of the pad frame.

142

e) Final Chip Assembly (Add Pad Frame)

With both the core of the chip ("simple") and the pad frame (modified

"Frame1_38") are ready, creating a new cell to put them together. This procedure is

shown in Figure 133 to 149.

Create a new Cell View (I call it "gpca40p_final").

Figure 133: Create new "Cell View" from Virtuoso Layout Suite

143

Figure 134: "New File" window of Virtuoso.

Instantiate both the core of the chip ("gpca40p") and the pad frame (modified

"Frame1_38") (by pressing "I" to instantiate instances).

144

Figure 135: Create the final schematic view.

145

Figure 136: Routed schematic view.

146

Then add the pins.

Figure 137: "Add Pins" window of Virtuoso.

147

Final schematic view is shown below.

Figure 138: Final schematic view.

148

Then create the final layout view from the schematic.

Figure 139: "Startup Option" window of Virtuoso.

Figure 140: "Startup Option" window of Virtuoso.

149

In the new empty layout view

Figure 141: Start "Generate Layout" of Virtuoso.

150

Figure 142: "Generate Layout" window of Virtuoso.

151

Then place the pad frame ("Frame1_38") inside the "PR Boundary", and the core of

the chip ("gpca40p") inside the pad frame.

Figure 143: Component placement in Virtuoso.

152

Connect the "add!" (Pad 57) and "god!" (Pad 7) to the power ring.

Figure 144: Connect the "add!" (Pad 57) and "god!" (Pad 7) to the power ring.

153

Then invoke Automatic Routing.

Figure 145: "Automatic Routing" window of Virtuoso.

154

The following is the final layout. Fill the empty space with poly fills to meet

minimum polysilicon density required by AMI05 [35].

Figure 146: Final layout in Virtuoso.

155

DRC, Extract, LVS. They should give no error or warning.

Figure 147: Report of successful DRC.

Figure 148: Report of successful Extract.

156

Figure 149: "Artist LVS" successful LVS prompt.

157

f) Export GDSII Stream File ("simple_final.gds")

This procedure is shown in Figure 150 to Figure 155. This is the file to be sent

for fabrication.

This is the file to be sent for fabrication.

Figure 150: Start "Stream Out" from Virtuoso Layout Suite.

Figure 151: "Show Options" in "XStream Out" window of Virtuoso.

158

"Show Options", then tab "Layers", "Load ..."

Figure 152: "Load..." in "XStream Out" window of Virtuoso.

159

Select "streamOutLayermap" then hit "Open"

Figure 153: Choose file for the "XStream Out".

160

Click "Translate".

Figure 154: "Translate" in "XStream Out" window of Virtuoso.

161

It should produce no error and the only warning is about "nodrc:drawing" (and a

possible overwriting existing file warning).

Figure 155: "Stream out translation complete" successful prompt.

162

Design Submission

In this section, the procedure for MOSIS submission with the MOSIS Educational

Program (MEP) is given as a reference. More information is available in documents from

MOSIS [37], and adapted from [38].

1) Fill in "MOSIS New Project Request Form":

Run Type: Shared IC Fabrication Run

Design Rules: Scalable CMOS

Technology: SCN3M_SUBM (if the second layer of poly is not used);

SCN3ME_SUBM (if the second layer of poly is used).

Design Name and Password

Export Control: Standard

Substrate: none

Needs Library Installation: No

IP Included: none

Fill Authorized: Yes

Foundry: On Semi

Intended Disposition: Research

Design Size X and Y: Size including pads

Pad Count: How many pads used in the design (including signals and power)

Quantity Packaged: 5

Package Name: Depends on the design

Rotation in Package: None

163

Bonding Diagram Supplier: MOSIS

Downbond Locations: None

Quantity Unpackaged: 0

2) Fill in "Fabricate Form":

Go to Project Request -> Fabricate

Layout Transfer Method: I will upload layout via secure web form (HTTPS)

Compression/Encryption: Uncompressed

Generate the checksum and Count for the GDS file (Figure 156)

Layout Status: Final

Layout Format: GDS

Top Structure: the name of the top-level (e.g. "simple")

Figure 156: Generating checksum with GNU cksum

164

Results

Using the estimation algorithm devised in this chapter, the design fully meets the

design requirements. The result is summarized in Table 6 and Table 7 respectively. The

design has been sent to MOSIS for fabrication.

Table 6. Summary of operations of the extension within constrains

Operation Original Extended

Multiply 7 by 5 12 by 10

Divide 7 by 4 12 by 9

Square 5 10

Square root 10 20

Table 7. Summary of pin count of the extension within constrains

 Original Extended

Pin Number 86 30

165

Conclusion

In this chapter, an algorithm is devised, such that the pin count and the chip area of

the pipeline can be estimated based on the number of rows. The expressions for this

estimation algorithm based on least square are also given. The graphs explaining the

algorithm are included. These graphs help in finding the relationship between the number

of rows and the chip area. Such algorithms will help in the development of advanced

arithmetic processors. In addition, the VLSI implementation of such a design has been

discussed and detailed procedure for the implementation is included. The parameters have

been met in the design. The design has been sent to MOSIS for fabrication. The chip will

be tested once we get the fabricated chip back. The behavior Verilog code for this design

is listed in the Appendix.

166

CHAPTER 4 EXTENSION FOR PIPELINING

Introduction

The original implementation proposed by [9] does not include the implementation of

intermediate stage registers. The signals traverse through the array. The array is purely a

combinational logic. To increase the throughput of the pipeline array to perform

arithmetic computation, a technique called pipelining is used. The design and

implementation of digital systems is taken up in this thesis. As a case study, the extension

for pipelining upon the original generalized pipeline array is discussed. The generalized

pipeline cellular array is introduced and extended such that it provides an alternative way

in arithmetic processor design, in an environment of limited resources while achieving

high performance and flexibility. These characteristics make it also suitable for being

used as a case study in digital VLSI design education.

In computing, a pipeline is a series of data processing stages, in which the output of

one stage is the input of the next one. The basic idea of pipelining is to split a major task

into several balanced stages, in which the operations within stages of a pipeline are often

carried out in parallel. In this fashion although the latency of data processing is slightly

increased because the use of buffer, ideally the throughput of data processing is increased

multiple times by the number of pipeline stages. This idea is illustrated in Figure 157

[43].

167

Figure 157: Pipelining technique.

168

Design

The design of this extension for pipelining based on the original array is illustrated in

Figure 158.

Figure 158: Design extension for pipelining.

169

The Verilog code in behavior model for this design is listed in the Appendix.

Before actual implementation, the correctness of this design should be verified. To

achieve this, the design is simulated and then implemented on FPGA, in the same form as

the designs in previous chapters.

The functional simulation of this circuit is shown in Figure 159. In this simulation,

all 4 operations (namely square, square root, multiplication and division) are tested with

random data sets. According to the simulation result shown in Figure 159, all the results

of calculations done by this circuit are mathematically correct, hence the circuit functions

exactly the same as required. Compared to the previous designs, the output is delayed 5

cycles, as there are 5 stages in the pipelined design. In the meantime, since a new

operation can be issued into the pipeline on every cycle, with simpler stages producing

less delay, the throughput of data processing is achieved.

Result of FPGA synthesis and static timing analysis of maximum frequency on

FPGA is shown in Figure 160 and Figure 161 respectively.

170

Figure 159: Simulation result of the pipeline-extended design.

171

Figure 160: Result of FPGA synthesis.

172

Figure 161: Result of FPGA static timing analysis of maximum frequency.

173

Implementation

In this section, a step-by-step procedure for VLSI digital design is given, for the

pipelined implementation of the pipeline array.

There are many fabrication technologies available nowadays, from various

fabrication facilities such as GlobalFoundries and TSMC, in technologies such as 14 nm,

28 nm, 40 nm, 65 nm, 0.13 µm and 0.18 µm and so on [30]. Since we use the MOSIS

Educational Program (MEP) for free fabrication service, which limits us to use the ON

Semi 0.50 µm CMOS (C5N) technology [30], C5N is used in this procedure. However,

the general procedure is the same for other technologies. There are many computer aided

design (CAD) software available for VLSI design, such as Cadence and Synopsys. This

procedure uses Cadence Encounter Digital Implementation Systems 14.00, Cadence

Virtuoso Design Environment 6.15 along with NCSU CDK 1.6.0 [30], UofU Technology

Library and UofU Standard Cell Library [24].

This procedure consists of 3 parts, each of which represents one major step for the

VLSI design. They are logic synthesis, place and route and chip assembly respectively,

which are introduced for the rest of this section. In the end, the procedure for MOSIS

submission is given.

174

Logic Synthesis

In digital logic design, logic synthesis is a procedure by which a behavior-level HDL

code describing the function of a circuit, is turned into a gate-level netlist which describes

the implementation of a design in terms of logic gates, typically using a computer

program called a synthesis tool.

In this subsection, a procedure for synthesis is given. For the concision of this

procedure, the exact meanings of commands are not further explained. These commands

are covered by the official manuals [31]. There are other alternative RTL synthesizers

available as well, such as Design Compiler by Synopsys. If tools other than what's

described here are used, it's advised to refer to their respective manuals. The detailed

procedure and codes used are included in [32].

1) Tools: Cadence Encounter RTL Compiler

2) Prerequisites before This Step:

Behavior Verilog Code (e.g. "simple.v")

Tcl Script for RC Compiler ("rc.cmd", given in Appendix)

NCSU CDK Library ("ncsu-cdk-1.7.0.beta/")

UofU Technology Library ("UofU_TechLib_ami06/")

UofU Standard Cell Library ("UofU_Digital_v1_2/")

3) Destination Files Generated After This Step:

Netlist Verilog Code ("nl.v")

4) Steps:

a) Modify rc.cmd based on the requirement (as shown in Figure 162).

175

Line 3: Change UofU standard cell library path to where it's installed.

Line 7: Change "gpca40p.v" to the file name of Verilog code (e.g. "simple.v").

Line 8: Change "gpca40p" to the top-level entity name (e.g. "simple").

Figure 162: rc.cmd.

b) Run

$ rc -files rc.cmd

c) Check the result (Figure 163)

In the end, a netlist file called "nl.v" (Figure 164) is generated containing

information which will be used later for place and route.

If everything goes smooth as above, continue to the next step. If anything goes wrong,

fix it first before continuing further.

176

Figure 163: Synthesis summary generated by RC Compiler.

177

Figure 164: Synthesis summary generated by RC Compiler.

178

Place and Route

"Place and route" is a stage in the process of VLSI design, in which the location to

place all the logic elements within a generally limited amount of space and the way of all

the wires needed to connect the logic elements are decided.

In this section, a procedure for "place and route" is given. For the brevity of this

procedure, the exact meanings of commands are not further explained. These commands

are covered by the official manuals [33]. If the reader is interested in using GUI

commands instead of TCL scripts, please refer to EDI System Menu Reference [34] and

textbooks [24] for more information. The detailed procedure and codes used are included

in [32].

1) Tools: Cadence Encounter RTL-to-GDSII System

2) Prerequisites before This Step:

Netlist Verilog Code ("nl.v" from the last step)

Tcl Script for RC Compiler ("encounter.cmd", given in Appendix)

Tcl Script for Multi-Mode Multi-Corner ("mmmc.tcl", given in Appendix)

Synopsys Design Constraints ("typical.sdc", given in Appendix)

NCSU CDK Library ("ncsu-cdk-1.7.0.beta/")

UofU Technology Library ("UofU_TechLib_ami06/")

UofU Standard Cell Library ("UofU_Digital_v1_2/")

3) Destination Files Generated After This Step:

Optimized Netlist Verilog Code ("nlopt.v")

Design Exchange Format (DEF) File (e.g. "simple.def")

179

4) Steps:

a) Modify Tcl Script for RC Compiler ("encounter.cmd", Figure 165)

Line 10, 24: May change UofU standard cell library path to where it's installed

Line 13, 99: Change "gpca40p" to the top-level entity name (e.g. "simple")

Figure 165: encounter.cmd.

b) Modify Tcl Script for Multi-Mode Multi-Corner ("mmmc.tcl", Figure 166)

Line 11: May change UofU standard cell library path to where it's installed

Figure 166: mmmc.tcl.

c) Run

$ encounter -init encounter.cmd

d) Check the result

It should run all the way to the final step without any errors if the above steps are

180

followed correctly, as shown in Figure 167 and Figure 168. In the end, a DEF file

(e.g. "simple.def") for the chip layout (without pad frame) as well as a netlist file

called "nlopt.v" is generated.

Figure 167: Final view in Encounter.

181

Figure 168: DRC report generated by Encounter.

182

Chip Assembly

As a requirement by AMI05 technology [35], design should be submitted along with

pad frame. This section gives the procedure to assemble the pad frame with the chip. For

the brevity of this procedure, the exact meanings of commands are not further explained.

These commands are covered by the official manuals [36]. Materials such as textbooks

[24] also have many useful information for reference. The detailed procedure and codes

used are included in [32].

1) Tools:

Cadence Virtuoso Design Environment

2) Prerequisites before this step:

Optimized Netlist Verilog Code ("nlopt.v" from last step)

DEF File (e.g. "simple.def" from last step)

NCSU CDK Library ("ncsu-cdk-1.7.0.beta/")

UofU Technology Library ("UofU_TechLib_ami06/")

UofU Standard Cell Library ("UofU_Digital_v1_2/")

3) Destination Files Generated After This Step:

GDSII Stream File (e.g. "simple_final.gds")

4) Steps:

a) Launch Cadence Virtuoso Design Environment

$ virtuoso

b) Create New Library (Figure 169 to Figure 172)

183

Figure 169: Create New Library with Virtuoso.

184

Figure 170: "New Library" window of Virtuoso.

185

Figure 171: "Technology File for New Library" window of Virtuoso.

Figure 172: "Technology File for New Library" window of Virtuoso.

186

c) Import Optimized Netlist Verilog Code ("nlopt.v" from last step) and DEF

File (e.g. "simple.def" from last step). As shown in Figure 173 to Figure 177.

Figure 173: Import netlist with Virtuoso.

187

Figure 174: "Verilog In" window of Virtuoso.

188

Figure 175: Import DEF with Virtuoso.

Figure 176: "DEF In" window of Virtuoso.

189

Figure 177: "DEF In" successful translation prompt.

Once both layouts (from DEF) and schematic (from netlist in this section) are

generated, DRC, Extract and LVS should be performed, as shown in Figure 178 to 193.

Figure 178: Start DRC from Virtuoso Layout Suite.

190

Figure 179: "DRC" window of Virtuoso.

Figure 180: Report of successful DRC.

191

Figure 181: Start Extract from Virtuoso Layout Suite.

192

Figure 182: "Extractor" window of Virtuoso.

Figure 183: Report of successful Extract.

193

Figure 184: Start LVS from Virtuoso Layout Suite.

194

Figure 185: "Artist LVS" window of Virtuoso.

Figure 186: "Artist LVS" successful LVS prompt.

195

d) Customize Pad Frame (Figure 182 to 202)

Figure 187: Copy pad frame in Virtuoso.

196

Figure 188: "Copy Cell" window of Virtuoso.

197

Figure 189: Initial schematic view of the pad frame.

198

Modify the used pads in the pad frame (both schematic and layout), from "pad_nc" to

"pad_in" or "pad_out".

Figure 190: Add input pads in schematic.

199

Figure 191: Add output pads in schematic.

200

Figure 192: Add input pads in layout.

201

Figure 193: Add output pads in layout.

202

Add pins to pad frame (both schematic and layout). The pad frame works like a

wraparound. The external pins of the pad frame (e.g. "Frame1_38") have the same name

as the chip layout (e.g. "gpca40p"), and the internal pins of the pad frame connecting the

chip layout use original names affixed by "_i" (Hence e.g. "clk" becomes "clk_i.) This

procedure is shown in Figure 194 to Figure 207.

203

Figure 194: Add pins to the pad frame in schematic.

204

Figure 195: Add pins to the pad frame schematic (detailed view).

205

Same for the layout by tapping the ports with pins

Figure 196: "Create Shape Pin" Window of Virtuoso.

206

Figure 197: Add pins to the pad frame layout (detailed view).

207

DRC, Extract, LVS to make sure no rule is violated.

Figure 198: Start DRC from Virtuoso Layout Suite.

208

Figure 199: Report of successful DRC.

Figure 200: Start Extract from Virtuoso Layout Suite.

209

Figure 201: Report of successful Extract.

Figure 202: Start LVS from Virtuoso Layout Suite.

210

Figure 203: "Artist LVS" window of Virtuoso.

Figure 204: "Artist LVS" successful LVS prompt.

211

Generate symbol for the pad frame.

Figure 205: Create symbol view from schematic view.

212

Figure 206: "CellView from CellView" window of Virtuoso.

Figure 207: Final symbol view of the pad frame.

213

e) Final Chip Assembly (Add Pad Frame)

With both the core of the chip ("simple") and the pad frame (modified

"Frame1_38") are ready, creating a new cell to put them together. This procedure is

shown in Figure 208 to 224.

Create a new Cell View (I call it "gpca40p_final").

Figure 208: Create new "Cell View" from Virtuoso Layout Suite

214

Figure 209: "New File" window of Virtuoso.

Instantiate both the core of the chip ("gpca40p") and the pad frame (modified

"Frame1_38") (by pressing "I" to instantiate instances).

215

Figure 210: Create the final schematic view.

216

Figure 211: Routed schematic view.

217

Then add the pins.

Figure 212: "Add Pins" window of Virtuoso.

218

Final schematic view is shown below.

Figure 213: Final schematic view.

219

Then create the final layout view from the schematic.

Figure 214: "Startup Option" window of Virtuoso.

Figure 215: "Startup Option" window of Virtuoso.

220

In the new empty layout view

Figure 216: Start "Generate Layout" of Virtuoso.

221

Figure 217: "Generate Layout" window of Virtuoso.

222

Then place the pad frame ("Frame1_38") inside the "PR Boundary", and the core of

the chip ("gpca40p") inside the pad frame.

Figure 218: Component placement in Virtuoso.

223

Connect the "add!" (Pad 57) and "god!" (Pad 7) to the power ring.

Figure 219: Connect the "add!" (Pad 57) and "god!" (Pad 7) to the power ring.

224

Then invoke Automatic Routing.

Figure 220: "Automatic Routing" window of Virtuoso.

225

The following is the final layout. Fill the empty space with poly fills to meet

minimum polysilicon density required by AMI05 [35].

Figure 221: Final layout in Virtuoso.

226

DRC, Extract, LVS. They should give no error or warning.

Figure 222: Report of successful DRC.

Figure 223: Report of successful Extract.

227

Figure 224: "Artist LVS" successful LVS prompt.

228

f) Export GDSII Stream File ("simple_final.gds")

This procedure is shown in Figure 225 to Figure 230. This is the file to be sent

for fabrication.

This is the file to be sent for fabrication.

Figure 225: Start "Stream Out" from Virtuoso Layout Suite.

Figure 226: "Show Options" in "XStream Out" window of Virtuoso.

229

"Show Options", then tab "Layers", "Load ..."

Figure 227: "Load..." in "XStream Out" window of Virtuoso.

230

Select "streamOutLayermap" then hit "Open"

Figure 228: Choose file for the "XStream Out".

231

Click "Translate".

Figure 229: "Translate" in "XStream Out" window of Virtuoso.

232

It should produce no error and the only warning is about "nodrc:drawing" (and a

possible overwriting existing file warning).

Figure 230: "Stream out translation complete" successful prompt.

233

Design Submission

In this section, the procedure for MOSIS submission with the MOSIS Educational

Program (MEP) is given as a reference. More information is available in documents from

MOSIS [37], and adapted from [38].

1) Fill in "MOSIS New Project Request Form":

Run Type: Shared IC Fabrication Run

Design Rules: Scalable CMOS

Technology: SCN3M_SUBM (if the second layer of poly is not used);

SCN3ME_SUBM (if the second layer of poly is used).

Design Name and Password

Export Control: Standard

Substrate: none

Needs Library Installation: No

IP Included: none

Fill Authorized: Yes

Foundry: On Semi

Intended Disposition: Research

Design Size X and Y: Size including pads

Pad Count: How many pads used in the design (including signals and power)

Quantity Packaged: 5

Package Name: Depends on the design

Rotation in Package: None

234

Bonding Diagram Supplier: MOSIS

Downbond Locations: None

Quantity Unpackaged: 0

2) Fill in "Fabricate Form":

Go to Project Request -> Fabricate

Layout Transfer Method: I will upload layout via secure web form (HTTPS)

Compression/Encryption: Uncompressed

Generate the checksum and Count for the GDS file (Figure 231)

Layout Status: Final

Layout Format: GDS

Top Structure: the name of the top-level (e.g. "simple")

Figure 231: Generating checksum with GNU cksum

235

Results

The extended new design achieves higher throughput then the original design while

fully meets the design constrains. The result is summarized in Table 8. The design has

been sent to MOSIS for fabrication.

Table 8: Implementation Summary of the Pipelined Design

 Original Extended

Maximum delay (ns) 44.13 14.24

Maximum frequency (MHz) 22.7 70.2

Maximum throughput (million operations per second) 22.7 70.20

236

Conclusion

In this chapter, the concept of pipelining is briefly discussed. The original pipeline

array does not discuss the implementation of the intermediate stage registers used in the

pipeline array. This is a merely a combinational circuit. This array is improved to include

intermediate stage registers. Instead of a pure combination circuit, it is now a sequential

circuit and this circuit also has a clock. Such an improvement will help in the

development of advanced pipelined arithmetic processors. The array is also implemented

on FPGA and VLSI. The design has been sent to MOSIS for fabrication. The behavior

Verilog code for this design is listed in the Appendix.

237

CHAPTER 5 SUMMARY AND CONCLUSION

Introduction

In this thesis, a VLSI implementation of a generalized pipeline array has been

discussed and detailed procedure for the implementation is included. The procedure

requires the simulation on FPGA. The approaches for extending the array so as to meet

40-pin requirements of the MOSIS design are discussed. The parameters such as expected

delays, size, and memory have been met in the design. Then the original design is further

extended for pipelining operation. The design has been sent to MOSIS for fabrication.

The chip will be tested once we get the fabricated chip back.

238

Summary and Conclusion

A generalized pipeline array appeared in IEEE transaction in 1974. The array

appeared in a few textbooks on computer arithmetic. From time to time, a number of

papers appeared which reflected the modifications of this array. The objective of this

thesis is to present the design and VLSI implementation of this array. The array can add,

subtract, multiply, divide, square and square root of binary numbers. In this thesis, we

suggest various extensions upon the original design, and step-by-step procedures by

which the design can be sent to MOSIS and to get the fabricated chip back.

In Chapter 2, the array has been extended from 5 rows to 7 rows so that the extended

operations can be performed. In particular, a procedure is developed by which the design

and the implementation methodologies are suitable for 40 pin and 500 nm technologies.

In Chapter 3, an algorithm has been developed by which one can predict and advance

the maximum size and performance of the array. A procedure for VLSI implementation of

such a design using such an algorithm is also given.

In Chapter 4, the extension of pipelining is conducted based on the original design to

increase data processing throughput. A procedure for VLSI implementation of the

pipelined design is also given.

In particular, in order to achieve the following operations, the parameters of the

design are listed in Table 9. The derivation process is given in the thesis.

It is hoped that the design and implementation done here will go a long way in the

development of arithmetic units of advanced processors.

239

Table 9: Result of Extended generalized pipeline cellular array

Operations # of bytes # of rows # of cols Area (µm2)

Multiply 1 8 17 523060

Divide 2 8 17 523060

Square 1 by 1 8 17 523060

Square root 2 by 1 9 19 647571

240

Contribution

 The main contributions of this thesis are:

 1. The review of existing literatures with the view to develop advanced arithmetic

processors. Such processors can possibly be used in future computers.

2. Development of algorithms which can improve the design of arithmetic processors

based on the number of rows or columns with a view to have a specified chip area and the

number of input/output pins.

3. Extension of pipeline arrays so as to include pipelined part.

4. Development of unified procedure for VLSI implementation of chips which can be

sent to MOSIS for fabrication and get the fabricated chip back and tested. Please note that

the developed procedure herein works if the Verilog code is synthesizable. Future efforts

are needed so as to decide in advance whether the code is synthesizable or not. If not, the

code can be modified so as to be synthesizable.

This thesis first introduces the generalized cellular pipeline array, followed by

analysis of various extensions of the original design, which makes the design more

suitable for modern arithmetic processors, including extension from the original 5-row

design to 7-row design (and any number of rows beyond), an algorithm developed to

estimate the maximum number of rows in advance with given technology constrains, and

an optimized pipeline implementation based on the original design. These designs can be

used as the arithmetic unit within a project, and it also provides references for modern

arithmetic processors designs.

The second part of this thesis introduces a step-by-step procedure by which the VLSI

241

implementation is carried out, using the generalized cellular pipeline array as a case study

in this process. This design and implementation procedure can serve as a reference

material for VLSI designers and students in digital design courses in universities.

242

Problems for Future Work

Due to the scope of this thesis, since the requirement of timing is not demanding, no

timing analysis and optimization during physical implementation is conducted. To further

optimize the operation of the pipeline array, timing analysis and optimization is to be

conducted in the future.

Due to the technical constrains when conducting this thesis, only 500 nm technology

is available. In addition, the chip area is limited to 1500 µm by 1500 µm and the pin

count is limited to 40 pins. When new technologies are available in the future, the

estimation algorithm is to be extended to adapt the new technologies.

Due to the scope of this thesis, since the requirement of timing is not demanding, the

pipeline is not fully balanced and optimized. To further optimize the operation of the

pipeline array, techniques such as timing analysis are to be incorporated to further

optimize the operation of the pipeline.

 Problems such as “parallelism versus pipelining, help of FPGAs in parallelism, using

2 Spartan 3s in parallel” are also possible works of future study.

243

APPENDIX A Verilog Code for the 7 Row Extension

// Verilog implementation of "A GENERALIZED PIPELINE CELLULAR

ARRAY" by

// Harpreet Singh, Shashank Kamthan, Dharma Agarwal, Lubna

Alazzawi

// All codes here are imitating what's described in the papers

given by Dr. Singh, and it is claimed by Dr. Singh to be at least

useful at all

// top-level entity: "gpca"

// arithmetic cell

module ac

(

input wire A, B, C, X, F, C1,

output wire S, D, E, C0

);

assign S = ((A ^ (B ^ X) ^ C1) & F) | (A & ~F);

assign C0 = ((B ^ X) & (A | C1)) | (A & C1);

assign D = C & (B | F);

assign E = B | (C & F);

endmodule

module cc

(

input wire X, P, C0,

output wire F

);

assign F = (C0 & X) | (P & ~X);

endmodule

module gpca

(

input wire X,

input wire [1:7] P,

input wire [1:9] B, C,

input wire [1:14] A,

output wire [1:7] F,

output wire [1:15] S

);

wire [1:7] FI;

244

wire [1:3] C1;

wire [1:5] C2;

wire [1:7] C3;

wire [1:9] C4;

wire [1:11] C5;

wire [1:13] C6;

wire [1:15] C7;

wire [1:3] S1;

wire [1:5] S2;

wire [1:7] S3;

wire [1:9] S4;

wire [1:11] S5;

wire [1:13] S6;

wire [1:15] S7;

wire [1:3] D1;

wire [1:5] D2;

wire [1:7] D3;

wire [1:9] D4;

wire [1:11] D5;

wire [1:13] D6;

wire [1:3] E1;

wire [1:5] E2;

wire [1:7] E3;

wire [1:9] E4;

wire [1:11] E5;

wire [1:13] E6;

assign F[1] = C1[1];

assign F[2] = C2[1];

assign F[3] = C3[1];

assign F[4] = C4[1];

assign F[5] = C5[1];

assign F[6] = C6[1];

assign F[7] = C7[1];

assign S = S7;

// control cells (X,P,C0 / F)

cc cc1(X, P[1], C1[1], FI[1]);

cc cc2(X, P[2], C2[1], FI[2]);

cc cc3(X, P[3], C3[1], FI[3]);

cc cc4(X, P[4], C4[1], FI[4]);

cc cc5(X, P[5], C5[1], FI[5]);

cc cc6(X, P[6], C6[1], FI[6]);

245

cc cc7(X, P[7], C6[1], FI[7]);

// arithmetic cells of row 1(A,B,C,X,F,C1/S,D,E,C0)

ac ac11(.A(1'b0), .B(B[1]), .C(C[1]), .X(X), .F(FI[1]),

 .C1(C1[2]), .S(S1[1]), .D(D1[1]), .E(E1[1]),

 .C0(C1[1]));

ac ac12(.A(A[1]), .B(B[2]), .C(C[2]), .X(X), .F(FI[1]),

 .C1(C1[3]), .S(S1[2]), .D(D1[2]), .E(E1[2]),

 .C0(C1[2]));

ac ac13(.A(A[2]), .B(B[3]), .C(C[3]), .X(X), .F(FI[1]),

 .C1(X), .S(S1[3]), .D(D1[3]), .E(E1[3]),

 .C0(C1[3]));

// arithmetic cells of row 2(A,B,C,X,F,C1/S,D,E,C0)

ac ac21(.A(S1[1]), .B(1'b0), .C(1'b0), .X(X),

 .F(FI[2]), .C1(C2[2]), .S(S2[1]), .D(D2[1]), .E(E2[1]),

 .C0(C2[1]));

ac ac22(.A(S1[2]), .B(D1[1]), .C(E1[1]), .X(X),

 .F(FI[2]), .C1(C2[3]), .S(S2[2]), .D(D2[2]), .E(E2[2]),

 .C0(C2[2]));

ac ac23(.A(S1[3]), .B(D1[2]), .C(E1[2]), .X(X),

 .F(FI[2]), .C1(C2[4]), .S(S2[3]), .D(D2[3]), .E(E2[3]),

 .C0(C2[3]));

ac ac24(.A(A[3]), .B(D1[3]), .C(E1[3]), .X(X), .F(FI[2]),

 .C1(C2[5]), .S(S2[4]), .D(D2[4]), .E(E2[4]),

 .C0(C2[4]));

ac ac25(.A(A[4]), .B(B[4]), .C(C[4]), .X(X), .F(FI[2]),

 .C1(X), .S(S2[5]), .D(D2[5]), .E(E2[5]),

 .C0(C2[5]));

// arithmetic cells of row 3(A,B,C,X,F,C1/S,D,E,C0)

ac ac31(.A(S2[1]), .B(1'b0), .C(1'b0), .X(X),

 .F(FI[3]), .C1(C3[2]), .S(S3[1]), .D(D3[1]), .E(E3[1]),

 .C0(C3[1]));

ac ac32(.A(S2[2]), .B(D2[1]), .C(E2[1]), .X(X),

 .F(FI[3]), .C1(C3[3]), .S(S3[2]), .D(D3[2]), .E(E3[2]),

 .C0(C3[2]));

ac ac33(.A(S2[3]), .B(D2[2]), .C(E2[2]), .X(X),

 .F(FI[3]), .C1(C3[4]), .S(S3[3]), .D(D3[3]), .E(E3[3]),

 .C0(C3[3]));

ac ac34(.A(S2[4]), .B(D2[3]), .C(E2[3]), .X(X),

 .F(FI[3]), .C1(C3[5]), .S(S3[4]), .D(D3[4]), .E(E3[4]),

 .C0(C3[4]));

ac ac35(.A(S2[5]), .B(D2[4]), .C(E2[4]), .X(X),

246

 .F(FI[3]), .C1(C3[6]), .S(S3[5]), .D(D3[5]), .E(E3[5]),

 .C0(C3[5]));

ac ac36(.A(A[5]), .B(D2[5]), .C(E2[5]), .X(X), .F(FI[3]),

 .C1(C3[7]), .S(S3[6]), .D(D3[6]), .E(E3[6]),

 .C0(C3[6]));

ac ac37(.A(A[6]), .B(B[5]), .C(C[5]), .X(X), .F(FI[3]),

 .C1(X), .S(S3[7]), .D(D3[7]), .E(E3[7]),

 .C0(C3[7]));

// arithmetic cells of row 4(A,B,C,X,F,C1/S,D,E,C0)

ac ac41(.A(S3[1]), .B(1'b0), .C(1'b0), .X(X),

 .F(FI[4]), .C1(C4[2]), .S(S4[1]), .D(D4[1]), .E(E4[1]),

 .C0(C4[1]));

ac ac42(.A(S3[2]), .B(D3[1]), .C(E3[1]), .X(X),

 .F(FI[4]), .C1(C4[3]), .S(S4[2]), .D(D4[2]), .E(E4[2]),

 .C0(C4[2]));

ac ac43(.A(S3[3]), .B(D3[2]), .C(E3[2]), .X(X),

 .F(FI[4]), .C1(C4[4]), .S(S4[3]), .D(D4[3]), .E(E4[3]),

 .C0(C4[3]));

ac ac44(.A(S3[4]), .B(D3[3]), .C(E3[3]), .X(X),

 .F(FI[4]), .C1(C4[5]), .S(S4[4]), .D(D4[4]), .E(E4[4]),

 .C0(C4[4]));

ac ac45(.A(S3[5]), .B(D3[4]), .C(E3[4]), .X(X),

 .F(FI[4]), .C1(C4[6]), .S(S4[5]), .D(D4[5]), .E(E4[5]),

 .C0(C4[5]));

ac ac46(.A(S3[6]), .B(D3[5]), .C(E3[5]), .X(X),

 .F(FI[4]), .C1(C4[7]), .S(S4[6]), .D(D4[6]), .E(E4[6]),

 .C0(C4[6]));

ac ac47(.A(S3[7]), .B(D3[6]), .C(E3[6]), .X(X),

 .F(FI[4]), .C1(C4[8]), .S(S4[7]), .D(D4[7]), .E(E4[7]),

 .C0(C4[7]));

ac ac48(.A(A[7]), .B(D3[7]), .C(E3[7]), .X(X), .F(FI[4]),

 .C1(C4[9]), .S(S4[8]), .D(D4[8]), .E(E4[8]),

 .C0(C4[8]));

ac ac49(.A(A[8]), .B(B[6]), .C(C[6]), .X(X), .F(FI[4]),

 .C1(X), .S(S4[9]), .D(D4[9]), .E(E4[9]),

 .C0(C4[9]));

// arithmetic cells of row 5(A,B,C,X,F,C1/S,D,E,C0)

ac ac51(.A(S4[1]), .B(1'b0), .C(1'b0), .X(X),

 .F(FI[5]), .C1(C5[2]), .S(S5[1]), .D(D5[1]), .E(E5[1]),

 .C0(C5[1]));

ac ac52(.A(S4[2]), .B(D4[1]), .C(E4[1]), .X(X),

 .F(FI[5]), .C1(C5[3]), .S(S5[2]), .D(D5[2]), .E(E5[2]),

247

 .C0(C5[2]));

ac ac53(.A(S4[3]), .B(D4[2]), .C(E4[2]), .X(X),

 .F(FI[5]), .C1(C5[4]), .S(S5[3]), .D(D5[3]), .E(E5[3]),

 .C0(C5[3]));

ac ac54(.A(S4[4]), .B(D4[3]), .C(E4[3]), .X(X),

 .F(FI[5]), .C1(C5[5]), .S(S5[4]), .D(D5[4]), .E(E5[4]),

 .C0(C5[4]));

ac ac55(.A(S4[5]), .B(D4[4]), .C(E4[4]), .X(X),

 .F(FI[5]), .C1(C5[6]), .S(S5[5]), .D(D5[5]), .E(E5[5]),

 .C0(C5[5]));

ac ac56(.A(S4[6]), .B(D4[5]), .C(E4[5]), .X(X),

 .F(FI[5]), .C1(C5[7]), .S(S5[6]), .D(D5[6]), .E(E5[6]),

 .C0(C5[6]));

ac ac57(.A(S4[7]), .B(D4[6]), .C(E4[6]), .X(X),

 .F(FI[5]), .C1(C5[8]), .S(S5[7]), .D(D5[7]), .E(E5[7]),

 .C0(C5[7]));

ac ac58(.A(S4[8]), .B(D4[7]), .C(E4[7]), .X(X),

 .F(FI[5]), .C1(C5[9]), .S(S5[8]), .D(D5[8]), .E(E5[8]),

 .C0(C5[8]));

ac ac59(.A(S4[9]), .B(D4[8]), .C(E4[8]), .X(X),

 .F(FI[5]), .C1(C5[10]),.S(S5[9]), .D(D5[9]), .E(E5[9]),

 .C0(C5[9]));

ac ac5a(.A(A[9]), .B(D4[9]), .C(E4[9]), .X(X), .F(FI[5]),

 .C1(C5[11]),.S(S5[10]), .D(D5[10]), .E(E5[10]),

 .C0(C5[10]));

ac ac5b(.A(A[10]), .B(B[7]), .C(C[7]), .X(X),

 .F(FI[5]), .C1(X), .S(S5[11]), .D(D5[11]), .E(E5[11]),

 .C0(C5[11]));

// arithmetic cells of row 6(A,B,C,X,F,C1/S,D,E,C0)

ac ac61(.A(S5[1]), .B(1'b0), .C(1'b0), .X(X),

 .F(FI[6]), .C1(C6[2]), .S(S6[1]), .D(D6[1]), .E(E6[1]),

 .C0(C6[1]));

ac ac62(.A(S5[2]), .B(D5[1]), .C(E5[1]), .X(X),

 .F(FI[6]), .C1(C6[3]), .S(S6[2]), .D(D6[2]), .E(E6[2]),

 .C0(C6[2]));

ac ac63(.A(S5[3]), .B(D5[2]), .C(E5[2]), .X(X),

 .F(FI[6]), .C1(C6[4]), .S(S6[3]), .D(D6[3]), .E(E6[3]),

 .C0(C6[3]));

ac ac64(.A(S5[4]), .B(D5[3]), .C(E5[3]), .X(X),

 .F(FI[6]), .C1(C6[5]), .S(S6[4]), .D(D6[4]), .E(E6[4]),

 .C0(C6[4]));

ac ac65(.A(S5[5]), .B(D5[4]), .C(E5[4]), .X(X),

 .F(FI[6]), .C1(C6[6]), .S(S6[5]), .D(D6[5]), .E(E6[5]),

248

 .C0(C6[5]));

ac ac66(.A(S5[6]), .B(D5[5]), .C(E5[5]), .X(X),

 .F(FI[6]), .C1(C6[7]), .S(S6[6]), .D(D6[6]), .E(E6[6]),

 .C0(C6[6]));

ac ac67(.A(S5[7]), .B(D5[6]), .C(E5[6]), .X(X),

 .F(FI[6]), .C1(C6[8]), .S(S6[7]), .D(D6[7]), .E(E6[7]),

 .C0(C6[7]));

ac ac68(.A(S5[8]), .B(D5[7]), .C(E5[7]), .X(X),

 .F(FI[6]), .C1(C6[9]), .S(S6[8]), .D(D6[8]), .E(E6[8]),

 .C0(C6[8]));

ac ac69(.A(S5[9]), .B(D5[8]), .C(E5[8]), .X(X),

 .F(FI[6]), .C1(C6[10]),.S(S6[9]), .D(D6[9]), .E(E6[9]),

 .C0(C6[9]));

ac ac6a(.A(S5[10]), .B(D5[9]), .C(E5[9]), .X(X),

 .F(FI[6]), .C1(C6[11]),.S(S6[10]), .D(D6[10]), .E(E6[10]),

 .C0(C6[10]));

ac ac6b(.A(S5[11]), .B(D5[10]), .C(E5[10]), .X(X),

 .F(FI[6]), .C1(C6[12]),.S(S6[11]), .D(D6[11]), .E(E6[11]),

 .C0(C6[11]));

ac ac6c(.A(A[11]), .B(D5[11]), .C(E5[11]), .X(X),

 .F(FI[6]), .C1(C6[13]),.S(S6[12]), .D(D6[12]), .E(E6[12]),

 .C0(C6[12]));

ac ac6d(.A(A[12]), .B(B[8]), .C(C[8]), .X(X),

 .F(FI[6]), .C1(X), .S(S6[13]), .D(D6[13]), .E(E6[13]),

 .C0(C6[13]));

// arithmetic cells of row 7(A,B,C,X,F,C1/S,D,E,C0)

ac ac71(.A(S6[1]), .B(1'b0), .C(1'b0), .X(X),

 .F(FI[7]), .C1(C7[2]), .S(S7[1]), .D(), .E(),

 .C0(C7[1]));

ac ac72(.A(S6[2]), .B(D6[1]), .C(E6[1]), .X(X),

 .F(FI[7]), .C1(C7[3]), .S(S7[2]), .D(), .E(),

 .C0(C7[2]));

ac ac73(.A(S6[3]), .B(D6[2]), .C(E6[2]), .X(X),

 .F(FI[7]), .C1(C7[4]), .S(S7[3]), .D(), .E(),

 .C0(C7[3]));

ac ac74(.A(S6[4]), .B(D6[3]), .C(E6[3]), .X(X),

 .F(FI[7]), .C1(C7[5]), .S(S7[4]), .D(), .E(),

 .C0(C7[4]));

ac ac75(.A(S6[5]), .B(D6[4]), .C(E6[4]), .X(X),

 .F(FI[7]), .C1(C7[6]), .S(S7[5]), .D(), .E(),

 .C0(C7[5]));

ac ac76(.A(S6[6]), .B(D6[5]), .C(E6[5]), .X(X),

 .F(FI[7]), .C1(C7[7]), .S(S7[6]), .D(), .E(),

249

 .C0(C7[6]));

ac ac77(.A(S6[7]), .B(D6[6]), .C(E6[6]), .X(X),

 .F(FI[7]), .C1(C7[8]), .S(S7[7]), .D(), .E(),

 .C0(C7[7]));

ac ac78(.A(S6[8]), .B(D6[7]), .C(E6[7]), .X(X),

 .F(FI[7]), .C1(C7[9]), .S(S7[8]), .D(), .E(),

 .C0(C7[8]));

ac ac79(.A(S6[9]), .B(D6[8]), .C(E6[8]), .X(X),

 .F(FI[7]), .C1(C7[10]),.S(S7[9]), .D(), .E(),

 .C0(C7[9]));

ac ac7a(.A(S6[10]), .B(D6[9]), .C(E6[9]), .X(X),

 .F(FI[7]), .C1(C7[11]),.S(S7[10]), .D(), .E(),

 .C0(C7[10]));

ac ac7b(.A(S6[11]), .B(D6[10]), .C(E6[10]), .X(X),

 .F(FI[7]), .C1(C7[12]),.S(S7[11]), .D(), .E(),

 .C0(C7[11]));

ac ac7c(.A(S6[12]), .B(D6[11]), .C(E6[11]), .X(X),

 .F(FI[7]), .C1(C7[13]),.S(S7[12]), .D(), .E(),

 .C0(C7[12]));

ac ac7d(.A(S6[13]), .B(D6[12]), .C(E6[12]), .X(X),

 .F(FI[7]), .C1(C7[14]),.S(S7[13]), .D(), .E(),

 .C0(C7[13]));

ac ac7e(.A(A[13]), .B(D6[13]), .C(E6[13]), .X(X),

 .F(FI[7]), .C1(C7[15]),.S(S7[14]), .D(), .E(),

 .C0(C7[14]));

ac ac7f(.A(A[14]), .B(B[9]), .C(C[9]), .X(X),

 .F(FI[7]), .C1(X), .S(S7[15]), .D(), .E(),

 .C0(C7[15]));

endmodule

250

APPENDIX B Verilog Code for the Extension to Meet Design Constrains

// Verilog implementation of "A GENERALIZED PIPELINE CELLULAR

ARRAY" by

// Harpreet Singh, Shashank Kamthan, Dharma Agarwal, Lubna

Alazzawi

// All codes here are imitating what's described in the papers

given by Dr. Singh, and it is claimed by Dr. Singh to be at least

useful at all

// top-level entity: "gpca40p"

// arithmetic cell

module ac

(

input wire A, B, C, X, F, C1,

output wire S, D, E, C0

);

assign S = ((A ^ (B ^ X) ^ C1) & F) | (A & ~F);

assign C0 = ((B ^ X) & (A | C1)) | (A & C1);

assign D = C & (B | F);

assign E = B | (C & F);

endmodule

module cc

(

input wire X, P, C0,

output wire F

);

assign F = (C0 & X) | (P & ~X);

endmodule

module gpca

(

input wire X,

input wire [1:5] P,

input wire [1:7] B, C,

input wire [1:10] A,

output wire [1:5] F,

output wire [1:11] S

);

wire [1:5] FI;

251

wire [1:3] C1;

wire [1:5] C2;

wire [1:7] C3;

wire [1:9] C4;

wire [1:11] C5;

wire [1:3] S1;

wire [1:5] S2;

wire [1:7] S3;

wire [1:9] S4;

wire [1:3] D1;

wire [1:5] D2;

wire [1:7] D3;

wire [1:9] D4;

wire [1:3] E1;

wire [1:5] E2;

wire [1:7] E3;

wire [1:9] E4;

assign F[1] = C1[1];

assign F[2] = C2[1];

assign F[3] = C3[1];

assign F[4] = C4[1];

assign F[5] = C5[1];

// control cells (X,P,C0 / F)

cc cc1(X, P[1], C1[1], FI[1]);

cc cc2(X, P[2], C2[1], FI[2]);

cc cc3(X, P[3], C3[1], FI[3]);

cc cc4(X, P[4], C4[1], FI[4]);

cc cc5(X, P[5], C5[1], FI[5]);

// arithmetic cells of row 1(A,B,C,X,F,C1/S,D,E,C0)

ac ac11(.A(1'b0), .B(B[1]), .C(C[1]), .X(X), .F(FI[1]),

 .C1(C1[2]), .S(S1[1]), .D(D1[1]), .E(E1[1]),

 .C0(C1[1]));

ac ac12(.A(A[1]), .B(B[2]), .C(C[2]), .X(X), .F(FI[1]),

 .C1(C1[3]), .S(S1[2]), .D(D1[2]), .E(E1[2]),

 .C0(C1[2]));

ac ac13(.A(A[2]), .B(B[3]), .C(C[3]), .X(X), .F(FI[1]),

 .C1(X), .S(S1[3]), .D(D1[3]), .E(E1[3]),

 .C0(C1[3]));

// arithmetic cells of row 2(A,B,C,X,F,C1/S,D,E,C0)

ac ac21(.A(S1[1]), .B(1'b0), .C(1'b0), .X(X),

252

 .F(FI[2]), .C1(C2[2]), .S(S2[1]), .D(D2[1]), .E(E2[1]),

 .C0(C2[1]));

ac ac22(.A(S1[2]), .B(D1[1]), .C(E1[1]), .X(X),

 .F(FI[2]), .C1(C2[3]), .S(S2[2]), .D(D2[2]), .E(E2[2]),

 .C0(C2[2]));

ac ac23(.A(S1[3]), .B(D1[2]), .C(E1[2]), .X(X),

 .F(FI[2]), .C1(C2[4]), .S(S2[3]), .D(D2[3]), .E(E2[3]),

 .C0(C2[3]));

ac ac24(.A(A[3]), .B(D1[3]), .C(E1[3]), .X(X), .F(FI[2]),

 .C1(C2[5]), .S(S2[4]), .D(D2[4]), .E(E2[4]),

 .C0(C2[4]));

ac ac25(.A(A[4]), .B(B[4]), .C(C[4]), .X(X), .F(FI[2]),

 .C1(X), .S(S2[5]), .D(D2[5]), .E(E2[5]),

 .C0(C2[5]));

// arithmetic cells of row 3(A,B,C,X,F,C1/S,D,E,C0)

ac ac31(.A(S2[1]), .B(1'b0), .C(1'b0), .X(X),

 .F(FI[3]), .C1(C3[2]), .S(S3[1]), .D(D3[1]), .E(E3[1]),

 .C0(C3[1]));

ac ac32(.A(S2[2]), .B(D2[1]), .C(E2[1]), .X(X),

 .F(FI[3]), .C1(C3[3]), .S(S3[2]), .D(D3[2]), .E(E3[2]),

 .C0(C3[2]));

ac ac33(.A(S2[3]), .B(D2[2]), .C(E2[2]), .X(X),

 .F(FI[3]), .C1(C3[4]), .S(S3[3]), .D(D3[3]), .E(E3[3]),

 .C0(C3[3]));

ac ac34(.A(S2[4]), .B(D2[3]), .C(E2[3]), .X(X),

 .F(FI[3]), .C1(C3[5]), .S(S3[4]), .D(D3[4]), .E(E3[4]),

 .C0(C3[4]));

ac ac35(.A(S2[5]), .B(D2[4]), .C(E2[4]), .X(X),

 .F(FI[3]), .C1(C3[6]), .S(S3[5]), .D(D3[5]), .E(E3[5]),

 .C0(C3[5]));

ac ac36(.A(A[5]), .B(D2[5]), .C(E2[5]), .X(X), .F(FI[3]),

 .C1(C3[7]), .S(S3[6]), .D(D3[6]), .E(E3[6]),

 .C0(C3[6]));

ac ac37(.A(A[6]), .B(B[5]), .C(C[5]), .X(X), .F(FI[3]),

 .C1(X), .S(S3[7]), .D(D3[7]), .E(E3[7]),

 .C0(C3[7]));

// arithmetic cells of row 4(A,B,C,X,F,C1/S,D,E,C0)

ac ac41(.A(S3[1]), .B(1'b0), .C(1'b0), .X(X),

 .F(FI[4]), .C1(C4[2]), .S(S4[1]), .D(D4[1]), .E(E4[1]),

 .C0(C4[1]));

ac ac42(.A(S3[2]), .B(D3[1]), .C(E3[1]), .X(X),

 .F(FI[4]), .C1(C4[3]), .S(S4[2]), .D(D4[2]), .E(E4[2]),

253

 .C0(C4[2]));

ac ac43(.A(S3[3]), .B(D3[2]), .C(E3[2]), .X(X),

 .F(FI[4]), .C1(C4[4]), .S(S4[3]), .D(D4[3]), .E(E4[3]),

 .C0(C4[3]));

ac ac44(.A(S3[4]), .B(D3[3]), .C(E3[3]), .X(X),

 .F(FI[4]), .C1(C4[5]), .S(S4[4]), .D(D4[4]), .E(E4[4]),

 .C0(C4[4]));

ac ac45(.A(S3[5]), .B(D3[4]), .C(E3[4]), .X(X),

 .F(FI[4]), .C1(C4[6]), .S(S4[5]), .D(D4[5]), .E(E4[5]),

 .C0(C4[5]));

ac ac46(.A(S3[6]), .B(D3[5]), .C(E3[5]), .X(X),

 .F(FI[4]), .C1(C4[7]), .S(S4[6]), .D(D4[6]), .E(E4[6]),

 .C0(C4[6]));

ac ac47(.A(S3[7]), .B(D3[6]), .C(E3[6]), .X(X),

 .F(FI[4]), .C1(C4[8]), .S(S4[7]), .D(D4[7]), .E(E4[7]),

 .C0(C4[7]));

ac ac48(.A(A[7]), .B(D3[7]), .C(E3[7]), .X(X), .F(FI[4]),

 .C1(C4[9]), .S(S4[8]), .D(D4[8]), .E(E4[8]),

 .C0(C4[8]));

ac ac49(.A(A[8]), .B(B[6]), .C(C[6]), .X(X), .F(FI[4]),

 .C1(X), .S(S4[9]), .D(D4[9]), .E(E4[9]),

 .C0(C4[9]));

// arithmetic cells of row 5(A,B,C,X,F,C1/S,D,E,C0)

ac ac51(.A(S4[1]), .B(1'b0), .C(1'b0), .X(X),

 .F(FI[5]), .C1(C5[2]), .S(S[1]), .D(), .E(),

 .C0(C5[1]));

ac ac52(.A(S4[2]), .B(D4[1]), .C(E4[1]), .X(X),

 .F(FI[5]), .C1(C5[3]), .S(S[2]), .D(), .E(),

 .C0(C5[2]));

ac ac53(.A(S4[3]), .B(D4[2]), .C(E4[2]), .X(X),

 .F(FI[5]), .C1(C5[4]), .S(S[3]), .D(), .E(),

 .C0(C5[3]));

ac ac54(.A(S4[4]), .B(D4[3]), .C(E4[3]), .X(X),

 .F(FI[5]), .C1(C5[5]), .S(S[4]), .D(), .E(),

 .C0(C5[4]));

ac ac55(.A(S4[5]), .B(D4[4]), .C(E4[4]), .X(X),

 .F(FI[5]), .C1(C5[6]), .S(S[5]), .D(), .E(),

 .C0(C5[5]));

ac ac56(.A(S4[6]), .B(D4[5]), .C(E4[5]), .X(X),

 .F(FI[5]), .C1(C5[7]), .S(S[6]), .D(), .E(),

 .C0(C5[6]));

ac ac57(.A(S4[7]), .B(D4[6]), .C(E4[6]), .X(X),

 .F(FI[5]), .C1(C5[8]), .S(S[7]), .D(), .E(),

254

 .C0(C5[7]));

ac ac58(.A(S4[8]), .B(D4[7]), .C(E4[7]), .X(X),

 .F(FI[5]), .C1(C5[9]), .S(S[8]), .D(), .E(),

 .C0(C5[8]));

ac ac59(.A(S4[9]), .B(D4[8]), .C(E4[8]), .X(X),

 .F(FI[5]), .C1(C5[10]),.S(S[9]), .D(), .E(),

 .C0(C5[9]));

ac ac5a(.A(A[9]), .B(D4[9]), .C(E4[9]), .X(X), .F(FI[5]),

 .C1(C5[11]),.S(S[10]), .D(), .E(), .C0(C5[10]));

ac ac5b(.A(A[10]), .B(B[7]), .C(C[7]), .X(X),

 .F(FI[5]), .C1(X), .S(S[11]), .D(), .E(),

 .C0(C5[11]));

endmodule

module gpca40p

(

input wire [1:0] op,

input wire [9:0] din0,

input wire [6:0] din1,

output reg [10:0] dout

);

// op[1:0] din0[9:0] din1[6:0] dout[10:0]

(TBD)

//

// sq 00 P[1:5] 7'bx S[1:11]

 (X=1'b0, B=7'b0011111, C=7'b0100000, P=din0[4:0], A=10'b0)

// sqr 01 A[1:10] 7'bx {6'bx, F[1:5]}

 (X=1'b1, B=7'b0011111, C=7'b0100000, P=5'b0, A=din0[9:0])

// mult 10 B[1:7], C[1:7] {2'bx, P[1:5]} S[1:11]

 (X=1'b0, B=C=din0[6:0], P=din1[4:0], A=10'b0)

// div 11 A[10:1] B[7:1], C[7:1] {7'bx, F[2:5]}

 (X=1'b1, B=C=din1[0:6], P=5'b0, A=din0[0:9])

/* input */

reg X;

reg [1:5] P;

reg [1:7] B, C;

reg [1:10] A;

/* output */

wire [1:5] F;

wire [1:11] S;

255

/* original circuit */

gpca inst_gpca (X, P, B, C, A, F, S);

/* multiplexer */

always @* begin

/* default */

X = 1'bx;

P[1:5] = 5'bx;

B[1:7] = 7'bx;

C[1:7] = 7'bx;

A[1:10] = 10'bx;

dout[10:0] = 11'bx;

case(op)

2'b00: begin

X = 1'b0;

P[1:5] = din0[4:0];

B[1:7] = 7'b0011111;

C[1:7] = 7'b0100000;

A[1:10] = 10'b0;

dout[10:0] = S[1:11];

end

2'b01: begin

X = 1'b1;

P[1:5] = 5'b0;

B[1:7] = 7'b0011111;

C[1:7] = 7'b0100000;

A[1:10] = din0[9:0];

dout[10:0] = {6'b0, F[1:5]};

end

2'b10: begin

X = 1'b0;

P[1:5] = din1[4:0];

B[1:7] = din0[6:0];

C[1:7] = din0[6:0];

A[1:10] = 10'b0;

dout[10:0] = S[1:11];

end

2'b11: begin

X = 1'b1;

256

P[1:5] = 5'b0;

B[1:7] = {din1[0], din1[1], din1[2], din1[3], din1[4],

din1[5], din1[6]};

C[1:7] = {din1[0], din1[1], din1[2], din1[3], din1[4],

din1[5], din1[6]};

A[1:10] = {din0[0], din0[1], din0[2], din0[3], din0[4],

din0[5], din0[6], din0[7], din0[8], din0[9]};

dout[10:0] = {7'b0, F[5], F[4], F[3], F[2]};

end

default: begin

end

endcase

end

endmodule

257

APPENDIX C Verilog Code for the Extension of Pipelining

// Verilog implementation of "A GENERALIZED PIPELINE CELLULAR

ARRAY" by

// Harpreet Singh, Shashank Kamthan, Dharma Agarwal, Lubna

Alazzawi

// All codes here are imitating what's described in the papers

given by Dr. Singh, and it is claimed by Dr. Singh to be at least

useful at all

// top-level entity: "gpca40p"

// arithmetic cell

module ac

(

input wire A, B, C, X, F, C1,

output wire S, D, E, C0

);

assign S = ((A ^ (B ^ X) ^ C1) & F) | (A & ~F);

assign C0 = ((B ^ X) & (A | C1)) | (A & C1);

assign D = C & (B | F);

assign E = B | (C & F);

endmodule

module cc

(

input wire X, P, C0,

output wire F

);

assign F = (C0 & X) | (P & ~X);

endmodule

module gpca

(

input wire clk, rst,

input wire X,

input wire [1:5] P, // [1:nrow]

input wire [1:7] C, // [1:(nrow + 2)]

input wire [1:7] B, // [1:(nrow + 2)]

input wire [1:10] A, // [1:(2*nrow)]

output reg [1:5] F, // [1:nrow]

output reg [1:11] S // [1:(2*nrow + 1)]

);

258

/* stage 0 */

reg s0_X_r;

reg [1:5] s0_P_r;

reg [1:7] s0_C_r;

reg [1:7] s0_B_r;

reg [1:10] s0_A_r;

wire s0_F;

wire [1:3] s0_C0;

/* stage 1 */

reg s1_X_r, s1_X_n;

reg [2:5] s1_P_r, s1_P_n;

reg [4:7] s1_C_r, s1_C_n;

reg [4:7] s1_B_r, s1_B_n;

reg [3:10] s1_A_r, s1_A_n;

reg [1:3] s1_S_r;

reg [1:3] s1_D_r;

reg [1:3] s1_E_r;

reg [1:1] s1_F_r, s1_F_n;

wire [1:3] s1_S_n;

wire [1:3] s1_D_n;

wire [1:3] s1_E_n;

wire s1_F;

wire [1:5] s1_C0;

/* stage 2 */

reg s2_X_r, s2_X_n;

reg [3:5] s2_P_r, s2_P_n;

reg [5:7] s2_C_r, s2_C_n;

reg [5:7] s2_B_r, s2_B_n;

reg [5:10] s2_A_r, s2_A_n;

reg [1:5] s2_S_r;

reg [1:5] s2_D_r;

reg [1:5] s2_E_r;

reg [1:2] s2_F_r, s2_F_n;

wire [1:5] s2_S_n;

wire [1:5] s2_D_n;

259

wire [1:5] s2_E_n;

wire s2_F;

wire [1:7] s2_C0;

/* stage 3 */

reg s3_X_r, s3_X_n;

reg [4:5] s3_P_r, s3_P_n;

reg [6:7] s3_C_r, s3_C_n;

reg [6:7] s3_B_r, s3_B_n;

reg [7:10] s3_A_r, s3_A_n;

reg [1:7] s3_S_r;

reg [1:7] s3_D_r;

reg [1:7] s3_E_r;

reg [1:3] s3_F_r, s3_F_n;

wire [1:7] s3_S_n;

wire [1:7] s3_D_n;

wire [1:7] s3_E_n;

wire s3_F;

wire [1:9] s3_C0;

/* stage 4 */

reg s4_X_r, s4_X_n;

reg [5:5] s4_P_r, s4_P_n;

reg [7:7] s4_C_r, s4_C_n;

reg [7:7] s4_B_r, s4_B_n;

reg [9:10] s4_A_r, s4_A_n;

reg [1:9] s4_S_r;

reg [1:9] s4_D_r;

reg [1:9] s4_E_r;

reg [1:4] s4_F_r, s4_F_n;

wire [1:9] s4_S_n;

wire [1:9] s4_D_n;

wire [1:9] s4_E_n;

wire s4_F;

wire [1:11] s4_C0;

260

/* stage 5 */

reg [1:11] s5_S_r;

reg [1:11] s5_D_r;

reg [1:11] s5_E_r;

reg [1:5] s5_F_r, s5_F_n;

wire [1:11] s5_S_n;

wire [1:11] s5_D_n;

wire [1:11] s5_E_n;

/*** stage 0 ***/

always @(posedge clk, posedge rst) begin

if(rst) begin

s0_X_r <= 1'bx;

s0_P_r <= 5'bx;

s0_C_r <= 7'bx;

s0_B_r <= 7'bx;

s0_A_r <= 10'bx;

end else begin

s0_X_r <= X;

s0_P_r <= P;

s0_C_r <= C;

s0_B_r <= B;

s0_A_r <= A;

end

end

always @* begin

s1_X_n = s0_X_r ;

s1_P_n[2:5] = s0_P_r[2:5] ;

s1_C_n[4:7] = s0_C_r[4:7] ;

s1_B_n[4:7] = s0_B_r[4:7] ;

s1_A_n[3:10] = s0_A_r[3:10] ;

s1_F_n[1:1] = {s0_C0[1]} ;

end

/* control cell of row 1 (X,P,C0 / F) */

cc cc1(s0_X_r, s0_P_r[1], s0_C0[1], s0_F);

/* arithmetic cells of row 1 (A,B,C,X,F,C1/S,D,E,C0) */

ac ac11(.A(1'b0), .B(s0_B_r[1]), .C(s0_C_r[1]), .X(s0_X_r),

 .F(s0_F), .C1(s0_C0[2]), .S(s1_S_n[1]), .D(s1_D_n[1]),

 .E(s1_E_n[1]), .C0(s0_C0[1]));

ac ac12(.A(s0_A_r[1]), .B(s0_B_r[2]), .C(s0_C_r[2]),

261

 .X(s0_X_r), .F(s0_F), .C1(s0_C0[3]), .S(s1_S_n[2]),

 .D(s1_D_n[2]), .E(s1_E_n[2]), .C0(s0_C0[2]));

ac ac13(.A(s0_A_r[2]), .B(s0_B_r[3]), .C(s0_C_r[3]),

 .X(s0_X_r), .F(s0_F), .C1(s0_X_r), .S(s1_S_n[3]),

 .D(s1_D_n[3]), .E(s1_E_n[3]), .C0(s0_C0[3]));

/*** stage 1 ***/

always @(posedge clk, posedge rst) begin

if(rst) begin

s1_X_r <= 1'bx;

s1_P_r <= 4'bx;

s1_C_r <= 4'bx;

s1_B_r <= 4'bx;

s1_A_r <= 8'bx;

s1_S_r <= 3'bx;

s1_D_r <= 3'bx;

s1_E_r <= 3'bx;

s1_F_r <= 1'bx;

end else begin

s1_X_r <= s1_X_n;

s1_P_r <= s1_P_n;

s1_C_r <= s1_C_n;

s1_B_r <= s1_B_n;

s1_A_r <= s1_A_n;

s1_S_r <= s1_S_n;

s1_D_r <= s1_D_n;

s1_E_r <= s1_E_n;

s1_F_r <= s1_F_n;

end

end

always @* begin

s2_X_n = s1_X_r ;

s2_P_n[3:5] = s1_P_r[3:5] ;

s2_C_n[5:7] = s1_C_r[5:7] ;

s2_B_n[5:7] = s1_B_r[5:7] ;

s2_A_n[5:10] = s1_A_r[5:10] ;

s2_F_n[1:2] = {s1_F_r[1:1], s1_C0[1]} ;

end

/* control cell of row 2 (X,P,C0 / F) */

cc cc2(s1_X_r, s1_P_r[2], s1_C0[1], s1_F);

/* arithmetic cells of row 2 (A,B,C,X,F,C1/S,D,E,C0) */

262

ac ac21(.A(s1_S_r[1]), .B(1'b0), .C(1'b0),

 .X(s1_X_r), .F(s1_F), .C1(s1_C0[2]), .S(s2_S_n[1]),

 .D(s2_D_n[1]), .E(s2_E_n[1]), .C0(s1_C0[1]));

ac ac22(.A(s1_S_r[2]), .B(s1_D_r[1]), .C(s1_E_r[1]),

 .X(s1_X_r), .F(s1_F), .C1(s1_C0[3]), .S(s2_S_n[2]),

 .D(s2_D_n[2]), .E(s2_E_n[2]), .C0(s1_C0[2]));

ac ac23(.A(s1_S_r[3]), .B(s1_D_r[2]), .C(s1_E_r[2]),

 .X(s1_X_r), .F(s1_F), .C1(s1_C0[4]), .S(s2_S_n[3]),

 .D(s2_D_n[3]), .E(s2_E_n[3]), .C0(s1_C0[3]));

ac ac24(.A(s1_A_r[3]), .B(s1_D_r[3]), .C(s1_E_r[3]),

 .X(s1_X_r), .F(s1_F), .C1(s1_C0[5]), .S(s2_S_n[4]),

 .D(s2_D_n[4]), .E(s2_E_n[4]), .C0(s1_C0[4]));

ac ac25(.A(s1_A_r[4]), .B(s1_B_r[4]), .C(s1_C_r[4]),

 .X(s1_X_r), .F(s1_F), .C1(s1_X_r), .S(s2_S_n[5]),

 .D(s2_D_n[5]), .E(s2_E_n[5]), .C0(s1_C0[5]));

/*** stage 2 ***/

always @(posedge clk, posedge rst) begin

if(rst) begin

s2_X_r <= 1'bx;

s2_P_r <= 3'bx;

s2_C_r <= 3'bx;

s2_B_r <= 3'bx;

s2_A_r <= 6'bx;

s2_S_r <= 5'bx;

s2_D_r <= 5'bx;

s2_E_r <= 5'bx;

s2_F_r <= 2'bx;

end else begin

s2_X_r <= s2_X_n;

s2_P_r <= s2_P_n;

s2_C_r <= s2_C_n;

s2_B_r <= s2_B_n;

s2_A_r <= s2_A_n;

s2_S_r <= s2_S_n;

s2_D_r <= s2_D_n;

s2_E_r <= s2_E_n;

s2_F_r <= s2_F_n;

end

end

always @* begin

s3_X_n = s2_X_r ;

s3_P_n[4:5] = s2_P_r[4:5] ;

263

s3_C_n[6:7] = s2_C_r[6:7] ;

s3_B_n[6:7] = s2_B_r[6:7] ;

s3_A_n[7:10] = s2_A_r[7:10] ;

s3_F_n[1:3] = {s2_F_r[1:2], s2_C0[1]} ;

end

/* control cell of row 3 (X,P,C0 / F) */

cc cc3(s2_X_r, s2_P_r[3], s2_C0[1], s2_F);

/* arithmetic cells of row 3 (A,B,C,X,F,C1/S,D,E,C0) */

ac ac31(.A(s2_S_r[1]), .B(1'b0), .C(1'b0),

 .X(s2_X_r), .F(s2_F), .C1(s2_C0[2]), .S(s3_S_n[1]),

 .D(s3_D_n[1]), .E(s3_E_n[1]), .C0(s2_C0[1]));

ac ac32(.A(s2_S_r[2]), .B(s2_D_r[1]), .C(s2_E_r[1]),

 .X(s2_X_r), .F(s2_F), .C1(s2_C0[3]), .S(s3_S_n[2]),

 .D(s3_D_n[2]), .E(s3_E_n[2]), .C0(s2_C0[2]));

ac ac33(.A(s2_S_r[3]), .B(s2_D_r[2]), .C(s2_E_r[2]),

 .X(s2_X_r), .F(s2_F), .C1(s2_C0[4]), .S(s3_S_n[3]),

 .D(s3_D_n[3]), .E(s3_E_n[3]), .C0(s2_C0[3]));

ac ac34(.A(s2_S_r[4]), .B(s2_D_r[3]), .C(s2_E_r[3]),

 .X(s2_X_r), .F(s2_F), .C1(s2_C0[5]), .S(s3_S_n[4]),

 .D(s3_D_n[4]), .E(s3_E_n[4]), .C0(s2_C0[4]));

ac ac35(.A(s2_S_r[5]), .B(s2_D_r[4]), .C(s2_E_r[4]),

 .X(s2_X_r), .F(s2_F), .C1(s2_C0[6]), .S(s3_S_n[5]),

 .D(s3_D_n[5]), .E(s3_E_n[5]), .C0(s2_C0[5]));

ac ac36(.A(s2_A_r[5]), .B(s2_D_r[5]), .C(s2_E_r[5]),

 .X(s2_X_r), .F(s2_F), .C1(s2_C0[7]), .S(s3_S_n[6]),

 .D(s3_D_n[6]), .E(s3_E_n[6]), .C0(s2_C0[6]));

ac ac37(.A(s2_A_r[6]), .B(s2_B_r[5]), .C(s2_C_r[5]),

 .X(s2_X_r), .F(s2_F), .C1(s2_X_r), .S(s3_S_n[7]),

 .D(s3_D_n[7]), .E(s3_E_n[7]), .C0(s2_C0[7]));

/*** stage 3 ***/

always @(posedge clk, posedge rst) begin

if(rst) begin

s3_X_r <= 1'bx;

s3_P_r <= 2'bx;

s3_C_r <= 2'bx;

s3_B_r <= 2'bx;

s3_A_r <= 4'bx;

s3_S_r <= 7'bx;

s3_D_r <= 7'bx;

s3_E_r <= 7'bx;

s3_F_r <= 3'bx;

264

end else begin

s3_X_r <= s3_X_n;

s3_P_r <= s3_P_n;

s3_C_r <= s3_C_n;

s3_B_r <= s3_B_n;

s3_A_r <= s3_A_n;

s3_S_r <= s3_S_n;

s3_D_r <= s3_D_n;

s3_E_r <= s3_E_n;

s3_F_r <= s3_F_n;

end

end

always @* begin

s4_X_n = s3_X_r ;

s4_P_n[5:5] = s3_P_r[5:5] ;

s4_C_n[7:7] = s3_C_r[7:7] ;

s4_B_n[7:7] = s3_B_r[7:7] ;

s4_A_n[9:10] = s3_A_r[9:10] ;

s4_F_n[1:4] = {s3_F_r[1:3], s3_C0[1]} ;

end

/* control cell of row 4 (X,P,C0 / F) */

cc cc4(s3_X_r, s3_P_r[4], s3_C0[1], s3_F);

/* arithmetic cells of row 4 (A,B,C,X,F,C1/S,D,E,C0) */

ac ac41(.A(s3_S_r[1]), .B(1'b0), .C(1'b0),

 .X(s3_X_r), .F(s3_F), .C1(s3_C0[2]), .S(s4_S_n[1]),

 .D(s4_D_n[1]), .E(s4_E_n[1]), .C0(s3_C0[1]));

ac ac42(.A(s3_S_r[2]), .B(s3_D_r[1]), .C(s3_E_r[1]),

 .X(s3_X_r), .F(s3_F), .C1(s3_C0[3]), .S(s4_S_n[2]),

 .D(s4_D_n[2]), .E(s4_E_n[2]), .C0(s3_C0[2]));

ac ac43(.A(s3_S_r[3]), .B(s3_D_r[2]), .C(s3_E_r[2]),

 .X(s3_X_r), .F(s3_F), .C1(s3_C0[4]), .S(s4_S_n[3]),

 .D(s4_D_n[3]), .E(s4_E_n[3]), .C0(s3_C0[3]));

ac ac44(.A(s3_S_r[4]), .B(s3_D_r[3]), .C(s3_E_r[3]),

 .X(s3_X_r), .F(s3_F), .C1(s3_C0[5]), .S(s4_S_n[4]),

 .D(s4_D_n[4]), .E(s4_E_n[4]), .C0(s3_C0[4]));

ac ac45(.A(s3_S_r[5]), .B(s3_D_r[4]), .C(s3_E_r[4]),

 .X(s3_X_r), .F(s3_F), .C1(s3_C0[6]), .S(s4_S_n[5]),

 .D(s4_D_n[5]), .E(s4_E_n[5]), .C0(s3_C0[5]));

ac ac46(.A(s3_S_r[6]), .B(s3_D_r[5]), .C(s3_E_r[5]),

 .X(s3_X_r), .F(s3_F), .C1(s3_C0[7]), .S(s4_S_n[6]),

 .D(s4_D_n[6]), .E(s4_E_n[6]), .C0(s3_C0[6]));

265

ac ac47(.A(s3_S_r[7]), .B(s3_D_r[6]), .C(s3_E_r[6]),

 .X(s3_X_r), .F(s3_F), .C1(s3_C0[8]), .S(s4_S_n[7]),

 .D(s4_D_n[7]), .E(s4_E_n[7]), .C0(s3_C0[7]));

ac ac48(.A(s3_A_r[7]), .B(s3_D_r[7]), .C(s3_E_r[7]),

 .X(s3_X_r), .F(s3_F), .C1(s3_C0[9]), .S(s4_S_n[8]),

 .D(s4_D_n[8]), .E(s4_E_n[8]), .C0(s3_C0[8]));

ac ac49(.A(s3_A_r[8]), .B(s3_B_r[6]), .C(s3_C_r[6]),

 .X(s3_X_r), .F(s3_F), .C1(s3_X_r), .S(s4_S_n[9]),

 .D(s4_D_n[9]), .E(s4_E_n[9]), .C0(s3_C0[9]));

/*** stage 4 ***/

always @(posedge clk, posedge rst) begin

if(rst) begin

s4_X_r <= 1'bx;

s4_P_r <= 1'bx;

s4_C_r <= 1'bx;

s4_B_r <= 1'bx;

s4_A_r <= 2'bx;

s4_S_r <= 9'bx;

s4_D_r <= 9'bx;

s4_E_r <= 9'bx;

s4_F_r <= 4'bx;

end else begin

s4_X_r <= s4_X_n;

s4_P_r <= s4_P_n;

s4_C_r <= s4_C_n;

s4_B_r <= s4_B_n;

s4_A_r <= s4_A_n;

s4_S_r <= s4_S_n;

s4_D_r <= s4_D_n;

s4_E_r <= s4_E_n;

s4_F_r <= s4_F_n;

end

end

always @* begin

s5_F_n[1:5] = {s4_F_r[1:4], s4_C0[1]} ;

end

/* control cell of row 5 (X,P,C0 / F) */

cc cc5(s4_X_r, s4_P_r[5], s4_C0[1], s4_F);

/* arithmetic cells of row 5 (A,B,C,X,F,C1/S,D,E,C0) */

ac ac51(.A(s4_S_r[1]), .B(1'b0), .C(1'b0),

266

 .X(s4_X_r), .F(s4_F), .C1(s4_C0[2]), .S(s5_S_n[1]),

 .D(s5_D_n[1]), .E(s5_E_n[1]), .C0(s4_C0[1]));

ac ac52(.A(s4_S_r[2]), .B(s4_D_r[1]), .C(s4_E_r[1]),

 .X(s4_X_r), .F(s4_F), .C1(s4_C0[3]), .S(s5_S_n[2]),

 .D(s5_D_n[2]), .E(s5_E_n[2]), .C0(s4_C0[2]));

ac ac53(.A(s4_S_r[3]), .B(s4_D_r[2]), .C(s4_E_r[2]),

 .X(s4_X_r), .F(s4_F), .C1(s4_C0[4]), .S(s5_S_n[3]),

 .D(s5_D_n[3]), .E(s5_E_n[3]), .C0(s4_C0[3]));

ac ac54(.A(s4_S_r[4]), .B(s4_D_r[3]), .C(s4_E_r[3]),

 .X(s4_X_r), .F(s4_F), .C1(s4_C0[5]), .S(s5_S_n[4]),

 .D(s5_D_n[4]), .E(s5_E_n[4]), .C0(s4_C0[4]));

ac ac55(.A(s4_S_r[5]), .B(s4_D_r[4]), .C(s4_E_r[4]),

 .X(s4_X_r), .F(s4_F), .C1(s4_C0[6]), .S(s5_S_n[5]),

 .D(s5_D_n[5]), .E(s5_E_n[5]), .C0(s4_C0[5]));

ac ac56(.A(s4_S_r[6]), .B(s4_D_r[5]), .C(s4_E_r[5]),

 .X(s4_X_r), .F(s4_F), .C1(s4_C0[7]), .S(s5_S_n[6]),

 .D(s5_D_n[6]), .E(s5_E_n[6]), .C0(s4_C0[6]));

ac ac57(.A(s4_S_r[7]), .B(s4_D_r[6]), .C(s4_E_r[6]),

 .X(s4_X_r), .F(s4_F), .C1(s4_C0[8]), .S(s5_S_n[7]),

 .D(s5_D_n[7]), .E(s5_E_n[7]), .C0(s4_C0[7]));

ac ac58(.A(s4_S_r[8]), .B(s4_D_r[7]), .C(s4_E_r[7]),

 .X(s4_X_r), .F(s4_F), .C1(s4_C0[9]), .S(s5_S_n[8]),

 .D(s5_D_n[8]), .E(s5_E_n[8]), .C0(s4_C0[8]));

ac ac59(.A(s4_S_r[9]), .B(s4_D_r[8]), .C(s4_E_r[8]),

 .X(s4_X_r), .F(s4_F), .C1(s4_C0[10]), .S(s5_S_n[9]),

 .D(s5_D_n[9]), .E(s5_E_n[9]), .C0(s4_C0[9]));

ac ac5a(.A(s4_A_r[9]), .B(s4_D_r[9]), .C(s4_E_r[9]),

 .X(s4_X_r), .F(s4_F), .C1(s4_C0[11]), .S(s5_S_n[10]),

 .D(s5_D_n[10]), .E(s5_E_n[10]), .C0(s4_C0[10]));

ac ac5b(.A(s4_A_r[10]), .B(s4_B_r[7]), .C(s4_C_r[7]),

 .X(s4_X_r), .F(s4_F), .C1(s4_X_r), .S(s5_S_n[11]),

 .D(s5_D_n[11]), .E(s5_E_n[11]), .C0(s4_C0[11]));

/*** stage 5 (output) ***/

always @(posedge clk, posedge rst) begin

if(rst) begin

s5_S_r <= 11'bx;

s5_D_r <= 11'bx;

s5_E_r <= 11'bx;

s5_F_r <= 5'bx;

end else begin

s5_S_r <= s5_S_n;

s5_D_r <= s5_D_n;

s5_E_r <= s5_E_n;

267

s5_F_r <= s5_F_n;

end

end

always @* begin

F = s5_F_r;

S = s5_S_r;

end

endmodule

module gpca40p

(

input wire clk, rst,

input wire [1:0] op,

input wire [9:0] din0,

input wire [6:0] din1,

output reg [10:0] dout

);

// op[1:0] din0[9:0] din1[6:0] dout[10:0]

(TBD)

//

// sq 00 P[1:5] 7'bx S[1:11]

 (X=1'b0, B=7'b0011111, C=7'b0100000, P=din0[4:0], A=10'b0)

// sqr 01 A[1:10] 7'bx {6'bx, F[1:5]}

 (X=1'b1, B=7'b0011111, C=7'b0100000, P=5'b0, A=din0[9:0])

// mult 10 B[1:7], C[1:7] {2'bx, P[1:5]} S[1:11]

 (X=1'b0, B=C=din0[6:0], P=din1[4:0], A=10'b0)

// div 11 A[10:1] B[7:1], C[7:1] {7'bx, F[2:5]}

 (X=1'b1, B=C=din1[0:6], P=5'b0, A=din0[0:9])

/* input */

reg X;

reg [1:5] P;

reg [1:7] B, C;

reg [1:10] A;

/* output */

wire [1:5] F;

wire [1:11] S;

/* operation */

reg [1:0] op_r [0:5];

/* original circuit */

268

gpca inst_gpca (clk, rst,

X, P, C, B, A,

F, S);

/* operation delay */

always @(posedge clk, posedge rst) begin

if(rst) begin

op_r[0] <= 2'bx;

op_r[1] <= 2'bx;

op_r[2] <= 2'bx;

op_r[3] <= 2'bx;

op_r[4] <= 2'bx;

op_r[5] <= 2'bx;

end else begin

op_r[0] <= op;

op_r[1] <= op_r[0];

op_r[2] <= op_r[1];

op_r[3] <= op_r[2];

op_r[4] <= op_r[3];

op_r[5] <= op_r[4];

end

end

/* multiplexer (input)*/

always @* begin

case(op)

2'b00: begin

X = 1'b0;

P[1:5] = din0[4:0];

B[1:7] = 7'b0011111;

C[1:7] = 7'b0100000;

A[1:10] = 10'b0;

end

2'b01: begin

X = 1'b1;

P[1:5] = 5'b0;

B[1:7] = 7'b0011111;

C[1:7] = 7'b0100000;

A[1:10] = din0[9:0];

end

2'b10: begin

X = 1'b0;

P[1:5] = din1[4:0];

B[1:7] = din0[6:0];

269

C[1:7] = din0[6:0];

A[1:10] = 10'b0;

end

2'b11: begin

X = 1'b1;

P[1:5] = 5'b0;

B[1:7] = {din1[0], din1[1], din1[2], din1[3], din1[4],

din1[5], din1[6]};

C[1:7] = {din1[0], din1[1], din1[2], din1[3], din1[4],

din1[5], din1[6]};

A[1:10] = {din0[0], din0[1], din0[2], din0[3], din0[4],

din0[5], din0[6], din0[7], din0[8], din0[9]};

end

default: begin

X = 1'bx;

P[1:5] = 5'bx;

B[1:7] = 7'bx;

C[1:7] = 7'bx;

A[1:10] = 10'bx;

end

endcase

end

/* multiplexer (output)*/

always @* begin

case(op_r[5])

2'b00: begin

dout[10:0] = S[1:11];

end

2'b01: begin

dout[10:0] = {6'b0, F[1:5]};

end

2'b10: begin

dout[10:0] = S[1:11];

end

2'b11: begin

dout[10:0] = {7'b0, F[5], F[4], F[3], F[2]};

end

default: begin

dout[10:0] = 11'bx;

end

endcase

end

endmodule

270

APPENDIX D Script for Cadence Encounter RTL Compiler (rc.cmd)

set_attribute hdl_search_path {./}

set_attribute lib_search_path {./}

set_attribute library [list

/opt/cds/lib/UofU_Digital_v1_2/UofU_Digital_v1_4.lib]

set_attribute information_level 6

set_attribute ungroup true

set_attribute write_vlog_unconnected_port_style none

read_hdl -v2001 simple.v

elaborate simple

synthesize -to_mapped

write_hdl -mapped > nl.v

q

271

APPENDIX E Script for Cadence Encounter (encounter.cmd)

set_global _enable_mmmc_by_default_flow

$CTE::mmmc_default

suppressMessage ENCEXT-2799

win

set conf_qxconf_file NULL

set conf_qxlib_file NULL

set defHierChar /

set init_gnd_net gnd!

set init_pwr_net vdd!

set init_mmmc_file mmmc.tcl

set init_lef_file

/opt/cds/lib/UofU_Digital_v1_2/UofU_Digital_v1_4.lef

set lsgOCPGainMult 1.000000

set init_verilog nl.v

set init_top_cell simple

create_rc_corner -name typical \

-preRoute_res {1.0} \

-preRoute_cap {1.0} \

-preRoute_clkres {0.0} \

-preRoute_clkcap {0.0} \

-postRoute_res {1.0} \

-postRoute_cap {1.0} \

-postRoute_xcap {1.0} \

-postRoute_clkres {0.0} \

-postRoute_clkcap {0.0}

create_library_set -name typical -timing

{/opt/cds/lib/UofU_Digital_v1_2/UofU_Digital_v1_4.lib}

create_constraint_mode -name typical -sdc_files {typical.sdc}

create_delay_corner -name typical -library_set {typical}

-rc_corner {typical}

create_analysis_view -name typical -constraint_mode {typical}

-delay_corner {typical}

init_design

floorPlan -site core -r 1 0.4 30 30 30 30

saveDesign floorplan.enc

set sprCreateIeStripeNets {}

set sprCreateIeStripeLayers {}

set sprCreateIeStripeWidth 10.0

set sprCreateIeStripeSpacing 4.0

272

set sprCreateIeStripeThreshold 1.0

set sprCreateIeStripeNets {}

set sprCreateIeStripeLayers {}

set sprCreateIeStripeWidth 10.0

set sprCreateIeStripeSpacing 4.0

set sprCreateIeStripeThreshold 1.0

set sprCreateIeRingNets {}

set sprCreateIeRingLayers {}

set sprCreateIeRingWidth 1.0

set sprCreateIeRingSpacing 1.0

set sprCreateIeRingOffset 1.0

set sprCreateIeRingThreshold 1.0

set sprCreateIeRingJogDistance 1.0

addRing -center 1 -stacked_via_top_layer metal3 -around core

-jog_distance 1.5 -threshold 1.5 -nets {gnd! vdd!}

-stacked_via_bottom_layer metal1 -layer {bottom metal1 top

metal1 right metal2 left metal2} -width 9 -spacing 1.8 -offset

1.5

set sprCreateIeStripeNets {}

set sprCreateIeStripeLayers {}

set sprCreateIeStripeWidth 10.0

set sprCreateIeStripeSpacing 4.0

set sprCreateIeStripeThreshold 1.0

addStripe -block_ring_top_layer_limit metal3

-max_same_layer_jog_length 5.0 -snap_wire_center_to_grid Grid

-padcore_ring_bottom_layer_limit metal1 -set_to_set_distance

100 -stacked_via_top_layer metal3

-padcore_ring_top_layer_limit metal3 -spacing 0.9

-merge_stripes_value 1.5 -layer metal2

-block_ring_bottom_layer_limit metal1 -width 1.5 -nets {gnd!

vdd!} -stacked_via_bottom_layer metal1

saveDesign power.enc

globalNetConnect vdd! -type tiehi -module {}

globalNetConnect gnd! -type tielo -module {}

sroute -connect { blockPin padPin padRing corePin }

-layerChangeRange { metal1 metal3 } -blockPinTarget

{ nearestRingStripe nearestTarget } -padPinPortConnect

{ allPort oneGeom } -checkAlignedSecondaryPin 1 -blockPin

useLef -allowJogging 1 -crossoverViaBottomLayer metal1

-allowLayerChange 1 -targetViaTopLayer metal3

-crossoverViaTopLayer metal3 -targetViaBottomLayer metal1

-nets { gnd! vdd! }

273

setPlaceMode -fp false

placeDesign -prePlaceOpt

setOptMode -fixCap true -fixTran true -fixFanoutLoad false

optDesign -preCTS

createClockTreeSpec -file Clock.ctstch

clockDesign -specFile Clock.ctstch -outDir clock_report

-fixedInstBeforeCTS

setOptMode -fixCap true -fixTran true -fixFanoutLoad false

optDesign -postCTS

setNanoRouteMode -quiet -timingEngine {}

setNanoRouteMode -quiet -routeWithTimingDriven 1

setNanoRouteMode -quiet -routeWithSiPostRouteFix 0

setNanoRouteMode -quiet -drouteStartIteration default

setNanoRouteMode -quiet -routeTopRoutingLayer default

setNanoRouteMode -quiet -routeBottomRoutingLayer default

setNanoRouteMode -quiet -drouteEndIteration default

setNanoRouteMode -quiet -routeWithTimingDriven true

setNanoRouteMode -quiet -routeWithSiDriven false

routeDesign -globalDetail

setDelayCalMode -engine aae -SIAware false

setOptMode -fixCap true -fixTran true -fixFanoutLoad false

optDesign -postRoute

getFillerMode -quiet

addFiller -cell FILL8 FILL4 FILL2 FILL -prefix FILLER

verifyConnectivity -type all -error 1000 -warning 50

setVerifyGeometryMode -area { 0 0 0 0 } -minWidth true

-minSpacing true -minArea true -sameNet true -short true

-overlap false -offRGrid false -offMGrid true -mergedMGridCheck

true -minHole true -implantCheck true -minimumCut true -minStep

true -viaEnclosure true -antenna false -insuffMetalOverlap true

-pinInBlkg false -diffCellViol true -sameCellViol false

-padFillerCellsOverlap true -routingBlkgPinOverlap true

-routingCellBlkgOverlap true -regRoutingOnly false

-stackedViasOnRegNet false -wireExt true -useNonDefaultSpacing

false -maxWidth true -maxNonPrefLength -1 -error 1000 -warning

50

verifyGeometry

274

saveDesign final.enc

defOut -floorplan -netlist -routing simple.def

saveNetlist -flat -replaceTieConnection nlopt.v

then one may need to add 1'b0/0'b0 manually

275

APPENDIX F Multi-Mode Multi-Corner Script (mmmc.tcl)

create_rc_corner -name typical \

-preRoute_res {1.0} \

-preRoute_cap {1.0} \

-preRoute_clkres {0.0} \

-preRoute_clkcap {0.0} \

-postRoute_res {1.0} \

-postRoute_cap {1.0} \

-postRoute_xcap {1.0} \

-postRoute_clkres {0.0} \

-postRoute_clkcap {0.0}

create_library_set -name typical -timing

{/opt/cds/lib/UofU_Digital_v1_2/UofU_Digital_v1_4.lib}

create_constraint_mode -name typical -sdc_files {typical.sdc}

create_delay_corner -name typical -library_set {typical}

-rc_corner {typical}

create_analysis_view -name typical -constraint_mode {typical}

-delay_corner {typical}

set_analysis_view -setup {typical} -hold {typical}

276

APPENDIX G Synopsys Design Constraints (typical.sdc)

set sdc_version 1.6

create_clock [get_ports clk] -period 100 -waveform {0 50}

277

REFERENCES

[1] Kamal, A.K et al., "A generalized pipeline array," IEEE Trans. Comput., vol.

23, pp. 533-536, May. 1974.

[2] J Bhaskar, A Verilog HDL Primer, 3rd ed. Allentown, PA: Star Galaxy

Publishing, Jan. 2005.

[3] Kai Hwang, Computer Arithmetic: Principles, Architecture and Design.

Hoboken, NJ: John Wiley & Sons, Apr. 1979.

[4] Kai Hwang, Advanced Computer Architecture: Parallelism, Scalability,

Programmability, 1st ed. New York City, NY: McGraw-Hill, Dec. 1992.

[5] Peter M. Kogge, The Architecture of Pipelined Computers. Boca Raton, FL:

CRC Press, Jan. 1981.

[6] Agrawal, Dharma P., "High-speed arithmetic arrays," IEEE Trans. Comput., vol.

28, pp. 215-224, Mar. 1979.

[7] Agrawal, Dharma P., "Optimum array-like structures for high-speed

arithmetic," in IEEE 3rd. Symp. on Comput. Arithmetic (ARITH), Dallas, TX,

Nov. 1975, pp. 208-219.

[8] Partha P. Banerjee and Arif Ghafoor, “Design of a pipelined optical binary

processor”, Appl. Optics, vol. 27, 1988, pp. 4766-4770.

[9] Harpreet Singh et al., "On simulation and design implementation of generalized

pipeline cellular array ," in Int. Conf. on Inform. Sci., Electron. and Elect. Eng.

(ISEEE), Sapporo, Apr. 2014, pp. 1761-1765.

[10] Na Gong, "TM-RF: aging-aware power-efficient register file design for modern

278

microprocessors," IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 23,

pp. 1196-1209, Jun. 2015.

[11] Hassan Rabah et al., "FPGA implementation of orthogonal matching pursuit for

compressive sensing reconstruction," IEEE Trans. Very Large Scale Integr.

(VLSI) Syst., vol. 23, pp. 2209-2220, Sep. 2015.

[12] Goel, S., "Design of robust, energy-efficient full adders for

deep-submicrometer design using hybrid-CMOS logic style," IEEE Trans. Very

Large Scale Integr. (VLSI) Syst., vol. 14, pp. 1309-1321, Jan. 2007.

[13] Montoye, R.K., "An 18 ns 56-bit multiply-adder circuit," in IEEE Int.

Solid-State Circuits Conf (ISSCC), San Francisco, CA, Feb. 1990, pp. 46-47.

[14] SN74ACT8847 64-Bit Floating Point Unit, Texas Instruments, Dallas, TX.

[15] Stephen Brown, Zvonko Vranesic, Fundamentals of Digital Logic with VHDL

Design, 3rd ed. New York: McGraw-Hill, Apr. 2008.

[16] Stephen Brown, Zvonko Vranesic, Fundamentals of Digital Logic With Verilog

Design, 3rd ed. New York: Mcgraw-Hill, Feb. 2013.

[17] Neil Weste, David Harris, CMOS VLSI Design: A Circuits and Systems

Perspective, 4th ed. Boston: Addison-Wesley, 2011.

[18] Jan M. Rabaey, Anantha Chandrakasan, Borivoje Nikolic, Digital Integrated

Circuits, 2nd ed. Upper Saddle River: Prentice Hall, Jan. 2003.

[19] Cadence Help User Guide, Product Version 2.0, Cadence Design Systems, Inc.,

San Jose, CA, 2012.

[20] Cadence Application Infrastructure User Guide, Product Version 6.1.5,

279

Cadence Design Systems, Inc., San Jose, CA, 2012.

[21] Paul Franzon, Rhett Davis, "NCSU electronic design automation (EDA)

tutorial," Dept. Comput. Elect. Eng., North Carolina State Univ., Raleigh, NC,

2012.

[22] Nabil Abu-Khade, "From Verilog to MOSIS," Dept. Comput. Elect. Eng.,

Wayne State Univ., Detroit, MI, Nov. 2004.

[23] William Gibb, Bowei Zhang, "Cadence tutorial," Dept. Comput. Elect. Eng.,

Washington, DC, Spring 2011.

[24] Erik Brunvand, Digital VLSI Chip Design with Cadence and Synopsys CAD

Tools, 1st ed. Boston, MA: Addison-Wesley, Feb. 2009.

[25] Ronald W. Williams, "An undergraduate VLSI CMOS circuit design

laboratory," IEEE Trans. Edu., IEEE Trans. Edu., vol. 34, no 1, Feb. 1991.

[26] Mark S. Nixon, "On a programmable approach to introducing digital design,"

IEEE Trans. Edu., vol. 40, no. 3, Aug. 1997.

[27] Etienne Sicard, "A VLSI design system for teaching introduction to

microelectronics," IEEE Trans. Edu., vol. 35, no. 4, Nov. 1992.

[28] Chyi-Shyong Lee et al., "A project-based laboratory for learning embedded

system design with industry support," IEEE Trans. Edu., vol. 53, no. 2, May

2010.

[29] Jesús Manuel Gómez-de-Gabriel et al., "Mobile robot lab project to introduce

engineering students to fault diagnosis in mechatronic systems," IEEE Trans.

Edu., vol. 58, no. 3, Aug. 2015..

280

[30] MOSIS FAQs: MOSIS Educational Program (MEP), the MOSIS Service,

Marina del Rey, CA, Nov. 2015.

[31] Command Reference for Encounter RTL Compiler, Product Version 12.1,

Cadence Design Systems, Inc., San Jose, CA, Nov. 2012.

[32] Yudi Xie, Harpreet Singh, "The VLSI implementation of digital design

projects," Dept. Comput. Elect. Eng., Wayne State Univ., Detroit, MI, Nov.

2015 [Online]. Available: http://ece.eng.wayne.edu/~singhweb/

[33] EDI System Text Command Reference, Product Version 12.0, Cadence Design

Systems, Inc., San Jose, CA, 2012.

[34] EDI System Menu Reference, Product Version 12.0, Cadence Design Systems,

Inc., San Jose, CA, 2012.

[35] MOSIS Scalable CMOS (SCMOS) Design Rules, Revision 8.00, The MOSIS

Service, Marina del Rey, CA, May. 2009.

[36] Virtuoso Layout Suite XL User Guide, Product Version 6.1.5, Cadence Design

Systems, Inc., San Jose, CA, May. 2012.

[37] How To Submit A Design To MOSIS, The MOSIS Service, Marina del Rey, CA,

Nov. 2015.

[38] Yier Jin, "Taping out your chip," Dept. Comput. Elect. Eng., Univ. of Central

Florida, Orlando, FL, May. 2014.

[39] Kenney, J. F. and Keeping, E. S. (1962) "Linear Regression and Correlation."

Ch. 15 in Mathematics of Statistics, Pt. 1, 3rd ed. Princeton, NJ: Van Nostrand,

pp. 252-285.

281

[40] ModelSim User’s Manual, Software Version 10.1c, Mentor Graphics

Corporation, Wilsonville, OR, 2012.

[41] S. Brown, “FPGA architectural research: A survey,” IEEE Des. Test. Comput.,

vol. 13, no. 4, pp. 9–15, Winter 1996.

[42] Quartus II Handbook Version 13.1, Altera Corporation, San Jose, CA, Nov.

2013.

[43] Mohamed Ibrahim, "How pipelining improves cpu performance," Digital

Internals, Feb. 2009.

[44] Hennessy, Patterson, Computer Architecture: A Quantitative Approach, 5th ed.

Philadelphia, PA: Elsevier, Sep. 2011.

[45] 3164/3364 64-Bit Floating-Point Data Path Unit, Weitek Corporation, Berlin,

Germany.

282

ABSTRACT

THE DESIGN AND VLSI IMPLEMENTATION OF DIGITAL ARITHMATIC

PROCESSORS -

A CASE STUDY OF A GENERALIZED PIPELINE CELLULAR ARRAY

by

YUDI XIE

December 2015

Advisor: Dr. Harpreet Singh

Major: Computer Engineering

Degree: Master of Science

A generalized pipeline array appeared in IEEE transaction in 1974. The array

appeared in a few textbooks on computer arithmetic. From time to time, a number of

papers appeared which reflected the modifications of this array. The objective of this

thesis is to present the design and VLSI implementation of this array, which can add,

subtract, multiply, divide, square and square root of binary numbers. In this thesis, we

suggest a step-by-step procedure by which the design can be sent to MOSIS and to get

the fabricated chip back. The array has been extended from 5 rows to 7 rows so that the

extended operations can be performed. In particular, a procedure is developed by which

the design and the implementation methodologies are suitable for 40 pin and 500 nm

technologies. An algorithm has been developed by which one can predict and advance the

maximum size and performance of the array. In addition, to increase data processing

throughput, the extension of pipelining is conducted based on the original design. It is

hoped that the design and implementation done here will go a long way in the

development of advanced processors.

283

284

AUTOBIOGRAPHICAL STATEMENT

Yudi Xie is pursuing M.Sc of Computer Engineering at Wayne State University,

Detroit, MI.

He worked in the university labs for various projects, including embedded system

design, FPGA and VLSI. He also worked as the Graduate Teaching Assistant for Digital

Logic course at Wayne State University. His current field of interest includes computer

microarchitecture, FPGA and VLSI and system programming.

	Wayne State University
	1-1-2015
	The Design And Vlsi Implementation Of Digital Arithmatic Processors - A Case Study Of A Generalized Pipeline Cellular Array
	Yudi Xie
	Recommended Citation

	The Design and VLSI Implementation of a Generalized Pipeline Cellular Array

