75 research outputs found

    Mobile Cyber-Physical System

    Get PDF

    A Mobile Cyber-Physical System Framework for Aiding People with Visual Impairment

    Full text link
    It is a challenging problem for researchers and engineers in the assistive technology (AT) community to provide suitable solutions for visually impaired people (VIPs) through AT to meet orientation, navigation and mobility (ONM) needs. Given the spectrum of assistive technologies currently available for the purposes of aiding VIPs with ONM, our literature review and survey have shown that there is a reluctance to adopt these technological solutions in the VIP community. Motivated by these findings, we think it critical to re-examine and rethink the approaches that have been taken. It is our belief that we need to take a different and innovative approach to solving this problem. We propose an integrated mobile cyber-physical system framework (MCPSF) with an \u27agent\u27 and a \u27smart environment\u27 to address VIP\u27s ONM needs in urban settings. For example, one of the essential needs for VIPs is to make street navigation easier and safer for them as pedestrians. In a busy city neighborhood, crossing a street is problematic for VIPs: knowing if it is safe; knowing when to cross; and being sure to remain on path and not collide or interfere with objects and people. These remain issues keeping VIPs from a truly independent lifestyle. In this dissertation, we propose a framework based on mobile cyber-physical systems (MCPS) to address VIP\u27s ONM needs. The concept of mobile cyber-physical systems is intended to bridge the physical space we live in with a cyberspace filled with unique information coming from IoT devices (Internet of Things) which are part of Smart City infrastructure. The devices in the IoT may be embedded in different kinds of physical structures. People with vision loss or other special needs may have difficulties in comprehending or perceiving signals directly in the physical space, but they can make such connections in cyberspace. These cyber connections and real-time information exchanges will enable and enhance their interactions in the physical space and help them better navigate through city streets and street crossings. As part of the dissertation work, we designed and implemented a proof of concept prototype with essential functions to aid VIP’s for their ONM needs. We believe our research and prototype experience opened a new approach to further research areas that might enhance ONM functions beyond our prototype with potential commercial product development

    Performance evaluation of cyber-physical intrusion detection on a robotic vehicle

    Get PDF
    Intrusion detection systems designed for con- ventional computer systems and networks are not necessarily suitable for mobile cyber-physical systems, such as robots, drones and automobiles. They tend to be geared towards attacks of different nature and do not take into account mobility, energy consumption and other physical aspects that are vital to a mobile cyber-physical system. We have developed a decision tree-based method for detecting cyber attacks on a small-scale robotic vehicle using both cyber and physical features that can be measured by its on-board systems and processes. We evaluate it experimentally against a variety of scenarios involving denial of service, command injection and two types of malware attacks. We observe that the addition of physical features noticeably improves the detection accuracy for two of the four attack types and reduces the detection latency for all four

    Multiform Logical Time & Space for Mobile Cyber-Physical System with Automated Driving Assistance System

    Get PDF
    International audienceWe study the use of Multiform Logical Time, as embodied in Esterel/SyncCharts and Clock Constraint Specification Language (CCSL), for the specification of assume-guarantee constraints providing safe driving rules related to time and space, in the context of Automated Driving Assistance Systems (ADAS). The main novelty lies in the use of logical clocks to represent the epochs of specific area encounters (when particular area trajectories just start overlapping for instance), thereby combining time and space constraints by CCSL to build safe driving rules specification. We propose the safe specification pattern at high-level that provide the required expressiveness for safe driving rules specification. In the pattern, multiform logical time provides the power of parameterization to express safe driving rules, before instantiation in further simulation contexts. We present an efficient way to irregularly update the constraints in the specification due to the context changes, where elements (other cars, road sections, traffic signs) may dynamically enter and exit the scene. In this way, we add constraints for the new elements and remove the constraints related to the disappearing elements rather than rebuild everything. The multi-lane highway scenario is used to illustrate how to irregularly and efficiently update the constraints in the specification while receiving a fresh scene

    Mobile crowd sensing architectural frameworks: A comprehensive survey

    Get PDF
    Mobile Crowd Sensing has emerged as a new sensing paradigm, efficiently exploiting human intelligence and mobility in conjunction with advanced capabilities and proliferation of mobile devices. In order for MCS applications to reach their full potentials, a number of research challenges should be sufficiently addressed. The aim of this paper is to survey representative mobile crowd sensing applications and frameworks proposed in related research literature, analyze their distinct features and discuss on their relative merits and weaknesses, highlighting also potential solutions, in order to take a step closer to the definition of a unified MCS architectural framework

    A Formal Approach to Verify Parameterized Protocols in Mobile Cyber-Physical Systems

    Get PDF

    Кіберфізичні технології моніторингу стану кардіологічних пацієнтів в системі телемедицини

    No full text
    Запропоновано вирішення проблеми дистанційного моніторингу кардіологічного стану пацієнтів за допомогою кіберфізичних систем для телемедицини з інтеграцією кібернетичних компонентів у фізичні процеси моніторингу стану хворого, які забезпечують можливість реагування на зміну параметрів стану пацієнта у режимі реального часу з використанням Інтернет-протоколів для прогнозування, самонастроювання і адаптації до змін. Розглянуто напрями досліджень кіберфізичних систем та очікувані наукові результати.The solution of the problem of remote monitoring for status of patients with cardiac diseases by medical cyber-physical systems integrating cybernetic components into physical processes of patient’s status monitoring is proposed. The systems provide a response on changes on-line in patient's status using the Internet protocols for prediction, self-adjustment and adaptation to changes. The directions of research of cyber-physical systems and the expected scientific results are considered

    Recent advances in industrial wireless sensor networks towards efficient management in IoT

    Get PDF
    With the accelerated development of Internet-of- Things (IoT), wireless sensor networks (WSN) are gaining importance in the continued advancement of information and communication technologies, and have been connected and integrated with Internet in vast industrial applications. However, given the fact that most wireless sensor devices are resource constrained and operate on batteries, the communication overhead and power consumption are therefore important issues for wireless sensor networks design. In order to efficiently manage these wireless sensor devices in a unified manner, the industrial authorities should be able to provide a network infrastructure supporting various WSN applications and services that facilitate the management of sensor-equipped real-world entities. This paper presents an overview of industrial ecosystem, technical architecture, industrial device management standards and our latest research activity in developing a WSN management system. The key approach to enable efficient and reliable management of WSN within such an infrastructure is a cross layer design of lightweight and cloud-based RESTful web service
    corecore