333 research outputs found

    Occupancy Detection using Wireless Sensor Network in Indoor Environment

    Get PDF
    Occupancy detection plays an important role in many smart buildings such as reducing building energy usage by controlling heating, ventilation and air conditioning (HVAC) systems, monitoring systems and managing lighting systems, tracking people in hospitals for medical issues, advertising to people in malls, and to search and rescue missions. The global positioning system (GPS) is used most widely as a localization system but highly inaccurate for indoor applications. The indoor environment is difficult to handle because along with the loss of signals, privacy is a major concern. Indoor tracking has many aspects in common with sensor localization in Wireless Sensor Networks (WSN). The contribution of this work is the demonstration of a nonintrusive approach to detect an occupancy in a building using wireless sensor networks to detect energy from cell phones in a secure facility and perform indoor localization based on the minimum mean square error (MMSE). To estimate the occupancy, the detected cellular signals information such as signal amplitude, frequency, power and detection time is sent to a fusion server, matched the detected signals by time and channel information, performed localization to estimate a location, and finally estimated the occupancy of rooms in a building from the estimated locations

    Performance Comparison of Numerical Optimization Algorithms for RSS-TOA-Based Target Localization

    Full text link
    The maximum likelihood (ML) estimator can be applied to localize a target mobile device using the RSS and TOA. However, the ML estimator for the RSS-TOA-based target localization problem is nonconvex and nonlinear, having no analytical solution. Therefore, the ML estimator should be solved numerically, unless it is relaxed into a convex or linear form. This study investigates the target localization performance and computational complexity of numerical methods for solving an ML estimator. The three widely used numerical methods are: grid search, gradient descent, and particle swarm optimization. In the experimental evaluation, the grid search yielded the lowest target localization root-mean-squared error; however, the 95th percentile error of the grid search was larger than those of the other two algorithms. The average code computation time of the grid search was extremely large compared with those of the other two algorithms, and gradient descent exhibited the lowest computation time.Comment: Submitted to the 2023 IEEE 97th Vehicular Technology Conference (VTC2023-Spring

    Study on the application of information technology in inland maritime supervision

    Get PDF

    Real-Time Localization Using Software Defined Radio

    Get PDF
    Service providers make use of cost-effective wireless solutions to identify, localize, and possibly track users using their carried MDs to support added services, such as geo-advertisement, security, and management. Indoor and outdoor hotspot areas play a significant role for such services. However, GPS does not work in many of these areas. To solve this problem, service providers leverage available indoor radio technologies, such as WiFi, GSM, and LTE, to identify and localize users. We focus our research on passive services provided by third parties, which are responsible for (i) data acquisition and (ii) processing, and network-based services, where (i) and (ii) are done inside the serving network. For better understanding of parameters that affect indoor localization, we investigate several factors that affect indoor signal propagation for both Bluetooth and WiFi technologies. For GSM-based passive services, we developed first a data acquisition module: a GSM receiver that can overhear GSM uplink messages transmitted by MDs while being invisible. A set of optimizations were made for the receiver components to support wideband capturing of the GSM spectrum while operating in real-time. Processing the wide-spectrum of the GSM is possible using a proposed distributed processing approach over an IP network. Then, to overcome the lack of information about tracked devices’ radio settings, we developed two novel localization algorithms that rely on proximity-based solutions to estimate in real environments devices’ locations. Given the challenging indoor environment on radio signals, such as NLOS reception and multipath propagation, we developed an original algorithm to detect and remove contaminated radio signals before being fed to the localization algorithm. To improve the localization algorithm, we extended our work with a hybrid based approach that uses both WiFi and GSM interfaces to localize users. For network-based services, we used a software implementation of a LTE base station to develop our algorithms, which characterize the indoor environment before applying the localization algorithm. Experiments were conducted without any special hardware, any prior knowledge of the indoor layout or any offline calibration of the system

    6G Enabled Advanced Transportation Systems

    Full text link
    The 6th generation (6G) wireless communication network is envisaged to be able to change our lives drastically, including transportation. In this paper, two ways of interactions between 6G communication networks and transportation are introduced. With the new usage scenarios and capabilities 6G is going to support, passengers on all sorts of transportation systems will be able to get data more easily, even in the most remote areas on the planet. The quality of communication will also be improved significantly, thanks to the advanced capabilities of 6G. On top of providing seamless and ubiquitous connectivity to all forms of transportation, 6G will also transform the transportation systems to make them more intelligent, more efficient, and safer. Based on the latest research and standardization progresses, technical analysis on how 6G can empower advanced transportation systems are provided, as well as challenges and insights for a possible road ahead.Comment: Submitted to an open access journa

    Satellites for distress alerting and locating: Report by Interagency Committee for Search and Rescue Ad Hoc Working Group

    Get PDF
    The background behind the congressional legislation that led to the requirement for the Emergency Locator Transmitter (ELT) and the Emergency Position-Indicating Radio Beacon (EPIRB) to be installed on certain types of aircraft and inspected marine vessels respectively is discussed. The DAL problem is discussed for existing ELT and EPIRB equipped aircraft and ships. It is recognized that the DAL requirement for CONUS and Alaska and the maritime regions are not identical. In order to address the serious DAL problem which currently exists in CONUS and Alaska, a low orbiting satellite system evolves as the most viable and cost effective alternative that satisfies the overall SAR system design requirements. A satellite system designed to meet the needs of the maritime regions could be either low orbiting or geostationary. The conclusions drawn from this report support the recommendation to proceed with the implementation of a SAR orbiting satellite system

    Unmanned Aerial Vehicle (UAV)-Enabled Wireless Communications and Networking

    Get PDF
    The emerging massive density of human-held and machine-type nodes implies larger traffic deviatiolns in the future than we are facing today. In the future, the network will be characterized by a high degree of flexibility, allowing it to adapt smoothly, autonomously, and efficiently to the quickly changing traffic demands both in time and space. This flexibility cannot be achieved when the network’s infrastructure remains static. To this end, the topic of UAVs (unmanned aerial vehicles) have enabled wireless communications, and networking has received increased attention. As mentioned above, the network must serve a massive density of nodes that can be either human-held (user devices) or machine-type nodes (sensors). If we wish to properly serve these nodes and optimize their data, a proper wireless connection is fundamental. This can be achieved by using UAV-enabled communication and networks. This Special Issue addresses the many existing issues that still exist to allow UAV-enabled wireless communications and networking to be properly rolled out

    UAV Based 5G Network: A Practical Survey Study

    Full text link
    Unmanned aerial vehicles (UAVs) are anticipated to significantly contribute to the development of new wireless networks that could handle high-speed transmissions and enable wireless broadcasts. When compared to communications that rely on permanent infrastructure, UAVs offer a number of advantages, including flexible deployment, dependable line-of-sight (LoS) connection links, and more design degrees of freedom because of controlled mobility. Unmanned aerial vehicles (UAVs) combined with 5G networks and Internet of Things (IoT) components have the potential to completely transform a variety of industries. UAVs may transfer massive volumes of data in real-time by utilizing the low latency and high-speed abilities of 5G networks, opening up a variety of applications like remote sensing, precision farming, and disaster response. This study of UAV communication with regard to 5G/B5G WLANs is presented in this research. The three UAV-assisted MEC network scenarios also include the specifics for the allocation of resources and optimization. We also concentrate on the case where a UAV does task computation in addition to serving as a MEC server to examine wind farm turbines. This paper covers the key implementation difficulties of UAV-assisted MEC, such as optimum UAV deployment, wind models, and coupled trajectory-computation performance optimization, in order to promote widespread implementations of UAV-assisted MEC in practice. The primary problem for 5G and beyond 5G (B5G) is delivering broadband access to various device kinds. Prior to discussing associated research issues faced by the developing integrated network design, we first provide a brief overview of the background information as well as the networks that integrate space, aviation, and land
    • …
    corecore